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Abstract

Background: The importance of geography as a source of variation in health research continues to receive sustained
attention in the literature. The inclusion of geographic information in such research often begins by adding data to a map
which is predicated by some knowledge of location. A precise level of spatial information is conventionally achieved
through geocoding, the geographic information system (GIS) process of translating mailing address information to
coordinates on a map. The geocoding process is not without its limitations, though, since there is always a percentage of
addresses which cannot be converted successfully (nongeocodable). This raises concerns regarding bias since traditionally
the practice has been to exclude nongeocoded data records from analysis.

Methodology/Principal Findings: In this manuscript we develop and evaluate a set of imputation strategies for dealing
with missing spatial information from nongeocoded addresses. The strategies are developed assuming a known zip code
with increasing use of collateral information, namely the spatial distribution of the population at risk. Strategies are
evaluated using prostate cancer data obtained from the Maryland Cancer Registry. We consider total case enumerations at
the Census county, tract, and block group level as the outcome of interest when applying and evaluating the methods.
Multiple imputation is used to provide estimated total case counts based on complete data (geocodes plus imputed
nongeocodes) with a measure of uncertainty. Results indicate that the imputation strategy based on using available
population-based age, gender, and race information performed the best overall at the county, tract, and block group levels.

Conclusions/Significance: The procedure allows for the potentially biased and likely under reported outcome, case
enumerations based on only the geocoded records, to be presented with a statistically adjusted count (imputed count) with
a measure of uncertainty that are based on all the case data, the geocodes and imputed nongeocodes. Similar strategies
can be applied in other analysis settings.
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Introduction

The growing recognition of the importance of geography to areas

of public health research and practice, such as cancer control

science, planning, and service delivery, has led to increased efforts

on the part of State and local health authorities to add geographic

location information to surveillance and service data [1–4]. The

most precise level of location information (outside of the use of a

global positioning system (GPS) device or procedures based on

aerial imagery) is conventionally achieved through geocoding, the

geographic information system (GIS) process of translating mailing

address information to longitude and latitude coordinates on a map.

Fundamentally speaking, geocoding is a means to add data on a

map. Once successfully mapped, the data locations can provide

gateway access to a plethora of opportunities for geographically

linking to other sources of information. This holds regardless of

whether the geocoded data element is a cancer outcome or other

health or non-health related outcome [5–7]. Supporting data

layers of interest may include environmental data such as air, soil,

and water parameters; socio-economic and demographic data,

such as the common information accessible through the US

Census; the Census administrative and other geographic bound-

aries; as well as information from the built environment; such as

hospitals, locations of health care providers, and other point

sources. Mapped data also allows for distances to be measured and

proximity characterized, both of which may be of interest.

From an analysis perspective, a primary reason for mapping

data and linking it to other geographic data sources is to include a
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level of spatial variation (or geographic variation) regarding an

outcome of interest. Even when spatial variation may not be of

intrinsic interest, data that are spatially linked often exhibit spatial

auto-correlation, a property that would need to be adjusted for in

standard statistical procedures that assume independence [8].

Spatial Analysis in public health can usually be categorized as

those exploring clustering, cluster detection, and/or spatial

variation in outcome risk [9–19]. Other analysis might focus

more on disease mapping applications [20–22], an example of

which would include enumeration of cases or rates aggregated to

some of the common Census administrative units. These

examples, which by no means is an exhaustive list, are indicative

of the continued use of mapped data in the public health arena.

Adding information to a map via the geocoding process is not

without its limitations, though, since there is always a percentage

of addresses which cannot be converted successfully (nongeocod-

able). Reasons for unsuccessful geocoding include address error,

base maps out of date, and addresses that are a PO Box or rural

postal route. The practice and details of geocoding has received

recent attention especially in the health research literature [4].

There are now references to guidelines on geocoding with efforts

designed to increase what has been termed the geocoding hit or

match rate, the proportion of successfully geocoded records for a

given data set [23–25].

When dealing with nongeocoded data, traditionally the

common practice has been to geocode as best as possible and

then have analysis or mapped descriptions proceed just based on

those that geocoded successfully. In general, analysis and

interpretations based on incomplete data raises issues regarding

bias. In the current setting additional concerns regarding spatial

selection bias may be raised when excluding nongeocoded data

due to the fact that geocoding success, more precisely the

prevalence of nongeocodes, is often not geographically neutral

[26,27]. It is not uncommon for rural area addresses to be more

susceptible to unsuccessful geocoding than those addresses located

in more urban areas [28–31]. An alternative practice could be to

analyze the data at a higher level of aggregation, such as with zip

codes which are most often reported with address information.

This leads to a loss of spatial resolution as well as other potential

drawbacks (e.g. ecological bias) even if all cases can be retained.

Therefore, it is always preferable to base analyses on the most

detailed location information available, although when using

highly confidential data, it may be necessary to report or display

results in a more aggregated format.

In this manuscript we develop and evaluate a set of imputation

strategies for dealing with nongeocoded addresses so that analysis

can proceed using all case records. The practice of imputation is a

common statistical tool used to fill in missing data values. Little

and Rubin 2002 [32] provide a comprehensive treatment of

imputation and its applications. Imputation for nongeocoded

addresses involves assigning longitude and latitude coordinates or

some other appropriate geographic identifier so that analysis for

complete data can be applied. We devise three strategies for

imputing location information for nongeocoded addresses with

increasing use of available information. Versions of these strategies

were originally developed and applied by Klassen et al. 2004 [11]

and are similar to those presented by Boscoe 2008 [25] and Henry

and Boscoe 2008 [33], see also Zimmerman 2008 [34] for related

discussions. New in this manuscript is the inclusion of a measure of

imputation uncertainty and an evaluation procedure based on a

relevant analysis outcome.

The imputation strategies are developed and evaluated using

prostate cancer data obtained from the Maryland Cancer

Registry. Case enumerations at the Census county, tract, and

block group level are considered as the outcome of interest when

applying and evaluating the imputation methods. Multiple

imputation is used to provide estimated total case counts based

on complete data (geocodes plus imputed nongeocodes) with a

measure of uncertainty. The procedure allows for the potentially

biased and likely under reported outcome, case enumerations

based on only the geocoded records, to be presented with imputed

statistically adjusted results.

Methods

Maryland Prostate Cancer Data
Data for these analyses are part of a larger data set used to

investigate geographic patterns of prostate cancer burden in

Maryland, based on all incident cases of prostate cancer reported

to the Maryland Cancer Registry during 1992–1997 (n~24,189).

Data were obtained under a data use agreement between the

Maryland Department of Health and Mental Hygiene and the

researchers, with approval from the institutional review boards of

the Johns Hopkins Bloomberg School of Public Health and the

Maryland Department of Health and Mental Hygiene. Findings

related to prostate cancer outcomes have been reported previously,

including area-level predictors of prostate cancer stage at diagnosis

and tumor histologic grade [11], predictors of missing data on

staging and grade in registry cases [12], and geographic clustering of

tumor and other prostate cancer characteristics [15,35–36].

We determined that 23,993 cases had verifiable Maryland

addresses. Using each case’s reported address at diagnosis, we

geocoded all cases in ArcGIS [37] to longitude and latitude

coordinates, using supplemental commercially available address

cleaning software and three base maps for Maryland to maximize

matching [23], resulting in 21,904 geocoded cases, a geocoding

match rate of 91%. Analysis of these data cited above [11–12,15]

have utilized the imputation algorithm described below (Strategy

3) to assign location to the remaining 2089 cases, and minimize

bias from missing cases.

For the purposes of the current exercise, we utilized a subset of

the entire data set, comprised of all geocoded cases with complete

information on age, race, stage and grade (n~15,525). This

reduced data set is appropriate for developing and evaluating the

proposed imputation strategies.

Demographic data including age (in Census 5 year categories),

race (black or white), and gender population counts for Maryland

were obtained from the 1990 US Census Summary File 1 (SF 1)

for the Census geographic units beginning at the Census block (the

smallest geographic unit for which the Census Bureau tabulates

data), block group, tract, and county [38]. Census geography

follows a hierarchical structure with blocks nested within block

groups, block groups nested within tracts, and tracts nested within

counties. Boundary files for all Census geography were also

obtained and used in the evaluation phase for imputing

nongeocoded addresses. There are 24 counties, 1151 tracts, and

3670 block groups defined in the 1990 US Census for Maryland

[38], all of which are represented in the n~15,525 data subset

used in our analysis.

Imputation Strategies
The strategies proposed assign nongeocoded addresses to a

Census block, block group, tract, and county based on an assumed

correctly reported zip code. If desired, longitude and latitude

coordinates can be taken as a center point of the assigned block

(e.g. the geographic center or population center) or a randomly

chosen point within that block, since Census blocks are the

smallest units considered.

Imputing Nongeocoded Addresses
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Note that zip codes are US postal units and do not generally

coincide spatially with the Census hierarchy of geographic units.

For all strategies considered, Census blocks were designated to be

within a zip code if their geographic center fell within the zip code

boundary. Block groups, tracts, and counties containing a block

designated to a zip code were then also considered associated with

that zip code. Since these Census units contain multiple blocks, it is

possible for them to be associated with more than one zip code.

As a side note, in 2000 the US Census introduced Zip Code

Tabulation Areas (ZCTAs) as a new geographic unit. ZCTAs are

composed of Census blocks and therefore spatially coincides with

the Census hierarchy of geographic units while also closely

matching spatially with US postal zip codes [39]. As our analysis

here is based on 1990 Census data, it does not involve the use of

ZCTAs.

For discussion below consider a fictitious nongeocoded Maryland

prostate cancer case: a white male between the age of 45 and 49

residing in Maryland zip code 21237. From the 1990 US Census

there are 283 Census blocks, 24 block groups, 13 tracts, and 2

counties associated with zip code 21237. Figure 1 displays the 1990

Census geography for zip code 21237 showing these 13 tracts and 2

counties. The finer block group and block subdivisions are shown in

Figure 1 for a selected Census tract and block group.

Imputation Strategy 1. Imputation Strategy 1 assigns a

nongeocoded address to a randomly selected Census block, block

group, tract, and county within the known zip code. This simplistic

approach uses only the zip code information and provides a

baseline for developing more sophisticated methods based on

other known information. In regards to the above nongeocoded

case example a Census block, block group, tract, and county

within zip code 21237 would be randomly selected as the imputed

location. For example, imputation at the Census tract level would

randomly select one of the 13 tracts associated with zip code 21237

(Figure 1). Each tract has equal probability of being selected under

Strategy 1 and the weight 1/13 also represents the probability of

imputing to the correct Census tract for a given nongeocoded

address. The selection probabilities for the other Census units

under Strategy 1 are 1=283, 1=24, and 1=2 respectively for

imputation to Census blocks, block groups, and counties within

zip code 21237. As with tracts these weights also represent the

probability of imputing to the correct corresponding Census unit

for a given nongeocoded address using Strategy 1.

Figure 1. The 1990 Census geography for Maryland zip code 21237. Shown are the 13 Census tracts and 2 counties (Baltimore County and
Baltimore City) associated with zip code 21237. Census tract 24005450100 is highlighted with one of its block groups (240054501003) and one of its
blocks (24005450100315) identified.
doi:10.1371/journal.pone.0008998.g001
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Imputation Strategy 2. Imputation Strategy 2 first assigns a

nongeocoded address to a randomly selected Census block within

the known zip code. Assignment to the other units are then based

on converting the selected Census block to its encompassing block

group, tract, and county, by exploiting the nested hierarchy of the

Census geography. Strategies 1 and 2 are equivalent in regards to

Census block imputation, but assignment to the other units are

weighted based on the number of Census blocks they contain, with

higher weight given to those units that contain more blocks. In

comparison to the random imputation for all Census units in

Strategy 1 this Census geography based weighting scheme used for

Strategy 2 may better reflect population density.

In regards to the nongeocoded case example a Census block in zip

code 21237 would be randomly selected (out of the 283 contained in

zip code 21237) as the imputed block assignment. Block identifiers

employed by the US Census in 1990 are comprised of a fourteen digit

string of numeric characters with an occasional 15th alphabetic

character included on the right. Converting a block identifier to its

encompassing block group, tract, and county identifiers can be

accomplished by retaining the first twelve, eleven, and five left hand

digits respectively, providing a straight forward and feasible

computational approach. The first two digits are the Census state

identifiers, 24 for Maryland. For example, suppose the Census block

selected was the block with Census ID 24005450100315. The

encompassing Census block group, tract, and county, that contains

this block, would be identified with the IDs 240054501003,

24005450100, and 24005 respectively. This Census block, block

group, and tract are shown highlighted in Figure 1.

With focus on imputation to the Census tract level, the distribution

of the number of blocks contained in each of the 13 tracts in zip code

21237 range between 1 and 89 blocks with larger number of blocks

per tract suggestive of higher population density. Following the

previous example, Census tract 24005450100 contains the largest

number of blocks (89) and therefore has the highest probability of

being selected. The probability of selecting this tract for imputation

with Strategy 2 is thus given by 89=283~0:31 in comparison to the

selection weight of 1=13~0:08 for this tract under Strategy 1. Similar

procedures were applied for imputing to Census block groups and

counties under Strategy 2.

Imputation Strategy 3. Imputation Strategy 3 assigns a

nongeocoded addresses to a Census block within their known zip

code using a weighted probability of assignment according to the

spatial distribution of the available population. Continuing with

this same example, Census demographic data can be used to

estimate the expected number of white males between the age of

45 and 49 for all blocks in zip code 21237. A block would then be

randomly selected using the ratio of block expected counts to the

corresponding zip code total

Block Weights~
# White 45-49 in Block

Total White 45-49 in 21237

as the selection probabilities. In comparison, Strategies 1 and 2

randomly selected blocks with equal weight (of 1/283 for zip code

21237). Assignment to the other units for Strategy 3 follow as in

Strategy 2, converting the selected Census block to its

encompassing block group, tract, and county which by the way

is equivalent to probability assignments based on these respective

summed block weights for each of these units.

The 1990 US Census does not release tabulated age by gender

by race specific information at the block level. Expected block level

counts for males of a specific age and race category were estimated

by multiplying the Census-provided block level racial total by the

corresponding block group level age and race rate. That is, by

applying the block group level proportions in each age/race strata

to those at the block level for a given race.

Prior to imputing any nongeocoded cases, information from

successfully geocoded cases were used to calculate adjusted

population totals for Strategy 3. For example, using the above

scenario, the number of white male cases between the age of 45 and

49 that have been successfully geocoded to a location within zip

code 21237 (for which their block can easily be identified) are

subtracted from the corresponding expected block counts, yielding

an adjusted expected count more accurately reflecting the

availability of the remaining population strata. Selection probabil-

ities and imputation then follow as described. If a block contained

no Census population in a given case’s specific race and age group

category, before or after adjusting for the successfully geocoded

cases, the probability of assignment to that block was set to zero. In a

further adjustment that was not explored here, once a nongeocoded

case has been imputed it can be added to the pool of geocoded cases

so the adjusted population strata can be continually updated.

Imputation Performance Evaluation
For experimental purposes we use the reduced geocoded Maryland

prostate cancer data (n~15,525 cases) and consider those records that

geocoded with an ArcGIS address match score of 100% as the

experimental geocoded subset (n~9649 cases) and those that geocoded with

an address match score less than 100% as the experimental nongeocoded

subset (n~5876 cases). Addresses that geocoded in ArcGIS are

assigned a match score (ranging from 0 to 100) as a description of how

well each address element (e.g. range of street number, spelling of street

name, missing or incorrect street direction) matched the information in

the available base maps [37]. Dividing the data set in this manner

provided an alternative to simple random subsets and perhaps yielded

a more representative set of what might approximate nongeocoded

addresses. Additionally, the high percentage of experimental non-

geocoded cases (38% nongeocode, 62% geocode) provided more

information to better evaluate the properties of the imputation

strategies at geographic units smaller than county.

As a benchmark for evaluation we consider the total number of

enumerated cases per Census unit as an outcome of interest which

is known for the geocoded data set (n~15,525). The imputation

strategies defined previously were applied to the experimental

nongeocode cases resulting in a set of imputed Census units for each

case record. These imputed cases were then combined with the

experimental geocodes providing a complete data set (geocoded plus

imputed nongeocodes) for which case enumerations can be

calculated and compared to that obtained using the complete

geocoded data set. Performance of the imputation process was

evaluated using multiple imputation as outlined below [32].

1. Impute the experimental nongeocode cases using Strategies 1,

2, and 3.

2. Combine the imputed experimental nongeocode results from

each strategy with the experimental geocodes yielding complete

data sets.

3. Enumerate case counts for each Census unit using the imputed

complete data sets.

4. Steps 1–3 were repeated 1000 times.

This algorithm yields, for each strategy and Census unit (block

group, tract, and county), a distribution of 1000 imputed

enumerated case counts. Results are summarized by considering

the mean and the middle 95%, taken as 2.5 and 97.5 percentiles, of

these distributions as the estimated imputed count and measure of

uncertainty respectively. The 95% multiple imputation interval

reflects variability in the range of potential imputed results and was

Imputing Nongeocoded Addresses
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considered informative for the current application as well as being

independent of the number of multiple imputations performed.

Alternatively, uncertainty in imputed results could have been

characterized with multiple imputation-based confidence intervals

around the mean imputed totals [32]. These, however, yielded

artificially narrow intervals due to the number (1000) of multiple

imputations performed. If all case records in the relevant zip code

were geocoded successfully (and assumed correctly), the total

enumerated cases per Census unit in that zip code would be taken

as a fixed non-random quantity. Imputation uncertainty is therefore

based on the distribution of imputed case totals across the zip code.

Alternatively, imputation performance could be evaluated on

the individual case level, identifying for example, whether each

experimental nongeocoded case was imputed to its correct Census

unit. This was essentially the approach used in Henry and Boscoe

2008 [33], applying a multiple imputation approach to estimate

expected rates of imputing to the correct Census units. As pointed

out earlier geocoding is more a means to an end by providing a

link to other sources of spatial information supporting further

analysis. Knowledge of the imputation success rate for any

individual or collection of nongeocoded case records (although

informative) is therefore limited in such endeavors when that

success rate does not infer any performance related properties for

how the geocoding and imputed nongeocodes are used in analysis.

This was the motivation behind our consideration to use the

simple case enumeration outcome per Census unit. Further,

imputation evaluated at the individual case level is essentially

independent Bernoulli trials. The expected success rates and their

variance can be determined analytically without the need for

multiple imputation since the weights (i.e. probability of imputing

to the correct Census units) are known for all strategies in this type

of experiment where we know the truth, but subset the data to

behave as though we do not. The assumption of independence,

however, is clearly no longer justified when an outcome of the

geocoding process that is a function of more than one case is

considered, such as with case enumerations.

The imputation strategies and multiple imputation based

performance evaluation analysis were coded and performed in

the R Statistical Computing Environment [40].

Results

Figure 2 displays, for the geocoded subset of the 1992–1997

Maryland prostate cancer data (n~15,525) used in this analysis,

Figure 2. Maryland county level percent nongeocodes and urban/rural status. Maryland county level percent of nongeocoded case records
(ratio of nongeocoded cases to the total nongeocoded plus geocoded cases) based on the geocoded 1992–1997 Maryland prostate cancer data
subset (n~15,525). Also shown on the insert map is the 1990 US Census county level urban/rural categorization from the most urban (Baltimore
Region) to most rural (Eastern Shore).
doi:10.1371/journal.pone.0008998.g002

Imputing Nongeocoded Addresses
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the county level percent of nongeocoded case records (the ratio of

nongeocoded cases to the total nongeocoded plus geocoded cases).

Based on 1990 US Census population data the 24 Maryland

counties can be categorized by geographic region from most urban

(Baltimore Region) to most rural (Eastern Shore). These regions

are shown on the insert map in Figure 2. Nongeocoded data are

often not geographically uniform and commonly related at least in

part to population density with rural areas being more susceptible.

Both these points are conveyed in Figure 2, highlighting the

caution against the practice of removing nongeocoded data from

analysis [26].

Results to follow evaluating the imputation strategies are based

on this geocoded Maryland prostate cancer data subset (n~15,525
cases) and as described previously split into the experimental

geocoded set (n~9649 cases) and the experimental nongeocoded

set (n~5876 cases). To clarify, this data set has been completely

geocoded according to the process outlined previously and for

purposes here assumed geocoded correctly. Thus the Census

block, block group, tract, and county are known for both the

experimental geocoded and experimental nongeocoded data sets.

Imputation strategies are applied to the experimental nongeo-

coded data as though this information was unknown as it would be

for real nongeocoded data. Results from imputing the experimen-

tal nongeocoded data set are then combined with the experimental

geocoded data, case totals for each Census unit calculated, and

compared to the known totals.

Table 1 contains the geocoding results presented at the county

level listed by geographic region. Specific counties within each

region remain unidentified to protect case confidentiality in

counties with small numbers of cases. For each county the total

number of cases derived from the geocoded data set, taken in this

experiment as the true, are followed by the number of

experimental geocodes and experimental nongeocodes. For

analysis intended to reveal geographic variation at units other

Table 1. Imputation results for Strategy 3 at the county level stratified by urban/rural geographic region.

Geographic Case Enumerations Imputation Ratio

Region True Geocoded Nongeocoded Imputed Interval Imputed/True

Baltimore Region

468 246 222 472.2 (464, 480)� 1.01

475 288 187 472.5 (444, 481)� 0.99

583 341 242 586.4 (580, 592)� 1.01

1344 735 609 1340.2 (1333, 1347)� 1.00

2788 2001 787 2824.9 (2806, 2843) 1.01

3081 2032 1049 3044.6 (3025, 3064) 0.99

Suburban Washington

388 187 201 389.7 (383, 397)� 1.00

1880 1241 639 1879.8 (1875, 1885)� 1.00

2366 1579 787 2363.9 (2359, 2368)� 1.00

Southern Maryland

62 16 46 63.3 (61, 65)� 1.02

117 54 63 115.9 (113, 118)� 0.99

185 71 114 184.7 (182, 187)� 1.00

Western Maryland

38 6 32 38.0 (36, 41)� 1.00

279 154 125 279.0 (276, 281)� 1.00

356 222 134 355.2 (352, 358)� 1.00

Eastern Shore

42 12 30 37.3 (33, 41) 0.89

51 3 48 49.9 (47, 52)� 0.98

88 20 68 88.0 (87, 88)� 1.00

97 49 48 101.8 (98, 106) 1.05

139 96 43 139.0 (139, 139)� 1.00

158 89 69 158.0 (158, 158)� 1.00

160 38 122 160.0 (160, 160)� 1.00

185 79 106 186.9 (184, 189)� 1.01

195 90 105 195.0 (195, 195)� 1.00

Presented for each of the 24 Maryland counties are True total case enumerations with corresponding totals derived from those that were labeled as geocoded and those
that were labeled as nongeocoded followed by an imputed total and a 95% multiple imputation interval computed using Strategy 3. Units for all results are number of
cases. Imputation intervals are starred when they contained the true total. The ratio of imputed number cases to the true number cases is also listed. Results based on the
n~15,525 geocoded Maryland Prostate cancer data split into the n~9649 experimental geocodes and n~5876 experimental nongeocodes subsets for evaluation.
doi:10.1371/journal.pone.0008998.t001

Imputing Nongeocoded Addresses

PLoS ONE | www.plosone.org 6 February 2010 | Volume 5 | Issue 2 | e8998



than zip code, excluding nongeocoded case data will always lead to

under-reporting. This is certainly clear in Table 1, though

exaggerated since our experimental data set was formed to have

only a 62% geocoding match rate.

Results from Imputation Strategy 3 are also summarized in

Table 1 for each county by listing the average (expected) number

of imputed cases and the 95% multiple imputation interval.

Results are further highlighted as to whether the multiple

imputation interval covered the true number of cases. For

example, in our experiment the first county listed under the

Baltimore Region had a true number of cases equal to 468.

However, 222 of these cases fell into the experimental nongeocode

category. Imputation Strategy 3 yielded an imputed number of

cases of 472.2 with the 95% multiple imputation interval of 464 to

480 cases capturing the true total.

In addition to avoiding reporting the total number of geocoded

cases (246 cases) as the final count, as has been done in practice, a

benefit of this approach is that it provides a statistically adjusted

count (i.e. imputed count) with a measure of uncertainty. For

example, in this county a total count of 246 cases based on the

geocoded records could be accompanied with an estimated count

of 472.2 cases based on all records using imputation. Furthermore,

the expected range of imputed counts for this county is 464 to 480

cases.

The ratio of imputed number cases to the true number cases is

also listed in Table 1 to characterize imputation accuracy on a

common scale. As is evident, most imputed counts were very close

to their true values with a mix of those that were over and

underestimated, ratios above or below 1.00 respectively. No trends

across the five geographic regions were apparent, although some

of the largest errors occurred in rural Eastern Shore counties. Note

that for some counties the listed ratio of 1.00 was due to rounding.

All three imputation strategies were performed and evaluated at

the Census county, tract, and block group level. Table 2

summarizes these results listing the proportion of imputation

intervals that contained the true total as well as the average width

of these intervals (in units of case counts), each computed over the

24 counties, 1151 tracts, and 3670 block groups that were

represented in the geocoded data set. The 83.3% covered (20 of

the 24 counties) with an average interval width of 9.4 for Strategy

3 at the county level was shown in more detail in Table 1. Evident

from these results is that imputation for case enumerations at the

county, tract, and block group level improves as we move towards

Strategy 3 both in terms of the percentage of times the imputation

interval contained the true total as well as average width of the

intervals.

Two interesting features of the Table 2 results warrant further

mention. First, the width of the multiple imputation intervals are

related to the total number of cases, those geocoded plus those in

need of imputation. Interval widths are therefore wider on average

for more populated regions and/or for larger Census units. Hence

comparisons between multiple imputation interval widths are

made only across the three strategies within a given Census unit.

Second, also evident is what appears to be an advantage for better

imputation success, in terms of the percentage of times the

imputation intervals covered the true totals, for the smaller Census

units, block groups. The larger variability for smaller sample sizes

such as those experienced at the block group level actually

produces wider multiple imputation intervals relative to the total

enumerated cases than those at the larger units such as county.

This, in combination with the fact that the total enumerated cases

outcome is bounded below by zero, imparts greater odds of

successfully covering with the multiple imputation interval at the

smaller Census units as shown.

To provide information on geographic variation, the tract level

results shown in Table 2 were stratified according to their

geographic region and are presented in Table 3. Tract level results

across geographic region are consistent with those contained in

Table 2, imputations tend to improve moving toward Strategy 3

Table 2. Results for Imputation Strategies 1, 2, and 3 at the
Census county, tract, and block group level.

Imputation Approach

Spatial Scale Strategy 1 Strategy 2 Strategy 3

County

% Covered 25.0% 83.3% 83.3%

Avg Interval Width 15.9 10.0 9.4

Tract

% Covered 80.0% 86.2% 90.5%

Avg Interval Width 7.5 6.9 6.7

Block Group

% Covered 93.7% 94.0% 95.8%

Avg Interval Width 4.1 3.9 3.8

Presented are the percentage of times the 95% multiple imputation intervals
contained the true total case enumerations and the width of the imputation
based intervals (in units of number of cases), averaged across the 24 Maryland
counties, 1151 tracts, and 3670 block groups. Results based on the n~15,525

geocoded Maryland Prostate cancer data split into the n~9649 experimental
geocodes and n~5876 experimental nongeocodes subsets for evaluation.
doi:10.1371/journal.pone.0008998.t002

Table 3. Results for Imputation Strategies 1, 2, and 3 at the
Census tract level stratified by urban/rural geographic region.

Geographic Tract Level Imputation

Region Strategy 1 Strategy 2 Strategy 3

Baltimore Region

% Covered 80.9% 86.3% 92.5%

Avg Width 7.9 7.4 7.2

Suburban Washington

% Covered 82.5% 84.9% 90.1%

Avg Width 7.1 6.7 6.5

Southern Maryland

% Covered 84.8% 93.5% 91.3%

Avg Width 6.5 5.5 5.0

Western Maryland

% Covered 78.7% 83.6% 85.2%

Avg Width 7.4 6.6 6.5

Eastern Shore

% Covered 65.7% 89.2% 85.2%

Avg Width 7.0 5.9 5.5

Presented are the percentage of times the 95% multiple imputation intervals
contained the true total case enumerations and the width of the imputation
based intervals (in units of number of cases), both averaged across the tracts
within each region. Results based on the n~15,525 geocoded Maryland
Prostate cancer data split into the n~9649 experimental geocodes and n~5876

experimental nongeocodes subsets for evaluation.
doi:10.1371/journal.pone.0008998.t003
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both in terms of the percentage of times the imputation interval

contained the true total as well as average width of the intervals.

Discussion

A general methodological framework was presented for using

imputation to provide information for missing spatial data from

nongeocoded addresses from a GIS. This framework could be

applied in an analytical setting. Three strategies were evaluated,

each based on increasing use of available information. Strategy 3,

based on the weighted selection of the within zip code age race

distribution, performed the best overall in comparison to the other

more simplified strategies.

Motivation was provided to have evaluation based not at the

individual case level focused on geocoding accuracy but in regards

to a substantive outcome of interest that uses location information.

Multiple imputation is also employed to assess the uncertainty due

to imputation since results based on imputation alone, especially

when linking imputed locations to other spatial data, may be

questionable. A benefit from this approach worth highlighting in

the application here is that users can report not just enumerations

based on the total number of successfully geocoded addresses

(which could certainly be biased and under-reported), but also

include a statistically adjusted count (imputed count) with a

measure of uncertainty that are based on all the case data, the

geocodes and imputed nongeocodes. Both these features, evalu-

ation based on a relevant analysis outcome and the development

of a measure of imputation uncertainty, extends previously cited

work in this area [11,25,33]. Similar strategies can be applied for

the analysis of outcomes other than case enumerations.

Although county-level results were presented, these may not be as

interesting as those for some of the smaller Census units due to the

fact that (a) the known zip codes are already at a spatial scale which

on average is geographically smaller than county and does not

require geocoding, and (b) some registries and other data collection

entities may have other means for determining county designations

that do not require geocoding as was the case with the Maryland

prostate cancer data. Furthermore, zip code boundaries only cross a

few counties and some counties may completely encompass a single

zip code, both of which can markedly increase imputation accuracy.

This was evident in Table 1 with several imputed totals very close to

the true value, and some with no error using the 95% imputation

interval. Contrary to this, the larger number of nongeocodes in need

of imputation due to the relative size of counties may impart some

inaccuracy due to imputation to adjacent counties. This was also

evident with two counties in the Baltimore region in Table 1. The

county level did however serve well to demonstrate the process and

provide a benchmark for further comparisons.

To demonstrate our imputation based approach and evaluation

for nongeocoded addresses only cases with complete age, race,

grade, and stage data were used, and focused on white and black

cases only, in order to have sufficient sample size in smaller

geographic areas to test the methods. The proposed imputation

strategies could certainly be applied to cases missing grade or stage

and even missing age or race; for the later imputation weights (for

Strategy 3) would just be based on the overall population weights.

Similar strategies could also be devised for cases without complete

zip codes, where perhaps only city or county is known. Also,

although the procedures presented are based on data from the

United States, exploiting the various Census demographic and

boundary data, similar imputation strategies can be devised to

accommodate the availability of population data and geographic

units from other countries with similar hierarchical geographic,

political, and enumeration units.

Opportunities certainly exist to develop more sophisticated

imputation strategies with alternative methods of evaluation. As

was restated here it is well known that nongeocoded data are often

not geographically uniform and commonly a function of

population density with rural areas being more susceptible.

However, this is certainly not true everywhere all the time. Many

factors can contribute to an address not geocoding successfully.

New home developments are one example that cause existing base

maps to be out of date and hence associated addresses to be

nongeocodable but likely located in more urban settings. More

relevant to the prostate cancer application and evaluation of the

imputation strategies would be the development of new senior

group housing, assisted living, and nursing homes. Even for

existing institutional cancer cases, geocoding is less than

straightforward based on the address reported for these cases

and how the Census tabulates institutional populations. The data

subset used here is believed to have been more likely to have

excluded men whose address of record at the time of diagnosis was

a facility as well as a good number of the oldest of cases.

Reconciling these types of scenarios prior to imputing is sensible

advice [41].

Further, imputation strategies based only on outcome popula-

tion at risk, such as with our age and race weighted selection

Strategy 3, would impart a tendency for imputed case locations to

be spatially close to those that geocoded successfully. Against this,

the existence of a successfully geocoded case at a particular

location would make it less likely that a nongeocoded case (that

needs to be imputed) would be nearby. This may explain the

results in Table 3 that the percentage of times the 95% imputation

interval covered the true totals was higher for Strategy 2 than for

Strategy 3 in two of the more rural regions in Maryland, Southern

Maryland and the Eastern Shore regions. In a rural zip code with

farms surrounding a central area where everyone has mail

delivery, the geocoded cases will tend to be in the central area

while the nongeocoded cases will tend to be out in the farmland. In

such a situation Strategy 2 might be expected to perform better.

Disentangling these contrary effects would need attention in the

development of more sophisticated imputation methods.

Situations may also arise where the at risk population density

does not correlate well with the spatial distribution of the outcome

under investigation. In such scenarios distributing the nongeo-

coded cases along population at risk patterns may overlook

underlying unusual distribution of cases and hence potentially lead

to an under-detection of such patterns. Alternatives to Strategies 2

and 3 then might be to somehow include the outcome variable

which like age and race is likely known for the nongeocoded

records or other auxiliary variables (risk factors) that correlate with

the spatial distribution of the outcome under investigation.

However, in the absence of any such knowledge the more

conservative approach towards imputation for nongeocoded cases

based only on at risk population density would be less likely to

induce bias, but may fail to detect existing patterns unrelated to

population density. Future imputation strategies might also

consider making use of textual information in the address field

to better inform the weighting scheme. Even when records do not

geocode, it is often possible at least to identify the correct road,

which limits the set of possible imputed locations.

There is often much information associated with nongeocoded

records, making their exclusion from follow up analysis a potential

concern when done precipitously. This often includes the postal

zip code as well as detailed demographic and diagnostic

information valuable in epidemiologic applications. From a

statistical viewpoint the imputation approach for dealing with

nongeocoded data is based on completing the data via imputation
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(geocoded records plus imputed nongeocoded records) then

applying statistical methods to this complete data. The comple-

mentary approach of multiple imputation can then be applied to

assess uncertainty due to the imputation process. In an alternative

approach Zimmerman 2008 [42] proposes a stochastic mechanism

to represent the geocoding process and applies this to estimation of

the spatial intensity function in point process applications with

incomplete geocoding.

There are other limitations and sources of potential bias

regarding the geocoding process that warrant mention. In our

strategies we assumed not only that the reported zip codes were

accurate but also those that geocoded successfully did so correctly.

This is certainly not always true even for those with a GIS match

score of 100%. Furthermore, the design of our geocoding process

was not meant to yield point locations exactly where those

addresses actually exist, but rather to approximate between base

map road segments using address numbers. Proposals to

geocoding that incorporate aerial photography are an alternative

[43]. These types of geocoding inaccuracies and/or bias can

influence analytic results and depend on the level of spatial

resolution required and the statistical methods being applied.

These remain active areas for further research [43–50].
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