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ABSTRACT 24 

The study of ecological boundaries and their dynamics is of fundamental importance to much of 25 

ecology, biogeography, and evolution. Over the past two decades, boundary analysis (often 26 

termed wombling) has received considerable research attention, resulting in multiple approaches 27 

for the quantification of ecological boundaries. Nonetheless a number of issues remain 28 

unresolved, notably the inability of most methods to (i) analyze spatially-homogenized datasets 29 

(i.e., areal data in the form of polygons rather than point-reference data); (ii) account for spatial 30 

structure in these data and uncertainty associated with them; and (iii) objectively assign 31 

probabilities to boundaries once detected. Here we describe a method for ecological boundary 32 

detection used in public health that employs a Bayesian hierarchical framework and which 33 

addresses these issues. As examples, we analyze simulated data and the historic pattern of spread 34 

of an invasive species, the hemlock woolly adelgid (Adelges tsugae), across eastern North 35 

America, using county-level dates of first infestation and several covariates potentially important 36 

to influencing the observed spread dynamics.   37 

 38 

KEYWORDS: boundary analysis, ecotones, edge detection, invasive species, spatial statistics  39 

  40 

INTRODUCTION 41 

A central challenge in ecology is determining the factors influencing species distributions 42 

and how these factors change across space and time (Holt and Keitt 2005). The increasingly 43 

serious threats to natural systems posed by global change emphasize the practical importance of 44 

identifying the environmental factors associated with range edges (e.g., Gavin and Hu 2006) and 45 

of determining how environmental changes may affect movement of both native and invasive 46 
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species across heterogeneous landscapes. At its core, understanding the dynamics of species 47 

distributions is both a statistical problem of identifying boundaries between where a species is 48 

present (or abundant) and absent (or rare), and an ecological problem of determining 49 

environmental factors associated with these boundaries (Gaston 2003, Fortin et al. 2005).  50 

Two major challenges limit detailed analysis of ecological and evolutionary processes 51 

underlying the formation, persistence, and change of range edges. First, the spatiotemporal data 52 

required for inference are lacking (Parmesan et al. 2005) or when available, are often spatially 53 

homogenized as summaries over geopolitical or ecological regions such as counties, states, or 54 

biomes. Such aggregation obscures fine-scale spatiotemporal characteristics in the data. Second, 55 

data arising from neighboring regions are often more highly correlated than those from distant 56 

neighbors. The spatial structure inherent in the data is often of ecological interest, but must be 57 

accounted for to make valid inferences (Legendre 1993). Acknowledging spatial structure is 58 

particularly important when considering the spread of invasive species because ecological 59 

dynamics are inherently correlated in space and time.  60 

Over the last decade a large body of ecological research has addressed boundary analysis 61 

(sometimes called ‘wombling’ in recognition of William H. Womble, a pioneer in the field, 62 

Womble 1951), with a corresponding increase in the number of analytical approaches available 63 

for detecting and analyzing boundaries (see Jacquez et al. 2000 and Fagan et al. 2003 for recent 64 

reviews and Jacquez et al. 2008 for a recent special issue on the topic). Wombling is a technique 65 

for determining zones of abrupt change on a spatial surface that separate areas of lower and 66 

higher values of a georeferenced unit (Fortin and Dale 2005). A common secondary concern is to 67 

assign statistical significance or probabilities to the identified boundaries. At present, much of 68 

the published literature on boundary analysis in ecology considers point-referenced data (i.e., 69 
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geostatistical data comprised of spatial locations of points with known coordinates, such as 70 

latitude-longitude) that are either regularly (lattice or grid) or irregularly spaced. Although point-71 

referenced data are becoming increasingly accessible (Graham et al. 2004), ecological data 72 

covering broad spatial and temporal scales are more commonly available as summaries over 73 

geographic regions. For example, herbaria data and records from the USDA PLANTS database 74 

(http://plants.usda.gov) are provided as county- or state-level summaries. Boundary analysis of 75 

such data, often term areal data, is well-developed in public health fields, but it has received 76 

minimal attention in ecology. Further, most of the boundary analysis approaches in current use in 77 

ecology assign significance or probabilities to detected boundaries using null distributions or 78 

arbitrary thresholds; such inferences are relative to predetermined and often subjective choices.  79 

Here we describe a promising technique for ecological analysis of areal data developed 80 

by public heath researchers (e.g., Lu and Carlin 2005, Ma et al. 2006, Wheeler and Waller 2008) 81 

that has as yet seen little use by ecologists. The method employs a Bayesian hierarchical 82 

framework that (i) uses areal data; (ii) accounts for spatial structure in these data and the spatial 83 

and nonspatial uncertainty associated with them; and (iii) provides a natural means of assigning 84 

probabilities to boundaries using posterior estimates of the modeled parameters. As an example, 85 

we analyze the historic pattern of spread of an invasive species, the hemlock woolly adelgid 86 

(‘HWA’, Adelges tsugae Annand). Although this pest threatens hemlock forests (both eastern 87 

hemlock, Tsuga canadensis (L.) Carr., and Carolina hemlock, Tsuga caroliniana Englemann, are 88 

susceptible) throughout eastern North America (Orwig et al. 2002) and is of great concern to 89 

both researchers and land managers, data on HWA spread exists primarily as county-level data 90 

documenting the first reported HWA infestation in that area. Our goal is to strengthen links 91 

between observed spread pattern and underlying ecological processes by identifying boundaries 92 
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across which spread is slower than expected and to determine whether such boundaries are 93 

associated with environment features. 94 

  95 

METHODS 96 

Study system – HWA is a small (1 mm adult) flightless insect native to Asia that was first 97 

collected from hemlock in the eastern United States in spring of 1951, in Richmond, VA. New 98 

HWA infestations were collected next in Philadelphia, Pennsylvania in 1969, followed by 99 

counties southwest of Richmond, VA (Fig. 1a, see Appendix A for a detailed description of these 100 

data). The observed pattern of county-level spread following these early events largely mimics a 101 

diffusive process although outlying infestations also have appeared in northwestern New York 102 

State. As an exploratory tool, ordinary kriging on the county-level spread pattern (Fig. 1b) shows 103 

slow initial spread from the three distinct early infestations, followed by spread to the northeast 104 

and southwest. Compressed contours along the Appalachian Mountains suggest that 105 

environmental or topographic aspects of this feature may be associated with reduction of spread 106 

rate to the west. In contrast, spread has been relatively rapid in the southeastern Appalachians, 107 

where contours are spaced broadly (Fig. 1b), suggesting topography alone may not influence 108 

spread rate. Despite their proximity to the initial infestation, counties south of Richmond, VA 109 

remain uninfested presumably because of a lack of hemlock.  110 

Although population and dispersal dynamics of HWA remain poorly understood, we 111 

expect the pattern of spread to be a function of both environmental and social factors. 112 

Environmental factors such as hemlock abundance and winter temperature (Paradis et al. 2008, 113 

Trotter and Shields 2009) may alter spread rate by influencing population and dispersal 114 

dynamics. Social factors such as human population density may influence the pattern of spread 115 
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both by altering the environment (e.g., by reducing forest cover or planting hemlocks as 116 

landscape trees) and by influencing the detection and reporting of HWA infestations. To account 117 

for these processes, we generated a set of covariates for each county that could influence the 118 

spread and detection of the advancing HWA front, including mean winter temperature, human 119 

population density, and hemlock abundance (See Appendix A for details regarding the 120 

calculation of these variables). We did not consider physical barriers to spread such as rivers or 121 

mountains (e.g., Wheeler and Waller 2008) in this analysis because passive dispersal of HWA by 122 

wind and birds is unlikely to be directly influenced by such features at the county level.  123 

 124 

Bayesian areal wombling – We follow recent work by Lu and Carlin (2005) and use a Bayesian 125 

hierarchical model to perform areal wombling. Wheeler and Waller (2008) extended Lu and 126 

Carlin’s (2005) research on human disease incidence to the spread of rabies using county-level 127 

reporting of rabid raccoons. Following Wheeler and Waller (2008), we modeled Yi, the number 128 

of months elapsed between the first reported HWA infestation in 1951 and the first reported 129 

HWA infestation in each county i as 130 

,  (1) 131 

where 132 

 (2)  133 

is the expected number of months elapsed to first reported HWA infestation in county i, ! is an 134 

intercept, " is the precision, xi is a vector of the covariates, and #i is a spatial random effect. The 135 

spatial random effect #i is given an intrinsic conditionally autoregressive (CAR) prior expressed 136 

as 137 
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! 

" ~ CAR(#C ) , (3) 138 

, (4) 139 

where mi is the number of counties neighboring county i and !C is the precision. The use of a 140 

CAR prior for the random effects serves two functions. Foremost, invasive spread is a spatial 141 

process, with neighboring counties more similar in date of first infestation than distant counties. 142 

Second, the CAR prior provides a degree of spatial smoothing and thereby may prevent the 143 

erroneous detection of barriers that arise from spurious departures from the overall spatial trend. 144 

For example, uncertainty in detection and therefore reporting of HWA infestations could be 145 

higher in counties where HWA populations remain at low densities (Fitzpatrick et al. 2009) 146 

because of scarcity of hemlock or where winter temperatures cause high mortality (Paradis et al. 147 

2008, Trotter and Shields 2009). In our analysis, we consider counties to be neighbors if they 148 

share a common boundary; more sophisticated choices such as inverse distance weighting 149 

warrant investigation.  150 

The above framework provides a smoothed expected value for the number of months to 151 

first HWA infestation in each county. Although spread rate is itself of ecological interest, our 152 

goal is to identify barriers that separate counties with substantially different times to first 153 

infestation and to assign probabilities to these boundaries. A boundary likelihood value (BLV) 154 

for boundary (i, j) can be defined as the absolute difference in months (Lu and Carlin 2005) of 155 

first HWA infestation reported in neighboring counties i and j as, 156 

.  (5) 157 

Estimates of "ij can be obtained using a Markov chain Monte Carlo (MCMC) algorithm to draw 158 

G samples of the modeled response , g = 1, …, G from the posterior distribution p(µi|y) for 159 
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each county i and each MCMC iteration g to obtain 160 

. (6) 161 

Boundary probabilities are then determined by simply counting the number of samples of  162 

that exceed a threshold c, where c is some number of months. For example, if we wanted to 163 

know which county boundaries were associated with preventing spread for five years (i.e., 164 

difference in date of first detected HWA between adjacent counties is five years), c would equal 165 

60 months. The boundary probability is then simply the ratio of this count ( > c) to the total 166 

number of samples G (2000 in our analyses), or  167 

 (7)
 168 

This approach to determining boundary probabilities is known as fuzzy wombling. Alternatively, 169 

crisp wombling can be performed if boundaries are assigned a value of 1 when the BLV exceeds 170 

some predetermined threshold (e.g., 0.5) or 0 otherwise.  171 

Although BLVs based on the expected values µi offer one means of investigating 172 

boundary probabilities, a potentially more informative approach is to calculate BLVs using the 173 

spatial random effects #i. In essence, the #i can be interpreted as spatial residuals. High-174 

probability boundaries based on residuals delineate adjacent regions that differ in their 175 

unmodeled heterogeneity and thus highlight regions where the covariates do not explain detected 176 

boundaries. In contrast, if no significant boundaries exist in a map of residual-based boundaries, 177 

then the covariates explain (or are at least correlated with factors that explain) detected 178 

boundaries. Close examination of boundary probabilities based on spatial residuals could prove 179 

extremely useful in ecological studies where the goal is to elucidate the factors determining 180 

range edges and how these vary across space.  181 
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 The model described above can be fit in WinBUGS (Spiegelhalter et al. 2003) and output 182 

analyzed and plotted in R (R Development Core Team 2009). For all models described below we 183 

used a burn-in period of 100,000 iterations and an additional 100,000 iterations were used to 184 

estimate model parameters. For calculation of BLVs, we subsampled 2000 iterations from the 185 

posterior distributions of µ and #. We assessed model convergence using the Gelman-Rubin 186 

potential scale reduction statistic (Brooks and Gelman 1998). Details of model construction and 187 

selection of priors are available from the code provided in Appendix B.  188 

 189 

EXAMPLE ANALYSES 190 

Simulation study – Our first example considers an analysis of simulated county-level spread data. 191 

We simulated, with added noise, the number of months to first infestation as a linear function of 192 

distance from Richmond, VA (Fig. 2a). By design, counties surrounding York County, 193 

Pennsylvania do not follow this pattern (Fig. 2b). Because distance from Richmond should not 194 

explain the detected boundaries around these outlier counties, even after smoothing, we expect 195 

high probability boundaries in the vicinity of York County, PA for both µ- and #-based BLVs. 196 

We found the expected pattern: nearly all of the detected boundaries (Fig. 2c) are explained by 197 

the covariate other than those surrounding York County, Pennsylvania (Fig. 2d). 198 

 199 

Historic spread of HWA – A model fit to the observed HWA spread data incorporated three 200 

covariates: human population density, mean winter temperature, and hemlock abundance. This 201 

model suggests several features of the spread of HWA (Fig. 3a). Most notably, boundary 202 

probabilities are highest (1) in the vicinity of counties where HWA first established and where 203 

spread may have been slow due to lag effects (Kowarik 1995) related to HWA population 204 
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dynamics, (2) along ridges of the Appalachian Mountains north of Tennessee, and (3) in the 205 

northernmost portions of HWA’s range in New England. In contrast there are few barriers south 206 

of Virginia’s southern border, where spread has been rapid. However, mean winter temperature 207 

and hemlock abundance are not significantly associated with barriers to spread; only the 208 

coefficient for human population density emerged as significantly different from zero. Except in 209 

for some northern counties and those in central Pennsylvania, boundary probabilities based on 210 

the spatial residuals (Fig. 3b) largely reflect those calculated using the expected value µ (Fig. 211 

3a).  212 

In retrospect, the failure of temperature and hemlock abundance to explain barriers to 213 

spread may not be surprising. Global covariates, though useful in detecting and visualizing 214 

boundaries, do not couple regional heterogeneity in environmental conditions to local barriers to 215 

spread. For example, HWA can spread rapidly under warm temperatures only where hemlock is 216 

available. In addition, spread patterns are strongly a function of where propagules are first 217 

introduced. In the case of HWA, the earliest dates of infestation are found in counties with little 218 

or no naturally-occurring hemlock.  219 

To better model the landscape influences that hinder spread, Bayesian spatially-varying 220 

coefficient models (Banerjee et al. 2004) can be used for wombling (e.g., Wheeler and Waller 221 

2008), although these models offer greater technical challenges. Alternatively, rather than 222 

modeling the data arising from areal units, wombling can be performed on the county borders 223 

themselves (Ma et al. 2006, Ma et al. 2009). In this approach, every boundary segment is a data 224 

point and the response for each segment is the difference in the modeled value of interest 225 

between adjacent units. In the context of invasive spread, ‘local edge wombling’ is likely to be 226 

ecologically more sensible because differences (or similarities) between adjacent areal units may 227 
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be more important for, and therefore may better explain, spread dynamics than mean values of 228 

covariates within counties. This approach also provides a more straightforward means to 229 

represent physical barriers such as rivers, mountains or urban areas as binary indicator variables.  230 

We modified our model (equations 1-3) for local edge wombling by examining the 231 

difference in months to first infestation between adjacent counties: 232 

, (8) 233 

  (9)
 234 

where 235 

 (10) 236 

As before, a spatial random effect ($) is included and is given a CAR prior. The vector of 237 

covariates xij in this version represents differences in covariates across borders and/or indicators 238 

variables corresponding to known barriers. Because the response is the difference in months to 239 

first infestation across borders, the calculation of BLVs is simplified slightly because they are 240 

determined using the absolute values of the posterior estimates of %ij (or $ij) themselves (as 241 

opposed to post hoc calculation of these differences, Eq. 6) using a constant c. Code for fitting 242 

this model is provided in Appendix B.   243 

 A local edge wombling model incorporating as covariates differences in population 244 

density, mean winter temperature, and hemlock abundance across county borders reveals similar 245 

results to those derived from the areal wombling model: high probability boundaries are 246 

concentrated in the east and northeast (Fig. 4a, c). However, the covariates in the local edge 247 

wombling model have more influence on the detected boundaries for BLV thresholds of both 248 

three (Fig. 4b) and five years (Fig. 4d). The coefficients for hemlock abundance and population 249 
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density are significantly from zero. As before, boundaries associated with early spread in the 250 

eastern portion of the study region remain after accounting for the effects of the covariates, 251 

potentially reflecting demographic lag effects unrelated to environmental factors (Kowarik 252 

1995).  253 

 254 

CONCLUSIONS 255 

Bayesian areal wombling is promising approach for analyzing ecological boundaries and the 256 

spread of invasive species. Many other applications for areal wombling can be envisioned. For 257 

example, wombling is commonly used in public health research to identify boundaries where 258 

disease incidence is higher/lower than expected. The same principle can be applied in ecology to 259 

understand patterns of both invasive species richness and distribution as well as patterns of 260 

distribution and abundance of native species. Important targets for future improvement of these 261 

models in ecology include exploration of alternate parameterizations for spatial smoothing, such 262 

as distance weighting or to estimate smoothing parameters from the data (Ma et al. 2009).  263 

The strengths of wombling in a Bayesian framework should be clear. Beyond making 264 

good use of data with relatively coarse spatial and temporal resolution – data commonly 265 

available to ecologists – the Bayesian model easily incorporates uncertainty and provides a 266 

natural means of assigning probabilities to detected boundaries. Although there is not yet a single 267 

software package or R library that can be used to perform Bayesian areal wombling analyses of 268 

the sort described here, the code provided in Appendix B illustrates how to integrate several 269 

software packages to implement areal wombling models. Additional statistical challenges 270 

remain. The use of a CAR prior encourages local smoothing of dates of first infestation toward 271 

those of neighboring counties. Ideally, this accounts for uncertainty in detection, if, for example, 272 
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a single county reports a much later date of first infestation than its neighbors. Local smoothing 273 

can, however, have unanticipated effects. For example, a county that is colonized early but that is 274 

surrounded by counties with much later dates of colonization could have a modeled (smoothed) 275 

later date of first infestation. Although it is possible for the actual date of first infestation to be 276 

earlier than the reported date, it is unlikely that the actual date of first infestation would be later 277 

than the reported date (barring misidentification or data entry errors). Finally, the incorporation 278 

of spatially-correlated errors may alter estimates of fixed-effects coefficients in ways that are 279 

only beginning to be explored and which could lead to misinterpretation of residual-based 280 

wombling maps. Despite these issues, Bayesian areal wombling should be considered a 281 

complement to existing methods for ecological boundary analysis as one of the few techniques 282 

that can effectively utilize the coarse resolution datasets common in ecology and biogeography.  283 
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 344 

FIGURE LEGENDS 345 

Figure 1. Observed pattern of spread of the hemlock woolly adelgid at (a) the county level and 346 

(b) smoothed using ordinary kriging of these dates. Colors represent the number of months 347 

elapsed since the first reported infestation in Richmond, VA (red star) in 1951 and the first 348 

reported infestation in each county. 349 

 350 

Figure 2. Bayesian areal wombling on (a) simulated dates of first infestation; and (b) a single 351 

simulated covariate related to distance from Richmond, VA, with a cluster of outlier counties 352 

centered on York County, PA (red shading). Panels (c) and (d) show posterior probabilities for 353 

boundaries for the expected values µ and the spatial residuals # respectively and a threshold of 354 

60 months. Darker shades of red indicate high boundary probabilities. 355 

 356 

Figure 3. Posterior probabilities for Bayesian areal wombling boundaries calculated using either 357 

(a) the expected values µ or (b) the spatial residuals # and a threshold of 60 months. Darker 358 

shades of red indicate high boundary probabilities. 359 

 360 

Figure 4. Posterior probabilities for Bayesian local edge wombling boundaries calculated using 361 

either (a) the expected values % or (b) the spatial residuals $ and a threshold of 36 months. 362 

Panels (c) and (d) show the same, but using a threshold of 60 months. Darker shades of red 363 

indicate high boundary probabilities. 364 
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Figure 2.  367 
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Figure 4.  369 
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APPENDIX A – Description of datasets 1 

 2 

County-level spread records - We derived the dynamics of HWA’s spread for the years 1951 3 

through 2009 using county-level records compiled by Forest Service, US Department of 4 

Agriculture, Forest Health Protection personnel 5 

(http://na.fs.fed.us/fhp/hwa/maps/distribution.shtm). We updated these county-level records with 6 

more localized records drawn from multiple sources, including: the National Entomological 7 

Collection at the Smithsonian Institute (G. Miller), the Pennsylvania General Hemlock Survey 8 

executed by the Pennsylvania Department of Conservation of Natural Resources (B. Regester), 9 

township-level records for Massachusetts (C. Burnham) and New York (J. Denham), surveys 10 

performed by the Georgia Forestry Commission (J. Johnson), stand-level surveys for 11 

southwestern Virginia (T. McAvoy), surveys in southern Vermont by the Vermont Department 12 

of Forests, Parks, & Recreation (B. Burns), and stand-level surveys in Connecticut and 13 

Massachusetts (D. Orwig). When these more local surveys indicated an earlier date of first 14 

infestation than the county-level records, we updated the county-level records as necessary. 15 

Finally, to simplify coding of the models, we removed 12 “island” counties, (i.e., counties with 16 

no infested neighbors possibly infested by long-distance jump dispersal). The final dataset 17 

comprised 322 counties with dates of first infestation ranging from 1951 to 2009.   18 

 19 

Estimates of hemlock abundance - To produce a map of hemlock abundance we used the 20 

randomForests algorithm (Liaw and Wiener 2002) in R 2.9.1 (R Development Core Team 2009) 21 

to relate observed hemlock abundance (basal area, m2 ha-1) from the USDA Forest Inventory and 22 

Analysis (FIA) database (comprised of 16,084 occurrences) to 26 environmental predictor 23 



variables. Environment predictors included 23 bioclimatic variables describing minimum, 24 

maximum, and seasonality in temperature and precipitation and water balance (Hijmans et al. 25 

2005, Svenning and Skov 2005), two topographic variables (slope and compound topography 26 

index) from the USGS HYDRO1k dataset 27 

(http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro), and an index 28 

of net primary productivity (Zhao et al. 2005). All variables were manipulated in ArcGIS 9.3 29 

such that they were spatially congruent, had a common resolution of 1 km, and were projected 30 

using and equidistance conic projection to preserve distance characteristics between locations. 31 

We used the resulting model to predict hemlock abundance across eastern North 32 

America. Although Carolina hemlock (Tsuga caroliniana) is also susceptible to HWA, we did 33 

not model its distribution as it is relatively rare and narrowly distributed and its distribution falls 34 

entirely within the range of eastern hemlock. To account for the fact that most cells were not 35 

100% forested, we multiplied the map of hemlock abundance by a corresponding remotely-36 

sensed estimate of percent forest cover. The result was a map of hemlock abundance adjusted for 37 

forest cover that corresponds well with its known distribution and abundance. 38 

  39 

Estimate of human population density & mean winter temperature – Estimates of human 40 

population density were derived from 2000 U.S. census data 41 

(http://www.census.gov/main/www/cen2000.html).  Estimates of mean winter temperature 42 

(December, January, February, March) at 1km spatial resolution were downloaded from the 43 

Worldclim database (http://www.worldclim.org/, Hijmans et al. 2005). For all covariates, we 44 

used the Zonal Statistics tool in ArcGIS 9.3 to calculate summaries of covariates for each 45 

county.  46 
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APPENDIX B – WinBUGS Code 60 

 61 

 62 

   1    # MODEL: three global covariates, spatial error 
   2    
   3    # WinBUGS model to perform Bayesian areal wombling (boundary detection) with
   4    # global covariates
   5    
   6    # Y is time to first infestation: the number of months elapsed, for each county
   7    # i, since the first report of hemlock woolly adelgid in eastern North America
   8    # in 1951 (e.g., if a county was found to be infested in 1981, Y = 360)
   9    
  10    # code is called from R using R2WinBUGS
  11    
  12    model{
  13      # Likelihood
  14      for (i in 1:n.areas){
  15        Y[i] ~ dnorm(mu[i], tau.err)
  16        
  17        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
  18        
  19        # vector for plotting
  20        SLDRhat[i] <- mu[i] # SLDR, standardized late detection ratio,
  21                            # is legacy terminology from B. Carlin's code and
  22                            # has no meaning in this context
  23      }
  24    
  25      # CAR prior for the spatial random effects
  26      phi[1:n.areas] ~ car.normal(adj[], weights[], num[], tau.phi)   # CAR prior
  27      for (k in 1:sumNumNeigh){weights[k] <- 1}
  28      
  29      # Other priors
  30      beta[1] ~ dflat() 
  31      beta[2] ~ dnorm(0, 0.000001)
  32      beta[3] ~ dnorm(0, 0.000001)
  33      beta[4] ~ dnorm(0, 0.000001)
  34      
  35      tau.phi <-1/pow(sdphi, 2)
  36      tau.err <- 1/pow(sdy, 2)
  37      sdphi ~ dunif(0,150)
  38      sdy ~ dunif(0,100)
  39    }
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   1    # WinBUGS model to perform Bayesian local edge wombling (boundary detection)
   2    # with three covariates & spatial error
   3    
   4    # Y is the DIFFERENCE in time to first infestation
   5    
   6    # Covariates are differences in values across edges
   7    
   8    # Must have separate chunks of code for each edge without neighbors,
   9    # 15 in this example
  10    
  11    # code is called from R using R2WinBUGS
  12    
  13    model{
  14      # Likelihood
  15        
  16      Y[1] ~ dnorm(mu[1], tau.err)  
  17      mu[1] <- beta[1] + beta[2]*X1[1] + beta[3]*X2[1] + beta[4]*X3[1] + psi[1] + phi[1]
  18      #psi term is to account for island edges that have no neighbors
  19      
  20      # vector for plotting
  21      SLDRhat[1] <- mu[1]} # SLDR, standardized late detection ratio,
  22                           # is legacy terminology from B. Carlin code and has no
  23                           # meaning in this context 
  24      
  25      for (i in 2:38){
  26        Y[i] ~ dnorm(mu[i], tau.err)    
  27        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
  28        SLDRhat[i] <- mu[i]}
  29      
  30      Y[39] ~ dnorm(mu[39], tau.err)  
  31      mu[39] <- beta[1] + beta[2]*X1[39] + beta[3]*X2[39] + beta[4]*X3[39] + psi[2] + phi[39]
  32      SLDRhat[39] <- mu[39]
  33      
  34      for (i in 40:46){
  35        Y[i] ~ dnorm(mu[i], tau.err)    
  36        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
  37        SLDRhat[i] <- mu[i]}
  38      
  39      Y[47] ~ dnorm(mu[47], tau.err)  
  40      mu[47] <- beta[1] + beta[2]*X1[47] + beta[3]*X2[47] + beta[4]*X3[47] + psi[3] + phi[47]
  41      SLDRhat[47] <- mu[47]
  42      
  43      for (i in 48:110){
  44        Y[i] ~ dnorm(mu[i], tau.err)    
  45        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
  46        SLDRhat[i] <- mu[i]}
  47        
  48      Y[111] ~ dnorm(mu[111], tau.err)  
  49      mu[111] <- beta[1] + beta[2]*X1[111] + beta[3]*X2[111] + beta[4]*X3[111] + psi[4] + phi[111]
  50      SLDRhat[111] <- mu[111]
  51      
  52      for (i in 112:155){
  53        Y[i] ~ dnorm(mu[i], tau.err)    
  54        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
  55        SLDRhat[i] <- mu[i]}
  56      
  57      Y[156] ~ dnorm(mu[156], tau.err)  
  58      mu[156] <- beta[1] + beta[2]*X1[156] + beta[3]*X2[156] + beta[4]*X3[156] + psi[5] + phi[156]
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  59      SLDRhat[156] <- mu[156]
  60      
  61      for (i in 157:276){
  62        Y[i] ~ dnorm(mu[i], tau.err)    
  63        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
  64        SLDRhat[i] <- mu[i]}
  65      
  66      Y[277] ~ dnorm(mu[277], tau.err)  
  67      mu[277] <- beta[1] + beta[2]*X1[277] + beta[3]*X2[277] + beta[4]*X3[277] + psi[6] + phi[277]
  68      SLDRhat[277] <- mu[277]
  69      
  70      for (i in 278:282){
  71        Y[i] ~ dnorm(mu[i], tau.err)    
  72        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
  73        SLDRhat[i] <- mu[i]}
  74      
  75      Y[283] ~ dnorm(mu[283], tau.err)  
  76      mu[283] <- beta[1] + beta[2]*X1[283] + beta[3]*X2[283] + beta[4]*X3[283] + psi[7] + phi[283]
  77      SLDRhat[283] <- mu[283]
  78      
  79      for (i in 284:370){
  80        Y[i] ~ dnorm(mu[i], tau.err)    
  81        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
  82        SLDRhat[i] <- mu[i]}
  83      
  84      Y[371] ~ dnorm(mu[371], tau.err)  
  85      mu[371] <- beta[1] + beta[2]*X1[371] + beta[3]*X2[371] + beta[4]*X3[371] + psi[8] + phi[371]
  86      SLDRhat[371] <- mu[371]
  87      
  88      for (i in 372:445){
  89        Y[i] ~ dnorm(mu[i], tau.err)    
  90        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
  91        SLDRhat[i] <- mu[i]}
  92      
  93      Y[446] ~ dnorm(mu[446], tau.err)  
  94      mu[446] <- beta[1] + beta[2]*X1[446] + beta[3]*X2[446] + beta[4]*X3[446] + psi[9] + phi[446]
  95      SLDRhat[446] <- mu[446]
  96        
  97      for (i in 447:473){
  98        Y[i] ~ dnorm(mu[i], tau.err)    
  99        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
 100        SLDRhat[i] <- mu[i]}
 101      
 102      Y[474] ~ dnorm(mu[474], tau.err)  
 103      mu[474] <- beta[1] + beta[2]*X1[474] + beta[3]*X2[474] + beta[4]*X3[474] + psi[10] + phi[474]
 104      SLDRhat[474] <- mu[474]
 105      
 106      for (i in 475:580){
 107        Y[i] ~ dnorm(mu[i], tau.err)    
 108        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
 109        SLDRhat[i] <- mu[i]}
 110      
 111      Y[581] ~ dnorm(mu[581], tau.err)  
 112      mu[581] <- beta[1] + beta[2]*X1[581] + beta[3]*X2[581] + beta[4]*X3[581] + psi[11] + phi[581]
 113      SLDRhat[581] <- mu[581]
 114      
 115      for (i in 582:673){
 116        Y[i] ~ dnorm(mu[i], tau.err)    
 117        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]



65 

 118        SLDRhat[i] <- mu[i]}
 119      
 120      Y[674] ~ dnorm(mu[674], tau.err)  
 121      mu[674] <- beta[1] + beta[2]*X1[674] + beta[3]*X2[674] + beta[4]*X3[674] + psi[12] + phi[674]
 122      SLDRhat[674] <- mu[674]
 123        
 124      for (i in 675:698){
 125        Y[i] ~ dnorm(mu[i], tau.err)    
 126        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
 127        SLDRhat[i] <- mu[i]
 128      }
 129      
 130      Y[699] ~ dnorm(mu[699], tau.err)  
 131      mu[699] <- beta[1] + beta[2]*X1[699] + beta[3]*X2[699] + beta[4]*X3[699] + psi[13] + phi[699]
 132      SLDRhat[699] <- mu[699]
 133      
 134      for (i in 700:723){
 135        Y[i] ~ dnorm(mu[i], tau.err)    
 136        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
 137        SLDRhat[i] <- mu[i]}
 138      
 139      Y[724] ~ dnorm(mu[724], tau.err)  
 140      mu[724] <- beta[1] + beta[2]*X1[724] + beta[3]*X2[724] + beta[4]*X3[724] + psi[14] + phi[724]
 141      SLDRhat[724] <- mu[724]
 142      
 143      for (i in 725:739){
 144        Y[i] ~ dnorm(mu[i], tau.err)    
 145        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]
 146        SLDRhat[i] <- mu[i]}
 147      
 148      Y[740] ~ dnorm(mu[740], tau.err)  
 149      mu[740] <- beta[1] + beta[2]*X1[740] + beta[3]*X2[740] + beta[4]*X3[740] + psi[15]+ phi[740]
 150      SLDRhat[740] <- mu[740]
 151      
 152      for (i in 741:793){
 153        Y[i] ~ dnorm(mu[i], tau.err)    
 154        mu[i] <- beta[1] + beta[2]*X1[i] + beta[3]*X2[i] + beta[4]*X3[i] + phi[i]    
 155        SLDRhat[i] <- mu[i]}
 156    
 157      # CAR prior for the spatial random effects
 158      phi[1:n.areas] ~ car.normal(adj[], weights[], num[], tau)   # CAR prior
 159      for (k in 1:sumNumNeigh){weights[k] <- 1}
 160      
 161      # prior for edges without neighbors
 162      for (j in 1:15) {psi[j] ~ dnorm(0, tau.psi)}
 163      
 164      # Other priors
 165      beta[1] ~ dflat() 
 166      beta[2] ~ dnorm(0, 0.000001)
 167      beta[3] ~ dnorm(0, 0.000001)
 168      beta[4] ~ dnorm(0, 0.000001)
 169       
 170      tau <- 1/pow(sdphi,2) #per Andrew Lawson
 171      tau.err <- 1/pow(sdy,2)
 172      tau.psi <- 1/pow(sdpsi,2)  
 173      sdphi ~ dunif(0, 100)
 174      sdy ~ dunif(0, 100)
 175      sdpsi ~ dunif(0, 100)
 176    }



   1    ################################################################################
   2    # R code to prepare data, call winBUGS code to perform Bayesian wombling,
   3    # and plot output.
   4    # 
   5    # 21 April 2010
   6    # M. C. Fitzpatrick
   7    # mfitzpatrick@umces.edu
   8    # 
   9    # Most of this code is based on hard work by Brad Carlin & his students/post-
  10    # docs. I have simply assembled many pieces into one place.
  11    # In some instances, files available from:
  12    # http://www.biostat.umn.edu/~brad
/software.html are needed. See comments below.
  13    # 
  14    # The anlyses require a shapefile with a response of interest (in this case
  15    # month of first infestation) and corresponding covariates
  16    ################################################################################
  17    
  18    
  19    ###     chunk 1 - set wd and load libraries       ##############################
  20    setwd("...")
  21    source("womblingFuncs.R")
  22    library(R2WinBUGS)
  23    library(maptools)
  24    library(spdep)
  25    library(coda)
  26    library(RColorBrewer)
  27    library(classInt)     
  28    library(sp)
  29    ################################################################################
  30    
  31    
  32    ###     chunk 2 - build adjacency & edge info    ###############################
  33    #  Given a shapefile, this R code creates:
  34    #    (1) an areal adjacency matrix using maptools,  
  35    #    (2) an edge adjacency matrix (indicating which edges touch each other)
  36    
  37    # based on code provided from B. Carlin's website:
  38    # http://www.biostat.umn.edu/~brad/software/getEdges_code.txt
  39    
  40    # Also will need following two .exe files from B. Carlin's website
  41    # (1) matchzip.exe
  42    # (2) edgeneig.exe
  43    # downloaded from: http://www.biostat.umn.edu/~brad/software/tutorial.zip
  44    
  45    setwd(".../edgefolder")
  46    # output files will be saved under current directory
  47    # copy "matchzip.exe" and "edgeneig.exe" to directory "edgefolder"  
  48    



  49    map <- readShapeSpatial(".../hwa_wombling.shp")
  50    
  51    # Use maptools to get polygon adjacency matrix
  52    # two areas are neighbors if they share common edges with length > 0
  53    nb.r <- poly2nb(map, queen=F)    
  54    mat <- nb2mat(nb.r, style="B") # mat is the 0/1 adjacency matrix
  55    n.site <- dim(mat)[1]          # n.site: number of areas
  56    n.edge <- sum(mat)/2           # n.edge: number of unique pairs
  57    
  58    
  59    SEind1 <- SEind2 <- 0
  60    matmy <- mat
  61    for(i in 1:(n.site-1)){
  62        for(j in (i+1):n.site){
  63            if (mat[i,j]>0) {SEind1<-c(SEind1,i)
  64                SEind2<-c(SEind2,j)
  65                matmy[i,j]<-matmy[j,i]<-length(SEind1)-1
  66            }
  67        }
  68    }
  69    
  70    SEind1 <- SEind1[-1] # edges sorted by row of upper triangle of the adj. matrix
  71    SEind2 <- SEind2[-1] # SEind1[k]=i and SEind2[k]=j => kth edge is edge ij
  72    
  73    dput(SEind1,"SEind1.txt")
  74    dput(SEind2,"SEind2.txt")
  75    dput(mat, "W.txt")
  76    
  77    # create adjacency information needed for WinBUGS
  78    mkAdj <- function(W){
  79        n <- nrow(W)
  80        adj <- 0
  81        for(i in 1:n){
  82            for(j in 1:n){
  83                if(W[i,j]==1){adj<-append(adj,j)
  84                }
  85            }
  86        }
  87    adj <- adj[-1]
  88    return(adj)
  89    }
  90    
  91    dput(mkAdj(mat),"Sadj.txt")
  92    dput(as.vector(rowSums(mat)),"Snum.txt")
  93    
  94    # Create adj. matrix for the edges 
  95    
  96    # 1. prepare needed files and save them #
  97    #    under the directory where you have #
  98    #    matchzip.exe and edgeneig.exe      #
  99    



 100    # Dump out the coordinates (by polygon) #
 101    # Default order for polygons is by first column of map@data #
 102    
 103    for(i in 1:n.site){
 104        write(t(map@polygons[[i]]@Polygons[[1]]@coords), paste(i,".txt",sep=""),
 105              ncolumns=2)
 106    }
 107        
 108    # Dump out SEind, the site-edge correspondence table #
 109    write(rbind(SEind1, SEind2), paste("SEind.txt",sep=""), ncolumns=2 )
 110    
 111    # 2. Double click "matchzip.exe". A dos window will pop up. Type in SEind.txt. #
 112    #  This will produce many (n.edge) files at the current directory.             #
 113    #  Then use the following code to prepare the edge plotting code.              #
 114    #  "edgelines" should be dumped out and called in later when make edge plots.  #
 115    
 116    edgelines <- vector(mode="list",length=n.edge)
 117    
 118    for(i in 1:n.edge){
 119        edgelines[[i]] <- read.table(paste("output-",i,".txt",sep=""), header=F,
 120                                            na.strings="*")
 121    }
 122    
 123    edges <- edgelines
 124    dput(edgelines,"edgelines.txt")
 125    
 126    # 3. Double click "edgeneig.exe". A dos window will pop up. Type in SEind.txt  #
 127    #  Two files will be produced (may take a while):                              #
 128    #  file 1 is the upper triangular of the W matrix for the edges;               #
 129    #  file 2 is the number of 1s for each row of the upper triangular matrix.     #
 130    
 131    #  4. Produce the Wstar matrix which provides neighborhoods of the edges       #
 132    
 133    tempn <- scan(paste("file2.txt",sep=""))
 134    tempneig <- scan(paste("file1.txt",sep=""))
 135    
 136    Wstar <- matrix(0, nrow=n.edge, ncol=n.edge)
 137    start <- 1
 138    end <- 0
 139        
 140    for(i in 1:n.edge){
 141        if (tempn[i]>0){ 
 142            start <- end+1
 143            end <- start + tempn[i]-1
 144            neig <- tempneig[start:end]
 145            l <- tempn[i]
 146            for (k in 1:l){
 147                Wstar[i,neig[k]]<-Wstar[neig[k],i]<-1
 148            }
 149        }
 150    } 



 151    
 152    edge.adj <- mkAdj(Wstar)
 153    dput(edge.adj, "edge.adj.txt")
 154    edgeSum <- as.vector(rowSums(Wstar))
 155    dput(edgeSum, "edgeSum.txt")
 156    dput(Wstar,"Wstar.txt")
 157    
 158    # 5. Remove files not needed any more #
 159    for(i in 1:n.edge){
 160        unlink(paste(i,".txt",sep=""))
 161        unlink(paste("output-",i,".txt",sep=""))
 162    }
 163    
 164    unlink(paste("file1.txt",sep=""))
 165    unlink(paste("file2.txt",sep=""))
 166    unlink(paste("SEind.txt",sep=""))
 167    ################################################################################
 168    
 169    
 170    ###     chunk 3 - Areal wombling model      ####################################
 171    # Three global covariates, spatial error                             
 172    # mu = beta0 + beta1*X1 + beta2*X2 + beta3*X3 + phi 
 173    
 174    map <- readShapeSpatial(".../hwa_wombling.shp")
 175    
 176    temp <- map@data$WINTERTEMP
 177    pop <- log(map@data$POP2000)
 178    hemlock <- log(map@data$HEMLOCK)
 179    
 180    Y <- (map$YEARINFEST-1951)*12
 181    X1 <- pop
 182    X2 <- hemlock
 183    X3 <- temp
 184    
 185    
 186    n.areas = length(Y)
 187    adj <- dget(".../edgefolder/Sadj.txt")
 188    num = dget(".../edgefolder/Snum.txt")
 189    sumNumNeigh = sum(num)
 190    
 191    # indexes required for plotting
 192    ind1 <- ind2 <- rep(0,length(num))
 193    ind1[1] <- 1
 194    for(i in 1:length(num)){j <- i+1; ind1[j] <- num[i] + ind1[i]}
 195    ind1 <- ind1[1:length(num)]
 196    for(i in 1:length(num)){j <- i-1; ind2[i] <- ind1[i] + num[i]-1}
 197    
 198    params <- 5 # number of parameters in the model
 199    
 200    # initial values
 201    phi1 <- rep(-10,n.areas)



 202    phi2 <- rep(0,n.areas)
 203    phi3 <- rep(10,n.areas)
 204    
 205    inits.mod5 <- list(list(phi=phi1, sdy=15, sdphi=5, beta=rep(-5, params)),
 206    list(phi=phi2, sdy=25, sdphi=5, beta=rep(0, params)), list(phi=phi3, sdy=35,
 207    sdphi=5, beta=rep(10, params)))
 208    
 209    dat.in.mod5 <- list("Y", "n.areas", "num", "sumNumNeigh", "adj", "X1", "X2",
 210                        "X3", "X4")
 211    
 212    # call to Winbugs
 213    mod <- bugs(data=dat.in.mod5, inits.mod5,
 214                model.file=".../areal_wombling.bug",
 215                parameters.to.save=c("SLDRhat", "beta", "tau.err", "phi",
 216                "tau.phi"), n.chains = length(inits.mod5), n.iter=200000,
 217                n.burnin=100000, save.history=F, debug=TRUE,
 218                bugs.directory=".../WinBUGS14/", working.directory="...")
 219    
 220    # read & summarize coda files
 221    mod.coda <- read.coda.interactive()
 222    # codaIndex.txt, coda1.txt, coda2.txt, coda3.txt
 223    dimnames(mod.coda$coda1.txt)
 224    samps <- mcmc.list(mcmc(mod.coda$coda1.txt[,c(323:328,651,652)]),
 225    mcmc(mod.coda$coda2.txt[,c(323:328,651,652)]),
 226    mcmc(mod.coda$coda3.txt[,c(323:328,651,652)]))
 227    xyplot(samps)
 228    gelman.plot(samps)
 229    densityplot(samps)
 230    
 231    merge.chains <- (mod.coda$coda1.txt + mod.coda$coda2.txt + mod.coda$coda3.txt)/3
 232    SLDRhat <- merge.chains[,1:322]
 233    
 234    rows <- nrow(SLDRhat)
 235    cols <- ncol(SLDRhat)
 236    phi <- merge.chains[,329:650]
 237    
 238    # calculate posterior estimates of mu (sldrhat)
 239    SLDRhat.samp <- matrix(0, ncol=cols, nrow=rows)
 240    phi.samp <- matrix(0, ncol=cols, nrow=rows)
 241    for(i in 1:n.areas){
 242        from<-(i-1)*rows+1
 243        to<-i*rows
 244        SLDRhat.samp[,i]<- SLDRhat[from:to]
 245        phi.samp[,i] <- phi[from:to]
 246    }
 247    
 248    #c alculate differences in spread dates across county edges
 249    delta.sldr <- matrix(0, ncol=sum(num)/2,nrow=rows)
 250    delta.phi <- matrix(0, ncol=sum(num)/2,nrow=rows)
 251    k <- 0
 252    for( i in 1:n.areas){



 253        for(j in ind1[i]:ind2[i]){
 254            if(adj[j]>i){
 255                k<-k+1
 256                delta.sldr[,k]<-abs(SLDRhat.samp[,i] - SLDRhat.samp[,adj[j]])
 257                delta.phi[,k]<-abs(phi.samp[,i] - phi.samp[,adj[j]])}}}
 258    
 259    # Boundary likelihood values
 260    p.sldr.5years <- apply(apply(delta.sldr,2,cut.func.5years)/rows,2,sum)
 261    p.phi.5years <- apply(apply(delta.phi,2,cut.func.5years)/rows,2,sum)
 262    
 263    # color palette for plotting boundaries
 264    n.col = 4 
 265    col.br <- colorRampPalette(c("gray", "lightpink2", "red2", "red4"))
 266    col.pal <- col.br(n.col)
 267    
 268    # breaks for boundary groupings & legend text
 269    br <- c(0.0,0.4,0.6,0.9,1.0)
 270    leg.txt <- paste("(",br[n.col]," ~ ",br[n.col+1],")",sep="")
 271    for(i in (n.col-1):1){
 272        leg.txt <- append(leg.txt, paste("(", br[i], " ~ ", br[i+1], ")", sep=""),)
 273    }
 274    leg.txt <- rev(leg.txt)
 275    
 276    # Plot maps with boundary probabilities
 277    edgelines <- dget(".../edgefolder/edgelines.txt")
 278    
 279    # map of mu-based booundaries
 280    probPlot(map, edgelines, p.sldr.5years, n.col, add=F, col.pal=col.pal)
 281    legend(locator(), legend=leg.txt, col=col.pal, lty="solid", lwd=c(2,3,4,5),
 282           cex=1.8, ncol=1,
 283    bty="n", title="Boundary Probability")
 284    
 285    # map of phi-based boundaries
 286    probPlot(map, edgelines, p.phi.5years, n.col, add=F, col.pal=col.pal)
 287    legend(locator(), legend=leg.txt, col=col.pal, lty="solid", lwd=c(2,3,4,5),
 288           cex=1.8, ncol=1,
 289    bty="n", title="Boundary Probability")
 290    ################################################################################
 291    
 292    
 293    ###     chunk 4 - Local edge wombling model      ###############################
 294    # Three global covariates, spatial error                             
 295    # model will not run using R2WinBUGS for some reason
 296    # must copy and paste model, inits, data and run directly in winBUGS
 297    
 298    
 299    map <- readShapeSpatial(".../hwa_wombling.shp")
 300    Y <- (map$YEARINFEST-1951)*12
 301    mapDat <- map@data[,7:9]
 302    
 303    # prepare data for edge wombling



 304    
 305    # edge deltas
 306    SEind1 <- dget(".../edgefolder/SEind1.txt")
 307    SEind2 <- dget(".../edgefolder/SEind2.txt")
 308    edgelines <- dget(".../edgefolder/edgelines.txt")
 309    n.edge <- length(SEind1)
 310    
 311    deltaY <- weight.calculate(Y, SEind1, SEind2, n.edge)
 312    
 313    deltaCov <- matrix(NA, n.edge, ncol(mapDat))
 314    for(i in 1:ncol(mapDat)){
 315        covar <- mapDat[,i]
 316        dx <- delta.calculate(covar, SEind1, SEind2, n.edge)
 317        deltaCov[,i] <- dx
 318    }
 319    
 320    colnames(deltaCov) <- names(mapDat)
 321    
 322    Y <- deltaY
 323    
 324    adj = dget("...edgefolder/edge.adj.txt")
 325    num = dget("...edgefolder/edgeSum.txt")
 326    n.areas = length(Y)
 327    sumNumNeigh = sum(num)
 328    
 329    X1 <- deltaCov[,"POP2000"]
 330    X2 <- deltaCov[,"HEMLOCK"]
 331    X3 <- deltaCov[,"WINTERTEMP"]
 332    
 333    params <- 4 # number of parameters in the model
 334    
 335    # initial values
 336    phi1 <- rep(10, n.areas)
 337    phi2 <- rep(0, n.areas)
 338    phi3 <- rep(-1, n.areas)
 339    
 340    phi1[which(num==0)] <- NA # for edges with no neighbors
 341    phi2[which(num==0)] <- NA
 342    phi3[which(num==0)] <- NA
 343    
 344    psi1 <- rep(10, length(which(num==0))) # for edges with no neighbors
 345    psi2 <- rep(1, length(which(num==0)))
 346    psi3 <- rep(0, length(which(num==0)))
 347    
 348    inits.mod10 <- list(list(psi=psi1, phi=phi1, sdy=15, sdphi=5, sdpsi=1,
 349                             beta=rep(5, params)), list(psi=psi2, phi=phi2, sdy=25,
 350                             sdphi=5, sdpsi=5, beta=rep(-2, params)), list(psi=psi3,
 351                             phi=phi3, sdy=35, sdphi=5, sdpsi=5, beta=rep(-50,
 352                             params)))
 353    edit(inits.mod10)
 354    



 355    dat.in.mod10 <- list(sumNumNeigh=sumNumNeigh, n.areas=n.areas, Y=Y,  num=num,
 356                         adj=adj, X1=X1, X2=X2, X3=X3)
 357    edit(dat.in.mod10)
 358    
 359    
 360    #call to Winbugs
 361    mod10 <- bugs(data=dat.in.mod10, inits.mod10, model.file="...edge_womble.bug",
 362    parameters.to.save=c("SLDRhat", "beta", "tau.err", "phi", "psi"),
 363    n.chains = length(inits.mod10), n.iter=20000, n.burnin=10000,
 364    save.history=F, debug=TRUE, bugs.directory=".../WinBUGS14/", codaPkg=T,
 365    working.directory="...")
 366    
 367    # read & summarize coda files
 368    mod.coda <- read.coda.interactive()
 369    # codaIndex.txt, coda1.txt, coda2.txt, coda3.txt
 370    dimnames(mod.coda$coda1.txt)
 371    samps <- mcmc.list(mcmc(mod.coda$coda1.txt[,c(794:798, 1592:1594)]),
 372    mcmc(mod.coda$coda2.txt[,c(794:798, 1592:1594)]),
 373    mcmc(mod.coda$coda3.txt[,c(794:798, 1592:1594)]))
 374    xyplot(samps)
 375    gelman.plot(samps)
 376    densityplot(samps)
 377    
 378    merge.chains <- (mod.coda$coda1.txt + mod.coda$coda2.txt + mod.coda$coda3.txt)/3
 379    SLDRhat <- merge.chains[,1:793]
 380    phi <- merge.chains[,799:1576]
 381    psi <- merge.chains[,1577:1591]
 382    
 383    rows <- nrow(SLDRhat)
 384    
 385    # Boundary likelihood values at 5 years
 386    p.sldr.5years <- apply(apply(abs(SLDRhat),2,cut.func.5years)/rows,2,sum)
 387    p.phi.5years <- apply(apply(abs(phi),2,cut.func.5years)/rows,2,sum)
 388    p.psi.5years <- apply(apply(abs(psi),2,cut.func.5years)/rows,2,sum)
 389    
 390    num1 <- ifelse(num==0,0,1)
 391    
 392    #combine island vector with index and sort
 393    indx <- seq(1:length(Y))
 394    srt <- as.data.frame(cbind(num1, indx))
 395    srt <- srt[order(srt$num1, srt$indx),]
 396    
 397    # bind phi and psi and then to srt df
 398    phiX <- c(p.psi.5years, p.phi.5years)
 399    srt <- cbind(srt,phiX)
 400    
 401    # sort to original order and extract new psi vector
 402    phi.df <- srt[order(srt$indx),]
 403    p.phi.5years <- phi.df$phiX
 404    
 405    # color palette for plotting boundaries



 406    n.col = 4 
 407    col.br <- colorRampPalette(c("gray", "lightpink2", "red2", "red4"))
 408    col.pal <- col.br(n.col)
 409    
 410    # breaks for boundary groupings & legend text
 411    br <- c(0.0,0.4,0.6,0.9,1.0)
 412    leg.txt <- paste("(",br[n.col]," ~ ",br[n.col+1],")",sep="")
 413    for(i in (n.col-1):1){
 414        leg.txt <- append(leg.txt, paste("(", br[i], " ~ ", br[i+1], ")", sep=""),)
 415    }
 416    leg.txt <- rev(leg.txt)
 417    
 418    # Plot maps with boundary probabilities
 419    edgelines <- dget(".../edgefolder/edgelines.txt")
 420    
 421    # map of mu-based booundaries
 422    probPlot(map, edgelines, p.sldr.5years, n.col, add=F, col.pal=col.pal)
 423    legend(locator(), legend=leg.txt, col=col.pal, lty="solid", lwd=c(2,3,4,5),
 424           cex=1.8, ncol=1, bty="n", title="Boundary Probability")
 425    
 426    # map of phi-based boundaries
 427    probPlot(map, edgelines, p.phi.5years, n.col, add=F, col.pal=col.pal)
 428    legend(locator(), legend=leg.txt, col=col.pal, lty="solid", lwd=c(2,3,4,5),
 429           cex=1.8, ncol=1, bty="n", title="Boundary Probability")
 430    
 431    # Boundary likelihood values at 3 years
 432    p.sldr.3years <- apply(apply(abs(SLDRhat),2,cut.func.3years)/rows,2,sum)
 433    p.phi.3years <- apply(apply(abs(phi),2,cut.func.3years)/rows,2,sum)
 434    p.psi.3years <- apply(apply(abs(psi),2,cut.func.3years)/rows,2,sum)
 435    
 436    num1 <- ifelse(num==0,0,1)
 437    
 438    # combine island vector with index and sort
 439    indx <- seq(1:length(Y))
 440    srt <- as.data.frame(cbind(num1, indx))
 441    srt <- srt[order(srt$num1, srt$indx),]
 442    
 443    # bind phi and psi and then to srt df
 444    phiX <- c(p.psi.3years, p.phi.3years)
 445    srt <- cbind(srt,phiX)
 446    
 447    # sort to original order and extract new psi vector
 448    phi.df <- srt[order(srt$indx),]
 449    p.phi.3years <- phi.df$phiX
 450    
 451    # map of mu-based booundaries
 452    probPlot(map, edgelines, p.sldr.3years, n.col, add=F, col.pal=col.pal)
 453    legend(locator(), legend=leg.txt, col=col.pal, lty="solid", lwd=c(2,3,4,5),
 454           cex=1.8, ncol=1, bty="n", title="Boundary Probability")
 455    
 456    # map of phi-based boundaries



 457    probPlot(map, edgelines, p.phi.3years, n.col, add=F, col.pal=col.pal)
 458    legend(locator(), legend=leg.txt, col=col.pal, lty="solid", lwd=c(2,3,4,5),
 459           cex=1.8, ncol=1, bty="n", title="Boundary Probability")
 460    ################################################################################
 461    
 462    
 463    # functions needed to format data & results and make plots 
 464    
 465    probPlot <- function(map, edgelines, y, n.col, add, col.pal){
 466      require(classInt)
 467      polylist <- map@polygons
 468      br <- c(0, 0.4, 0.6, 0.9, 1)
 469      y.grp <- findInterval(y, vec=br, rightmost.closed = TRUE, all.inside = TRUE)
 470      y.shad <- col.pal[y.grp]
 471      linewd <- y.grp + 1
 472    
 473      plot(map, axes=F, auxvar=Y, add=add)
 474      
 475      for (i in 1:length(edgelines)){
 476        lines(as.matrix(edgelines[[i]]),col=y.shad[i],lwd=linewd[i])
 477      }
 478    }
 479    
 480    
 481    #functions to calculate boundary probs at different thresholds
 482    cut.func.1years <- function(x){
 483        c.ind<-as.numeric(x>12)
 484        return(c.ind)}
 485    
 486    cut.func.2years <- function(x){
 487        c.ind<-as.numeric(x>24)
 488        return(c.ind)}
 489    
 490    cut.func.3years <- function(x){
 491        c.ind<-as.numeric(x>36)
 492        return(c.ind)}
 493    
 494    cut.func.4years <- function(x){
 495        c.ind<-as.numeric(x>48)
 496        return(c.ind)}
 497    
 498    cut.func.5years <- function(x){
 499        c.ind<-as.numeric(x>60)
 500        return(c.ind)}
 501    
 502    cut.func.6years <- function(x){
 503        c.ind<-as.numeric(x>72)
 504        return(c.ind)}
 505    
 506    cut.func.8years <- function(x){
 507        c.ind<-as.numeric(x>96)



 508        return(c.ind)}
 509    
 510    cut.func.10years <- function(x){
 511        c.ind<-as.numeric(x>120)
 512        return(c.ind)}
 513        
 514    # functions need to calculate deltas across boundries
 515    delta.calculate <- function(x, ind1, ind2, n){
 516      delta<-rep(0,n)
 517      for (k in 1:n){
 518        i <- ind1[k]
 519        j <- ind2[k]
 520        delta[k] <- x[j] - x[i]
 521      }
 522      return(delta)
 523    }
 524    
 525    weight.calculate <- function(x, ind1, ind2, n){
 526      delta<-rep(0,n)
 527      for (k in 1:n){
 528        i <- ind1[k]
 529        j <- ind2[k]
 530        delta[k] <- x[j] - x[i]
 531      }
 532      return(delta)
 533    }


