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It has been a long-standing goal in systems biology to find relations between the topological properties and functional
features of protein networks. However, most of the focus in network studies has been on highly connected proteins
(‘‘hubs’’). As a complementary notion, it is possible to define bottlenecks as proteins with a high betweenness
centrality (i.e., network nodes that have many ‘‘shortest paths’’ going through them, analogous to major bridges and
tunnels on a highway map). Bottlenecks are, in fact, key connector proteins with surprising functional and dynamic
properties. In particular, they are more likely to be essential proteins. In fact, in regulatory and other directed
networks, betweenness (i.e., ‘‘bottleneck-ness’’) is a much more significant indicator of essentiality than degree (i.e.,
‘‘hub-ness’’). Furthermore, bottlenecks correspond to the dynamic components of the interaction network—they are
significantly less well coexpressed with their neighbors than nonbottlenecks, implying that expression dynamics is
wired into the network topology.

Citation: Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression
dynamics. PLoS Comput Biol 3(4): e59. doi:10.1371/journal.pcbi.0030059

Introduction

Protein networks are a topic of great current interest,
particularly after a growing number of large-scale protein
networks have been determined [1–6]. Protein–protein
interaction networks and regulatory networks are the key
representatives for biological networks with undirected and
directed edges [7–12]. Previous topological studies were
mainly focused on analyzing degree distributions and finding
motifs within these networks [7–9,11,13,14]. All of these
networks are scale-free with power-law degree distributions,
and hubs (proteins with high degrees) in the network
represent the most vulnerable points [7–9,14].

Recently, another topological feature of the network has
received attention—betweenness, which measures the total
number of nonredundant shortest paths going through a
certain node or edge [15,16]. Betweenness was originally
introduced to measure the centrality of the nodes in networks
[15]. By definition, most of the shortest paths in a network go
through the nodes with high betweenness. Therefore, these
nodes become the central points controlling the communi-
cation among other nodes in the network. More recently,
Girvan and Newman proposed that the edges with high
betweenness are the ones that are ‘‘between’’ highly inter-
connected subgraph clusters (i.e., ‘‘community structures’’);
therefore, removing these edges could partition a network
[16]. Furthermore, Dunn et al. found that protein clusters
within interaction networks defined by this edge betweenness
method tend to share similar functions [17].

Here, we revisited the original meaning of betweenness as a
measure of the centrality of the nodes in a network. If we
think of protein networks (in particular, regulatory networks)
in analogy to a transportation network, proteins with high

betweenness are similar to heavily used intersections, such as
those leading to major highways or bridges (see Figure 1). If
these major intersections were blocked, there would be huge
traffic jams, causing the whole transportation system to fail.
Therefore, we called these high-betweenness proteins bottle-
necks, and hypothesized that these bottlenecks, just like hubs,
represent important points in biological networks as well. For
simplicity, we defined protein bottlenecks as the proteins
with the highest betweenness; hubs, as the proteins with the
highest degree (see Methods).
In fact, previous studies have shown that protein bottle-

necks are indeed more likely to be essential [18,19]. This holds
true in three different eukaryotic protein-interaction net-
works: yeast, worm, and fly [19]. However, Goh and his
colleagues also found that, in these interaction networks, the
betweenness of a node is correlated to its degree [20].
Therefore, it is not clear whether protein bottlenecks are
important because they have high betweenness or because
they also tend to be hubs.
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Moreover, Han et al. found that there are two categories of
protein hubs within the yeast protein-interaction network:
‘‘party hubs’’ interact with most of their partners simulta-
neously, whereas ‘‘date hubs’’ bind theirs asynchronously [21].
Because protein bottlenecks in the interaction network
connect different functional clusters—as mentioned above
in [17]—it is conceivable that bottlenecks with high degrees
should have a higher tendency to be date hubs.

Here, we analyzed the biological significance of between-
ness in terms of protein functions, expression correlation,
and its relationships with protein hubs.

Results

Bottlenecks Tend To Be Essential
Because bottlenecks are key connectors in protein net-

works, we hypothesized that these proteins would represent
important points in networks. Therefore, we first examined
the essentiality of bottlenecks in different networks in yeast
(see Methods). We found that bottlenecks in both regulatory
and interaction networks indeed tend to be essential proteins
with high significance (see Figure 2A), in agreement with
previous studies [18,19].

Bottlenecks Dictate the Essentiality of Networks with
Directed Edges

As discussed above, previous studies have shown that, in
biological networks, hubs tend to be essential [7,9], and
betweenness of a node is correlated with its degree [20]. We
found that degree and betweenness are indeed highly
correlated quantities in the networks we analyzed (Pearson
correlation coefficient of 0.49, p , 10�15 for the interaction
network; Pearson correlation coefficient of 0.67, p , 10�15 for
the regulatory network; p-values measure the significance of
the Pearson correlation coefficient scores according to t
distributions; i.e., many bottlenecks also tend to be hubs).
Therefore, we further investigate which one of these two
quantities is a better predictor of protein essentiality in both
regulatory and interaction networks.

To disentangle the effects of betweenness and degree, we
divided all proteins in a certain network into four categories:

(1) nonhub–nonbottlenecks; (2) hub–nonbottlenecks; (3) non-
hub–bottlenecks; and (4) hub–bottlenecks (see Figure 1). Even
though the two quantities are highly correlated, the number
of hub–nonbottlenecks and nonhub–bottlenecks is enough
for reliable statistics (see Table S1). This is in agreement with
the previous observation by Huang and his colleagues, who
found that proteins with high betweenness but low degree
(i.e., nonhub–bottlenecks) are abundant in the yeast protein
interaction network [18].
As we discussed above, numerous previous studies have

shown that the degree of a protein determines its essentiality
in scale-free networks (i.e., proteins with higher degrees are
more likely to be essential) [7,9]. Both interaction and
regulatory networks have been shown to be scale-free
networks [7,9,22]. Here, we observed that bottlenecks (both
nonhub–bottlenecks and hub–bottlenecks) have a strong
tendency to be products of essential genes, whereas hub–
nonbottlenecks are surprisingly not essential. Thus, we
determined that it is the betweenness that is a stronger
determinant of the essentiality of a protein in the regulatory
network, not the degree (Figure 2B).
In contrast to regulatory networks, the interaction network

is undirected with no obvious information flow. Furthermore,
nonneighboring pairs in the interaction network have no
noticeable relationships, as they are neither coregulated nor
coexpressed [23]. Therefore, it is reasonable to assume that in

Figure 1. Schematic Showing a Bottleneck and the Four Categories of

Nodes in a Network

Four nodes with different colors represent examples of the four categories
defined by degree and betweenness. Please note that every node in the
network belongs to one of the four categories. However, in this schematic,
we only point out the categories of the four example nodes.
doi:10.1371/journal.pcbi.0030059.g001
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Author Summary

A network is a graph consisting of a number of nodes with edges
connecting them. Recently, network models have been widely
applied to biological systems. Here, we are mainly interested in two
types of biological networks: the interaction network, where nodes
are proteins and edges connect interacting partners; and the
regulatory network, where nodes are proteins and edges connect
transcription factors and their targets. Betweenness is one of the
most important topological properties of a network. It measures the
number of shortest paths going through a certain node. Therefore,
nodes with the highest betweenness control most of the
information flow in the network, representing the critical points of
the network. We thus call these nodes the ‘‘bottlenecks’’ of the
network. Here, we focus on bottlenecks in protein networks. We find
that, in the regulatory network, where there is a clear concept of
information flow, protein bottlenecks indeed have a much higher
tendency to be essential genes. In this type of network, between-
ness is a good predictor of essentiality. Biological researchers can
therefore use the betweenness as one more feature to choose
potential targets for detailed analysis.

Importance of Protein Bottlenecks



interaction networks, hubs are more important than bottle-
necks. Our calculations confirmed this hypothesis (see Figure
2B): although nonhub–bottlenecks are significantly more
likely to be essential than nonhub–nonbottlenecks (p , 10�5;
see Methods for the calculation of p-values in Figures 2 and 3),
the difference is not nearly as substantial as that between hub–
nonbottlenecks and nonhub–nonbottlenecks (p , 10�267).
Similar results were also found in different interaction
networks (see Figure S4). The difference between nonhub–
bottlenecks (low essentiality) and hub–nonbottlenecks (much
higher essentiality) confirms that degree is a much better
predictor of essentiality in the interaction network.

Signal transduction pathways are a special case of protein–
protein interactions [24]. There are well-defined information
flows in these pathways. Nonhub–bottlenecks participating in
signaling transduction pathways clearly are more likely to be
products of essential genes (see Figure 3).

Bottlenecks within Permanent Undirected Interactions Are
Also Important

Besides directionality, another important but often over-
looked aspect of interaction networks is that there are two
major classes of interactions: permanent and transient

[25,26]. Within permanent interactions, bottlenecks are
connectors holding different, functionally important com-
plexes together. However, within transient interactions,
bottlenecks merely interact with different complexes at
different times. In this sense, ‘‘transient’’ bottlenecks are
not really bottlenecks. They are classified as ‘‘bottlenecks’’ by
our algorithm simply because of the fact that current
interaction networks are a collection of individual networks
under various conditions. As a result, the function of these
transient bottlenecks is likely to be not as important as that of
permanent ones. Therefore, we hypothesized that bottlenecks
would be more likely to be essential in permanent rather than
in transient interactions.
We tested our hypothesis in the yeast interaction network.

Defining permanent interactions as those participating in
protein complexes, we analyzed all complexes from the
Munich Information Center for Protein Sequences (MIPS)
complex catalog [27]. (Previous studies have shown that most
of the MIPS complexes are stable, permanent complexes.
However, there are 52 proteins in this catalog without direct
evidence of stable interactions with others [26]. We removed
these proteins from our analysis.) Because the catalog is far
from complete, we also considered all interactions forming a
clique (a complete subgraph) of size 5 or bigger as permanent,
because protein complexes are often considered as cliques in
interaction networks [28,29]. Any interaction not participat-
ing in a clique of size 3 or bigger was considered transient.
Our calculations confirmed our hypothesis: nonhub–bottle-
necks within permanent interactions tend to be essential,
while those within transient ones do not (see Figure 3).

Figure 3. Essentialities of Different Categories of Nonhub–Bottlenecks in

the Interaction Network

To find all proteins participating in signaling transduction pathways (i.e.,
the bar ‘‘Signal’’), we manually went through all available pathways in
KEGG and collected all proteins in them. Since this is a very small dataset,
we further included all proteins, more than half of whose interacting
partners are involved in signaling transduction pathways in KEGG. This
inclusion is reasonable because the general belief is that interacting
proteins share the same function. The fraction of essential genes among
nonhub–nonbottlenecks is used as the random expectation, which is
also indicated by the horizontal line. p-Values measure the statistical
significance of the different essentialities of different categories of
nonhub–bottlenecks relative to the random expectation. The bar ‘‘MIPS’’
refers to nonhub–bottlenecks involved in the complexes defined by the
MIPS complex catalog. The bar ‘‘Permanent’’ refers to nonhub–bottle-
necks involved in permanent interactions. The bar ‘‘Transient’’ refers to
nonhub–bottlenecks only involved in transient interactions. The bar
‘‘All’’ refers to all nonhub–bottlenecks. *p-Value above the bar
‘‘Transient’’ measures the statistical significance of transient nonhub–
bottlenecks being less essential than random.
doi:10.1371/journal.pcbi.0030059.g003

Figure 2. Comparison of Essentiality among Various Categories of

Proteins within Interaction and Regulatory Networks

(A) Bottlenecks tend to be essential genes in both interaction and
regulatory networks. p-Values measure the statistical significance of the
different essentialities between bottlenecks and nonbottlenecks.
(B) Essentiality of different categories of proteins. NH-NB, nonhub–
nonbottlenecks; H-NB, hub–nonbottlenecks; B-NH, nonhub–bottlenecks;
BH, hub–bottlenecks. p-Values measure the statistical significance of the
different essentialities between different categories of proteins against
nonhub–nonbottlenecks using cumulative binomial distributions
(see Methods).
doi:10.1371/journal.pcbi.0030059.g002
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For completeness, we also analyzed hubs and bottlenecks in
other kinds of protein networks. Specifically, we analyzed the
topology of three very different kinds of protein networks,
namely the metabolic network (where links connect enzymes
that share a metabolite) [23], the genetic network (where links
connect proteins that have genetic interactions) [30], and the
phosphorylation network (where links connect a kinase with
its substrates) [31]. The edges in the phosphorylation and
metabolic networks are directed, whereas those in the genetic
network are undirected (see Table S2 and http://www.
gersteinlab.org/proj/bottleneck).

Bottlenecks Constitute the Dynamic Components
of Networks

The correspondence of protein interaction bottlenecks to
connectors both in complexes and in pathways leads us to
investigate their dynamic properties. To this end, we
examined their coexpression with their neighbors. It has
been previously observed that interacting protein pairs are
more likely to coexpress than noninteracting protein pairs
[32]. Likewise, protein complex members have been shown to
be highly coexpressed [25]. Given this information, we
hypothesized that bottlenecks would tend to have a below-
average expression correlation with their neighbors, since
they tend to represent proteins that connect different
complexes or pathways. Indeed, in all the datasets examined,
we find that bottlenecks have a much lower average
expression correlation with their neighbors than other nodes.

Surprisingly, the difference is much more pronounced
when focusing on hubs only (i.e., the difference is more
significant between hub–nonbottlenecks and hub–bottle-
necks than between nonhub–nonbottlenecks and nonhub–
bottlenecks). The majority of hub–nonbottlenecks are rela-

tively well coexpressed with their neighbors, whereas most
hub–bottlenecks are not very well coexpressed (see Figure 4).
What appears especially striking is that bottlenecks always
have low coexpression with their neighbors, whereas hubs can
have a relatively high average coexpression with their
neighbors, but only if they are nonbottlenecks. We find that
while nonbottlenecks simply follow the same distribution as
the rest of the datasets, the nonhub–bottlenecks tend to have
a lower expression correlation.
Central complex members have a low betweenness and are

hub–nonbottlenecks. Because of the high connectivity inside
these complexes, paths can go through them and all their
neighbors. On the other hand, hub–bottlenecks tend to
correspond to highly central proteins that connect several
complexes or are peripheral members of central complexes.
The fact that they have a high betweenness suggests that these
proteins are not, however, simply members of large protein
complexes (which is true for nonbottleneck–hubs), but are
those members that connect the complex to the rest of the
graph; in a sense, real connectivity bottlenecks. While hub–
nonbottlenecks mainly consist of structural proteins, hub–
bottlenecks are more likely to be part of signal transduction
pathways (see Table S3). Furthermore, hub–bottlenecks are (by
construction) themost efficient in disrupting thenetwork upon
hub removal (see Figure S3). This relates nicely to the date/
party-hubconceptbyHanet al. [21]: hub–bottlenecks tend tobe
date-hubs, whereas hub–nonbottlenecks tend to be party-hubs.
Nonhub–bottlenecks generally coexpress less well with

their neighbors than nonhub–nonbottlenecks, in line with
the observation that betweenness is a good predictor of
average correlation with neighbors. Nonhub–bottlenecks also
rarely are complex members and are in large part made up of
regulatory proteins and signal transduction machinery.

Figure 4. Expression Dynamics of Hub–Nonbottlenecks and Hub–Bottlenecks

Histograms of the average correlation coefficient of the expression profile of any given gene with its direct interaction partners. Expression dynamics for
all four categories of nodes are shown in Figure S7.
doi:10.1371/journal.pcbi.0030059.g004
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Discussion

In this study, we find surprising links between network
topology and both protein phenotype and expression
dynamics. In analogy to the well-known network hubs, we
examined the properties of so-called network bottlenecks in
yeast. A first surprising finding is the distinction between
interaction and regulatory networks in the relative impor-
tance of bottlenecks to hubs. While in most topological
features, regulatory networks have been thought of as similar
to interaction networks, we clearly see a distinction between
those two network types that leads to a direct biological
interpretation. Regulatory networks have directed edges;
there is an implicit information flow within the network,
which makes it more similar to the transportation system. A
transcription factor (TF) can regulate many target genes
indirectly through other TFs. Deletion of TF bottlenecks thus
leads to the disruption of a large number of direct and
indirect regulations between TFs and their targets and is
lethal to the cell. For example, Swi1p is a nonhub–bottleneck
TF required for sporulation and other cellular processes [33].
Swi1p is not a hub with only 23 targets. But, it is controlled by
four TFs, and also regulates four others [34,35]. Because of
this unique topological position, approximately 10,000 short-
est paths between TFs and their targets within the whole
regulatory network run through this gene, making it an

important bottleneck. As a result, Swi1p is essential for
viability in yeast [36].
On the other hand, protein–protein interaction networks

have undirected edges; there is no obvious information flow
within the network. Therefore, some people may even argue
that in these interaction networks, betweenness, as well as the
definition of bottlenecks, is more of a topological conceptu-
alization from an abstract graph-theory point of view without
clear biological meanings. Our calculations confirm accord-
ingly that degree is a much better predictor of essentiality in
interaction networks. More interesting, in some subnetworks
within interaction networks where betweenness does have
biological implications (e.g., subnetworks involved in signal-
ing transduction or permanent interactions), protein bottle-
necks indeed have a higher tendency to be essential. All of
these correlations between topological measurements
(namely, degree and betweenness) that we discovered here
are quite intuitive if we carefully examine the topological
meanings of these measurements and the biological inter-
pretation of these networks.
Moreover, our approach of focusing on nonhub–bottle-

necks is useful for finding proteins that mediate different
processes and are involved in cross-talk. An example is Cak1p
(see Figure 5), which is a cyclin-dependent kinase-activating
kinase involved in two key signaling-transduction pathways. It
activates Cdc28p, an important regulator of the cell cycle.

Figure 5. A Biological Example of a Nonhub–Bottleneck in the Interaction Network

Cak1p is a cyclin-dependent kinase-activating kinase involved in two key signaling-transduction pathways: cell cycle and sporulation.
doi:10.1371/journal.pcbi.0030059.g005
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Cak1p also induces Smk1p, a mitogen-activated protein kinase
involved in sporulation [37,38]. Besides these two proteins,
Cak1p only has two other interaction partners (YDR279W and
Sgv1p), making its total degree 4. Therefore, it is not a hub in
the interaction network. However, since it coordinates two
major signaling-transduction pathways, it is an important
nonhub–bottleneck in the network with a high betweenness of
16,832.95 paths. Finally, due to its unique topological position
in the network, CAK1 is an essential gene in the cell. More
interestingly, it is also a close homolog of the human cancer
gene CDK6 (BLAST E-value , 10�10). This example shows that
bottlenecks potentially could be applied in various medical
and pharmaceutical contexts to identify key proteins.

Generally, the protein interaction network and gene
expression data are generally viewed as independent. While
there were several studies addressing correlations among
them, they focused largely on local properties [32]. Likewise,
while many studies addressed relations between the inter-
action network and protein function, they only make use of
local network features, such as distance [39–42]. Here, we
show that both coexpression and essentiality are highly
correlated with a global network feature, betweenness. This
finding lets us view the interaction network in a different
light—some dynamic information is wired into the topology.
This finding reinforces the ‘‘date-hub’’ and ‘‘party-hub’’
concept suggested by Han et al. [21]. It appears that the
property of betweenness separates the bimodal distribution
of average coexpression in hubs. Thus, the so-called date-
hubs correspond mostly to hubs with high betweenness (hub-
bottlenecks), while the ‘‘party-hubs’’ correspond mostly to
hubs with low betweenness (hub–nonbottlenecks). This
finding, however, implies relationships between dynamics
and topological properties in the interaction network that
were hitherto unknown.

It ispossible toargue that there is a certain levelofnoise inour
interaction dataset, even though it is a highly reliable set [23,43].
To demonstrate that our results are not due to some specific
noise in our dataset, we repeated all calculations on other high-
quality interaction datasets (namely, the filtered yeast inter-
actome [FYI] [21] and the DIP core [44]) as well. These different
datasets all exhibit similar results (see Figures S1 and S4A).

Finally, a principal contribution of this paper is the
consistent calculation of betweenness on directed and
undirected graphs. We also performed our calculations on
all currently available yeast protein networks with directed
and undirected edges. Most of these networks are much
smaller than the interaction and regulatory networks. So,
calculating robust statistics is not currently possible, but we
believe that as these other networks grow in size in the future,
betweenness will prove to be a useful quantity for many
protein networks, particularly those with directed edges. As
described in Methods, we plan to regularly update our
website (http://www.gersteinlab.org/proj/bottleneck) with be-
tweenness calculations as these networks grow.

In summary, we present an integrated analysis of two
complementary topological network properties across differ-
ent network types. This combined approach uncovers
previously unknown connections between network topology,
protein essentiality, and expression dynamics. We believe that
integrated approaches like the one presented here will be of
paramount importance in future predictive models.

Materials and Methods

Data sources. Interaction data was gathered from a number of
different published high-throughput datasets and published data-
bases [2–5,27,34,45,46]. Independent genomic features and Bayesian
integration were used to eliminate noise from the dataset [23,43].
Different datasets (e.g., the FYI [Vidal et al.] [21] or the DIP core
[Eisenberg et al.] [44]) exhibit the same behavior (see Figures S1 and
S4A). To avoid biases from large complexes (i.e., the ribosome and the
proteasome), we repeated our calculations after removing both these
complexes (see Figures S2 and S4B). The regulatory network was
created by combining five different datasets [1,2,22,34,35,47]. We
excluded DNA-binding enzymes (e.g., PolIII) from the regulatory
network. The essential genes in yeast genome were determined
experimentally through a PCR-based gene-deletion method [36]. The
metabolic network was taken from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [48] and all proteins that share a metabolite
were considered linked. The genetic network data was downloaded
from the GRID [49] and consists of several large-scale screens of
genetic interactions [30,50]. Expression data was taken from the
Rosetta compendium expression dataset [51]. All datasets and the
calculated betweenness of each protein node within these networks
are available at http://www.gersteinlab.org/proj/bottleneck. Because
most of these networks are far from complete, we will update the
networks and, more important, the associated betweenness of each
node as they grow in size in the future.

Definition of hubs and bottlenecks. We defined hubs as all proteins
that are in the top 20% of the degree distribution (i.e., proteins that
have the 20% highest number of neighbors). Accordingly, we defined
bottlenecks as the proteins that are in the top 20% in terms of
betweenness. Varying this cutoff from 10% to 40% had no significant
impact on our results (see Figures S5–S7).

Algorithm to calculate betweenness. To calculate node between-
ness within networks [16,52], we used an improved version of the
algorithm developed by Newman and Girvan. (1) Initialize the
betweenness of every vertex v in the network Bv ¼ 0. (2) Starting
from a vertex i, a breadth-first tree is built with i on the top and those
that are farthest from i at the bottom [53]. Each node is put at a
certain level of the tree based on its shortest distance from i. (3) A
variable pi ¼ 1 is assigned to i. As we are building the tree, for every
vertex j,

pj ¼
X
k2K

pk ð1Þ

where K is the set of nodes that directly connect to j and are at the
immediate proceeding level (i.e., predecessors of j). (4) Another
variable bj, with an initial value of 1, is also assigned to every vertex j
in the tree. (5) Starting from a bottom vertex j, the value of bj is added
to the corresponding variable of the predecessor of j. If j has more
than one predecessor, each predecessor k gets the value of:

bj 3
pk
pj
: ð2Þ

Therefore:

bk ¼ bk þ bj 3
pk
pj
: ð3Þ

(6) Perform step 5 for every vertex in the tree. (7) For every vertex j in
the tree, Bj ¼ Bj þ bj. (8) Repeat steps 2–7 for every vertex in the
network.

Qualitatively, proteins with high betweenness are considered as
bottlenecks. To facilitate our calculations and discussion, however, we
quantitatively defined bottlenecks as the top 20% proteins with the
highest betweenness values, in agreement with the conventional
cutoff for protein hubs [9]. Please note that for networks with
directed edges, the directionality of the edges have to be taken into
consideration.

p-Values by cumulative binomial distribution. p-Values in Figures 2
and 3 measure whether the difference is significant between the
testing and control groups. They are calculated using the cumulative
binomial distribution:

Pðc � coÞ ¼
XN
c¼co

N!

N !ðN � cÞ!

� �
pcð1� pÞN�c ð4Þ

where N is the total number of genes in the data; co is the number of
observed genes with a specific property (e.g., essentiality) in the
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testing group; and p is the probability of finding a gene with the same
property in the control group. In this manner, we are testing whether
genes with a specific property are overrepresented compared with
the control group. If they are underrepresented, then P(c , co)¼ 1�
P(c � co).

Supporting Information

Figure S1. The Average Expression Correlation for Hub–Bottlenecks,
Nonhub–Bottlenecks, Hub–Nonbottlenecks, and Nonhub–Nonbottle-
necks for the FYI

The trend is similar to the one seen in Figure 4, with hub–bottlenecks
always having low correlations and nonhub–bottlenecks mostly
having higher expression correlations. The fact that the signal is
weaker is likely due to the small size of the FYI dataset.

Found at doi:10.1371/journal.pcbi.0030059.sg001 (12 KB PDF).

Figure S2. The Average Expression Correlation for Hub–Bottle-
necks, Nonhub–Bottlenecks, Hub–Nonbottlenecks, and Nonhub–
Nonbottlenecks after Removal of Large Protein Complexes
(Ribosomes and Proteasome)

As can be seen, the trend for nonhub–bottlenecks to have high
average coexpression is still clearly discernible. It can be seen more
clearly that there is a bimodal distribution of nodes with low and high
coexpression, with the nonhub–bottlenecks being highly enriched for
high coexpression values.

Found at doi:10.1371/journal.pcbi.0030059.sg002 (12 KB PDF).

Figure S3. Bottlenecks (Including Nonhub–Bottlenecks), but Not
Hub–Nonbottlenecks, Are Crucial Nodes for Topological Integrity
of the Network

As can be seen clearly, the removal of bottlenecks (or nonhub–
bottlenecks) leads to the breakdown of network topology much
quicker than the removal of hubs or even hub–nonbottlenecks.

Found at doi:10.1371/journal.pcbi.0030059.sg003 (14 KB PDF).

Figure S4. Fraction of Essential Genes among the Four Types of Nodes
(i.e., Hub–Bottlenecks, Nonhub–Bottlenecks, Hub–Nonbottlenecks,
and Nonhub–Nonbottlenecks) for Different Interaction Networks

(A) FYI interaction network used by Han et al. [21].
(B) Interaction networks without large complexes (ribosomes and
proteasomes).
BH, hub–bottlenecks; NH–B, nonhub–bottlenecks; H–NB: hub–non-
bottlenecks; and NH–NB, nonhub–nonbottlenecks.

Found at doi:10.1371/journal.pcbi.0030059.sg004 (38 KB PDF).

Figure S5. Fraction of Essential Genes among the Four Types of
Nodes (i.e., Hub–Bottlenecks, Nonhub–Bottlenecks, Hub–Nonbottle-

necks, and Nonhub–Nonbottlenecks) by Using Different Cutoffs for
Hubs and Bottlenecks

(A) Interaction network.
(B) Regulatory network.
BH, hub–bottlenecks; NH–B, nonhub–bottlenecks; H–NB: hub–non-
bottlenecks; and NH–NB, nonhub–nonbottlenecks.

Found at doi:10.1371/journal.pcbi.0030059.sg005 (81 KB PDF).

Figure S6. The Average Expression Correlation for Nonhub–Bottle-
necks and Hub–Nonbottlenecks by Using Different Cutoffs for Hubs
and Bottlenecks

(A) The cutoff is 1%.
(B) The cutoff is 5%.
(C) The cutoff is 10%.
(D) The cutoff is 20%.

Found at doi:10.1371/journal.pcbi.0030059.sg006 (25 KB PDF).

Figure S7. The Average Expression Correlation for Hub–Bottlenecks,
Nonhub–Bottlenecks, Hub–Nonbottlenecks, and Nonhub–Nonbottle-
necks by Using Different Cutoffs for Hubs and Bottlenecks

(A) The cutoff is 1%.
(B) The cutoff is 5%.
(C) The cutoff is 10%.
(D) The cutoff is 20%.

Found at doi:10.1371/journal.pcbi.0030059.sg007 (37 KB PDF).

Table S1. Number of Proteins in Each of the Four Categories in Both
Interaction and Regulatory Networks

Found at doi:10.1371/journal.pcbi.0030059.st001 (44 KB DOC).

Table S2. Essentiality of Different Categories of Proteins in
Phosphorylation, Metabolic, and Genetic Networks

Found at doi:10.1371/journal.pcbi.0030059.st002 (28 KB DOC).

Table S3. Occurrence of Different Biological Process Annotations
from the Gene Ontology Annotation Scheme in the Four Different
Topological Categories

Found at doi:10.1371/journal.pcbi.0030059.st003 (54 KB DOC).
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