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Abstract

The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes
that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped
circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs
and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global
health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species
transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan
receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on
understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been
considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a
combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we
systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its
quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a
prototypic pandemic H2N2 (A/Albany/6/58) HA.
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Introduction

The 20th century witnessed three influenza pandemics: the

Spanish flu of 1918 (H1N1), the Asian flu of 1957-58 (H2N2) and

the Hong Kong flu of 1967-68 (H3N2). Among these subtypes the

H1N1 and H3N2 continue to circulate in the human population

leading to epidemic outbreaks annually and the H1N1 subtype

was responsible for the 2009 ‘swine flu’ pandemic (2009 H1N1).

The H2N2 subtype had stopped circulating in humans by 1968,

however H2 subtype viruses are occasionally isolated from swine

and avian species [1,2,3]. The circulation of avian H2 strains in

domestic birds and pigs increase the risk of human exposure to

these viruses and reintroduction of the viruses to the human

population. Such a reintroduction will pose a significant global

health threat given the lack of pre-existing immunity in a huge

subset of the human population born after 1968.

One of the main steps in the evolution of a pandemic influenza

virus is the acquisition of genetic changes that enable it to adapt to the

human host in order to replicate efficiently and transmit rapidly

resulting in widespread and sustained disease in humans [4,5,6]. The

critical first step in the host infection by the virus is the binding of the

viral surface glycoprotein hemagglutinin (HA) to sialylated glycan

receptors, complex glycans terminated by N-acetylneuraminic acid

(Neu5Ac) expressed on the host cell surface [7,8,9]. Glycans

terminating in Neu5Ac that is a2R6-linked to the penultimate sugar

are predominantly expressed in human upper respiratory epithelia

[10,11,12] and serve as receptors for human-adapted influenza A

viruses (henceforth referred to as human receptors). On the other hand,

glycans terminating in Neu5Ac that is a2R3 -linked to the

penultimate sugar residue, serve as receptors for the avian-adapted

influenza viruses (henceforth referred to as avian receptors) [13].

The molecular interactions of HA with avian and human

receptors have been captured using a topology-based definition of

glycan receptors [10,14]. Glycan array platforms comprised of

representative avian and human receptors have been widely

employed to study the glycan receptor binding of HAs and whole

viruses [15,16,17,18]. The relative binding affinities of recombi-

nantly expressed HAs from avian- (such as H1N1 and H5N1) and

human-adapted (such as H1N1 and H3N2) viruses to avian and

human receptors have been quantified by analyzing these HAs

(or whole viruses) in a dose-dependent manner on glycan array

platforms [10,19,20,21]. Furthermore, the glycan array binding

properties of the HAs have been shown to correlate with their

binding to physiological glycan-receptors in human respiratory

tissues [10,19,21]. Importantly, it has been shown that the human

receptor-binding affinity of H1N1 HAs correlated with the
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efficiency of airborne viral transmission in the ferret animal model

[19,21], which is an established model to evaluate viral

transmissibility in humans [22,23,24,25,26]. Such a relationship

has yet to be shown for the H2N2 subtype.

Previous structural and biochemical studies have provided

insights into interactions of the receptor binding site (RBS) of HA

with avian and human receptors for both wild type (WT) and

mutant forms of HA derived from the 1957-58 H2N2 pandemic

strains [27,28]. However, it has been recently demonstrated that

changes in the interactions between amino acids within and

proximal to the RBS, arising from substitutions due to antigenic

drift or reassortment, have profound effects on HA-glycan

interactions which in turn influences the glycan binding affinity

of HA [19,20]. This observation is particularly relevant to HA

from recent avian-H2 strains that have diverged considerably in

sequence compared to the HA sequence of the pandemic H2N2

strains [29]. Therefore in order to monitor changes in the recent

avian H2-subtype viruses that would possibly lead to their human-

adaptation, it is important to understand the mutations in their

HA that would confer human receptor-binding affinity that is

quantitatively in the same range as that of HA from the 1957-58

human-adapted H2N2 pandemic viruses.

In this study, we have systematically analyzed the effects of

mutations in the glycan RBS of pandemic and recent avian H2N2

HAs on their respective glycan-binding specificities. The HA from

a representative 1957-58 pandemic H2N2 strain, A/Albany/6/58

(Alb58), was chosen as a reference human-adapted HA. The HA

from a representative avian H2N2 virus, A/Chicken/Pennsylva-

nia/2004 (CkPA04), which is among the most recent strains

isolated from birds was also evaluated in this study [29]. We first

characterized the glycan receptor-binding affinity and human

respiratory tissue binding properties of these avian- and human-

adapted H2N2 HAs. The glycan receptor-binding affinity of HA is

quantitatively defined using an apparent binding constant Kd’ that

takes into account the cooperativity and avidity in the multivalent

HA-glycan interactions as described previously [21]. Next, using

homology-based structural models of Alb58 HA-human receptor

and CkPA04 HA-avian receptor complexes we analyzed the RBS

of these HAs and designed and evaluated mutations in CkPA04

HA that would make its human receptor binding affinity in the

same range as that of Alb58 HA.

Results

Characterization of glycan receptor- binding specificity of
Alb58 HA

We have previously developed a dose-dependent glycan array

binding assay [10,21] to quantitatively characterize glycan receptor

binding affinity of HA by calculating an apparent binding constant

Kd’. Alb58 HA was recombinantly expressed and analyzed using this

assay. Alb58 HA bound with high affinity to the representative

human receptors, 69SLN (Kd’ ,35 pM) and 69SLN-LN (Kd’ ,5 pM)

(Figure 1A). Notably, the binding affinity of Alb58 HA to 69SLN-

LN is in the same range as that of the pandemic H1N1 (A/South

Carolina/1/1918 or SC18) HA [21]. However unlike SC18 HA,

Alb58 HA also showed substantial binding to the representative

avian receptors 39SLN-LN (Kd9 ,1.5 nM) and 39SLN-LN-LN

(Kd’ ,1 nM) on the glycan array (Figure 1A). Staining of Alb58 HA

on human upper respiratory tracheal tissue sections revealed

extensive binding of the protein to the apical side (Figure 1B)

and thus correlated with its high affinity binding to human

receptors. Additionally, the substantial a2R3 sialylated glycan

binding of Alb58 observed in the glycan array assay was also

reflected in its binding to the human deep lung alveolar tissue

(Figure 1B) that predominantly expresses these glycans [10,21].

Previous studies have pointed to the roles played by the amino

acids in positions 226 and 228 in the RBS of H2N2 HAs in

governing the glycan receptor binding specificity [27,28]. The

observation includes the fact that HA from most human H2N2

isolates has Leu226 and Ser228 within its RBS, whereas HA from

most avian H2 isolates has Gln226 and Gly228. To understand

the roles of these residues on the quantitative glycan receptor

binding affinity of Alb58 HA, three mutant forms of Alb58 were

designed. Two of these mutants possessed a single amino acid

change, Leu226RGln (Alb58-QS mutant) and Ser228RGly

(Alb58-LG). The third mutant carried two amino acid changes,

Leu226RGln er228RGly (Alb58-QG).

Alb58-LG mutant retained the human receptor binding

specificity of the WT Alb58 HA but showed a complete loss in

the avian receptor binding in the dose-dependent direct binding

assay (Figure 2A). On the other hand, Alb58-QG mutant showed a

complete loss in human receptor binding and but displayed a

substantial binding to avian receptors in contrast to Alb58 HA

(Figure 2B). Surprisingly, Alb58-QS mutant exhibited little to no

Figure 1. Glycan receptor-binding specificity of Alb58 HA. A, shows dose-dependent direct glycan array binding of Alb58 HA which shows
high affinity binding to human receptors in comparison with avian receptor binding. B, shows extensive staining of apical surface of human tracheal
epithelia and observable staining of alveolar tissue section by Alb58 HA (in green) shown against propidium idodide staining (in red).
doi:10.1371/journal.pone.0013768.g001

Glycan Receptor Specificity
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binding to either the avian or human glycan receptor (Figure 2C).

Circular dichroism analysis of Alb58-QS ruled out the possibility of

Alb58-QS being misfolded (data not shown). A homology-based

structural model of the Alb58-QS mutant was constructed to

investigate the molecular basis of the observed biochemical

binding property. Analysis of the glycan receptor-binding site of

this mutant in the model showed that Ser228 is positioned to form

a hydrogen bond with Gln226 (Figure 2D). The interaction

between Gln226 and Ser228 potentially disrupts the favorable

positioning of Gln226 for optimal contact with avian receptor.

This observation offers an explanation for the loss of avian

receptor binding in the Alb58-QS mutant. Furthermore, the

absence of contacts between Gln226 and human receptor could

explain the loss of human receptor binding.

Mutations in RBS of CkPA04 and their effects on its
glycan receptor binding specificity

The dose-dependent glycan array binding of CkPA04 HA

showed high affinity binding to the representative avian receptors

39SLN, 39SLN-LN and 39SLN-LN-LN with minimal binding to

human receptors (Figure 3A). Furthermore, the glycan array

binding property of CkPA04 correlated with its extensive binding

to the human alveolar tissues and minimal binding to the apical

side of the tracheal tissues (Figure 3B).

To understand the molecular aspects of the H2 HA-glycan

receptor interaction, we constructed homology-based structural

models of the CkPA04-avian (Figure 4A) and the Alb58-human

receptor complexes (Figure 4B). Based on these structural models

of CkPA04 and Alb58 HAs, the amino acids positioned to interact

with the glycan receptors were compared (Table 1). In addition to

the differences in 226 and 228 positions, there were differences in

other positions including 137 and 193. The amino acids at

positions 137 and 193 are oriented to interact with Neu5A-

ca2R6Gal motif as well as sugars beyond this motif in the context

of the human receptor (and potentially play a role in antigenic

variations among current strains of H2 viruses; see discussion).

These differences potentially impinge on the human receptor

binding of H2N2 HA. Notably, CkPA04 HA differs from earlier

Figure 2. Glycan receptor-binding specificity of mutant forms of Alb58 HA. Shown in A-C is the dose-dependent glycan array binding of
Alb58-LG, Alb58-QG and Alb58-QS mutants respectively. A single amino acid change from Ser228RGly (Alb58-LG mutant) leads to a loss of avian
receptor binding observed in Alb58 HA. An additional Leu226RGln mutation (on Alb58-LG) completely transforms the binding specificity by making
the Alb58-QG mutant bind predominantly to avian receptors. Alb58-QS mutant shows loss of both avian and human receptor binding. D shows
homology based structural model of Alb58-QS mutant (RBS part is shown as a cartoon in beige) with the human receptor. Both the Leu226 and
Gln226 side chains are marked. The Gln226 in the mutant is positioned to interact with Ser228 hence making the 226 position less favorable for
contacts with both human and avian receptors.
doi:10.1371/journal.pone.0013768.g002
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avian-adapted H2N2 HAs in the 137 and 193 positions.

Therefore, while the Gln226RLeu and Gly228RSer substitutions

would make the RBS of earlier avian-adapted H2N2 HAs almost

identical to that of the pandemic Alb58 HA, additional amino acid

changes are required in the more recent avian-adapted HAs,

including CkPA04.

Based on the above analysis, three sets of mutations were

progressively made on CkPA04 to improve its contacts with the

human receptor. The first mutant comprised of the two amino

acid change Gln226RLeu/Gly228RSer (CkPA04-LS). The sec-

ond mutant, CkPA04-TLS, included an additional Ala193RThr

amino acid change in the CkPA04-LS HA. The third mutant,

CkPA04-RTLS, was generated by introducing an additional

Gln137RArg mutation in the CkPA04-TLS HA. These HA

mutants were recombinantly expressed and characterized in terms

of their quantitative glycan receptor binding affinity and human

tissue binding properties.

CkPA04-LS showed decreased binding to avian receptors and

substantial binding to human receptors in comparison with

CkPA04 (Figure 5A). CkPA04-TLS showed substantially higher

binding signals to both human and avian receptors when

compared to CkPA04-LS (Figure 5C). CkPA04-RTLS on the

other hand showed increased binding signals to human receptor

and similar binding signals to avian receptor as compared to

CkPA04-LS (Figure 5E). The human respiratory tissue binding of

these mutant H2 HAs was in agreement with their observed

glycan array binding (Figure 5B, 5D, 5F). The dose-dependant

glycan binding data of the described HAs were used to calculate

Kd’ and n values (n ,1.3 for all the HAs) by fitting the binding data

to the Hill equation (for multivalent binding) and this was then

used to generate theoretical binding curves to clearly distinguish

the relative binding affinities of WT and mutant H2 HAs to

representative avian and human receptors (Figure 6). The human

receptor binding affinity of CkPA04-LS (Kd’ ,50 pM) was 10-fold

lower than that of the Alb58 HA (Kd’ ,5 pM). On the other

hand the human receptor binding affinity of both CkPA04-TLS (Kd’

,3 pM) and CkPA04-RTLS (Kd’ ,8 pM) were several fold higher

than that of CkPA04-LS and in the same range as that of Alb58 HA.

The avian receptor binding affinity of CkPA04-TLS (Kd’ ,50 pM)

was in the same range as that of the WT CkPA04 HA (Kd’ ,20 pM)

and several fold higher than that of CkPA04-LS (Kd’ ,220 pM) and

CkPA04-RTLS (Kd’ ,220 pM). Therefore, among the different

mutants, CkPA04-RTLS was the closest to Alb58 HA in terms of its

relative human to avian receptor binding affinity. Based on our

structural understanding, this observation is consistent with the

fact that the RBS of CkPA04-RTLS and Alb58 were very similar to

each other, including extended range contacts with the glycan

receptor beyond the Neu5Ac linkage.

Discussion

Our study highlights the importance of integrating a systematic

sequence and structure analysis of HA-glycan molecular interac-

tions and a quantitative binding assay to study the effects of these

interactions on the biochemical glycan receptor binding affinity of

HA.

Previous studies have focused on amino acid substitutions in 226

and 228 positions in the RBS of pandemic H2N2 HAs [28].

Recently the glycan receptor-binding properties of the Alb58 virus

and the WT and mutant forms (with substitutions in 226 and 228

positions in HA) of a related pandemic H2N2 virus – A/El

Salvador/2/57 (or ElSalv57) were characterized by analyzing these

whole viruses in a dose dependent fashion on the glycan array

platform [30]. The glycan receptor-binding properties of the

recombinant Alb58 HA reported in the present study are in good

agreement with those obtained using the whole viruses [30]. Our

results further augment these observations by characterizing the

effect of substitutions in the 226 and 228 position on the

quantitative glycan receptor binding affinity of Alb58 HA.

In addition to the previously noted 226 and 228 positions

[27,28], our systematic sequence and structural analysis of H2

HA-glycan complexes revealed key differences between CkPA04

and Alb58 HAs in other positions, such as 137 and 193. By

progressively designing mutations in CkPA04 we demonstrate that

substitutions at the 137 and 193 positions (in addition to those in

226 and 228 positions) considerably alter the glycan receptor

binding affinity. In fact, introducing these additional amino acid

changes (CkPA04-TLS and CkPA04-RTLS mutants) leads to a 10-

fold increase in the human receptor binding affinity compared to

that of the CkPA04-LS mutant and makes the affinity in the range

of that observed for the pandemic H2N2 HA (Alb58). Therefore,

monitoring the mutations in these additional positions in the RBS

Figure 3. Glycan receptor-binding specificity of CkPA04 HA. A, shows dose-dependent direct glycan array binding of CkPA04 HA which shows
high affinity binding to avian receptors in comparison with human receptors. B, shows extensive alveolar staining and minimal staining of apical
surface of the human tracheal epithelia by CkPA04 HA (in green) shown against propidium idodide staining (in red).
doi:10.1371/journal.pone.0013768.g003

Glycan Receptor Specificity
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is important for understanding changes in glycan receptor binding

affinity of the H2 HAs. Moreover, these additional positions are

also a part of antigenic loops and hence are likely to undergo

constant substitutions as a result of antigenic drift in the H2 viruses

to escape antibody neutralization. Monitoring these mutations also

have important implications in vaccine development should a

scenario arise wherein recent avian or swine H2 viruses are able to

gain a foothold in the human population.

Figure 4. Homology-based structural model of HA-glycan receptor complexes. A, stereo view of the RBS (shown as cartoon in cyan) of
CkPA04 HA – avian receptor structural complex constructed using co-crystal structure of A/Chicken/NY/91-avian receptor (PRB ID: 2WR2) as a
template. The resolved coordinates of the avian receptor (Neu5Aca2R3Galb1R3GlcNAc) are shown using a stick representation (in green). B, stereo
view of RBS (shown as cartoon in gray) of Alb58 HA – human receptor complex constructed using co-crystal structure of A/Singapore/1/57– human
receptor (PDB ID: 2WR7) as the template. The resolved coordinates of the human receptor (Neu5Aca2R6Galb1R4GlcNAcb1R3Gal) are shown using
a stick representation (in orange). The side chains of the key residues involved in interaction with glycan receptor are shown and labeled. The residues
in the RBS that differ between CkPA04 and Alb58 HA are labeled in red.
doi:10.1371/journal.pone.0013768.g004

Table 1. Comparison of key amino acids in the RBS of CkPA04 and Alb58 Has.

136 137 153 155 156 183 186 187 189 190 193 194 222 226 228

CkPA04 S Q W T K H N D T E A L K Q G

Alb58 S R W T K H N D T E T L K L S

doi:10.1371/journal.pone.0013768.t001

Glycan Receptor Specificity
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The apparent binding constant Kd’ calculated in our study is used

primarily to compare the relative binding affinities of different

recombinant HAs by taking into account a defined spatial

arrangement of HA (that is fixed for all the HAs) relative to the

glycans. Among the various factors that influence the efficient viral

transmissibility in humans we have shown in both the 1918 pandemic

H1N1 and the recently declared 2009 pandemic H1N1 that the

binding affinity to the human receptors (quantified using Kd’)

correlates with the transmissibility of the virus via respiratory droplets

in ferrets [19,21]. The human receptor binding affinity of Alb58 HA

Figure 5. Glycan receptor-binding specificity of mutant forms of CkPA04 HA. Shown in the figure is the dose-dependent glycan receptor
binding (A, C, E) and human tissue binding (B, D, F) of CkPA04-LS, CkPA04-TLS and CkPA04-RTLS mutants respectively. All the mutants show
substantial improvement in the human receptor binding and reduction in avian receptor binding in comparison to the WT CkPA04 HA as observed in
both the glycan array tissue-binding experiments.
doi:10.1371/journal.pone.0013768.g005

Glycan Receptor Specificity
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being in the same range as that of the SC18 HA taken together with

the efficient respiratory droplet transmission of the Alb58 virus [30]

extends this correlation to the H2N2 viruses. Furthermore, given that

Alb58 virus transmits efficiently via respiratory droplets in ferrets, our

results underscores the fact that a complete switch from avian to

human receptor binding is not the critical determinant for human

adaptation of influenza A virus HAs. Both the quantitative glycan

array binding and human tissue binding results of Alb58 HA show

substantial avian receptor binding. Instead, it appears that the high

affinity binding to human receptors is a common factor shared by H2

HA with that of other human-adapted virus subtypes (H1 and H3)

[10,21] and therefore this property appears to be a necessary

determinant for efficient human adaptation and transmission. In

summary our studies offer important strategies to monitor the

evolution of human-adaptive mutations in the HA of currently

circulating avian H2 influenza A viruses.

Materials and Methods

Homology based modeling of CkPA04 HA- and Alb58 HA-
glycan structural complexes

The co-crystal structures of A/Singapore/1/57 H2N2 HA –

human receptor (PDB ID: 2WR7) and A/ck/NewYork/91– avian

receptor (PDB ID: 2WR2) were used as templates to model the

structural complexes of Alb58– human receptor and CkPA04–

avian receptor respectively. Homology modeling was performed

using the SWISS-MODEL web-based program (URL: http://

swissmodel.expasy.org/SWISS-MODEL.html).

Cloning, mutagenesis and expression of HA
The Alb58 and CkPA04 plasmids were gifts from Dr. Terrence

Tumpey and Dr. Adolfo Garcia-Sastre respectively. The human

and avian WT H2N2 HA genes were subcloned into a pAcGP67A

vector to generate pAcGp67-Alb58-HA and pAcGp67-CkPA04-

HA respectively for baculovirus expression in insect cells. Using

pAcGp67-CkPA04-HA as a template the gene was mutated to yield

pAcGp67-LS-HA [Gln226Leu, Gly228Ser], pAcGp67-TLS-HA

[Ala193Thr, Gln226Leu, Gly228Ser] and pAcGp67-RTLS-HA

[Gln137Arg, Ala193Thr, Gln226Leu, Gly228Ser]. The primers for

mutagenesis were designed using PrimerX (http://bioinformatics.

org/primerx/) and synthesized by IDT DNA technologies (Coral-

ville, IA). The mutagenesis reaction was carried out using the

QuikChange Multi Site-Directed Mutagenesis Kit (Stratagene, CA)

Alb58, CkPA04, CkPA04-LS, CkPA04-TLS and CkPA04-RTLS

baculoviruses were created from their respective plasmids, using

Baculogold system (BD Biosciences, CA) as per the manufacturer’s

instructions. The baculoviruses were used to infect 300 ml

suspension cultures of Sf9 cells (Invitrogen, Carlsbad, CA) cultured

in Sf-900 II SFM medium (Invitrogen, Carlsbad, CA). The infected

cultures were monitored and harvested 4–5 days post-infection. The

soluble trimeric form of HA was purified from the supernatant of

infected cells using modification of the protocol described previously

[31]. In brief, the supernatant was concentrated using Centricon

Plus-70 centrifugal filters (Millipore, Billerica, MA) and the trimeric

HA was recovered from the concentrated cell supernatant using

affinity chromatography with columns packed with Ni-NTA beads

(Qiagen, Valencia, CA). The fractions containing HA were pooled

together and subjected to ultrafiltration using Amicon Ultra 100

K NMWL membrane filters (Millipore, Billerica, MA). The protein

was reconstituted in PBS and concentrated. The purified protein

concentration was determined using Bio-Rad’s protein assay

(Bio-Rad, CA).

Dose dependent direct glycan array-binding assay
To investigate the multivalent HA-glycan interactions a

streptavidin plate array comprising representative biotinylated

a2R3 and a2R6 sialylated glycans as described previously [21].

The glycans 39SLN, 39SLN-LN, 39SLN-LN-LN are representative

avian receptors. 69SLN and 69SLN-LN are representative human

receptors. LN corresponds to lactosamine (Galb1-4GlcNAc) and

39SLN and 69SLN respectively correspond to Neu5Aca2–3 and

Neu5Aca2–6 linked to LN. The biotinylated glycans were

obtained from the Consortium of Functional Glycomics through

their resource request program. Streptavidin-coated High Binding

Capacity 384-well plates (Pierce) were loaded to the full capacity of

each well by incubating the well with 50 ml of 2.4 mM of

Figure 6. Glycan receptor-binding affinities of the mutant forms of CkPA04 HA. A, shows the theoretical binding curves (with the apparent
binding constant Kd’) that depict the differences in the binding affinity of the WT and mutant H2N2 HAs to the representative avian receptor
(39SLN-LN). B, shows the theoretical binding curves that depict the differences in the binding affinity of the WT and mutant H2N2 HAs to the
representative human receptor (69SLN-LN). The range of Kd’ values (3–8 pM) is shown for CkPA04-TLS, Alb58 and CkPA04-RTLS that is contrasted with
the Kd’ value of CkPA04-LS. The binding curves were generated by fitting to the Hill equation (see Methods) and plotting the theoretically calculated
fractional saturation (y-axis) against HA concentration (x-axis). The n value for all the binding events is around 1.3.
doi:10.1371/journal.pone.0013768.g006
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biotinylated glycans overnight at 4uC. Excess glycans were

removed through extensive washing with PBS.

The trimeric HA unit comprises of three HA monomers (and

hence three RBS, one for each monomer). The spatial

arrangement of the biotinylated glycans in the wells of the

streptavidin plate array favors binding to only one of the three HA

monomers in the trimeric HA unit. Therefore in order to

specifically enhance the multivalency in the HA-glycan interac-

tions, the recombinant HA proteins were pre-complexed with the

primary and secondary antibodies in the ratio of 4:2:1 (HA:pri-

mary:secondary). The identical arrangement of 4 trimeric HA

units in the precomplex for all the HAs permits comparison

between their glycan binding affinities.

A stock solution containing appropriate amounts of Histidine

tagged HA protein, primary antibody (Mouse anti 6X His tag IgG)

and secondary antibody (HRP conjugated goat anti Mouse IgG

(Santacruz Biotechnology) in the ratio 4:2:1 and incubated on ice

for 20 min. Appropriate amounts of precomplexed stock HA were

diluted to 250 ml with 1% BSA in PBS. 50 ml of this precomplexed

HA was added to each of the glycan-coated wells and incubated at

room temperature for 2 hrs followed by the above wash steps. The

binding signal was determined based on HRP activity using

Amplex Red Peroxidase Assay (Invitrogen, CA) according to the

manufacturer’s instructions. The experiments were done in

triplicate. Minimal binding signals were observed in the negative

controls including binding of precomplexed unit to wells without

glycans and binding of the antibodies alone to the wells with

glycans. The binding parameters, cooperativity (n) and apparent

binding constant (Kd’), for H2 HA-glycan binding were calculated

by fitting the average signal value (from the triplicate analysis)

and the HA concentration to the linearized form of the

Hill equation:log
y

1{y

� �
~n � log HA½ �ð Þ-log Kd ’ð Þ, where y is

the fractional saturation (average binding signal/maximum

observed binding signal). The theoretical y values calculated using

the Hill equation y~
HA½ �n

HA½ �nzKd ’
(for the set of n and Kd’

parameters) were plotted against the varying concentration of HA

to obtain the binding curves for representative human (69SLN-LN)

and avian receptors (39SLN-LN) shown in Figure 6.

Human respiratory tissue binding assay
Formalin fixed and paraffin embedded normal human tracheal

and alveolar tissue sections were purchased from US Biological

and US Biomax, respectively. Tissue sections were incubated for

30 minutes in a hybridization oven at 60uC to melt the paraffin.

Excess paraffin was removed by multiple washes in xlyene.

Sections were subsequently rehydrated in a series of ethanol

washes. In order to prevent nonspecific binding, sections were pre-

blocked with 1% BSA in PBS for 30 minutes at room temperature

(RT). For the generation of HA-antibody precomplexes, the

histidine tagged purified recombinant HAs (Alb58, CkPA04, LS

and TLS) were incubated with primary antibody against his tag

(mouse anti 6X His tag, Abcam) and secondary (Alexa Fluor 488

goat anti mouse IgG, Invitrogen) antibody in a ratio of 4:2:1

respectively for 20 minutes on ice. Tissue sections were incubated

with the HA-antibody precomplexed unit, diluted to different final

concentrations in 1%BSA-PBS, for 3 hours at RT. Sections were

then incubated with propidium iodide to counterstain the nuclei

(Invitrogen; 1:100 in TBST) for 20 minutes at RT. After thorough

washing, sections were mounted and analyzed using a Zeiss

LSM510 laser scanning confocal microscope.
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