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Abstract Ectonucleotidases are ectoenzymes that hy-

drolyze extracellular nucleotides to the respective

nucleosides. Within the past decade, ectonucleotidases

belonging to several enzyme families have been

discovered, cloned and characterized. In this article,

we specifically address the cell surface-located mem-

bers of the ecto-nucleoside triphosphate diphosphohy-

drolase (E-NTPDase/CD39) family (NTPDase1,2,3,

and 8). The molecular identification of individual

NTPDase subtypes, genetic engineering, mutational

analyses, and the generation of subtype-specific anti-

bodies have resulted in considerable insights into

enzyme structure and function. These advances also

allow definition of physiological and patho-physiologi-

cal implications of NTPDases in a considerable variety

of tissues. Biological actions of NTPDases are a

consequence (at least in part) of the regulated phos-

phohydrolytic activity on extracellular nucleotides and

consequent effects on P2-receptor signaling. It further

appears that the spatial and temporal expression of

NTPDases by various cell types within the vasculature,

the nervous tissues and other tissues impacts on several

patho-physiological processes. Examples include acute

effects on cellular metabolism, adhesion, activation and

migration with other protracted impacts upon develop-

mental responses, inclusive of cellular proliferation,

differentiation and apoptosis, as seen with atheroscle-

rosis, degenerative neurological diseases and immune

rejection of transplanted organs and cells. Future

clinical applications are expected to involve the devel-

opment of new therapeutic strategies for transplanta-

tion and various inflammatory cardiovascular,

gastrointestinal and neurological diseases.

Keywords apyrase . brain . CD39 . ecto-ATPase .

immunology . ischemia . kidney . liver . nervous tissue .
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Abbreviations

ACR apyrase conserved regions

ADA adenosine deaminase

ATPDase ATP diphosphohydrolase

bFGF basic fibroblast growth factor

CCK-8 cholecystokinin octapeptide-8

EC endothelial cell

E-NTPDase ecto-nucleoside triphosphate

diphosphohydrolase

ERK extracellular regulated kinase

FAK focal adhesion kinase

MAP mitogen-activated protein

MAPK MAP kinase

NO nitric oxide

NPP nucleotide pyrophosphatase/

phosphodiesterase

NTPDase nucleoside triphosphate

diphosphohydrolase

PDGF platelet derived growth factor
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PI3K phosphatidylinositol 3-kinase

RanBPM ran binding protein

TCDD tetrachlorodibenzo-p dioxin

Introduction

Extracellular nucleotides modulate a multiplicity of

tissue functions including development, blood flow,

secretion, inflammation and immune reactions. Indeed,

signaling via extracellular nucleotides has been recog-

nized for over a decade as one of the most ubiquitous

intercellular signaling mechanisms [1, 2]. Essentially

every cell in a mammalian organism leaks or releases

these mediators, and carries receptors for nucleotides

of which seven ionotropic (P2X) and at least eight

metabotropic (P2Y) receptor subtypes have been iden-

tified and characterized to date. Whereas P2X recep-

tors respond to ATP, P2Y receptors can be activated

by ATP, ADP, UTP, UDP, ITP, and nucleotide sug-

ars, albeit agonist specificity varies between subtypes

and the multiple animal species [3]. Depending on the

P2 receptor subtype and signaling pathways involved,

these receptors trigger and mediate short-term (acute)

processes that affect cellular metabolism, adhesion,

activation or migration. In addition, purinergic signal-

ing also has profound impacts upon other more

protracted responses, including cell proliferation, dif-

ferentiation and apoptosis, such as seen in atheroscle-

rosis, degenerative neurological diseases and in several

inflammatory conditions [2, 4, 5].

The effects of extracellular nucleotides appear to

overlap, at least in part, with those of vascular growth

factors, cytokines (inflammatory), adhesion molecules

and nitric oxide (NO). Nucleotide-mediated activation

may be also synergistic with polypeptide growth

factors (PDGF, bFGF) and insulin, the signaling being

mediated via phospholipase C and D, diacylglycerol,

protein kinase C, ERKs, phosphatidylinositol 3-kinases

(PI3K), MAP kinases (MAPK) and Rho [6–8]. The

situation concerning extracellular nucleotide-signaling

can be suitably contrasted with the unique specificity

of peptide hormones or vasoactive factors for often

single, defined receptors [9, 10]. Within purinergic/

pyrimidinergic signaling events specificity is dictated

by three essential modulatory components: 1) The

derivation or source of the extracellular nucleotides [1,

11, 12]; 2) the expression of specific receptors for these

molecular transmitters (and for the nucleotide and

nucleoside derivatives) [13–16] (See also Molecular

Recognition Section of National Institutes of Health,

http://mgddk1.niddk.nih.gov/ also http://www.ensembl.

org/index.html and http://www.geocities.com/bioinfor-

maticsweb/speciesspecificdatabases.htm), and, 3) select

ectonucleotidases that dictate the cellular responses by

the stepwise degradation of extracellular nucleotides

to nucleosides [17–20].

Ensembles of ectonucleotidases, associated

receptors and signaling molecules

Within the past decade, ectonucleotidases belonging to

several enzyme families have been discovered, cloned

and functionally characterized by pharmacological

means. Specifically, we refer here to members of the

ecto-nucleoside triphosphate diphosphohydrolase (E-

NTPDase) family (EC 3.6.1.5) as ectoenzymes that

hydrolyze extracellular nucleoside tri- and diphos-

phates and have a defined pharmacological profile.

Most notably, in many tissues and cells, NTPDases

comprise dominant parts of a complex cell surface-

located nucleotide hydrolyzing and interconverting

machinery. This ensemble includes the ecto-nucleotide

pyrophosphatase phosphodiesterases (E-NPPs), NAD-

glycohydrolases, CD38/NADase, alkaline phospha-

tases, dinucleoside polyphosphate hydrolases, adeny-

late kinase, nucleoside diphosphate kinase, and

potentially ecto-F1–Fo ATP synthases [21–25] that

may interact in various tissues and cellular systems.

The ectonucleotidase chain or cascade, as initiated

by NTPDases can be terminated by ecto-50-nucleotid-

ase (CD73; EC 3.1.3.5) with hydrolysis of nucleoside

monophosphates [26]. Together, ecto-50-nucleotidase

and adenosine deaminase (ADA; EC 3.5.4.4), another

ectoenzyme that is involved in purine salvage path-

ways and converts adenosine to inosine, closely

regulate local and pericellular extracellular and plasma

concentrations of adenosine [10, 27].

Several of these ectonucleotidase families and

additional functions of NTPDases [28–30] are

addressed elsewhere in this issue in detail. This review

focuses on the surface-located mammalian members of

the E-NTPDase protein family. It starts with a brief

introduction of molecular structure and functional

properties, followed by an analysis of the physiological

and pathophysiological roles at various sites with an

emphasis on vasculature and neural tissues.

Molecular identities unraveled

The literature on the molecular and functional char-

acterization of the E-NTPDase family has been

intensively reviewed [18–22, 31–36] and will not be
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repeated here in detail. Our intent is to summarize

principal properties of the enzymes that will be of use

for the reader new to this field.

Eight different ENTPD genes (Table 1 and Fig. 1)

encode members of the NTPDase protein family. Four

of the NTPDases are typical cell surface-located

enzymes with an extracellularly facing catalytic site

(NTPDase1, 2, 3, 8). NTPDases 5 and 6 exhibit intracel-

lular localization and undergo secretion after heterolo-

gous expression. NTPDases 4 and 7 are entirely

intracellularly located, facing the lumen of cytoplasmic

organelles (Fig. 1). The molecular identification of

individual NTPDase subtypes, genetic engineering,

mutational analyses, and the generation of subtype-

specific antibodies have not only led to considerable

insight into enzyme structure and function. These

advances have also defined physiological and patho-

physiological functions of NTPDases in a considerable

variety of tissues.

The presence of ATP and/or ADP hydrolyzing

activity at the surface of many cell types had been

recognized for several decades [17, 37–40]. However,

the molecular identity of the first member of the E-

NTPDase family (NTPDase1) was not unraveled and

determined until the mid-1990s. The prototypic mem-

ber of the enzyme family had first been cloned and

sequenced as a lymphocyte cell activation (CD39)

antigen of undetermined function [41]. Final success

came from three independent approaches. Handa and

Guidotti [42] purified and cloned a soluble ATP

diphosphohydrolase (apyrase) from potato tubers and

noted that this protein was related not only to similar

enzymes of some protozoans, plants and yeast but

also to human CD39. They also recognized conserved

sequence domains and the relation to members of the

actin-hsp70-hexokinase superfamily. This was then

followed by the functional expression of human

CD39 and the demonstration that this protein was in

fact an ecto-apyrase [43]. In parallel, ectonucleoti-

dases (termed ATP diphosphohydrolases) from por-

cine pancreas and bovine aorta were purified. The

partial amino acid sequences for both ATP diphos-

phohydrolases revealed identity with the cloned cDNA

sequence of CD39 [44]. The cDNA was isolated

from human endothelial cells and functional, throm-

boregulatory studies confirmed that the dominant

vascular ectonucleotidase (ATP diphosphohydrolase)

activity was identical to the previously described and

cloned human CD39 [44]. Several internal peptide

sequences obtained from the purified human placental

ATP diphosphohydrolase [45] revealed that in retro-

spect this protein was also identical to CD39.

It was originally thought that there existed a single

ectonucleotidase of the NTPDase type with potential

post-translational modifications [46]. However, a

close molecular relative was soon cloned that re-

Table 1 Nomenclature of mammalian members of the E-NTPDase family and chromosomal localization

Protein name Additional names Gene name

human, mouse

Chromosome location

human, mouse

Accession number

human, mouse

NTPDase1 CD39, ATPDase,

ecto-apyrase [43, 44]

ENTPD1, Entpd1 10q24, 19C3 U87967, NM_009848

NTPDase2 CD39L1, ecto-ATPase

[49, 109, 252]

ENTPD2, Entpd2 9q34, 2A3 AF144748, AY376711

NTPDase3 CD39L3, HB6

[50, 177]

ENTPD3, Entpd3 3p21.3, 9F4 AF034840, AY376710

NTPDase4 UDPase, LALP70

[253, 254]

ENTPD4, Entpd4 8p21, 14D1 AF016032, NM_026174

NTPDase5 CD39L4,

ER-UDPase, PCPH

[137, 255, 256]

ENTPD5, Entpd5 14q24, 12E (12D1)a AF039918, AJ238636

NTPDase6 CD39L2 [257–259] ENTPD6, Entpd6 20p11.2, 2G3 AY327581, NM_172117

NTPDase7 LALP1 [260] ENTPD7, Entpd7 10q24, 19D1 (19C3)a AF269255, AF288221

NTPDase8 liver canalicular

ecto-ATPase,

hATPDase [52, 174]

ENTPD8, Entpd8 9q34, 2A3 AY430414, AY364442

Information is provided for the human genome from GenBank (http://www.ncbi.nlm.nih.gov) and mouse genome informatics (MGI)
for the mouse genome (http://www.informatics.jax.org/). Since the mouse genome represents a composite assembly that continues to
undergo updates and changes from build to build, the computed map locations may be corrected in the future.
a For mouse Entpd5 and Entpd7, the BLAST analysis displayed in Map Viewer indicates a different map location (in brackets) when
compared with the mapping data reported on MGI records using cytoband information based on experimental evidence.
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vealed functional properties of an ecto-ATPase (now

NTPDase2) rather than of an ecto-ATP diphosphohy-

drolase [47, 48]. Further human genomic analysis of

expressed sequence tags (ESTs) allowed the identifi-

cation of additional members of the gene family [49–

51]. These genes were originally named CD39L(ike)1

to CD39L4. Then followed the identification, cloning

and functional expression of all members of the E-

NTPDase family, the last to date being NTPDase8

[52].

Potential splice variants have been isolated for the

surface-located NTPDase1 and NTPDase2 [for refer-

ences see 34, 53]. It should be further noted that

heterologous expression of potential splice variants

does not necessarily result in the formation of a

functional protein [54].

The initially proposed nomenclature [50] has been

somewhat confusing as it did not meet with generally

accepted norms for human cell differentiation mole-

cules [55]. While CD39 (now NTPDase1) indeed

belongs to the cluster of differentiation antigens,

CD39L1 (NTPDase2), CD39L3 (NTPDase3),

CD39L4 (NTPDase5) and CD39L2 (NTPDase6) do

not. Scientists at the Second International Workshop

on Ecto-ATPases proposed that all E-NTPDase family

members be termed as NTPDase proteins and classi-

fied in order of discovery and characterization [34, 56].

The CD39 nomenclature should fall away for all but

the prototypic member NTPDase1 that already has a

long history of use in the Immunology and Oncology

fields. Further revisions are however inevitable.

Catalytic properties

The individual NTPDase subtypes differ in cellular

location and functional properties. The four cell

surface-located forms (NTPDase1,2,3,8) can be differ-

entiated according to substrate preference, divalent

cation usage and product formation. All surface-

located NTPDases require Ca2+ or Mg2+ ions in the

millimolar range for maximal activity and are inactive

in their absence [34, 57]. They all hydrolyze nucleoside

triphosphates including the physiologically active ATP

and UTP. Notably, the hydrolysis rates for nucleoside

diphosphates vary considerably between subtypes

(Figs. 1 and 2). Whereas NTPDase1 hydrolyzes ATP

and ADP about equally well, NTPDase3 and

NTPDase8 reveal a preference for ATP over ADP as

substrate. NTPDase2 stands out for its high preference

for nucleoside triphosphates and therefore has previ-

ously also been classified as an ecto-ATPase [34, 57].

In contrast to NTPDase1 and NTPDase2, murine

NTPDase3 and NTPDase8 are preferentially activated

by Ca2+ over Mg2+ [52, 58, 59]. Presumably, differences

in sequence but also in secondary, tertiary and

quaternary structure account for differences between

subtypes in the catalytic properties [60, 61].

Fig. 1 Hypothetical phylogenetic tree derived for 22 selected members of the E-NTPDase family (NTPDase1 to NTPDase8) from rat
(r), human (h) and mouse (m), following alignment of amino acid sequences. The length of the lines indicates the differences between
amino acid sequences. The graph depicts a clear separation between surface-located (top) and intracellular (bottom) NTPDases. In
addition, the major substrate preferences of individual subtypes and the predicted membrane topography for each group of enzymes is
given (one or two transmembrane domains, indicated by barrels). Modified from [59].
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Membrane-bound NTPDase1 hydrolyzes ATP al-

most directly to AMP with the transient production of

minor amounts of free ADP (Fig. 2). This functional

property largely circumvents activation of P2Y-recep-

tors for nucleoside diphosphates. Interestingly, signif-

icant amounts of UDP are accumulated when UTP is

hydrolyzed by NTPDase1 [57]. In contrast, ADP is

released upon ATP hydrolysis by NTPDase2, then

accumulates and is slowly dephosphorylated to AMP.

On the one hand, this results in the removal of agonists

for nucleoside triphosphate-sensitive P2Y-receptors

(Fig. 2). On the other hand, it generates agonists for

nucleoside diphosphate-sensitive receptors such as

platelet P2Y1 and P2Y12 receptors [62]. The actions

of NTPDase3 and NTPDase8 result in intermediate

patterns of product formation, leading to a transient

accumulation of diphosphonucleosides with the simul-

taneous presence of triphosphonucleosides.

Principal structural features

The hallmarks of all NTPDases are the five highly

conserved sequence domains known as Fapyrase con-

served regions_, abbreviated and termed ACR1 to

ACR5 [42, 63, 64] that are involved in the catalytic

cycle. This notion is supported by a considerable

variety of deletion and mutation experiments [for

reviews see 30, 34, 64–68].

NTPDases share two common sequence motifs with

members of the actin/HSP70/sugar kinase superfamily,

the actin-HSP 70-hexokinase b- and g-phosphate

binding motif [(I/L/V)X(I/L/V/C)DXG(T/S/G)(T/S/

G)XX(R/K/C)] [42, 47, 69, 70], with the DXG

sequence strictly conserved. These motifs are identi-

fied in ACR1 and ACR4. Furthermore, there are

striking similarities in secondary structure with mem-

bers of the actin/HSP70/sugar kinase superfamily [30,

Fig. 2 Cell surface-located catabolism of extracellular nucleotides and potential activation of receptors for nucleotides (P2 receptors)
and adenosine (P1 receptors). The figure depicts the principal catalytic properties of members of the E-NTPDase family and of ecto-
50-nucleotidase. NTPDases sequentially convert ATP to ADP + Pi and ADP to AMP + Pi. NTPDase1 is distinct among these enzymes
as it dephosphorylates ATP directly to AMP without the release of significant amounts of ADP. Hydrolysis of the nucleoside
monophosphate to the nucleoside is catalyzed by ecto-50-nucleotidase. NTPDases, NPPs and alkaline phosphatase sometimes co-exist
and it seems likely that they can act in concert to metabolize extracellular nucleotides. ATP can activate both P2X receptors and
subtypes P2Y receptors whereas UTP activates subtypes of P2Y receptors only. After degradation, ADP or UDP may activate
additional subtypes of P2Y receptors. The adenosine formed can potentially act on four different types of P1 receptors and is either
deaminated to inosine or directly recycled via nucleoside transporters. Bottom: Profiles of nucleotide hydrolysis and substrate formation
by plasma membrane-located NTPDases. The figure compares catalytic properties of human and murine NTPDase1,2,3 and 8, following
expression in COS-7 cells. The principal catalytic properties of the respective human and murine enzymes are similar. ATP (&), ADP
(Í), AMP (r). Modified from [57].
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59, 71]. These proteins are soluble, have ATP phos-

photransferase or hydrolase activity, depend on diva-

lent metal ion and tend to form oligomeric structures.

In spite of negligible global sequence identity they

share the principal structure of two major domains (I

and II, possibly resulting from gene duplication) of

similar folds on either side of a large cleft. They reveal

similar conserved secondary structure topology

(b1b2b3a1b4a2b5a3) repeated in each domain and fold

into a pocket for substrate binding at the bottom [59].

Presumably, NTPDases share not only secondary

structure but also major elements of tertiary structure

with members of the actin/HSP70/sugar kinase super-

family (Fig. 3). Homology modeling of the NTPDase3

sequence reveals high degrees of structural fold

similarity with a bacterial exopolyphosphatase (PDB

1T6C) that further refine structural predictions for

members of the E-NTPDase family [30, 72].

NTPDases readily form homo-oligomeric assem-

blies. NTPDase1 to NTPDase3 were found as dimers

to tetramers [29, 64, 73–78]. In contrast to the P2X

receptors that share a similar membrane topography,

hetero-oligomeric complexes between NTPDases

have not been reported, to date. Oligomeric forms

reveal increased catalytic activity [73, 75, 76] and the

state of oligomerization can affect catalytic properties

[77, 78].

NTPDase1,2,3, and 8 are firmly anchored to the

membrane via two transmembrane domains that in

the instance of NTPDase1 are important for main-

taining catalytic activity and substrate specificity [29,

64, 79]. The two transmembrane domains interact both

within and between monomers. They may also under-

go coordinated motions during the process of nucleo-

tide binding and hydrolysis [29, 61]. This could in turn

induce conformational changes [80] involving move-

ment of the two major domains (I and II) relative

to each other (Fig. 3). Alterations in quarternary struc-

ture and subunit interactions may thus affect the impact

or interaction of ACRs involved in substrate binding

and hydrolysis. Whether posttranslational modifica-

tions such as protein phosphorylation contribute to this

dynamic behavior remains to be investigated.

Functional modifications

Biologically active NTPDase1 is subject to differential

forms of surface modification under conditions of

oxidative stress that inhibit enzymatic activity, as

influenced by unsaturated fatty acids [81, 82]. It also

undergoes limited proteolysis that increases enzyme

activity and differential glycosylation reactions that

appear to be required for membrane expression [64].

Since the surface-located ATP-hydrolyzing members

of the NTPDase family pass through the endoplasmic

reticulum and Golgi apparatus, the associated catalytic

activity might abrogate ATP-dependent luminal func-

tional processes. NTPDase1 becomes catalytically

active on reaching the cell surface and glycosylation

reactions appear crucial in this respect [83].

The N-terminal intracytoplasmic domain of NTP-

Dase1 is palmitoylated. Truncated forms of NTPDase1

lacking the N-terminal intracytoplasmic region and the

associated Cys13 residue, are not subject to palmi-

toylation. This post-translational modification appears

to be constitutive and to contribute to the integral

membrane association of this ectonucleotidase in lipid

rafts [84–86]. This raises the possibility that NTPDase1

may be recycled to and from cell membranes via

sequential actions of putative palmitoyltransferases

and palmitoyl-protein thioesterases [87], in order to

fine tune and modulate purinergic signaling responses.

In contrast to NTPDase1 and NTPDase3, NTPDase2

does not have the required intra-cytoplasmic Cys to

undergo this post-translational modification. The po-

tential multimerization of NTPDase1 [35] may be

Fig. 3 Hypothetical membrane topology of a surface-located
NTPDase with two transmembrane domains. A comparison of
the conserved secondary structure reveals duplicate conservation
of two major domains related to subdomains Ia and IIa of actin,
and other members of the actin/HSP70/sugar kinase superfamily
[59]. In contrast to the other members of the superfamily,
surface-located NTPDases are anchored to the plasma mem-
brane by terminal hydrophobic domains. The figure takes into
account the close distance of the N- and C-terminus of actin at
domain I and the binding of ATP (red) in the cleft between
domains I and II [80]. These two domains are expected to
undergo conformational changes involving movement relative to
each other.
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facilitated by acylation with intermolecular interac-

tions within the cholesterol and sphingolipid-rich

microdomains of the plasma membrane [88]. Experi-

ments using endothelial cells from caveolin-1 deficient

mice suggest that caveolae are not essential for the

enzymatic activity or for the targeting to the plasma

membrane of NTPDase1. However, cholesterol deple-

tion results in a strong inhibition of the enzyme [86].

The targeting of palmitoylated NTPDase1 to lipid rafts

could influence defined G-protein coupled receptors

within this plasmalemmal microenvironment and thus

regulate cellular signal transduction pathways. Fur-

thermore, the caveolar co-localization of ecto-50-nu-

cleotidase, P2 receptors, and NTPDase1 could serve to

modulate signaling via both ATP and adenosine at the

cell surface and possibly also within endosomal com-

partments [20].

Transcriptional regulation of expression

Members of the E-NTPDase family are constitutively

expressed in many tissues. To date, there is only

scattered evidence on promoters and the factors

controlling NTPDase expression [22]. The transcrip-

tion of NTPDase1/CD39 is constitutive in venous,

arterial and certain non-fenestrated microvascular

endothelium and certain immune cells e.g., B cells,

dendritic cells and defined T-cell subsets [20, 89]. The

modulated expression of NTPDase1 has been closely

associated with inflammatory cytokines, oxidative

stress and hypoxia in vitro and in vivo [19, 90].

Expression of NTPDase1 is increased in differenti-

ating melanomas followed by a gradual decrease with

tumor progression [91] and enhanced NTPDase1

activity of stimulated endothelial and mesangial cells

is downregulated by glucocorticosteroids [92]. Activity

of Fecto-ATP diphosphohydrolase_ in human endothe-

lial cells in-vitro is increased by aspirin [93] and

glomerular Fecto-ATP diphosphohydrolase_ immuno-

reactivity might well be modulated by estradiol [94].

Transcription of NTPDase2 in mouse hepatoma

cells is inducible by 2,3,7,8-tetrachlorodibenzo-p-diox-

in (TCDD) [95]. These cells contain both constitutive

and TCDD-inducible NTPDase2 activity. The NTPD-

ase2 core promotor reveals constitutive activity that is

independent of TCDD [96]. TCDD does not increase

expression of NTPDase1, NTPDase3 or other ectonu-

cleotidases and apparently fails to induce NTPDase2

in a variety of other cell lines derived from varying

species [97]. In rat Sertoli cells, NTPDase2 is upregu-

lated by follicle-stimulating hormone and cAMP [98]

and it is selectively downregulated in biliary cirrhosis

[99]. Human epidermoid carcinoma cells increase the

cascade for extracellular nucleotide hydrolysis when

periodically treated with extracellular ATP, suggesting

that the substrate itself may affect the expression of its

own hydrolysis chain [100].

Inhibitors

A considerable number of compounds alter and in-

hibit extracellular nucleotide hydrolysis by NTPDases.

These include non-hydrolysable nucleotide analogues

and inhibitors of P2 receptors. Ideally, NTPDase in-

hibitors should not be P2 receptor agonists or antago-

nists and not be subject to dephosphorylation by the

ectoenzyme [22, 101, 102]. The only commercially

available compound reported to effectively inhibit hy-

drolysis of ATP in a variety of tissues without sig-

nificantly acting on purinoceptors is the structural

analogue of ATP, ARL 67156 (FPL 67156) (6-N,

N-diethyl-D-b,g-dibromomethylene ATP) [103–

105]. Other potential inhibitors include 8-thiobutyl-

adenosine 50-triphosphate (8-BuS-ATP) [106] and

1-naphthol-3, 6-disulfonic acid (BG0136) [101]. Period-

ate-oxidized ATP inhibits ecto-ATPase activity in

1312N1 human astrocytoma cells [107] and Gadolini-

um ions have been found to effectively inhibit the

ecto-nucleoside triphosphate diphosphohydrolase

from Torpedo electric organ as well as potato apyrase

[108].

It is noteworthy that the potency of inhibitors can

vary considerably between individual members of the

E-NTPDase family [109–111]. This necessitates a

functional evaluation of each inhibitor for the enzyme

investigated in a given tissue or cell type. The failure to

develop specific inhibitors remains a major impedi-

ment to ongoing discoveries.

Principal functional contexts

Cell surface-located NTPDases are considered to be of

major importance for controlling the availability of

extracellular nucleotide agonists at P2 receptors. They

also contribute to recycling of nucleosides derived

from extracellular nucleoside phosphates and meta-

bolic salvage pathways. The number of studies that

define a functional impact of individual NTPDases in

purinergic signaling in situ is limited and has been

dependent to date on global genetic modifications of

mice and swine to delete or upregulate the NTPDase

or P2 gene of interest [20]. Subtype-specific inhibitors,

siRNA approaches, and animals in which the encoding
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gene can be inactivated or selectively induced in

specific tissues will be of major importance.

There is increasing experimental evidence that

ectonucleotidases compete with P2 receptors for a

limited pool of endogenously released nucleotide [112,

113] and – by hydrolyzing released nucleotide –

terminate or modulate the function of P2 receptors

[114–116]. Portal fibroblasts regulate P2Y receptor-

mediated bile duct epithelial proliferation via expres-

sion of NTPDase2 [117] (see liver section, below).

NTPDases functionally interact with P2Y-receptors

[112] and may also co-localize with these G-protein-

coupled receptors (GPCR) in lipid rafts and possibly

caveolae [118–121]. The modulatory effects of

NTPDases are complex as the enzymes differentially

regulate agonist availability in a process that is

dependent upon P2 receptor subtype by either degrad-

ing ATP/UTP or by generating ADP/UDP (Fig. 2).

Recent experiments suggest that plasma membrane-

bound NTPDases may have functions distinct from

their catalytic properties alone. In a yeast two-hybrid

system using techniques developed by Zhong for yeast

apyrases [122], the N-terminus of human NTPDase1

(used as bait protein) has been shown to interact with

truncated Ran Binding Protein M (RanBPM, other-

wise known as RanBP9, NM_005493) in the human

library screened [122a]. RanBPM contains conserved

SPRY (repeats in splA and RyR) domains that appear

to be crucial for the interaction with NTPDase1 and is

preferentially distributed in human heart tissues [123].

RanBPM is known to interact with Sos and regulate

ERK/Ras signaling. NTPDase1 interacts with

RanBPM to directly modulate Ras activation and

cellular proliferation in liver regeneration following

partial hepatectomy [124].

The N-termini of NTPDases also have consensus

sequences for protein phosphorylation by protein

kinase C [47] that could have additional functional

impacts. Furthermore, the C-terminal sequence of

NTPDase1 contains a putative PDZ domain (-K-D-

M-V). This may have utility in determining interac-

tions with select P2Y receptors e.g., the purinergic

P2Y1 and P2Y2 receptors that terminate in -D-T-S-L

and -D-I-R-L, respectively [125]. PDZ domains are

most often found in combination with other protein

interaction domains (for instance, SH3, PTB, WW),

participating in complexes that facilitate signaling or

determine the localization of receptors [126–128].

Finally, the general membrane topography of

NTPDase1 and oligomeric assembly resemble the

morphology of channel forming proteins such as P2X

nucleotide receptors and members of the epithelial Na+

channel/degenerin gene superfamily [129]. This raises

the question whether, in addition to their catalytic

activity, NTPDases could function as channels. Re-

lease of ATP from Xenopus oocytes induced by hyper-

polarizing pulses requires functional ecto-ATPase

activity [130]. To what extent this functional property

is shared by the structurally related NTPDase2,

NTPDase3 and NTPDase8 has not been investigated.

Vasculature

The normal vascular endothelium provides a barrier

that separates blood cells and plasma factors from

highly reactive elements of the deeper layer of vessel

wall. The vessel wall maintains blood fluidity and

promotes flow by inhibiting coagulation, platelet

activation and promoting fibrinolysis [131]. These

properties are governed by important thromboregula-

tory mechanisms; key biological activities of the

vasculature have been already identified and shown

to be ecto-nucleotide catalysts that generate the

respective nucleosides by phosphohydrolysis [19, 82].

The dominant ectonucleotidases of the vasculature

have now more fully been characterized as NTPDases.

This important biological property expressed by the

endothelium and associated cells is responsible for the

regulation of extracellular and plasma levels of nucleo-

tides [20, 44, 82, 132, 133].

Over the past decade, extracellular nucleotides have

been recognized as important mediators of a variety of

processes including vascular inflammation and throm-

bosis with varying impacts in different systems [19].

Adenosine and ATP mediated effects or mechanisms

can be implicated in the local control of vessel tone as

well as in individual vascular cell migration, prolifer-

ation and differentiation. As an example, ATP may be

released from sympathetic nerves (see later sections)

and results in constriction of vascular smooth muscle

through effects mediated by P2X receptors. In con-

trast, ATP released from endothelial cells during

changes in flow (shear stress) or following exposure

to hypoxic conditions activates P2Y receptors in a

paracrine manner to release NO, resulting in vessel

relaxation. Any nucleotide released will be ultimately

hydrolyzed to adenosine and will result in vasodilata-

tion via the effects of smooth muscle P1 receptors.

P2X receptors also appear on vascular cells and are

associated with changes in cell adhesion and perme-

ability [2]. These cellular processes and nucleotide-

triggered events are modulated during angiogenesis

(Fig. 4) and influence the development of atheroscle-

rosis and restenosis following angioplasty [2, 113, 134–

136].
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NTPDase1 is the major ectonucleotidase in the

vasculature [112]. Other NTPDases associated with

the vasculature are the cell-associated NTPDase2 and

the soluble monocyte expressed NTPDase5 [32, 50,

137]. The phosphohydrolytic reaction of NTPDase1

limits the platelet activation response that is depen-

dent upon the paracrine release of ADP and activation

of specific purinergic receptors [81, 132, 138]. In

contrast, NTPDase2, a preferential nucleoside triphos-

phatase, activates platelets by converting the compet-

itive antagonist (ATP) of platelet ADP-receptors to

the specific agonist of the P2Y1, and P2Y12 recep-

tors. In keeping with these biochemical properties,

NTPDase1 is dominantly expressed by endothelial

cells and the associated vascular smooth muscle where

it serves as a thromboregulatory factor. In contrast,

NTPDase2 is associated with the adventitial surfaces

of the muscularized vessels, microvascular pericytes of

some tissues and organs as the heart and the stromal

cells and would potentially serve as a hemostatic factor

[62].

Extracellular nucleotide stimulation of P2 receptors

represents components of platelet, endothelial cell and

leukocyte activation that culminate in vascular throm-

bosis and inflammation in vivo [19]. In these inflam-

matory settings, with oxidant endothelial injury,

NTPDase1 biochemical function is substantially, albeit

temporarily, decreased because of post-translational

changes; reconstitution of vascular NTPDase activity

occurs following transcriptional upregulation of CD39

in endothelium [82, 139]. This functional change may

relate, at least in part, to alterations in acylation and

associated membrane lipid association with conse-

quent disruption of multimer structure. Interestingly,

palmitate supplementation may protect against loss of

NTPDase activity following cellular activation in vitro

[81]. These observations may provide several avenues

of research to augment NTPDase activity within the

vasculature at sites of injury [134].

Mechanisms of endothelial cell activation

by nucleotides

ATP and UTP increases intracellular calcium levels,

results in cytoskeletal rearrangements and stimulates

phosphorylation of several proteins in human endo-

thelial cells (EC) that are also associated with integrin

signaling [140–142]. These include the focal adhesion

kinase (FAK) and paxillin, proline-rich tyrosine kinase

2 (Pyk2) (also named related adhesion focal tyrosine

kinase, RAFTK) and p38 MAP kinase. Further, UTP

preferentially increases EC migration in a PI3-kinase

and ERK-dependent manner. Moreover, extracellular

nucleotide-mediated EC activation involves cytoske-

letal rearrangements and increases in cell motility,

comparable to that seen with ligation of integrins by

extracellular matrix proteins [143]. These phenotypic

changes (seen in both nucleotide- and matrix-mediated

activation) are associated with tyrosine phosphoryla-

tion of FAK, paxillin and p130 Crk-associated sub-

strate (p130cas) and down-stream activation of p38

MAP kinases. FAK has been implicated to play an

important role in integrin-mediated signal transduction

pathways [144], suggesting that P2-receptors are im-

plicated in Finside-out_ integrin signaling in EC, as well

as platelets [20, 112].

Therapeutic considerations

To test how extracellular nucleotide-mediated sig-

naling influences pathophysiological events, several

techniques have been developed and validated to

Fig. 4 Angiogenesis with expression of NTPDase1 in the vasculature of syngeneic islet transplants. Mouse islets were prepared from
wild type and Entpd1 null mice, as described by T. Maki et al. and transplanted under the renal capsule [261]. Islets were harvested at
four weeks (n = 4 per group) and stained for NTPDase1 immunoactivity and other markers of EC. Substantially diminished levels of
CD31 staining vascular elements were also present in null to Entpd1 null grafts, indicating a defect in new vessel growth (not depicted
here). A) Wild type to wild type showing grafted islet vasculature staining for NTPDase1 with adjacent normal renal vascular pattern.
B) Wild type to null mouse showing intrinsic vasculature of islet has persisted within the graft and even entered the NTPDase1 null
renal parenchyma. C) Null to wild type grafts showing infiltrating macrophages and NTPDase1 positive endothelium migrating from
recipient (confirmed by other stains; not shown).

Purinergic Signalling (2006) 2:409–430 417



manipulate NTPDase1 expression in the vasculature

and to study conditions of inflammatory stress. The

first mutant mouse derived and studied concerned the

global deletion of the gene encoding the dominant

ectonucleotidase NTPDase1 (Entpd1,cd39). The mu-

tant mice exhibit major perturbations of P2 receptor-

mediated signaling in the vasculature and immune

systems [19, 89, 145]. These phenomena manifest as

hemostatic defects, thromboregulatory disturbances,

heightened acute inflammatory responses with a fail-

ure to generate cellular immune responses that are all

associated with vascular endothelium, monocyte, den-

dritic cell and platelet integrin dysfunction [20, 112,

134].

The therapeutic potential of NTPDase1 to regulate

P2 receptor function in the vasculature and mitigate

against thrombotic/inflammatory stress has been fur-

ther established by the generation of NTPDase1

transgenic mice and swine [20, 146], the use of

adenoviral vectors to upregulate NTPDase1 in cardiac

grafts [147] and the use of soluble derivatives of

NTPDase1 and apyrases [133, 148]. The beneficial

effects of administered NTPDases have been deter-

mined in several animal models of vascular inflamma-

tion [148, 149]. Exogenous infusions of soluble

NTPDases are able to rescue Entpd1-deficient mice

from systemic toxicity induced by ischemia reperfusion

injury and after stroke induction [145, 150].

Angiogenesis requires the dynamic interaction of

endothelial cell proliferation and differentiation with

orchestrated interactions between extracellular matrix

and surrounding cells (such as vascular smooth muscle

and/or pericytes) [151–153]. NTPDase1 appears crucial

in the co-ordination of angiogenic responses in inflam-

mation, organ remodeling and transplantation [20,

134]. For example, in syngeneic pancreatic islet

transplantation, the maintenance and revascularization

of grafted islets appears dependent upon expression of

NTPDase1 by the developing vasculature within the

islet (Fig. 4).

In summary, multiple experimental studies largely

reveal beneficial effects of over-expression of NTPDases

within the vasculature, or by their pharmacological

administration [20, 133]. Clinical studies of these

soluble thromboregulatory factors are in planning [20,

154, 155].

Immune system

There are multiple P2X and P2Y receptor subtypes

expressed by monocytes and dendritic cells, whereas

lymphocytes express only P2Y receptors [2]. NTP-

Dase1/CD39 was first described as a B lymphocyte

activation marker and also shown to be expressed on

activated T cells [156, 157] and dendritic cells [89].

The CD39 enzymatic function on dendritic cells is

involved in the recruitment, activation and polariza-

tion of naive T cells. ATP is released by CD4+ and

CD8+ T cells upon stimulation with Con A or anti-

CD3 mAb while CD39 functions as an additional

recognition structure on haptenated target immuno-

cytes for HLA-A1-restricted, hapten-specific cytotoxic

T cells [156, 157].

In cd39 null mice, there are major defects in

dendritic cell function antigen presentation and T-cell

responses to haptens (type IV hypersensitivity reac-

tions) [19, 89]. Immunocyte-associated CD39 may play

an immunoregulatory role by hydrolyzing ATP (and

perhaps ADP) released by T cells during antigen pre-

sentation and thereby generating adenosine [19, 89,

158]. Ectoenzymes, including ectonucleotidases, are

known to play an important role in leukocyte traffick-

ing (for an excellent review on this topic, see [159]).

Recent work has indicated that regulatory CD4 + ve

CD25 + ve T cells (Treg cells) play important roles in

the maintenance of immunological reactivity and

tolerance [160]. The selective expression of CD39 by

Treg and the question whether this ectonucleotidase

and/or extracellular nucleotides influence(s) the func-

tion of these interesting cells is a focus of current work.

Digestive and renal systems

Released nucleotides are polarized and do not re-enter

cells. They have to be transformed into the corre-

sponding nucleosides that enter cells via specific trans-

porters to rebuild nucleoside pools. If this did not occur,

they would be lost from the metabolic pool. The same

may pertain to dietary ingestion of nucleotides where

NTPDases are potential participants in the digestion of

exogenous nucleotides and intestinal function. In addi-

tion, extracellular nucleotide and adenosine receptors

are highly expressed in the digestive and renal systems,

so these molecules are likely to have homeostatic

functions [2].

An important nucleotide-mediated mechanism that

seems common to various epithelia, as well as to

hepatocytes, involves the autocrine regulation of cell

volume by ATP via P2 receptors [161, 162]. As P2 re-

ceptors are expressed by epithelia in a polarized

manner and can be linked to several digestive and

homeostatic functions [163, 164], the presence of

NTPDases in the immediate environment may serve

as regulatory switches.
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Liver

In the liver, extracellular nucleotides are potentially

involved in several functional contexts [161]. There is

evidence that extracellular nucleotides regulate glyco-

genolysis through activation of glycogen phosphory-

lase and inactivation of glycogen synthase by inhibition

of the glucagon effect on cAMP and by the activation

of phospholipase D [165, 166]. In addition, nucleotides

may be involved in the regulation of canalicular

contraction and bile flow [167–169]. Concentrations

of canalicular adenine nucleotides in bile samples and

effluents from hepatic cell lines are estimated to be

around 0.1 to 5 mM [161, 168]. Hepatocytes and bile

duct cells have been shown to interact and communi-

cate via local ATP release in vitro [170]. Extracellular

ATP acts as a hepatic mitogen and activates JNK

signaling and hepatocyte proliferation both in vitro

and in vivo [171].

Several ectonucleotidases are expressed in liver. Of

the nucleotide pyrophosphatase/phosphodiesterases,

NPP1 (PC-1) is expressed on the basolateral mem-

brane of hepatocytes while the closely related NPP3

(B10) has a predominant canalicular in distribution

[172, 173]. NTPDase1 is highly expressed on larger

vessels and more weakly on sinusoids as well as in

Kupffer cells [174]. In the quiescent liver, NTPDase2 is

expressed by cells of the subendothelium of veins and

adventitial cells of arteries, but not in sinusoids. In

addition, NTPDase2 is expressed by portal fibroblasts

near basolateral membranes of bile duct epithelia

[175]. Activated but not quiescent hepatic stellate cells

express NTPDase2 at the protein level [176]. Only low

expression of NTPDase3 could be demonstrated at the

mRNA level in the liver [50, 177].

NTPDase2 expression in portal fibroblasts, the

primary fibroblastic cell type of the portal area, sug-

gests a role in the regulation of bile ductular signaling

and secretion [161, 175]. Jhandier et al. tested the

hypothesis that portal fibroblast NTPDase2 regulates

epithelial cell proliferation. Using co-cultures of chol-

angiocytes (Mz-ChA-1 human cholangiocarcinoma

cells) and primary portal fibroblasts from rat liver,

increased NTPDase2 expression decreased cell prolif-

eration, and knockdown of NTPDase2 by siRNA

increased proliferation. P2 receptor blockade also

attenuated Mz-ChA-1 proliferation [117]. These exper-

iments defined a novel cross-talk signaling pathway

between bile duct epithelial cells and underlying portal

fibroblasts, regulated by NTPDase2. Because they are

the chief fibrogenic cells of the liver, hepatic stellate

cells and portal fibroblasts are important targets of

liver disease therapy. Loss of NTPDase2 expression in

human biliary cirrhosis, as well as in models of bile

duct ligation in rat, has been observed. NTPDase2

expression also shifts from the portal area to bridging

fibrous bands in cirrhosis with hepatitis C [99].

Functional ATPases were previously shown to be

associated with bile canalicular plasma membranes by

histochemical techniques [178]; the corresponding

enzyme was subsequently incorrectly identified as

cCAM105 [179–181]. More recent studies revealed

that the canalicular ecto-ATPase corresponds to

NTPDase8 [52], also referred to as hepatic ATP

diphosphohydrolase (ATPDase) [174, 182]. NTPDase8

is the mammalian orthologue of the chicken ecto-

ATPDase cloned from oviduct and liver [183, 184]. In

tandem with ecto-50-nucleotidase, NTPDase8 has the

potential to regulate the concentration of nucleotides

in the hepatic canalicule. The ultimate generation of

extracellular adenosine from dephosphorylated ATP

not only activates adenosine receptors but also pro-

duces the key molecule for purine salvage and

consequent replenishment of ATP stores within many

cell types [17, 185]. Adenosine transporters are of

major importance to organs and cells incapable of de

novo nucleotide synthesis such as brain, muscle,

intestinal mucosa and bone marrow [167, 186]. As the

liver appears to be a major source of purines for these

tissues, curtailment of nucleotide loss into the bile may

be important to maintain appropriate nucleotide/

nucleoside concentrations within hepatocytes [185].

Thus, dephosphorylation of nucleotides by ectonucleo-

tidases may be critical for appropriate systemic purine

homeostasis [167]. The presence of NTPDase8, ecto-

50-nucleotidase and nucleoside transporters in the

canalicular domain of hepatocytes would be consistent

with an important role of NTPDase8 in purine salvage.

The exocrine pancreas

The exocrine pancreas secretes digestive enzymes and

a HCO3-rich fluid. Acini release ATP and the excur-

rent ducts express several types of P2 receptors [187,

188]. Thus ATP may function as a paracrine mediator

between pancreatic acini and ducts. Ectonucleotidase

activity in pancreatic tissues was first detected in the

rat in the 1960s [189, 190], followed by analyses in the

pig [191, 192]. Cytochemical and biochemical observa-

tions have corroborated the association of ATPase

activity with zymogen granules [193]. In other studies

of small intercalated/interlobular ducts, NTPDase1

immuno-fluorescence can be localized on the luminal

membranes, while in larger ducts it is localized on the

basolateral membranes [194]. Upon stimulation with
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cholecystokinin octapeptide-8 (CCK-8), acinar

NTPDase1 relocalized in clusters towards the lumen

and is secreted into the pancreatic juice, as an active

form associated with particulate fractions [188, 195].

As revealed by electron microscopy, NTPDase2 is

located on epithelial cells, myoepithelial cells and

the basolateral membrane of acini. Interestingly,

NTPDase2 could be also detected at the basolateral

surface of endothelial cells [194].

Salivary glands

There are only few studies on the localization of

NTPDases in salivary glands. NTPDases might play a

role in the transport of electrolytes by modulating the

extracellular ATP concentration in the salivary gland

ducts. NTPDase1 reveals to be mainly vascular in

expression. NTPDase2 was immunodetected on myo-

epithelial cells and in nerves [194, 196]. The immuno-

localization of NTPDases 3 and 8 in salivary glands has

not yet been determined.

Kidney

The kidney reveals a complex cellular profile of

expression for P1 and P2 receptors as well as of

ectonucleotidases. Both ATP and adenosine have been

invoked in the regulation of tubuloglomerular feed-

back [197, 198]. This feedback system links the salt

concentrations in the tubular fluid at the macula densa

to the vascular tone of the afferent arteriole of the

same nephron. As depicted by their localization,

NTPDases may participate in the regulation of several

biological functions of the kidney, including vascular

perfusion. In mouse, rat and porcine kidneys, NTP-

Dase1 can be detected in vascular structures, including

blood vessels of glomerular and peritubular capillaries

[174, 199, 200]. NTPDase2 is detected on the Bow-

man’s capsules of mouse and rat [199] and NTPDase8

on the luminal side of porcine renal tubules [174].

More recently, an immunohistochemical analysis of

various ectonucleotidases of the rat nephron revealed

expression of both NTPDase2 and NTPDase3 in the

thick ascending limb, the distal tubule and the inner

medullary collecting ducts. In addition, NTPDase3 is

located in the cortical and outer medullary collecting

ducts [201].

The nervous system

All cell types of the nervous system express nucleotide

receptors [2]. It is increasingly apparent that NTP-

Dases are distributed in the nervous system as ubiqui-

tously as are P2 receptors and that these ectoenzymes

are directly involved in the control of P2 receptor

function in nervous tissues [22, 31, 36]. Signaling via

nucleotides is widespread both in the peripheral and

central nervous system. Major nucleotide receptor-

mediated functions in the central nervous system

include the modulation of synaptic signal transmission

[202], the propagation of Ca2+ waves between glial

cells [203], or the control and activation of astrocytes

and microglia [204, 205]. In addition, ATP can

contribute to synaptic signal transmission [36]. In the

sympathetic nervous system, ATP acts as a fast neuro-

transmitter together with catecholamines [206], it is an

important mediator of central and peripheral chemo-

sensory transduction, including pain [207] and it is

involved in the control of myelination formation of

peripheral axons [208].

Central nervous system

ATP can be rapidly hydrolyzed to adenosine at brain

synapses that in turn activates pre- or postsynaptic

receptors, thereby modulating neuronal transmission.

Adenine nucleotides undergo conversion to adenosine

within a few hundred milliseconds in the extracellular

(synaptic) space of rat brain slices [209, 210]. Complex

synaptic interactions in the central nervous system may

thus be modulated both by the activation of P2 and

(after hydrolysis of the nucleotide) P1 receptors that

may be located at identical or different cellular targets

[202, 211].

Based on immunoblotting and in situ hybridization,

NTPDase1, 2 and 3 are expressed in the mammalian

brain [47, 57, 59, 116, 177, 212]. NTPDase1 and 2 have

been purified from porcine brain [213, 214]. But the

exact cellular allocation of individual subtypes is still a

challenge. There is ample evidence from early enzyme

histochemical investigations that surface-located cata-

lytic activity for the hydrolysis of nucleoside tri- and

diphosphates can be allocated to all cell types of the

nervous system [for reviews see 22, 31, 36, 215]. This

catalytic activity can be localized to synapses, including

the synaptic cleft, at the surface of neurosecretory

nerve terminals in the pituitary or at peripheral nerve

terminals. These data imply a wide distribution of cell

surface-located ATP hydrolyzing activity in the CNS.

Neurons

Ecto-ATPase activity has been observed in synapto-

somal fractions isolated from various sources, implying
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endogenous ectonucleotidase activity of nerve cells.

Biochemical studies on isolated synaptosomes permit

the determination of the ratios of ATP to ADP

hydrolysis rates as well as the analysis of product

formation. Total synaptosome fractions isolated from

rat brain cortex and immunopurified cholinergic stria-

tal synaptosomes revealed ratios of 3.4: 1 and 2.1: 1,

respectively [216]. ADP was found to transiently

accumulate after addition of ATP, and was subse-

quently metabolized to AMP and adenosine. Similar

results were obtained with hippocampal synaptosomes

[217]. This strongly argues against a major contribution

by NTPDase1 and NTPDase2 and would rather be

compatible with a neuronal expression of NTPDase3

(comp. Fig. 2). A recent immunocytochemical study

allocates NTPDase3 to neurons including axon-like

structures of various brain regions [218].

Astrocytes, oligodendrocytes, and microglia

The ratio of ATP to ADP hydrolysis is clearly

different in cultured astrocytes. Astrocytes cultured

from cortex or hippocampus display a ratio of 8: 1

[219]. Furthermore, cultured rat cortical astrocytes

accumulate ADP from ATP that is only very slowly

further degraded to AMP [220]. This would be largely

compatible with NTPDase2 as the major ectonucleo-

tidase of cultured astrocytes. Immunocytological inves-

tigations of adult rat and mouse brain sections assign

NTPDase2 solely to the astrocyte-like stem cells in the

subventricular zone of the lateral ventricles and the

dentate gyrus of the hippocampus and to astrocytes in

few distinct additional brain regions [221, 222]. Thus,

cultured astrocytes may reveal functional properties

that differ from the in situ situation as they tend to

rapidly alter their protein expression profile [223].

Enzyme histochemistry assigns ecto-ATPase activity

to both central and peripheral myelin [31], but fully

supplementary immunocytochemical data are lacking.

Enzyme histochemical staining for surface-located

nucleoside diphosphate activity has long been used to

identify microglia in tissue sections of the adult and

developing brain [224]. The major microglial ectonu-

cleotidase has been identified as NTPDase1 [225].

Stem cells in the adult mammalian brain

In the adult rodent brain, neurogenesis persists in two

restricted regions, the subventricular zone (SVZ) of

the lateral ventricles and the dentate gyrus of the

hippocampus. These regions contain stem cells that

give rise to neurons throughout the life span of the

animal. Interestingly, these cells share astrocytic prop-

erties [226]. They generate highly proliferating inter-

mediate cell types and finally mature neurons.

NTPDase2 is highly and selectively expressed by the

stem cells (type B cells) of the SVZ [221] (Fig. 5) as

well as by the progenitor cells (residual radial glia) of

the dentate gyrus [222]. In the presence of epidermal

growth factor (EGF) and fibroblast growth factor-2

(FGF-2), SVZ-derived stem cells can be cultured as

free floating cellular aggregates (neurospheres). Cul-

tured stem cells express NTPDase2 and functional P2

receptors. Agonists of P2Y1 and P2Y2 receptors

augment cell proliferation, whereas inhibition of the

receptors attenuates cell proliferation in spite of the

presence of mitogenic growth factors [227]. These data

suggest that NTPDase2 and nucleotides, together with

other signaling pathways, contribute to the control of

neurogenesis in the adult mammalian brain.

Apparently, individual enzyme isoforms govern cell

surface-located nucleotide hydrolysis in the various cell

Fig. 5 Detail of arrangement of neuronal stem cells and neuroblasts at the lateral lining of the mouse subventricular zone (SVZ) (triple
labeling). A) DAPI staining of all nuclei. Arrow heads mark endymal lining. B) Stem cells (type B cells) immunopositive for
NTPDase2 form tube-like sheeths around clusters of migrating immature neurons (type A cells) that immunostain for the
microtubule-associated protein doublecortin (DCX) (C). The spaces covered by type A cells remain dark in (B) and are indicated with
stars. D) Merge of B) and C). E) Merge of A), B) and C). Bar = 10 mm. (by courtesy of David Langer, Frankfurt am Main).
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types of the central nervous system. This does not

exclude however, the possibility that individual cell

types express more than one isoform with one of the

enzymes predominating. For example, PC12 cells

express mRNA for NTPDase1-3. But the ATP/ADP

hydrolysis ratio, the pattern of product formation and

the immunocytochemical surface staining suggest that

NTPDase3 is the major functional isoform [59, 228].

Similarly cultured normal and immortalized pituitary

and hypothalamic cells express NTPDase1-3 [116]. The

future planned use of transgenic mice expressing fluo-

rescent protein under the promoter of the respective

NTPDase isoform will greatly facilitate the identifica-

tion of the expression pattern of individual enzyme

isoforms in the developing and adult nervous system.

Peripheral nervous system

Noradrenaline and ATP are co-released from sympa-

thetic nerve terminals of the guinea pig heart whereby

ATP enhances noradrenaline release by a mechanism

controlled by ectonucleotidases, possibly NTPDase1

[229]. Interestingly, stimulated sympathetic nerves of

the guinea pig vas deferens release not only ATP and

noradrenaline but also enzyme activity that degrades

ATP to adenosine. The latter exhibits similarities to

NTPDases and ecto-50-nucleotidase but their molecu-

lar identity has not been defined [230].

NTPDase2 associates with immature and non-myeli-

nating Schwann cells of peripheral nerves whereas

NTPDase1 immunoreactivity is absent [231]. NTP-

Dase2 is also expressed by the satellite glial cells in

dorsal root ganglia and sympathetic ganglia and by the

enteric glia surrounding cell bodies of ganglionic

neurons of the myenteric and submucous plexus [231].

Sensory systems

The most comprehensive investigation of expression of

NTPDases within sensory systems concerns the inner

ear. Ectonucleotidase activity is associated with the

tissues lining the perilymphatic compartment of the

cochlea [232, 233]. Immunohistochemical analysis of

the murine cochlea has assigned NTPDase1 to the

cochlear vasculature and primary auditory neurons in

the spiral ganglion, whereas NTPDase2 is associated

with synaptic regions of the sensory inner and outer

hair cells, supporting cells of the organ of Corti and

additional tissue elements [234, 235]. Interestingly,

noise exposure induces upregulation of NTPDase1

and NTPDase2 in the rat cochlea [236].

Taste buds transduce chemical signals in the mouth

into neural messages. Taste cells and nerve fibers

express P2X2 and P2X3 receptors [237] and various

P2Y receptors [238, 239]. Genetic elimination of P2X2

and P2X3 receptors revealed that ATP is a key neu-

rotransmitter in this system [240]. NTPDase2 is ex-

pressed at the mRNA level in mouse taste papillae

[241]. Immunohistochemistry and enzyme histochemi-

cal staining allocate NTPDase2 to type I Fglial-like_

cells in the tongue, palate and larynx. Furthermore,

NTPDase2 immunostaining is associated with nearby

nerves, suggestive of Schwann cells, implying that

NTPDase2 may be a regulator in defined taste

transmission.

Pathological implications

Cerebral ischemia

The interruption of blood flow accompanied by an

interrupted supply of oxygen and glucose initiates a

sequence of events resulting in structural and func-

tional damage of the nervous tissue, comparable to

that seen at other sites of vascular injury [20].

Transient global cerebral ischemia of the rat results

in a long-term increase in extracellular nucleotide

hydrolysis pathways [242, 243]. Preconditioning delays

the postischemic increase in ATP diphosphohydrolase

activity [243]. During the days following transient

forebrain ischemia, mRNA for NTPDase1 (but not of

NTPDase2) and ecto-50-nucleotidase becomes upregu-

lated in the hippocampus [242], corresponding to the

upregulation of the entire ectonucleotidase chain for

the hydrolysis of ATP to adenosine. The data suggest

that the increased expression of ectonucleotidases in

the regions of damaged nerve cells is associated with

activated glia, mainly microglia [224].

The upregulation of the ectonucleotidase chain is

suggestive of an ischemia-induced increased and

sustained cellular release of nucleotides. This could

have several functional implications. Since microglial

cells express the cytolytic P2X7 receptor [244, 245] the

activity of these cells may be particularly endangered

by increased levels of extracellular ATP. Enhanced

activity of NTPDase1 may prevent activated microglia

from overstimulation by ATP released from the

injured tissue. Alternatively, microglial expression of

NTPDase1 might contribute to preventing receptor

desensitization on prolonged exposure to elevated

ATP levels. The parallel increase in activity of ecto-

50-nucleotidase would facilitate the formation of the

final hydrolysis product adenosine that exerts neuro-
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modulatory and immunomodulatory actions and con-

tributes to the protection of neurons.

Alterations following plastic changes in the

nervous system

Additional experiments, analyzing synaptosome frac-

tions, suggest that changes in neural plasticity can be

paralleled by changes in ecto-ATPase activity. Enzyme

activity is reduced following avoidance learning [246]

and status epilepticus [247, 248]. It is altered in two rat

models of temporal lobe epilepsy [249], and on pen-

tylenetetrazol kindling [250]. Changes in synaptosomal

ectonucleotidase activity have been implicated by a

broad variety of additional treatments including acute

caffeine treatment [251]. Taken together, these experi-

ments suggest that expression of ectonucleotidases can

be altered following a variety of physiological or path-

ological stimuli, possibly together with that of purine

receptors. Further work needs to define the enzyme

subtypes involved and the mechanisms underlying the

regulation of ectonucleotidase expression.

Conclusions

This review summarizes components of extracellular

nucleotide-mediated signaling pathways that are

impacted upon largely by the E-NTPDase family

of ectonucleotidases. Modulated, distinct NTPDase

expression appears to regulate nucleotide-mediated

signaling in essentially every tissue, including the

vasculature and of immune and nervous systems.

For example, extracellular nucleotide-mediated vas-

cular endothelial and accessory cell stimulation might

have important consequences for platelet activation,

thrombogenesis, angiogenesis, vascular remodeling and

the metabolic milieu of the vasculature, in response to

inflammatory stress and/or immune reactions.

Nucleotides are also of significant relevance for the

communication of nerve cells and glial cells or in the

reciprocal signaling between these cells. These puri-

nergic mechanisms might also dictate pathological

processes of the nervous system or following vascular

injury, thromboregulatory disturbances, and defective

angiogenesis with associated perturbations in tissue

remodeling and regeneration.

There is a wide field for future investigations of the

role of nucleotides and ectonucleotidases in other

tissues. Increasing interest in this field may open up

new avenues for investigation and the development of

new treatment modalities for a large variety of

diseases, including neurological pathological states,

vascular thrombotic disorders including stoke, athero-

sclerosis and the vascular inflammation seen in trans-

plant-graft failure.
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