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Abstract
Background: Medicinal plant is a main source of cancer drug development. Some of the
cycloartane triterpenoids isolated from the aerial part of Cimicifuga dahurica showed cytotoxicity in
several cancer cell lines. It is of great interest to examine the antiproliferative activity and
mechanisms of total triterpenoid glycosides of C. dahurica and therefore might eventually be useful
in the prevention or treatment of Hepatoma.

Methods: The total glycosides from the aerial part (TGA) was extracted and its cytotoxicity was
evaluated in HepG2 cells and primary cultured normal mouse hepatocytes by an MTT assay.
Morphology observation, Annexin V-FITC/PI staining, cell cycle analysis and western blot were
used to further elucidate the cytotoxic mechanism of TGA. Implanted mouse H22 hepatoma model
was used to demonstrate the tumor growth inhibitory activity of TGA in vivo.

Results: The IC50 values of TGA in HepG2 and primary cultured normal mouse hepatocytes were
21 and 105 µg/ml, respectively. TGA induced G0/G1 cell cycle arrest at lower concentration (25 µg/
ml), and triggered G2/M arrest and apoptosis at higher concentrations (50 and 100 µg/ml
respectively). An increase in the ratio of Bax/Bcl-2 was implicated in TGA-induced apoptosis. In
addition, TGA inhibited the growth of the implanted mouse H22 tumor in a dose-dependent
manner.

Conclusion: TGA may potentially find use as a new therapy for the treatment of hepatoma.

Background
Hepatocellular carcinoma (HCC) is the fifth most com-
mon tumor worldwide, and the incidence of HCC has
been rising over the past few decades in some areas such
as Europe, USA and far eastern Asian countries [1].

Despite advances in diagnosis and standard therapies
such as surgery, radiation, and chemotherapy, HCC
remains a formidable challenge for clinical therapy [2-5].
In the search for new cancer therapeutics with low toxic-
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ity, traditional Chinese medicines are promising candi-
dates.

The dried rhizomes of Cimicifuga dahurica (Turcz) Maxim
(Ranunculaceae) have been used as cooling, detoxifica-
tion, antipyretic and analgesic agents for the treatment of
some types of headaches and toothaches in Chinese folk
medicine and were included in the Chinese Pharmaco-
poeia [6]. The rhizomes are traditionally the portion of
the plant used for medicinal purposes in Cimicifuga spe-
cies, however the aerial part of the plant is usually dis-
carded. Previous phytochemical studies demonstrated
that both the rhizomes and the aerial part of the species
are rich in cycloartane triterpenoids [7-10]. Some biologi-
cal activities of total glycosides of rhizomes of C. dahurica
(TGR) have been investigated by earlier studies of our
group. It was reported that TGR could reduce the produc-
tion of Simian Immunodeficiency Virus (SIV) by inhibi-
tion of PHA stimulated 3H-TdR transportation in lymph
cells as well as suppression of the Sister Chromatid
Exchange frequency induced by mitomycin C in human
peripheral lymphocytes [11,12]. Nevertheless, there are
still few reports on the bioactivity of the aerial part of C.
dahurica. Our recent study has demonstrated cytotoxicity
of TGA and three cycloartanes 23, 24 and 25-O-acetyl-
cimigenol-3-O-β-D-xylopyranoside isolated from the aer-
ial part of C.dahurica against several cancerous cell lines.
These three compounds showed similar effects and
induced apoptosis and G2/M cell cycle arrest in hepatoma
HepG2 and leukemia HL-60 cell lines. Down regulated
expression of cdc2 and COX-2 contributed to the apopto-
sis and cell cycle arrest in HepG2 cells [13]. However, the
cytotoxic mechanism and in vivo anti-tumor activity of
TGA is still unknown.

In the current study, we investigated the anti-tumor activ-
ity and the underlying mechanism of TGA both in vitro
and in vivo. Our findings show the novel anticancer activ-
ity of TGA and this may provide a new approach to the
hepatoma therapy.

Methods
Extraction of triterpene components from aerial part of C. 
dahurica
The aerial part of Cimicifuga dahurica (Turcz) Maxim (syn-
onyms: Actinospora dahurica Turczaninow ex Fischer & C.
A. Meyer, Index Sem. Hort. Petrop. 1: 21. 1835; Actaea
dahurica (Turczaninow ex Fischer & C. A. Meyer) Turc-
zaninow ex Fischer & C. A. Meyer) was collected in Mao-
jingba, Kalaqin Qi, Inner Mongolia Autonomous Region,
China, in September 1999, and was identified by Prof.
Ruile Pan of the Institute of Medicinal Plant Develop-
ment, Chinese Academy of Medical Sciences and Peking
Union Medical College. A voucher specimen has been
deposited in the Herbarium of the Institute (XA99-09).

The powdered aerial part of the plant (14.5 kg) was
extracted exhaustively with 10 folds volume of 80% etha-
nol under refluxing for three times, one hour each time.
Following combination and filtering, the solvent was
evaporated under vacuum to obtain the crude extract (2.0
kg). Then the crude extract was mixed with siliceous earth
and eluted with ethyl acetate. Removal of the solvent in
vacuo, the TGA was (210 g) obtained.

Determination of total content of triterpenes
Twenty nine triterpene glycosides (Table 1) including 25-
anhydrocimigenol-3-O-β-D-xylopyranoside, 23-O-acetyl-
cimigenol-3-O-β-D-xylopyranoside, 24-O-acetylcimige-
nol-3-O-β-D-xylopyranoside, and 25-O-acetylcimigenol-
3-O-β-D-xylopyranoside, cimigenol xylopyranoside
together with ferulic acid and isoferulic acid were isolated
from TGA. The total triterpene glycosides content in TGA
was estimated by a colorimetric method as we described
previously [14], with slight modifications. A 50-µl aliquot
of TGA methanol solution (1.50 mg/ml) was diluted with
1 ml water and then applied to a Waters Oasis HLB car-
tridge, which was preconditioned by rinsing with 1 ml
methanol and followed by 1 ml water. The cartridge was
washed with 2 ml water to remove carbohydrate com-
pounds for interference, and then the triterpenes were
eluted with 2 ml methanol from the cartridge to a clean
glass tube. After drying by a gentle stream of nitrogen, a
0.2-ml aliquot of 5% vanillin acetic acid (w/v) and a 0.8-
ml of aliquot of perchloric acid were added to the residue
in the tube. Then the tube was kept in a 80°C water bath
for 15 min. After cooling with water, the absorbance of the
mixture was determined at 544 nm. The assay was con-
ducted in triplicates. The total triterpene glycosides con-
tent was 72.67% ± 2.03 expressed as cimigenol
xylopyranoside equivalents. Usually the total triterpene
glycosides content in C. racemosa is calculated as 27-
deoxyactein equivalent [15]; However since 27-deoxy-
actein was not isolated from TGA, cimigenol xylopyrano-
side, one of the main components in TGA and many other
Cimicifuga plants was used as a standard.

Cell culture and drug treatment
HepG2 (ATCC, Rockville, MD) cells were maintained in
RPMI 1640 containing 10% FBS (Gibco, BRL, Carlsbad,
CA), 2 mg/ml sodium bicarbonate, 100 µg/ml penicillin
sodium salt and 100 µg/ml streptomycin sulfate. Cells
were grown to 70% confluence, trypsinized with 0.25%
trypsin-2 mM EDTA, and plated in 96 well plates. Mouse
hepatocytes were isolated from normal CD-1 (ICR) mice
(Beijing Vital Laboratory Animal Technology, Beijing,
China) with enzymatic perfusion technique as we
described previously [13]. The viability of the mouse
hepatocytes, tested with Trypan blue was about 80%. In
all experiments, cells were grown in RPMI-1640 medium
with 10% FBS for 24 h prior to treatment.
Page 2 of 10
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TGA was dissolved in DMSO at a concentration of 250
mg/ml, then diluted in tissue culture medium and filtered
before use. The final concentration of DMSO (0.1%) did
not affect the cell viability.

Cytotoxicity assay
1.5 × 104 HepG2 cells and 8 × 103 mouse hepatocytes were
seeded in 96 well plates and treated with TGA or vehicle
(0.1% DMSO) at various concentrations and incubated
for 48 h, followed by MTT (3- [4, 5-dimethylthiazol-2-yl]-
2, 5-diphenyltetrazolium bromide) assay [16]. Briefly,
IC50 of the TGA in HepG2 cells and normal mouse hepa-
tocytes were derived from the dose-response curves.

Morphology observation in HepG2 cells
AO/EB (acridine orange/ethidium bromide) fluoresce
staining method was used to observe the apoptosis mor-
phological changes [17]. Briefly, HepG2 cells were cul-
tured in 3.5 cm dishes and treated with TGA at
concentration of 50 µg/ml for 0, 12, 24 and 48 h respec-
tively. After treatment, all the cultures were incubated at
37°C, 5% CO2 for the indicated time. Photographs were
taken under an inverted Leica fluorescence 40 × 10 micro-
scope after staining.

Annexin V-FITC/PI assay
Apoptosis was quantified by detecting surface exposure of
phosphatidylserine in apoptotic cells using Annexin V-

FITC/PI (propidium iodide) apoptosis detection kit (BD
Biosciences Clontech). Cells were seeded in 3.5 cm dishes
in 1 ml medium and incubated with TGA at the dose of
25, 50 and 100 µg/ml for 24 h, respectively. The adherent
and floating cells were combined and treated according to
the manufacturer's instruction and measured with FITC/
PI staining using flow cytometry (Becton Dickinson, San
Jose, CA). Apoptotic cells (annexin V+PI-) were differenti-
ated from necrotic cells (annexin V+PI+, including apop-
totic cells at late stage).

Cell cycle analysis
HepG2 cells were treated with TGA at different concentra-
tions (25, 50 and 100 µg/ml for 48 h) and time points (at
50 µg/ml for 12, 24 and 48 h). Then cells were collected
and fixed in 70% cold ethanol (-20°C) overnight. After
washing twice with PBS, cells were resuspended in PBS.
RNase A (0.5 mg/ml) and PI (2.5 µg/ml) were added to
the fixed cells for 30 min. The DNA content of cells was
then analyzed with a FACSCalibur instrument (Becton
Dickinson, San Jose, CA).

Western blotting
After treatments, cells were washed three times with ice-
cold PBS and lysed with lysis buffer (50 mM Tris-HCl, pH
7.4, 10 mM EDTA, 1% Triton X-100, 26% urea, and 1 tab-
let/10 ml protease inhibitor cocktail tablets). Sticky DNA
was removed from lysates with a sterile toothpick. The

Table 1: Triterpene constituents from C. dahurica Thurez Maxim

1 Cimilactone A [12β-acetoxy-3β-β-D-xylopyrano-syloxy-24, 25, 26, 27-tetranor-9,19-cyclolanost-16, 23 -lactone]
2 Cimilactone B [12β-acetoxy-3β-β-D-xylopyranosyloxy-24, 25, 26, 27-tetranor-9,19-cyclolanost-7-ene – 16, 23-lactone]
3 Cimidahuside C [12β-acetoxy- 15-oxo-shengmanol-3-O-β-D-xylopyranoside]
4 Cimidahuside D [12β-acetoxy- 15-oxo-7, 8-didehydroshengmanol- 3-O-β-D-xylopyranoside]
5 Cimidahuside E [(20R, 24R)-24, 25-epoxy-3β-(β-D-xylopyranosyloxy)-9,19-cyclolanost-7-ene-16, 23-dione]
6 Cimidahuside F [(20R, 24R)-24, 25-epoxy-15a-hydroxy-3β-(β-D-xylopyranosyloxy)-9,19-cyclolanost-7-ene-16,23-dione]
7 Cimidahuside G [(23R,24S)-15- oxo-16-enol-9,19-cyclolanostane-3-O-β-D-xylopyranoside]
8 Cimidahuside H [(23R,24S)-15- oxo-16-enol-9, 19-cyclolanostane -7-ene-3-O-β-D-xylopyranoside]
9 Cimidahuside I [(23R, 24S)- 12β-acetoxy-15-oxo-16-enol-9,19-cyclolanostane-3-O-β-D-xylopyranoside]
10 Cimidahuside J [(23R,24S)- 12β-acetoxy-15-oxo-16-enol-9, 19-cyclolanostane-7-ene-3-O-β-D-xylopyranosid e]
14 (20R, 24R)-11β,24,25-trihydroxy -3-β-(β-D-xylopyranosyloxy)- 9,19-cyclolanost-7-ene-16,23- dione
15 25-anhydrocimigenol-3-O-β-D-xylopyranoside
16 24-epi-7,8-didehydrocimigenol -3-O-β-D-xylopyranoside
17 cimigenol-3-O-β-D- xylopyranoside
18 7,8-didehydrocimigenol-3-O-β-D-xylopyranoside
19 25-O-methylcimigenol-3-O-β-D- xylopyranoside
20 15a-hydroxycimicidol-3-O-β-D-xylopyranoside
21 7β-hydroxycimigenol-3-O-β-D-xylopyranoside
22 12β-hydroxycimigenol-3-O-β-D-xylopyranoside
23 24-O-acetyl-7, 8-didehydrocimigenol-3-O-β-D-xylopyranoside
24 24-O-acetylcimigenol-3-O-β-D-xylopyranoside
25 25-O-methyl-24-O-acetylcimigenol-3-O-β-D-xylopyranoside
26 12β-O-acetylcimiaceroside A
27 12β-O-acetylcimiaceroside B
28 cimiaceroside A
29 cimiaceroside B
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protein concentration of the supernatant was determined
by the Bradford method. The lysates were subjected to
electrophoresis on a 10 % SDS-polyacrylamide gel and
then transferred to a nitrocellulose membrane [18]. The
nitrocellulose membrane was then incubated with mouse
monoclonal anti-Bcl-2 and anti-Bax antibody (Santa Cruz
Biotechnology, Santa Cruz, CA; sc-509 and sc-7480).
Mouse monoclonal β-actin (Lab Vision, Fremont, CA)
was used as an internal control. Secondary antibody to
IgG conjugated to horseradish peroxidase was used. The
blots were probed with the ECL Western blot detection
system according to the manufacturer's instructions. The
ratio of Bax/Bcl-2 was analyzed by pImage tool.

Antitumor evaluation on implanted mouse H22 cells
Male CD-1 (ICR) mice (Beijing Vital Laboratory Animal
Technology, Beijing, China), weighing 20–22 g, were used
for implantation of hepatoma H22 cells (s.c.), which was
maintained by weekly (i.p.) passage in CD-1 (ICR) mice.
Ascites (0.2 ml of 1:6 dilution) from tumor-bearing mice
7 days after tumor inoculation were implanted (s.c.) into
the armpit region of mice. Ten mice each were treated
with either TGA (200,100 and 50 mg/kg b.w., i.g.) or vehi-
cle, once a day for 10 days, 24 h after tumor inoculation.
Cyclophosphamide (15 mg/kg b.w., i.p.) was used as a
positive control. The tumor inhibition rate (TIR %) was
calculated as we described previously [19]. All the animal
procedures were conducted in compliance with the
National Institutes of Health Guide for the Care and Use
of Laboratory Animals.

Statistics
One-way ANOVA was used and followed by Dunnett's
test. p < 0.05 was considered significant.

Results
Cytotoxic activity
The cytotoxicity of TGA was evaluated by an MTT assay
and the IC50 values were derived from the dose-response
curves (Fig 1). A 48 h exposure to TGA decreased the pro-
liferation of HepG2 cells in a concentration-dependent
manner with an IC50 at 21 µg/ml; however, the effect on
normal mouse hepatocytes showed bi-directional prop-
erty: the proliferation was inhibited at higher concentra-
tions, but promoted at lower concentrations, with an IC50
at 105 µg/ml. This indicates that TGA may possess relative
selective cytotoxicity to hepatoma cancer cells.

Induction of apoptosis in HepG2 cells by TGA
Individual apoptosis in the cell population in HepG2 cells
treated by TGA was studied by fluorescence staining
method. Morphological alteration, such as chromatin
aggregation, nuclear and cytoplasmic condensation, and
partition of cytoplasm and nucleus into membrane-
bound vesicles (apoptotic bodies) were observed in

HepG2 cells treated by TGA at 50 µg/ml for 12, 24 and 48
h (Fig 2).

To further confirm that TGA induces HepG2 cell apopto-
sis, cells were stained with Annexin V-FITC and PI, and
then subsequently analyzed by flow cytometry. This assay
is based on the translocation of phosphatidylserine from
the inner leaflet of the plasma membrane to the cell sur-
face in the early apoptotic cells. HepG2 cells were treated
with TGA at 25, 50 and 100 µg/ml for 24 h. The dual
parameter fluorescent dot plots showed the viable cell
population in the lower left quadrant (annexin V- PI-), the
cells at the early apoptosis are in the lower right quadrant
(annexin V+PI-), and the ones at the late apoptosis are in
the upper right quadrant (annexin V+I+). As indicated in
Fig. 3, in untreated cells, 0.29% of cells were Annexin V-
positive/PI-negative, whereas 1.02% of cells were Annexin
V/PI double positive. After treatment with TGA at 25, 50
and 100 µg/ml for 24 h, the corresponding quantities
were 0.75 and 1.76%; 9.05 and 0.93%; 13.23 and 6.09%
respectively.

Effect of TGA on cell cycle distribution in HepG2 cells
The ability of a substance to affect specific phases of the
cell cycle may provide clues to its mechanism of action. To
determine the effects of TGA on the cell cycle, HepG2 cells
were treated with TGA at different concentrations (25, 50
and 100 µg/ml) and time points (at 50 µg/ml for 12, 24
and 48 h) respectively. The cells were then stained with PI
and analyzed DNA content by flow cytometry. After expo-
sure to 25 µg/ml of the TGA, there was an increase of cells
in G0/G1 when compared to the DMSO solvent control
and a concomitant decrease of cells in S and G2/M phases.
After treatment with 50 and 100 µg/ml of TGA, there was

Cytotoxic activity of TGA in HepG2 cells and normal mouse hepatocytesFigure 1
Cytotoxic activity of TGA in HepG2 cells and normal 
mouse hepatocytes. The cells were treated with vehicle 
or TGA from 7.8125 µg/ml to 250 µg/ml. Figure shown rep-
resents one of three independent experiments.
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a decrease of cells in G0/G1 and an increase of cells in G2/
M. Moreover, the sub-G1 apoptotic peak was induced by
TGA in dose- and time- dependent manners (Fig 4). This
indicates that TGA contains more than one component
with the more active or abundant component inducing
G0/G1 arrest and the less active component inducing G2/
M arrest and/or individual component(s) in TGA exert
different effects at different concentrations.

Upregulation of Bax/Bcl-2 ratio
The raise of the ratio of Bax/Bcl-2 is of benefit to apopto-
sis. In light of our study, following treatment with TGA at
50 µg/ml, pro-apoptotic protein Bax expression was up
regulated in a time-dependent manner; the anti-apoptotic
protein Bcl-2 was down regulated at 12 h and 24 h time
points, but slightly up regulated at 48 h time point. At all

events, the ratio of Bax/Bcl-2 was increased during all time
points compared with control. Although the ratio of Bax/
Bcl-2 at 48 h time point was decreased in some degree
than 24 h time point, it was still far higher than that of
control (Fig 5). The reason of this might be due to more
apoptosis at 48 h in HepG2 cells negatively feedback to
inhibit the ratio of Bax/Bcl-2 via enhancing the expression
of anti-apoptotic protein.

Tumor growth inhibition of implanted H22 cells by TGA
After tumor implantation for 24 h, administration of TGA
(200, 100 or 50 mg/kg b.w., i.g) and cyclophosphamide
(15 mg/kg B.W., i.p) once a day for 10 days, could signif-
icantly suppress the growth of H22 tumor and TGA at 200
mg/kg was more effective than the lower dosages. One-
way ANOVA followed by Dunnett's test was used for sta-

Morphological changes of HepG2 cell line in response to TGA at 50 µg/ml for different time pointsFigure 2
Morphological changes of HepG2 cell line in response to TGA at 50 µg/ml for different time points. 1–4, HepG2-
cells treated with TGA at 50 µg/ml for 0, 12, 24 and 48 h, respectively.
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tistic analysis and significant differences were found for
treatment groups vs. control (Table 2). In addition,
marked body weight loss was observed in cyclophospha-
mide-treated group compared to the control group,
whereas only slight body weight loss was observed in
TGA-treated groups. This implies that TGA might be a
promising antitumor agent with low toxicity.

Discussion
A major complication of chemotherapy is toxicity to nor-
mal cells, which is due to the inability of drugs to differ-
entiate between normal and malignant cells. This often
impacts the efficacy of the treatment and even makes it
impossible to cure the patients. One of the requisite of
cancer chemopreventive agent is elimination of damaged
or malignant cell through cell cycle inhibition or induc-
tion of apoptosis without or with less toxicity in normal
cells [20,21].

Flow cytometric analysis of HepG2 cells treated by TGA for 24 hFigure 3
Flow cytometric analysis of HepG2 cells treated by TGA for 24 h. 1, Control; 2–4, HepG2 cells treatment with 25, 50 
and 100 µg/ml TGA for 24 h.
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First we investigated the cytotoxicity of TGA in HepG2
cells and primary cultured normal mouse hepatocytes.
The primary cultured mouse hepatocytes were chosen as
normal cells to seek selective hepatoma cytotoxic agents,
because these primary cultured cells closely resemble nor-
mal cells in vivo. Our results indicate that TGA has rela-
tively selective cytotoxicity to hepatoma cells based on the
higher IC50 value in the primary cultured normal hepato-

cytes than that of carcinoma HepG2 cells. The relative
selective cytotoxicity of TGA in HepG2 cells may be due to
some of the relative selective cytotoxic components 23-,
24- and 25-O-acetylcimigenol-3-O-β-D-xylopyranoside,
25-anhydrolcimigenol-3-O-β-D-xylopyranoside and
hepatoprotective constituent cimigenol xylopyranoside in
it [13,22,23].

Cell cycle distributions of HepG2 cells treated with TGA at different times and dosagesFigure 4
Cell cycle distributions of HepG2 cells treated with TGA at different times and dosages. Cells were stained with PI 
and analyzed by flow cytometry. 1–3, HepG2 control for 12, 24 and 48 h respectively; 4–6, HepG2 cells treated with TGA at 
50 µg/ml for 12, 24 and 48 h respectively. 7–8, HepG2 cells treated with TGA at 25 and 100 µg/ml for 48 h. Figures shown are 
one of three representative experiments.
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Cell proliferation is governed by the cell cycle, which is
the target of many anti-cancer agents. Previous studies
have demonstrated that extracts and some constituents of
rhizomes of C. racemosa, the same genus as C. dahurica,
possess cytotoxic activity against estrogen receptor posi-
tive (MCF-7) and estrogen receptor negative (MDA-
MB231 and MDA-MB-453) human breast carcinoma cell
lines by induction of cell cycle arrest and apoptosis; fur-
thermore, glycosidic fraction could induce G0/G1cell cycle
arrest when tested at 30 µg/ml and G2/M arrest when
tested at 60 µg/ml in MCF7 cells [15,24]. In addition, it
was found that actein and a fraction of black cohosh
potentiated antiproliferative effects of chemotherapy
agents on human breast cancer cells in more recent
research [25]. In light of our study, TGA could induce G0/
G1 cell cycle arrest at lower concentration (25 µg/ml) and
G2/M arrest at higher concentration (50 and 100 µg/ml).
This suggests that TGA contains more than one compo-
nent with the more active or abundant component induc-
ing G0/G1 arrest and the less active component inducing
G2/M arrest. Active components either for G0/G1 or G2/M
cell cycle arrests have been detected in TGA by our previ-

ous studies. 23, 24 and 25-O-acetylcimigenol-3-O-β-D-
xylopyranoside, isolated from TGA could induce G2/M
arrest [13]; while 25-anhydrolcimigenol-3-O-β-D-
xylopyranoside, which exists in TGA, could induce G0/G1
arrest [26]. There might be some other potent G0/G1 active
components undiscovered.

Apoptosis is a tightly regulated process, which involves
changes in the expression of a distinct set of genes [27,28].
Two of the major genes responsible for regulating mito-
chondrial apoptosis pathway are antiapoptotic Bcl-2 and
proapoptotic bax [29-31]. In particular, Bax can
homodimerize with itself and heterodimerize with Bcl-2
or Bcl-xL. It appears that Bax homodimers activates apop-
tosis while heterodimers inhibits the process [32]. Moreo-
ver, an elevated intracellular ratio of Bax to Bcl-2 occurs
during increased apoptotic cell death [33]. In our study,
pronounced apoptotic cells were found in HepG2 cells
treated with TGA by fluorescence staining and flow cyto-
metric analysis. Moreover, further study showed that
enhanced ratio of Bax/Bcl2 at all time points contributed
to TGA induced apoptosis. The attenuation of ratio of

Table 2: Tumor growth inhibitory effect of TGA on H22 cells (mean ± SD, n = 10)

Samples Dosage (mg/kg) Tumor weight (g) Growth inhibition %

Control - 3.28 ± 1.27
Cyclophosphamide 15 0.93 ± 0.45a 71.67
TGA 200 1.64 ± 0.76b 49.92
TGA 100 1.99 ± 0.82c 39.30
TGA 50 2.06 ± 1.30c 36.98

ap < 0.001, bP < 0.01, cp < 0.05 vs control.

Regulation of Bax and Bcl-2 protein expression on HepG2 cells by TGAFigure 5
Regulation of Bax and Bcl-2 protein expression on HepG2 cells by TGA. Cellular lysate protein (50 µg/lane) was 
loaded on a 10% SDS-polyacrylamide gel, electrophoresed, and subsequently transferred onto nitrocellulose. Immunoblots 
were detected with antibody specific for Bcl-2 and Bax. Lysates were from HepG2 cells treated with 50 µg/ml TGA for 0, 12, 
24 and 48 h, respectively. The ratio of Bax/Bcl-2 was analyzed by pImage.
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Bax/Bcl-2 at 48 h time point than that of 24 h might be the
way of self-protection for cell survival. More apoptosis at
48 h might in turn, attenuate the increased ratio of Bax/
Bcl-2 by negative feedback.

Conclusion
In conclusion, for the first time, the potential anticancer
activity and the underlying mechanisms of TGA against
hepatoma were investigated in this study. TGA exhibited
relative cytotoxicity to HepG2 cells in vitro and inhibited
growth of H22 tumor in vivo. The results of this study sug-
gest that TGA might be a promising anti-hepatoma agent.
Apoptosis and cell cycle arrest could be attributed, in part
to its proliferating inhibition, and alteration of ratio of
Bax/Bcl-2 might be one of possible mechanisms of TGA
inducing apoptosis.
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