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Abstract

The Wnt/b-catenin signaling pathway plays essential roles in cell proliferation and differentiation, and deregulated b-catenin
protein levels lead to many types of human cancers. On activation by Wnt, the Wnt co-receptor LDL receptor related protein
6 (LRP6) is phosphorylated at multiple conserved intracellular PPPSPXS motifs by glycogen synthase kinase 3 (GSK3) and
casein kinase 1 (CK1), resulting in recruitment of the scaffolding protein Axin to LRP6. As a result, b-catenin phosphorylation
by GSK3 is inhibited and b-catenin protein is stabilized. However, how LRP6 phosphorylation and the ensuing LRP6-Axin
interaction lead to the inhibition of b-catenin phosphorylation by GSK3 is not fully understood. In this study, we
reconstituted Axin-dependent b-catenin phosphorylation by GSK3 and CK1 in vitro using recombinant proteins, and found
that the phosphorylated PPPSPXS peptides directly inhibit b-catenin phosphorylation by GSK3 in a sequence and
phosphorylation-dependent manner. This inhibitory effect of phosphorylated PPPSPXS motifs is direct and specific for GSK3
phosphorylation of b-catenin at Ser33/Ser37/Thr41 but not for CK1 phosphorylation of b-catenin at Ser45, and is
independent of Axin function. We also show that a phosphorylated PPPSPXS peptide is able to activate Wnt/b-catenin
signaling and to induce axis duplication in Xenopus embryos, presumably by inhibition of GSK3 in vivo. Based on these
observations, we propose a working model that Axin recruitment to the phosphorylated LRP6 places GSK3 in the vicinity of
multiple phosphorylated PPPSPXS motifs, which directly inhibit GSK3 phosphorylation of b-catenin. This model provides a
possible mechanism to account, in part, for inhibition of b-catenin phosphorylation by Wnt-activated LRP6.
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Introduction

The Wnt/b-catenin signal transduction pathway plays central

roles in many aspects of cell proliferation and differentiation, such

as segment polarity determination in Drosophila, dorsal-ventral axis

formation in Xenopus, and homeostasis of the mammalian

gastrointestinal tract [1–3]. The onco-protein b-catenin is a

central component of the Wnt signaling pathway. Its protein level

inside the cell is tightly regulated by phosphorylation-dependent

and ubiquitin-mediated degradation, and deregulated b-catenin

protein level leads to many types of human cancers, such as

colorectal carcinoma and melanoma [4]. In the absence of

secreted Wnt ligands, cytosolic b-catenin is phosphorylated at

Ser45 by the priming kinase casein kinase 1 (CK1). Consequently,

glycogen synthase kinase 3 (GSK3), in complex with Axin and

adenomatous polyposis coli (APC), phosphorylates b-catenin at Thr41,

Ser37, and Ser33 [5–15]. Ser33 and Ser37 doubly-phosphorylated

b-catenin is specifically recognized by b-TrCP [16–22], a subunit

of the SCFb-TrCP E3 ubiquitin ligase complex. The SCFb-TrCP

ubiquitin ligase poly-ubiquitinates b-catenin, leading to b-catenin

degradation via the proteosome pathway [23,24]. In the presence

of Wnt ligands, the activation of the Wnt pathway results in

inhibition of b-catenin phosphorylation at Ser33 and Ser37 (and

Thr41) by GSK3, thereby preventing b-catenin ubiquitination and

degradation. Stabilized b-catenin translocates into the nucleus and

complexes with members of the T cell factor (TCF)/lymphoid

enhancer factor (LEF) family of transcription factors [25–27],

leading to the activation of Wnt/b-catenin responsive genes such

as c-myc and cyclin D1 [28,29]. Therefore, inhibition of amino-

terminal phosphorylation of b-catenin by GSK3 is a central step in

Wnt/b-catenin signaling.

Wnt activates the b-catenin pathway via two distinct classes of

receptors on the cell surface: one is a member of the Frizzled

family of seven-transmembrane receptors, and the other is a single

transmembrane receptor referred to as LDL receptor related

protein 6 (LRP6), or its relative LRP5. Wnt may induce a Frizzled-

LRP6 coreceptor complex [30–33], which in turn triggers the

phosphorylation of LRP6 intracellular domain at five conserved

PPP(S/T)PX(S/T) motifs (referred to as PPPSPXS for simplicity)

[34,35]. The phosphorylated PPPSPXS motif provides an optimal

binding site for Axin [34,35], thereby recruiting Axin and likely

associated proteins to the Frizzled-LRP6 receptor complex [33,36]

and leading to the inhibition of b-catenin phosphorylation.

Importantly the phosphorylated PPPSPXS motif represents a
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key and minimal functional module of the Wnt receptor complex,

since it is sufficient to trigger b-catenin signaling when transferred

to a heterologous receptor [34,35,37]. PPPSPXS phosphorylation

is carried out sequentially by GSK3 and CK1 [35,37,38] and is

under the control by Frizzled and its downstream partner

Dishevelled protein [39,40].

How PPPSPXS phosphorylation and its recruitment of Axin

result in inhibition of b-catenin phosphorylation remains a critical

question. To address this issue we established an in vitro b-catenin

phosphorylation system using recombinant Axin, GSK3 and CK1.

We found that each of the multiple phosphorylated PPPSPXS

peptides inhibits the phosphorylation of b-catenin at Ser33/Ser37/

Thr41 by GSK3 in a sequence and phosphorylation-dependent

manner. This inhibition is specific for GSK3, as these phospho-

peptides do not affect b-catenin Ser45 phosphorylation by CK1,

and occurs regardless of the presence or absence of Axin. We also

found that a phosphorylated PPPSPXS peptide is able to activate

Wnt/b-catenin signaling and to induce axis duplication in Xenopus

embryos, presumably via inhibition of GSK3 in vivo. These results

suggest a potential mechanism to account, in part, for the inhibition

GSK3 phosphorylation of b-catenin by the activated LRP6. While

this manuscript was in previous review processes, Cselenyi et al.

reported that the LRP6 intracellular domain directly inhibits GSK3

phosphorylation of b-catenin in a PPPSPXS-dependent manner

[41]. Our results based on studying individual phospho-PPPSPXS

peptides are consistent with their main conclusion. However, while

Cselenyi et al. suggested that LRP6 specifically inhibits GSK3

phosphorylation of b-catenin but not of other substrates [41], our

data suggest that the phosphorylated PPPSPXS peptide behaves as

a general GSK3 inhibitor.

Results

Reconstitution of Axin-dependent b-catenin amino-
terminal phosphorylation by CK1 and GSK3 in vitro

To study how b-catenin phosphorylation is regulated by upstream

components of the Wnt pathway, we reconstituted an in vitro kinase

assay for b-catenin amino-terminal phosphorylation using purified

proteins. We overexpressed recombinant b-catenin, Axin, CK1b,

and GSK3b proteins in either E. coli or baculovirus-infected insect

cells, and purified these proteins to over 90% homogeneity by affinity

chromatography (Figure 1A). We incubated purified b-catenin with

Axin, CK1, and GSK3 protein in the presence of ATP and MgCl2 at

37uC for 3 hours. b-catenin phopshorylation was analyzed by

immunoblotting using an antibody specific for Ser45-phosphoryla-

tion (by CK1) or an antibody specific for Ser33/Ser37/Thr41-

phosphorylation (by GSK3).

When CK1 was present in the kinase reaction, b-catenin was

strongly phosphorylated at Ser45 (Figure 1B). When CK1, Axin

and GSK3 were all present in the kinase reaction, b-catenin was

potently phosphorylated at Ser33/Ser37/Thr41 (Figure 1C, lane

4). Phosphorylation of b-catenin at Ser33/Ser37/Thr41 fully

depended on GSK3 (Figure 1C, lane 2), and also required the

presence of Axin and the priming phosphorylation by CK1

(Figure 1C, lanes 3 and 5). These results are consistent with an

earlier report [42], and importantly, recapitulate the in vivo

requirement of b-catenin phosphorylation. Therefore we have

reconstituted an in vitro kinase assay for Axin-dependent b-catenin

amino-terminal phosphorylation by CK1 and GSK3 using

purified proteins.

Design of phosphorylated PPPSPXS motif peptides
A single phosphorylated PPPSPXS motif is sufficient to activate

b-catenin signaling in vivo [34,37]. In order to investigate whether

these PPPSPXS motifs might regulate b-catenin amino-terminal

phosphorylation in our in vitro assay, we employed 4 phosphor-

ylated PPPSPXS peptides corresponding to A, C, D, and E motifs

of LRP6 (Figure 2A), referred to as Phos-A, Phos-C, Phos-D, and

Phos-E, respectively, in which the two Ser/Thr residues in the

PPPSPXS motifs were phosphorylated (Figure 2B). Although motif

B behaves similarly to the other PPPSPXS motifs when tested in

isolation in mammalian cells, motif B appears to be the least

critical one in the wild type LRP6 [37,43]. We therefore did not

synthesize and test motif B. As controls, we also synthesized an HA

peptide, a dually phosphorylated 14-3-3 binding peptide (14-3-

3BP), and a mutant motif A peptide (A-mut), which harbors

alanine replacement of the two phosphorylated Ser/Thr residues

(Figure 2B) and which has been shown to be completely inactive in

Wnt/b-catenin signaling in vivo [35].

Phosphorylated PPPSPXS peptides inhibit b-catenin
Ser33/Ser37/Thr41 phosphorylation by GSK-3

When the phosphorylated PPPSPXS peptides were added to the

in vitro b-catenin phosphorylation assay, the Phos-A, Phos-C, as

well as Phos-E peptide each inhibited, interestingly, b-catenin

phosphorylation at Ser33/Ser37/Thr41 by GSK3 (Figure 3A, left

panel). The Phos-D peptide, which is atypical and has a CPPSPXS

motif (Figure 2B), inhibited b-catenin phosphorylation by GSK3

Figure 1. In vitro reconstitution of Axin-dependent and CK1
priming-dependent b-catenin phosphorylation by GSK3. A.
Recombinant GST-b-catenin, Flag-CK1, MBP-Axin, and His-GSK3 proteins
were expressed in bacteria or insect cells and purified by glutathione
agarose, anti-Flag M2 agarose, amylose resin, or Ni-NTA resin,
respectively. In the case of b-catenin, GST was cleaved via thrombin
and purified away from b-catenin. * indicates each recombinant protein.
B. b-catenin phosphorylation by CK1 was reconstituted in vitro using
purified proteins. The phosphorylation reaction products were analyzed
by western blotting using an anti-phospho-Ser45 b-catenin antibody. C.
Axin-dependent phosphorylation by GSK3 was reconstituted in vitro
using purified proteins. For Axin-dependent b-catenin phosphorylation
in this and other figures, 0.43 mM of GSK3, 0.54 mM of CK1a, 0.21 mM of
Axin, and 0.73 mM of b-catenin were used in each assay. The
phosphorylation reaction products were analyzed by western blotting
using an anti-phospho-Ser45 b-catenin antibody and an anti-phospho-
Ser33/Ser37/Thr41 b-catenin antibody.
doi:10.1371/journal.pone.0004926.g001

Inhibition of GSK3 by LRP6
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to a less degree (Figure 3A, left panel). We note that in cultured

cells motif D also exhibits significant less activity than A, C and E

motifs [37]. The A-mut peptide failed to inhibit b-catenin

phosphorylation (Figure 3A, right panel). As additional controls,

neither the HA peptide nor the unrelated and dually phosphor-

ylated peptide, 14-3-3BP, affected b-catenin phosphorylation by

GSK3 (Figure 3B and 3C). Furthermore, when the amount of

peptides used in the phosphorylation assay was titrated, Phos-A,

Phos-C and Phos-E peptides inhibited b-catenin phosphorylation

in a dose-dependent manner (Figure 3B, 3D, 3E), whereas Phos-D

was significantly less active (Figure 3D, 3E). The HA and A-mut

peptides did not inhibit b-catenin phosphorylation at all

concentrations tested (Figure 3B, 3D, 3E). We note that the molar

concentrations of phospho-PPPSPXS peptides employed in these

titration assays were 0.46, 1.56, 66, and 246 of that of GSK3

(see Methods).

The phosphorylated PPPSPXS motif inhibits b-catenin
phosphorylation by GSK3 but not by CK1 via an Axin-
independent manner

Since Axin is a scaffolding protein critical for GSK3

phosphorylation of b-catenin and binds to the phosphorylated

PPPSPXS motif [34,35,37], we considered the possibility whether

inhibition of b-catenin phosphorylation by the phosphorylated

PPPSPXP motif involves the binding between Axin and the

phosphorylated PPPSPXS motif. To this end we first employed an

Axin mutant, AxinDDIX (Figure 4A and 4B), which lacks the so-

called DIX domain required for Axin-binding to LRP5/6 [36]

and therefore does not associate with phosphorylated LRP6 or the

PPPSPXP motif (H. H and X. H., unpublished results). b-catenin

phosphorylation by GSK3 in vitro was promoted by AxinDDIX as

effectively as the wild type Axin; but unexpectedly, this reaction

was inhibited by Phos-A in a similar dose-dependent manner in

the presence of either the wild type Axin or AxinDDIX (Figure 4C).

This result implies that Phos-A inhibition of b-catenin phosphor-

ylation by GSK3 may not involve its binding to Axin. To address

this issue further, we tested another Axin fragment, Axin(351-701)

(Figure 4A and 4B), which contains only the b-catenin- and

GSK3-binding domains of Axin and promote b-catenin phos-

phorylation by GSK3 [42]. Indeed b-catenin phosphorylation by

GSK3 was promoted by Axin(351-701) similarly to that by the

wild type Axin, and importantly, was inhibited by Phos-A in a

dose-dependent manner regardless of the presence of Axin or

Axin(351-701) (Figure 4D). These results suggest that phosphor-

ylated PPPSPXS peptide inhibited b-catenin phosphorylation by

GSK3 via a manner that is independent of PPPSPXS-binding to

Axin, perhaps by inhibiting GSK3 directly.

As demonstrated in Figure 1, b-catenin phosphorylation by

GSK3 in vitro was greatly enhanced by the presence of Axin

[9,42]. However, GSK3 can nonetheless phosphorylate b-catenin

in vitro, although less efficiently, in the absence of Axin [5,9,42].

Taking advantage of this property, we found that b-catenin

phosphorylation at Ser33/Ser37/Thr41 by GSK3 in the absence

of Axin was also inhibited by the Phos-A peptide in a dose-

dependent manner (Figure 4E). As in the presence of Axin

(Figure 3B), the A-mut peptide had little or no effect on b-catenin

phosphorylation by GSK3 in the absence of Axin (Figure 4E).

These results suggest that phosphorylated PPPSPXS motif directly

inhibits GSK3 phosphorylation of b-catenin.

CK1 phosphorylates b-catenin at Ser45, which is the priming

site for b-catenin Ser33/Ser37/Thr41 phosphorylation by GSK3

[5]. In addition, CK1 also phosphorylates LRP6 at the second Ser

residue in the PPPSPXS motif [35,38]. Therefore we tested

whether the dually phosphorylated PPPSPXS peptide had any

effect on b-catenin Ser45 phosphorylation by CK1. Although the

Phos-A peptide inhibited b-catenin phosphorylation at Ser33/

Ser37/Thr41 by GSK3, it had no effect on b-catenin phosphor-

ylation at Ser45 by CK1 (Figure 4F). The A-mut peptide had little

or no effect on b-catenin phosphorylation at Ser33/Ser37/Thr41

by GSK3 or at Ser45 by CK1 (Figure 4F). These results together

suggest that the dually phosphorylated PPPSPXS motif can inhibit

b-catenin phosphorylation at Ser33/Ser37/Thr41 by GSK3

independent of Axin, but it does not affect b-catenin phosphor-

ylation at Ser45 by CK1.

The dually phosphorylated PPPSPXS peptide inhibits the
phosphorylation of glycogen synthase and Tau by GSK3

Since the dually phosphorylated PPPSPXS peptide directly

inhibited b-catenin phosphorylation at Ser33/Ser37/Thr41 by

GSK3 independent of Axin, we tested whether this inhibition was

specific for b-catenin or was broad for other GSK3 substrates,

such as glycogen synthase (GS) and the Tau protein [44]. We

expressed the mouse glycogen synthase carboxyl terminal domain

(mGS-CTD, amino acid 585–738) as a GST-fusion protein in E.

coli, and purified mGS-CTD by GST column affinity chromatog-

raphy (Figure 5A). We reconstituted in vitro phosphorylation for

mGS-CTD by incubating it together with GSK3 and the priming

casein kinase 2 (CK2) [44] in the presence of ATP and MgCl2.

When CK2 and GSK3 were both present, mGS-CTD was

strongly phosphorylated at Ser641 (Figure 5B, lanes 1 and 6).

When CK2 was absent from the reaction, the phosphorylation of

mGS-CTD at Ser641 by GSK3 was significantly reduced

(Figure 5B, lane 3), recapitulating CK2 priming phosphoryla-

tion-dependent GS phosphorylation by GSK3. We found that the

Phos-A peptide, but not the A-mutant peptide, inhibited mGS-

CTD phosphorylation by GSK3 at Ser641 (Figure 5C). GSK3

Figure 2. Peptide design according to the PPPSPXS motifs in
human LRP6. A. Sequence alignment of the five PPPSPXS motifs in
human LRP6 and LRP5 by the Cluster V program. The PPPSPXS motifs
are highlighted in color and boxed. B. The sequences of synthetic
peptides are shown. The PPPSPXS motifs in the peptides are underlined,
and phosphorylated Ser/Thr residues are shown in italics. The C or K
residue in the parenthesis at the amino terminus of peptides A, C, D,
and E was introduced for protein conjugation purposes (during
immunization for antibody production) [34,37].
doi:10.1371/journal.pone.0004926.g002

Inhibition of GSK3 by LRP6
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also phosphorylated purified Tau protein in vitro, which does not

require priming phosphorylation (Figure 5D), as detected by the

anti-phospho-Tau antibody PHF1 (specific for Tau phosphorylat-

ed at Ser396 and Ser404) [45]. When the Phos-A peptide was

added to the in vitro assay, Tau phosphorylation was greatly

reduced, whereas the A-mut peptide had little effect (Figure 5E). In

addition, when Phos-A peptide was titrated in the phosphorylation

assay performed side-by-side for Tau and b-catenin (without Axin

but with CK1 priming phosphorylation), indistinguishable dose-

dependent inhibition of GSK3 by Phos-A was reproducibly

observed (Figure 5F and 5G). These results suggest that the

phosphorylated PPPSPXS motif inhibits GSK3 kinase activity

towards multiple substrates.

The dually phosphorylated PPPSPXS peptide can activate
b-catenin signaling in Xenopus embryos

As the dually phosphorylated Phos-A peptide inhibits GSK3

phosphorylation of b-catenin in vitro, we examined whether Phos-

A could inhibit GSK3 and activate b-catenin signaling in vivo. It

has been well established that inhibition of GSK3, such as via a

dominant-negative GSK3 mutant, activates Wnt/b-catenin sig-

naling and induces axis duplication in Xenopus embryos

[46,47,48]. We found that injection of the Phos-A peptide, but

not the A-mut peptide, in Xenopus embryos induced partial axis

duplication and the expression of Xnr3, a direct downstream

target gene for b-catenin signaling [49] (Figure 6). Although the

activity of the injected Phos-A peptide was significantly weaker

compared to that of injected Xwnt8 mRNA (Figure 6), this was not

unexpected since the phospho-peptide was likely subjected to

dilution, proteolysis and/or dephosphorylation by proteases and/

or phosphatases in the embryo in the absence of de novo synthesis.

Importantly the A-mut peptide had no axis- or Xnr3-inducing

activity in Xenopus embryos. These experiments demonstrate that

the dually phosphorylated PPPSPXS peptide is able to activate

Wnt/b-catenin signaling in embryos, presumably via inhibition of

GSK3 phosphorylation of b-catenin in vivo.

Figure 3. Phosphorylated PPPSPXS peptides inhibit b-catenin phosphorylation by GSK3 in vitro. A. The HA, Phos-E, Phos-C, Phos-D and
Phos-A peptides (left panel) and the HA, Phos-A, and A-mut peptides (right panel) were included in the b-catenin phosphorylation assay. Each
peptide was at 10 mM final concentration. B. Four-fold serial dilutions of HA, Phos-A, and A-mut peptides were included in the b-catenin
phosphorylation assay. C. Four-fold serial dilutions of Phos-A, and 14-3-3BP peptides were included in the b-catenin phosphorylation assay. D. Four-
fold serial dilutions of HA, Phos-E, Phos-A, Phos-C, and Phos-D peptides were included in the b-catenin phosphorylation assay. E. The result from D
was quantified via Adobe Photoshop. b-catenin phosphorylation assays were performed in the presence of Axin and CK1 as in Figure 1C. Each
peptide was at 10 mM, 2.5 mM, 0.63 mM, and 0.16 mM (four-fold serial dilutions) final concentration. The phosphorylation reaction products were
analyzed by western blotting using an anti-phospho-Ser33/Ser37/Thr41 b-catenin antibody and an anti-b-catenin antibody.
doi:10.1371/journal.pone.0004926.g003

Inhibition of GSK3 by LRP6
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Figure 4. The inhibition of b-catenin phosphorylation by phosphorylated PPPSPXS peptides is specific for GSK3 and independent
of Axin function. A. Different Axin constructs used in this study, the full length Axin (amino acid 1–863), AxinDDix (1-773), and Axin(351-701) are
shown. B. Purification of the full length Axin, AxinDDix, and Axin(351-701) proteins. These Flagged tagged Axin and Axin fragments were expressed in
HEK293T cells, purified via M2 agarose (Sigma) resin, and eluted by 0.2 mg/ml Flag peptides. C and D. The Phos-A peptide inhibited GSK3
phosphorylation of b-catenin in the presence of the full length Axin, or AxinDDIX (C), or Axin(351-701) (D). Four-fold serial dilutions of the Phos-A
peptide were tested as in Figure 3. The A-mut peptide was added at the concentration equivalent to that of Phos-A without dilution (10 mM). The
phosphorylation reaction products were analyzed using an anti-phospho-Ser33/Ser37/Thr41 b-catenin antibody. E. Inhibition of GSK3
phosphorylation of b-catenin by Phos-A was independent of Axin. Four-fold serial dilutions of the Phos-A peptide (10 mM, 2.5 mM, and 0.63 mM)
were included in the b-catenin phosphorylation assay in the absence or presence of Axin. The A-mut peptide was added at the concentration
equivalent to that of Phos-A without dilution (10 mM). The phosphorylation reaction products were analyzed using an anti-phospho-Ser33/Ser37/
Thr41 b-catenin antibody. Note that in order to achieve and visualize b-catenin phosphorylation by GSK3 in the absence of Axin (lanes 1–5), 5-fold
excess amount of GSK3 (2.2 mM) was employed compared to that in the presence of Axin (lanes 6–10), and the film was overexposed. F. b-catenin
Ser45 phosphorylation by CK1 was not affected by Phos-A, used at 10 mM and 2.5 mM. A-mut was at 10 mM. The phosphorylation reaction products
were analyzed using an anti-phospho-Ser33/Ser37/Thr41 b-catenin antibody and an anti-phospho-Ser45 b-catenin antibody.
doi:10.1371/journal.pone.0004926.g004

Inhibition of GSK3 by LRP6
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Discussion

Although it is known that the activated Wnt/Frizzled/LRP6

receptor complex results in inhibition of b-catenin degradation,

the underlying molecular mechanism has remained unclear. One

critical initiating event is Wnt-induced LRP6 phosphorylation at

multiple PPPSPXS motifs [34,35]. The phosphorylation of the

PPPSPXS motif is sequentially carried out by GSK3 and CK1

[35,38], and is under the control of the Frizzled receptor and its

downstream partner Dishevelled protein [39,40]. The dually

phosphorylated PPPSPXS motif in turn provides a docking site for

Axin [34,35], thereby recruiting Axin and likely associated

proteins to the Frizzled-LRP6 receptor complex [36]. But how

these events lead to inhibition of b-catenin phosphorylation by the

Axin-GSK3 complex has been poorly understood.

We attempted to address this question via a b-catenin

phosphorylation assay reconstituted in vitro using recombinant

b-catenin, GSK3, CK1, and Axin. This in vitro system

recapitulated key features of b-catenin phosphorylation in vivo,

such that GSK3 phosphorylation of b-catenin at Ser33/Ser37/

Thr41 is greatly enhanced by the presence of Axin and by priming

phosphoryaltion of b-catenin at Ser45 by CK1 (Figure 1). Given

that a single PPPSPXS motif upon phosphorylation is sufficient to

activate b-catenin signaling in both mammalian cells and Xenopus

embryos [34,35,37], we tested whether phosphorylated PPPSPXS

motifs from LRP6 had any effect on b-catenin phosphorylation in

Figure 5. The phosphorylated PPPSPXS peptide inhibits phosphorylation of glycogen synthase and Tau by GSK3. A. Recombinant
GST-tagged mouse glycogen synthase carboxyl-terminal domain (mGS-CTD) was expressed in bacteria, and purified by glutathione agarose resin. B.
In vitro reconstitution of GS phosphorylation by CK2 and GSK3. The phosphorylation reaction products were analyzed using an anti-phospho-Ser641
GS antibody. C. GS phosphorylation at Ser641 was inhibited by Phos-A, but not by A-mut. The phosphorylation reaction products were analyzed
using an anti-phospho-Ser641 GS antibody. D. In vitro reconstitution of Tau phosphorylation by GSK3. The phosphorylation reaction products were
analyzed using an anti-phospho-Tau antibody (PHF1). E. Tau phosphorylation was inhibited by Phos-A, but not A-mut. The phosphorylation reaction
products were analyzed using an anti-phospho-Tau antibody (PHF1). F and G. Different concentrations of Phos-A inhibited b-catenin and Tau
phosphorylation by GSK3 in a similar manner. A four-fold dilution of Phos-A was employed. The graph represents the average of three independent
experiments.
doi:10.1371/journal.pone.0004926.g005

Inhibition of GSK3 by LRP6
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this in vitro assay. We found that each of four dually

phosphorylated PPPSPXS peptides we examined, motifs A, C,

D and E (Figure 2), exhibits inhibition of b-catenin phosphory-

lation at Ser33/Ser37/Thr41 by GSK3 in a dose-dependent

manner (Figure 3). We speculate that motif B may exhibit the

same property, although we have not synthesized and tested a

motif B peptide in our assay. Several aspects of this inhibition

appear to correlate well with the properties of Wnt/LRP6

regulation of b-catenin phosphorylation in vivo: (i) a correspond-

ing mutant peptide, PPPAPXA (Figure 2), has little, if any,

inhibitory effect on b-catenin phosphorylation by GSK3 under the

identical experimental condition (Figure 3). This correlates well

with the fact that the dually phosphorylated PPPSPXS motif upon

transferred to a heterologous receptor is sufficient to activate b-

catenin signaling in vivo, whereas the PPPAPXA mutant is

completely inactive [34,35,37]. In addition, other control peptides

including HA and 14-3-3BP (a dually phosphorylated peptide) do

not have any inhibitory activity in the b-catenin phosphorylation

assay (Figure 3); (ii) the ability of dually phosphorylated PPPSPXS

peptides to inhibit b-catenin phosphorylation by GSK3 correlates

well with their differential ability to activate b-catenin signaling

tested in vivo [37]. Thus the Phos-D peptide, which has an

atypical CPPSPXS motif (Figure 2), has the weakest ability to

inhibit b-catenin phosphorylation by GSK3 in vitro (Figure 3) and

also the least ability to activate b-catenin signaling in vivo when it

is transferred to a heterologous receptor [37]. Further, this result is

also in line with that from scanning mutagenesis of the PPPSPXS

motif, which has demonstrated a critical role of the first proline in

the PPPSPXS motif such that its replacement by alanine or

cysteine drastically diminished the signaling activity of the motif in

vivo [37]; (iii) the dually phosphorylated PPPSPXS motif inhibits

b-catenin phosphorylation at Ser33/Ser37/Thr41 by GSK3 but

not Ser45 phosphorylation by CK1 in vitro (Figure 4). This

correlates with the fact that Wnt signaling primarily inhibits b-

catenin phosphorylation at Ser33/Ser37/Thr41 by GSK3 but not

Ser45 phosphorylation by CK1 [5,50]; (iv) finally we found that

injection of a phosphorylated PPPSPXS peptide, but not the

mutant PPPAPXA peptide, into Xenopus embryos is able to

induce axis duplication and the expression of Xnr3, a Wnt/b-

catenin target gene (Figure 6), consistent with the notion that

phosphorylated PPPSPXS inhibits GSK3 in vivo. These results

together suggest that our in vitro observations with the PPPSPXS

peptides likely reflect, at least in part, the function of these motifs

in activated LRP6 in vivo.

Although Axin is required for b-catenin phosphorylation by

GSK3 both in vivo and in vitro (Figure 1), and Axin interacts with

phosphorylated PPPSPXS motifs [34,35], we were surprised to

find that inhibition of GSK3 phosphorylation of b-catenin by the

phoshorylated PPPSPXS peptide is independent of Axin function

(Figure 4). Two different Axin mutants, AxinDDIX and Axin(351-

701), are each fully capable of promoting b-catenin phosphory-

lation by GSK3, and this phosphorylation is inhibited by the

Figure 6. The Phos-A but not the A-mut peptide induces axis duplication and Xnr3 expression in Xenopus embryos. A, B, C, D.
Uninjected embryo (A), A-mut-injected embryo (B), and Phos-A-injected embryo (C) shown at neural fold stage. The duplicated partial axis is labeled
by the red arrowhead. Ventrally injected Phos-A (4.8 ng/embryo) induced axis duplication in 19% embryos (10 of 52). A-mut (4.8 ng/embryo) did not
induce axis duplication (0 of 60). Three independent experiments were combined (D). E. Phos-A (3 and 4.8 ng/embryo) but not A-mut (4.8 ng/
embryo) induced Xnr3 expression in animal pole explants, as assayed by RT-PCR. Xenopus Wnt8 RNA injection (8 pg/embryo) served as a positive
control. The activity of the Phos-A peptide was significantly weaker than that of Wnt8 RNA, likely due to dilution, proteolysis and/or
dephosphorylation in the embryo in the absence of any de novo synthesis. WE: whole embryo. EF1-a: loading control. –RT: without reverse
transcriptase.
doi:10.1371/journal.pone.0004926.g006
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phosphorylated PPPSPXS peptide to the extent similar to that in

the presence of the wild type Axin (Figure 4). Neither of these Axin

mutants is expected to bind to the phosphorylated PPPSPXS motif

because the DIX domain, which is deleted in both Axin mutants

(Figure 4), is required for such binding [36; H. H. and X. H.,

unpublished results]. This point was best illustrated by Axin(351-

701), which harbors only the GSK3- and b-catenin-binding

domains of Axin (Figure 4). These results led us to suspect that

GSK3 is directly inhibited by the dually phosphorylated PPPSPXS

peptide. Indeed, when a higher concentration of GSK3 is applied

in vitro together with CK1 for priming phosphorylation, b-catenin

is phosphorylated at Ser33/Ser37/Thr41 (albeit less effectively) in

the absence of Axin as previously reported [5], and this b-catenin

phosphorylation by GSK3 is inhibited by the phosphorylated

PPPSPXS peptide (Figure 4), indicating a direct inhibition of

GSK3 without the involvement of Axin.

Cselenyi et al recently reported that the recombinant LRP6

intracellular domain directly inhibits GSK3 phosphorylation of b-

catenin in Xenopus egg extracts and in a reconstituted in vitro

kinase assay similar to the one employed in this study [41]. They

found that the inhibition of GSK3 by the LRP6 intracellular

domain is direct and Axin-independent, and requires the intact

PPPSPXS motifs [41]. While Cselenyi et al tested the LRP6

intracellular domain at a single concentration, our experiments

examined each individual phosphorylated PPPSPXS motif, which

represents the minimal signaling module as our previous studies

have suggested [34,35,37], and we demonstrated dose-dependent

inhibition of GSK3 by these phospho-PPPSPXS peptides at

multiple concentrations. Overall our results are in good agreement

with the main conclusions by Cselenyi et al. However, one

noticeable difference exists between the results by Cselenyi et al

and ours regarding the inherent (or the lack of) specificity of

phospho-LRP6 inhibition of GSK3 phosphorylation. Cselenyi et al

reported that the LRP6 intracellular domain specifically inhibits

GSK3 phosphorylation of b-catenin, but not of Tau [41]. By

contrast, we found that the phosphorylated PPPSPXS peptide also

inhibits GSK3 phosphorylation of Tau and glycogen synthase (GS,

with priming phosphorylation by CK2), and indeed GSK3

phosphorylation of b-catenin and Tau appears to be similarly

inhibited by different concentrations of the phospho-PPPSPXS

peptide (Figure 5). Our results suggest a general inhibition of

GSK3 activity by the phosphorylated PPPSPXS peptide, and are

consistent with an earlier study demonstrating that the LRP6

intracellular domain can inhibit GSK3 phosphorylation of both b-

catenin and Tau [51]. We note that our findings are fully

compatible with specific inhibition of b-catenin phosphorylation

by Wnt signaling (see below).

One potential mechanism for the observed inhibition of GSK3 by

the phosphorylated PPPSPXS peptide is substrate competition,

given that the PPPSPXS motif is a substrate for GSK3 [35,51], and

may compete with b-catenin for GSK3. However this mechanism

does not easily explain why the phosphorylated PPPSPXS peptide

has no inhibitory effect on b-catenin phosphorylation at Ser45 by

CK1, considering the fact that PPPSPXS is also a substrate for CK1

[35,38]. Another potential mechanism, which is not mutually

exclusive with the substrate competition model, is that the

phosphorylated PPPSPXS motif may directly bind to GSK3 (but

not CK1) and inhibit GSK3 kinase activity. Indeed GSK3 has been

identified as an LRP6-binding protein [35] and vice versa [51] from

yeast two-hybrid screens and can be co-precipitated with LRP6

[35,51], and GSK3 associated with LRP6 exhibits reduced kinase

activity [51]. We note that each LRP6 molecule has five

phosphorylated PPPSPXS motifs and that LRP6 upon Wnt

activation may multimerize [40]. Therefore a high local concen-

tration of phosphorylated PPPSPXS motifs likely exists and their

proximity to GSK3 via LRP6-Axin association may provide

significant binding and inhibition to GSK3 in vivo even if the

interaction between each phosphorylated PPPSPXS motif and

GSK3 may not be particularly strong. We also note that the molar

concentration of phospho-PPPSPXS peptides used in our GSK3

inhibition assays in vitro were at 0.4-, 1.5-, 6-, and 24-fold of that of

GSK3, and that interestingly the phospho-peptides at 6-fold

concentration relative to that of GSK3 exhibits significant inhibition

towards GSK3, correlating remarkably with the five PPPSPXS

motifs in each LRP6 protein. Therefore it seems that the relative

concentrations of phospho-PPPSPXS peptides and GSK3 in our in

vitro assays may be within a range conceivable in vivo.

In summary, we propose a working model to link LRP6

activation and the inhibition of b-catenin phosphorylation. When

activated by Wnt, PPPSPXS motifs in LRP6 intracellular domain

are phosphorylated by GSK3 and CK1, and they act together to

recruit Axin-GSK3 into the Wnt receptor complex. When Axin is

bound to one of the phosphorylated PPPSPXS motifs, other

phosphorylated PPPSPXS motifs in the vicinity of the Axin-GSK3

complex directly inhibit GSK3 phosphorylation of b-catenin

(Figure 7). Several considerations suggest the feasibility of this

model. First, although each phosphorylated PPPSPXS motif can

bind to Axin [34,37], it is unlikely that these five PPPSPXS motifs

clustered within a 120-residue region of LRP6 intracellular

domain bind simultaneously to five molecules of Axin, which

has 863 amino acids. Rather, these five PPPSPXS motifs together

may provide a high local concentration of docking sites for a single

Axin molecule, thereby ensuring a tight association between LRP6

and Axin. In this scenario multiple phosphorylated PPPSPXS

motifs in each LRP6 are available for direct inhibition of GSK3.

This model implies that the five PPPSPXS motifs when fully

phosphorylated may have two major functions, i.e., to ensure the

binding of Axin to LRP6 and to carry out inhibition of GSK3

phosphorylation of b-catenin. This notion is consistent with the

finding by others and us that the coorperativity of the five

PPPSPXS motifs are critical for LRP6 signaling function [37,43].

Secondly, this model explains LRP6 signaling specificity in the

inhibition of b-catenin phosphorylation, since GSK3 phosphory-

lation of other substrates such as GS and Tau occurs outside the

Axin complex and is not in the proximity to LRP6 upon Wnt

stimulation, and therefore will not be affected by the phosphor-

ylated PPPSPXS motif under the physiological condition. Thirdly,

direct inhibition of GSK3 by phospho-PPPSPXS motifs within

LRP6 is consistent with a recent observation that upon Wnt

stimulation dephosphorylated b-catenin is observed at the plasma

membrane together with the activated LRP6 [52].

We note that our above model (Figure 7) does not exclude the

possibility that there also exist other mechanisms by which activated

Wnt-Frizzled-LRP6 signaling leads to the inhibition of b-catenin

phosphorylation by GSK3. For example, dissociation of GSK3

from the Axin complex upon Wnt signaling has been suggested to

be one such mechanism [53]. These parallel mechanisms may

operate together to ensure prevention of GSK3 phosphorylation of

b-catenin upon Wnt stimulation. This may be analogous to parallel

mechanisms that promote GSK3 phosphorylation of b-catenin in

the absence of Wnt stimulation, such as by GSK3 and CK1

phosphorylation of Axin and APC [54].

While this manuscript was being revised for publication Piao et

al reported that a dually phosphorylated PPPSPXS peptide

(essentially identical to Phos-A in our study) inhibits GSK3

phosphorylation of both b-catenin and Axin in vitro, and a LRP6

intracellular fragment containing a single PPPSPXS motif inhibits

GS phosphorylation when overexpressed in the cytoplasm [55].
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Consistent with our findings, Piao et al propose that phosphor-

ylated PPPSPXS motif is a general inhibitor of GSK3 activity.

Materials and Methods

Expression plasmids and baculoviruses
The pGEX4T1 vector expressing wild-type b-catenin (GST-

tagged) was described [17]. The mouse glycogen synthase C-

terminal domain (mGS-CTD, amino acid 585–738) was cloned

into the pGEX4T1 vector (GE Healthcare) using standard cloning

procedures. pCS2+Axin, pCS2+AxinDDIX, and pCS2+Axin(351-

701) (all were Flag-tagged) were cloned using standard cloning

procedures. The baculovirus expressing the Flag-tagged CK1 was

a kind gift from Wade Harper (Harvard Medical School).

Baculoviruses expressing 6xHis-tagged GSK3 and MBP-tagged

Axin were kind gifts from Ethan Lee (Vanderbilt University).

Protein expression and purification
The GST-tagged b-catenin and GST-tagged mGS-CTD were

expressed by transforming expression plasmids into BL21 (DE3)

cells, grown in LB Broth, and induced by 0.5 mM IPTG. Bacterial

cells were then lysed by three cycles of freeze-thaw. The cell lysate

was centrifuged at 14,000 rpm for 30 min, and the supernatant

was incubated with glutathione agarose resin (Sigma). The bound

proteins were washed by buffer and eluted by 7 mM glutathione.

Baculoviruses for Flag-tagged CK1, His-tagged GSK3, and MBP-

tagged Axin were amplified in the Sf9 insect cells (Invitrogen), and

then used to infect the High-Five insect cells (Invitrogen), which

were harvested two days after infection and lysed by freeze-thaw

cycles. The M2 anti-Flag agarose resin (Sigma) was used to purify

Flag-tagged CK1. The amylose resin (New England Biolab) was

used to purify MBP-tagged Axin. The Ni-NTA agarose resin was

used to purify His-tagged GSK3. The purified Tau protein was

purchased from Calbiochem. Flag-Axin, Flag-AxinDDIX, and

Flag-Axin(351-701) were overexpressed by transfecting HEK293T

cells with the respective expression plasmids, and purified using

M2 anti-Flag agarose resin (Sigma) from cell extracts lysed in

buffer with 0.5% NP40.

Peptide synthesis
The HA, 14-3-3BP, Phos-A, A-mut, Phos-C, Phos-D, and Phos-

E peptides were synthesized by Tufts University Core Facility,

purified by reverse phase HPLC, and their identities were

confirmed by mass spectrometry. The synthesized peptides were

dissolved in Tris buffer (pH 8.0) to 500 mM, and dialyzed by the

3,500 Dalton Molecular-Weight-Cut-Off Slide-A-Lyzer MINI

dialysis units overnight to remove chemicals used in peptide

synthesis. Recovery of peptides after dialysis was estimated to be

30% for all peptides using dot-blotting analysis via respective

antibodies [34,35,37], with undialyzed peptides as standards.

Phos-A and 14-3-3BP peptides were synthetically dually phos-

phorylated. Phos-C, Phos-D, and Phos-E peptides were synthe-

sized as singly phosphorylated at the GSK3 site (PPPSPXS), and

were further phosphorylated by CK1 at the second serine site

(PPPSPXS) at 37uC for 3 hours in vitro.

Mammalian cell transfection
Transfections were done in HEK293T cells in 6-well plates

using Fugene-6 (Roche). 48 hours after transfection, cells were

lysed in a buffer containing 10 mM Tris (pH 8.0), 150 mM NaCl,

5 mM EDTA, 10 mM NaF, and 0.5% NP-40 with a cocktail of

protease inhibitors. The cell lysates were centrifuged at

14,000 rpm for 10 minutes, and the supernatant of the cell lysates

were taken for further studies.

In vitro phosphorylation assay
The phosphorylation assays were performed in buffer contain-

ing: 25 mM Hepes pH 7.5, 20 mM b-glycerophosphate, 25 mM

MgCl2, 2 mM DTT, and 10 mM ATP (pH 7.0), in a total volume

of 15 ml at 37uC for 3 hours. For Axin-dependent phosphorylation

of b-catenin, 0.43 mM of GSK3, 0.54 mM of CK1a, 0.21 mM of

Axin, and 0.73 mM of b-catenin were used in each assay. For

Axin-independent phosphorylation of b-catenin, the condition was

the same except that 2.2 mM of GSK3 (and no Axin) were used in

each assay. For phospho-peptide (or control peptide) inhibition

experiments, 1 ml of the dialyzed peptide (final concentration:

10 mM) or four-fold serially diluted peptide (final concentrations:

2.5 mM, 0.63 mM, and 0.16 mM) was used in each assay. For GS

phosphorylation, 0.50 mM of CK2 proteins, 0.43 mM of GSK3,

and 0.8 mM of GST-mGS-CTD were used in each reaction. For

Tau phosphorylation, 0.43 mM of GSK3 and 0.8 mM of Tau

protein were used in each reaction. Each in vitro assay was

repeated three or more times.

Antibodies and western blotting
The supernatant of cell lysates or kinase reaction products were

examined by SDS-PAGE, and analyzed by Western blotting using

Immobilon-P membrane (Millipore). The membranes were

incubated in blocking buffer (5% nonfat dry milk in TBS buffer

with 0.1% Tween-20) for 1 hour at room temperature, and then

were incubated with primary antibodies diluted in 1% BSA in the

TBS/Tween-20 buffer for 1 hour, followed by incubation with

horseradish peroxide-conjugated secondary antibodies diluted at

1:10,000 in 1% BSA in the TBS/Tween-20 buffer for 30 minutes.

Protein detection was performed using the ECL system (Amer-

sham Pharmacia). The following antibodies were used (values in

parentheses are the dilution ratios used for Western blotting): anti-

phospho-Ser33/Ser37/Thr41 b-catenin (1:1000) from Cell Sig-

naling (9561S); anti-phospho-Ser45 b-catenin (1:1000) from Cell

Signaling (9564S); anti-b-catenin (1:1000) from BD Biosciences

(610153); anti-phospho-Ser641 glycogen synthase (1:1000) from

Cell Signaling (3891S); and anti-Tau (1:1000) from Cell Signaling

(4019). The PHF1 anti-phosphor-Tau antibody was a kind gift

from Peter Davies (Albert Einstein School of Medicine).

Xenopus embryos
Embryo manipulations and RT-PCR were described previously

[30]. Embryos were injected with the Phos-A or A-mutant peptide

Figure 7. A working model for LRP6 inhibition of b-catenin
phosphorylation by the Axin-GSK3 complex. While one of the
five phosphorylated PPPSPXS motifs of LRP6 physically interacts with
Axin, other phosphorylated PPPSPXS motifs may directly inhibit GSK3
phosphorylation of b-catenin in the Axin complex. Axin-binding to
motif C is drawn arbitrarily. See Discussion for details.
doi:10.1371/journal.pone.0004926.g007
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in the ventral marginal region at 8-cell stage for the axis-

duplication assay, or in the animal region at 4-cell stage for the

animal pole explant assay.
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