

Polynomial Algorithms for the Maximal Pairing Problem: Efficient
Phylogenetic Targeting on Arbitrary Trees

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Arnold, Christian, and Peter F. Stadler. 2010. Polynomial
algorithms for the Maximal Pairing Problem: efficient
phylogenetic targeting on arbitrary trees. Algorithms for
Molecular Biology 5:25.

Published Version doi://10.1186/1748-7188-5-25

Accessed February 18, 2015 10:48:45 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4506289

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-
of-use#OAP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28934394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/4506289&title=Polynomial+Algorithms+for+the+Maximal+Pairing+Problem%3A+Efficient+Phylogenetic+Targeting+on+Arbitrary+Trees
http://dx.doi.org///10.1186/1748-7188-5-25
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4506289
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

RESEARCH Open Access

Polynomial algorithms for the Maximal Pairing
Problem: efficient phylogenetic targeting on
arbitrary trees
Christian Arnold1,2, Peter F Stadler1,3,4,5,6*

Abstract

Background: The Maximal Pairing Problem (MPP) is the prototype of a class of combinatorial optimization
problems that are of considerable interest in bioinformatics: Given an arbitrary phylogenetic tree T and weights ωxy

for the paths between any two pairs of leaves (x, y), what is the collection of edge-disjoint paths between pairs of
leaves that maximizes the total weight? Special cases of the MPP for binary trees and equal weights have been
described previously; algorithms to solve the general MPP are still missing, however.

Results: We describe a relatively simple dynamic programming algorithm for the special case of binary trees. We
then show that the general case of multifurcating trees can be treated by interleaving solutions to certain auxiliary
Maximum Weighted Matching problems with an extension of this dynamic programming approach, resulting in an
overall polynomial-time solution of complexity (n4 log n) w.r.t. the number n of leaves. The source code of a C
implementation can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/
Targeting. For binary trees, we furthermore discuss several constrained variants of the MPP as well as a partition
function approach to the probabilistic version of the MPP.

Conclusions: The algorithms introduced here make it possible to solve the MPP also for large trees with high-
degree vertices. This has practical relevance in the field of comparative phylogenetics and, for example, in the
context of phylogenetic targeting, i.e., data collection with resource limitations.

Background
Comparisons among species are fundamental to elucidate
evolutionary history. In evolutionary biology, for exam-
ple, they can be used to detect character associations
[1-3]. In this context, it is important to use statistically
independent comparisons, i.e., any two comparisons
must have disjoint evolutionary histories (phylogenetic
independence). The Maximal Pairing Problem (MPP) is
the prototype of a class of combinatorial optimization
problems that models this situation: Given an arbitrary
phylogenetic tree T and weights ωxy for the paths
between any two pairs of leaves (x, y) (representing a par-
ticular comparison), what is the collection of pairs of
leaves with maximum total weight so that the connecting
paths do not intersect in edges?

Algorithms for special cases of the MPP that are
restricted to binary trees and equal weights (which thus
simply maximizes the number of pairs) have been
described, but not implemented [2]. Since different pairs
of taxa may contribute different amounts of information
depending on various factors (e.g., their phylogenetic
distance or the difference of particular character states),
the weighted version is of considerable practical interest.
A particular question of this type is addressed by phylo-
genetic targeting, where one seeks to optimize the choice
of species for which (usually expensive and time-con-
suming) data should be collected [4]. Phylogenetic tar-
geting boils down to two separate tasks: (1) estimation
of the weight ωxy that measures the benefit or our
amount of information contributed by including the
comparison of species x with species y and (2) the iden-
tification of an optimal collection of pairs of species
such that they represent independent measurements,
i.e., the solution of the corresponding MPP. To date, the

* Correspondence: studla@bioinf.uni-leipzig.de
1Bioinformatics Group, Department of Computer Science, and
Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße
16-18, D-04107 Leipzig, Germany

Arnold and Stadler Algorithms for Molecular Biology 2010, 5:25
http://www.almob.org/content/5/1/25

© 2010 Arnold and Stadler; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.bioinf.uni-leipzig.de/Software/Targeting
http://www.bioinf.uni-leipzig.de/Software/Targeting
mailto:studla@bioinf.uni-leipzig.de
http://creativecommons.org/licenses/by/2.0

only publicly available software package for phylogenetic
targeting [5] can handle multifurcating trees; however,
the implementation uses a brute force enumeration of
subsets of children and hence scales exponentially in the
maximal degree.
As a consequence of the ever-increasing amount of

available sequence data, phylogenetic trees of interest
continue to increase in size, and large trees with hun-
dreds or even thousands of vertices are not an exception
any more [6-9]. Most large phylogenies contain a sub-
stantial number of multifurcations that represent uncer-
tainties in the actual phylogenetic relationships. It
appears worthwhile, therefore, to extend previous
approaches to efficiently solve the MPP for multifurcat-
ing trees and arbitrary weights.

Algorithms
Definitions and Preliminaries
Let T(V, E) be a rooted (unordered) tree with a vertex
set V = L ∪ J (where L are the leaves of T, J its interior
vertices, |L| the number of leaves, and |J| the number of
interior vertices) and an edge set E = V × V.
Every vertex x, with the exception of the root r, has a

unique father, fa(x), which is the neighbor of x closest
to the root. We set fa(r) = ∅. Note that, given an
unrooted tree without vertices with no father, we can
obtain a rooted tree by subdividing an arbitrary edge
with r. Furthermore, for each u Î J, let chd(u) be the
set of children of v (i.e., its descendants). Obviously, y
Îchd(u) if and only if fa(y) = u and chd(u) = ∅ if and
only if v Î L. We write T[v] for the subtree rooted at v.
Furthermore, we assume that |chd(u)| ≠ 1 throughout
this contribution. A tree is binary if |chd(u)| = 2 for all
v Î J, and multifurcating if |chd(u)| > 2 holds for some
interior vertices. Finally, let T[v, C] be the subtree of T
rooted at an interior vertex v Î J, but with only a subset
C of its children. All subtrees T[v] with v Î chd(v)\C are
thus excluded from T[v, C].

For the purpose of this contribution, we interpret a
path π in T as a sequence {e1,...,el} of edges ei Î E such
that ei = ej implies i = j and ei ∩ ei+1 = {xi} are single
vertices for all 1 ≤ i <l. The vertices x0 Îe1 and xl Îel
are the endpoints of π. For two vertices x, y Î V, we
denote the unique path with endpoints x and y by πxy.
In the following, we will frequently be concerned with
paths connecting an interior vertex u Î J with a leaf x Î
L. This path contains exactly one child of u, which we
denote by ux(u, x). In the following, the array n(u, x)
will be used to allow efficient navigation in T.
A path-system ϒ on T is a set of paths π such that

1. If π = πxy Î ϒ, then x, y Î L and x ≠ y, i.e., every
path connects two distinct leaves.
2. If π′ ≠ π′′, then π′ ∩ π′′ = ∅, i.e., any two paths in
ϒ are edge-disjoint.

Note that two paths in ϒ have at most one vertex in
common (otherwise they would also share the sub-path,
and therefore edges, between two common vertices). In
binary trees, two edge-disjoint paths are also vertex-dis-
joint, since two edge-disjoint paths can only run through
an interior vertex u with |chd(u)| ≥ 3 (see Fig. 1). Two
edge-disjoint paths can share a vertex u in two distinct
situations: (1) if both paths have u as the last common
ancestor of their respective leaves, u must have at least
four children, (2) if u is the last common ancestor for
one path, while the other path also includes an ancestor
of u, three children of u are sufficient. These two situa-
tions will also lead to distinct cases in the algorithms
that are presented next.
Furthermore, let ωxy : L × L ® R be an arbitrary

weight function on pairs of leaves of T. We define the
weight of a path-system ϒ as

()ϒ
ϒ

=
∈

∑ xy

xy

(1)

Figure 1 Three different path-systems on a tree with 15 leaves. Each path is shown in a distinctive color, and unused edges of the tree are
shown as thin black lines. Clearly, no two paths share an edge, i.e., the corresponding collection of pairs of leaves is phylogenetically
independent. Note that the paths are not necessarily vertex-disjoint.

Arnold and Stadler Algorithms for Molecular Biology 2010, 5:25
http://www.almob.org/content/5/1/25

Page 2 of 10

A path-system ϒ that maximizes ω(ϒ), i.e., a solution
of the MPP, will in the following be called optimal
path-system. It conceptually corresponds to Maddison’s
“maximal pairing” [2], although we describe here a more
general problem (see Background and Variants). In the
following sections, our main objective is to compute
optimal path-systems.

The Maximal Pairing Problem for binary trees
Forward recursion
In this section we reconsider the approach of [4] for the
special case of binary trees. This subsumes also Maddi-
son’s [2] discussion of the special unweighted case (see
section Variants). We develop the dynamic program-
ming solution for this class of MPP using a presentation
that readily leads itself to the desired generalization to
multifurcating trees.
For a given interior vertex u Î J we use the abbrevia-

tion Cx = Cx(u) = chd(u)\ux for the set of children of u
that are not contained in the path that connects u with
the leaf x. Since T is binary by assumption in this sub-
section, Cx contains a unique vertex C ux x= { } .
We will need two arrays (S, R) to store optimal solu-

tions of partial problems. For each u Î V, let Su be the
score of an optimal path-system on the subtree T[u].
For each u Î V and leaf x Î T[u], we furthermore
define Rux as the score of an optimal path-system on T
[u] that is edge-disjoint with the path πux. Rux can be
decomposed as follows:

R R Sux u x ux x
= + (2)

For completeness, we set Sx = Rxx = 0 for all leaves
x Î L.
An optimal path-system on T [u] either consists of

optimal path-systems on each of the two trees T [v] and
T[w] rooted at the two children v, w Î chd(u), or it con-
tains a path πxy with endpoints x Î T[v] and y ÎT[w].
Thus, Su can be calculated as follows:

S
S S

R Ru

v w

x T v y T w
xy vx wy

=
+

+ +{ }
⎧
⎨
⎪

⎩⎪ ∈ ∈

max max max
[] []

 (3)

Recursion (3) can then be evaluated from the leaves
towards the root.
In order to facilitate the backtracing part of the algo-

rithm, it is convenient to introduce an auxiliary variable
Fu. If an optimal score in eq.(3) is obtained by the sec-
ond alternative, the pair (x, y) that led to the highest
score is recorded in Fu; otherwise, we set Fu = ∅.
Backtracing
A computed optimal path-system ϒmax on T = T [r] from
the forward recursions can be reconstructed by backtra-

cing. For binary trees, this is straightforward. We start at
the root r. In the general set, at an interior vertex u with
v, w Î chd(u), we first check whether Fu = ∅. If this is
the case, all paths πxyÎ ϒmax are contained within the
subtrees T[v] and T[w], and we continue to backtrace in
both T[v] and T[w]. If Fu = (x, y), then πxy is added to
ϒmax, and we need to backtrace an optimal path-system
for each of the subtrees “hanging off” πxy. In other words,
we need optimal path-systems for the subtrees rooted at
the vertices ux and uy for u Î πxy. These can be
obtained recursively by following the decompositions of
Rvx and Rwy, respectively, given in eq.(2).
Time and Space complexity
All entries Su for interior vertices u can be computed in
 (n3) time, because a total of n(n - 1) Î (n2) pairs of
leaves have to be considered in eq.(3) and computation
of each Su entry takes at most (n) time. Since we need
to store the quadratic arrays Rux and n(u, x) as well as the
linear arrays Su and Fu, we need (n2) memory.

The Maximal Pairing Problem for multifurcating trees
Forward recursion
In trees with multifurcations, for a path-system ϒ, more
than one path can run through each vertex m Î J with
|chd(m)| > 2 without violating phylogenetic indepen-
dence. In addition to an optimal score Su , we also
define an optimal score Qux of all path-systems ϒu

’ on
T[u]\T[ux], i.e., of all path-systems that avoid not only
the path πux but the entire subtree T[ux], where ux is as
usual the child of u along πux. We therefore have

R R Qux u x uxx
= + (4)

The computation of Su and Qux are analogous pro-
blems. In general, consider an (interior) vertex u Î J
and a subset C ⊆ chd(u) of children of u. Our task is to
compute an optimal path-system on the subtree T[u, C]
of T. We first observe that any path-system on T[u, C]
contains 0 ≤ k ≤ Î|C|/2˚ paths πk through u. Each of
these paths runs through exactly two distinct children
vk

’ and vk
’’ of u. For fixed vk

’ and vk
’’ , the path ends in

leaves x T vk k
’ ’[]∈ and x T vk k

’’ ’’[]∈ (Fig. 1). The best pos-
sible score contribution for the path πx′x′′ is

Q R Rx x v x v x x x′ ′′ ′ ′ ′′ ′′ ′ ′′= + +, (5)

and the best possible score for a particular pair of
children v′, v′′ Î C is therefore

Q R Rv v
x T v x T v

v x v x x x′ ′′
′∈ ′ ′′∈ ′′

′ ′ ′′ ′′ ′ ′′= + +{ },
[] []

max max (6)

For the purpose of backtracing, it will be convenient
to record the path πxy, or rather its pair of end points

Arnold and Stadler Algorithms for Molecular Biology 2010, 5:25
http://www.almob.org/content/5/1/25

Page 3 of 10

(x, y), that maximized Qv v′ ′′, in eq.(6) in an auxiliary
variable Fv′,v′′.
Since there are k paths through u covering 2k of the

|C| subtrees, there are |C| - 2k children vl of u, with 1 ≤
l ≤ |C| - 2k, each of which contributes to an optimal
path-system with a sub-path-system that is contained
entirely within the subtree T[vl]. Since these contribu-
tions are independent of each other, they are obtained
by solving the MPP on T[vl], i.e., their contribution to
the total score of an optimum path-system is Svl.
For each subtree T[u, C] we therefore face the pro-

blem of determining the optimal combination of pairs
and isolated children. This task can be reformulated as a
weighted matching problem on an auxiliary graph Γ(C)
whose vertex set consists of two copies of the elements
of C, denoted v and v*. Within one copy of C, there is
an edge between any two elements. The remaining |C|
edges of Γ(C) connect each v with its copy v*. The asso-
ciated edge weights are ωv’,v’’ = Qv v′ ′′, and ωv,v* = Sv,
respectively. An example is shown in Fig. 2.
Clearly, an optimal path of the form x′,...,v′, u, v′′,...,x′′

is represented by the edge (v′, v′′) of Γ(C), while a self-
contained subtree T[v] is represented by an edge of the
form (v, v*). It remains to show that every maximum
matching of the auxiliary graph Γ(C) corresponds to a
legal conformation of paths, i.e., we have to demonstrate
that in a maximum matching ℳ, each vertex v Î C is
contained in an edge. First, note that v* covered by an
edge of ℳ if and only if (v, v*) Î ℳ. Suppose v is not
covered in ℳ. Since ωv,v* is non-negative, we can
exclude matchings that do not cover all edges of C from
the solution set. We can thus compute the entries of Su
and Qux, respectively, in polynomial time by solving
maximum weighted matching problems with non-nega-
tive weights. Introducing the symbol MWM(Γ) for the
maximum weight of a matching on the auxiliary graph
Γ, we can write this as

S u

Q u u
u

ux x

=
=

MWM((chd(

MWM chd

Γ
Γ

)))

((() \ { }))
(7)

Here we make use of the fact that the weight of a
matching equals the sum of the weights of the path-
systems that correspond to the edges of the auxiliary
graphs. In order to facilitate backtracing, we keep
tabulated not only the weights but also the corre-
sponding maximum matchings for each Γ(chd(u)) and
Γ(chd(u)\{ux})).
Backtracing
Backtracing for multifurcating trees proceeds in analogy
to the binary case. Again we start from the root towards
the leaves, treating each interior vertex u. If |chd(u)| =
2, see the backtracing for the binary case. If |chd(u)| >
2, we first need the solution ℳ of the MWM for chd(u).
For each edge (v, v*) Î ℳ, v is called recursively to
determine its optimal path-system. Each edge (v′, v′′) Î
ℳ, however, represents a path πxy that belongs to an
optimal path-system. Each of these paths πxy maximizes
Qv v′ ′′, for a particular pair of children v′, v′′ Î chd(u)
and therefore has been stored in Fv′v′′ during the forward
recursion. Thus, each of these paths πxy can be added to
the optimal path-system.
As in the binary case, it remains to add the solutions

from an optimal path-systems from the subtrees that are
not on the path from x to v′ and y to v″, respectively,
for each particular edge (v′, v′′) Î ℳ. This can be done
as follows. According to eqns.(2) and (4), Rv′x can be

decomposed into Rvx
’ and either Qv′x or Svx

’ . If |chd

(v′)| = 2, the child node v kx
’ = that is not on the path

from v′ to x is called recursively to obtain an optimal
path-system in T[k]. If |chd(v′)| > 2, however, the solu-
tion of the MWM for Qv′x is needed to determine an opti-
mal path-system on the subtree T v T vx[] []′ ′ , because
multiple paths may go through V′. Rvx

’ can then be

u

v1 v2 v3 v4 v5 v6 v7 v8

v1*

v8*

v4
v3v8

v7

v1 v2

v6 v5

v2*

v7*

v6* v5*

v4*

v3*

Figure 2 Translation of a path-system on T[u] into a matching on the auxiliary graph Γ(chd(u)).

Arnold and Stadler Algorithms for Molecular Biology 2010, 5:25
http://www.almob.org/content/5/1/25

Page 4 of 10

further decomposed until Rxx is reached. The same pro-
cedure is employed for Rv′′y.
Time and Space complexity
A maximum weighted matching on arbitrary graphs
with |V| vertices and |E| edges can be computed in
 (|V||E| log E) time and (E) space by Gabow’s clas-
sical algorithm [10] or one of several more recent alter-
natives [11,12]. In our setting, |E| Î (|chd(u)|2),
hence the total memory complexity of our dynamic pro-
gramming algorithm is (n2).
All entries for Qv v′ ′′, (the edge weights for the match-

ing problems) can be computed in (n3) time, because
a total of (n - 1) Î (n2) pairs of leaves have to be
considered in eq.(6) and computation of each Qv v′ ′′,
entry takes at most (n) time. The effort for one of the
 (|chd(u)|) maximum weighted matching problems for
a given interior vertex u with more than two children is
bounded by
 (|chd(u)|3log(|chd(u)|)2). The total effort for all

MWMs is therefore bounded by

| () | log(| () |) (log),chd u u n n
u

4 2 4chd ∈∑

which dominates the overall time complexity of the
algorithm (see Appendix for a derivation).
As in the binary case, (n2) space is necessary and

sufficient to store the arrays R and S. Furthermore,
 (n2) space is needed to save the array Q and the end-
points (x, y) of the path πxy that maximized each Q
entry. The latter is needed for the backtracing. In addi-
tion, we keep the quadratic array n(u, x) to allow effi-
cient navigation in T. For each interior vertex u with
|chd(u)| > 2, |chd(u)| + 1 different maximal matchings
have to be stored: one that corresponds to Su and |chd
(u)| that correspond to Qux. Each of these solutions
requires (|chd(u)|) space. The total space complexity
of all MWM solutions is therefore ∑u|chd(u)|

2 Î (n2)
(see Appendix).

Algorithmic variants
Several variants and special cases of the general MPP
algorithm are readily derived for related problems. In
the following, we briefly touch upon some of them.
Special weight functions
It is worth noting that finding a path-system that sim-
ply maximizes the number of pairs, as presented in [2]
and applied in [13], for example, constitutes a special
case of the MPP with unit weights. (Of course the
same result is obtained by setting ωxy to any fixed
positive weight.) This case may be of practical use
under certain circumstances, as it maximizes the num-
ber of independent measurements, thus improving

power of subsequent statistical tests. Specifically, this

weight function selects a path-system with n
s

⎢
⎣

⎥
⎦ pairs.

In order to maximize the number of edges that are
covered by an optimal path-system, we simply set ωxy

= d(x, y), where d(x, y) is the graph-theoretic distance,
i.e., we interpret the edge lengths in the tree as unity.
Alternatively, instead of assigning weights for pairs of
leaves directly, edges e Î E can be weighted, and the
weight for a particular pair of leaves (x, y) can then be

simply defined as

xy
e

e
xy

=
∈
∑ () .

Fixed number of paths
A variant of practical interest is to limit an optimal
path-system to � leaf-pairs. This may be relevant in a
phylogenetic targeting setting, for example, in cases
where resources are limiting data acquisition efforts to a
small number taxa so that it pays to make every effort
to choose them optimally (see also [4]). Typically, � will
be small in this setting.
For binary trees, this variant can be implemented by

conditioning the matrices R and S to a given number of
paths. Eq.(2) thus becomes

R R Sux k
l k

u x l u k lx x,
,

, ,max= +{ }
∈{ } −

0
(8)

for a given number k ≤ k in the partial solutions. If an
optimal path-system on T[u] is composed of optimal
path-systems on the two trees rooted at its children v
and w, respectively, then the k paths are arbitrarily con-
tained within T [v] and T [w]. Thus, k + 1 different
cases have to be considered, and the case with the high-
est score has to be identified. This yields to the follow-
ing extension of eq.(3) for Su,k:

S

S S

u k

l k
v l w k l

l x T v
k y T w

,

,
, ,

[]

max

max

max max
, []

=

+{ }
∈{ } −

∈ ∈
−{ } ∈

0

0 1

 xy vx l wy k lR R+ +{ }

⎧

⎨
⎪⎪

⎩
⎪
⎪

−, ,
(9)

We set Sx = Rxx,l = Rux,0 = 0 for all x Î L, u Î J, and l
Î {0, k}. The latter condition ensures that if no path can
be selected anymore in a particular subtree, its score
must be 0.
As mentioned above, however, eq.(9) only holds for

binary trees. For multifurcating trees, the auxiliary maxi-
mum weighted matching problems are replaced by the
task of finding matchings that maximize the weight for
a fixed number k of edges. We are, however, not aware
that this variant of matching problems has been studied
in detail so far. For small �, it could of course be solved
by brute force enumeration.

Arnold and Stadler Algorithms for Molecular Biology 2010, 5:25
http://www.almob.org/content/5/1/25

Page 5 of 10

Selecting paths or taxa in addition to already selected
paths or taxa
In some applications it may be the case that a subset of
taxa or paths is already given, e.g. because the corre-
sponding data have already been acquired in the past.
The question then becomes how additional resources
should be allocated.
In the simpler case, we are given a partial path-system

∏. It then suffices to remove or mark the corresponding
leaves from T (to ensure that they are not selected
again) and to set the weight of all paths that have edges
in common with ∏ to - ∞ to enforce independence
from the prescribed pairs.
The situation is less simple if only the taxa are given

and the pairs are not prescribed. Here, the goal is to
find an optimal path-system that includes all z Î Z,
where Z ⊂ L denotes the taxa that are required to
appear in the output. First, we note that such a solution
not necessarily exists, e.g. if |Z| = |L| and |L| is odd. As
a simple example, consider a binary tree with three
leaves. In that case, only one path and thus two leaves
can be selected. This constraint also holds for the sub-
tree rooted at any interior vertex u and the z Î Z in T
[u], i.e., partial solutions of the MPP (see below).
For binary trees, this variant can be implemented by

conditioning the matrices R and S to a subset of all pos-
sible paths and leaves. This is achieved by setting the
score to -∞ for a particular interior vertex if one of the
preconditions cannot be met in eqns.(2) and (3). For
example, if two leaves x, y Î Z have the same father u,
an optimal path-system of both T[u] and T must con-
tain the path πxy, because otherwise, either x or y would
not belong to the optimal path-system due to the
requirement of independence. Similarly, if a particular
path πxy in the second alternative achieves the highest
score in eq.(3), πxy must not be selected if this conflicts
with the possibility to select other prescribed leaves z Î
Z (Fig. 3).
To derive the recursions for this variant, let Zu denote

the leaves z Î Z with z Î T[u] and let L be the leaves of
T[u]. It is convenient to first check whether a solution
exists for T[u]. If L = Zu and |L| is odd, Su = -∞ (i.e., no
path-systems exists that selects all z Î Zu in T[u]).
Otherwise, an optimal path-system for T[u] with v, w Î
chd(u) can be calculated as follows:

S

S S v Z w Z

u

v w

x T v
y T w

=

+ ∉ ∉
−∞

⎧
⎨
⎩

−∞

∈
∈

max

max
[]
[]

if and

otherwise

i ff

or

otherwise

R

S

R S

u x

u

xy u x u

x

x

x x

= −∞

= −∞

+ +

⎧

⎨
⎪

⎩
⎪

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(10)

Furthermore,

R
R S

R Sux
u x u

u x u

x x

x x

=
⎧
⎨
⎪

⎩⎪

−∞ = −∞ = −∞

+

 if or

 otherwise
(11)

and

S
x Z

x =
⎧
⎨
⎩

∉
−∞
0 if

otherwise
(12)

for any x Î L. In analogy to the algorithm for the
unconstrained MPP, we initialize the recursions by
Rxx = 0 for x Î L. This variant does not change the
overall time and space complexity, and backtracing is
also identical to the unconstrained version of the MPP.
For multifurcating trees, the maximum weighted

matching problems are replaced by finding matchings
that maximize the weight with the constraint that parti-
cular vertices must be included in the matching. Simi-
larly to the variant introduced above, however, we are
not aware that this particular problem has been studied
in detail.

Probabilistic version
Sometimes, not only an optimal solution is of interest. As
in the case of sequence alignments [14] or biopolymer

T[h] > 0

T[k] = inf

Figure 3 A binary tree for which only one possible path-
system exists that fulfills all constraints. Leaves that must appear
in the output are highlighted with an arrow, and the (only) valid
path-system is displayed in color. Note that the score of the subtree
T[k] = ∞, because no path-system in T[k] exists that includes all
three leaves x Î T[k]. The score of T[h], however, is greater than 0.

Arnold and Stadler Algorithms for Molecular Biology 2010, 5:25
http://www.almob.org/content/5/1/25

Page 6 of 10

structures [15], one may analyze the entire ensemble of
solutions. Both for physical systems such as RNA, and for
alignments with a log-odds based scoring system, one can
show that individual configurations ϒ with score S(ϒ), in
our case path-systems, contribute to the ensemble propor-
tional its Boltzmann weight exp(-bS(ϒ)), where the
“inverse temperature” b defines a natural scale that is
implicitly given by the scoring or energy model. In the
case of physical systems b = 1/kT is linked to the ambient
temperature T; for log-odds scores, b = 1; if the scoring
scheme is rescaled, as e.g. in the case of the Dayhoff
matrix in protein alignments, then b is the inverse of this
scaling factor. In cases where schemes without a probabil-
istic interpretation are used, suitable values of b have to be
determined empirically. The larger b, the more an optimal
path-system is emphasized in the ensemble. The partition
function of the system is

Z S= −∑exp(()).
ϒ

ϒ (13)

The probability pϒ to pick ϒ from the ensemble is
pϒ = exp(-bS(ϒ))/Z.
The recursion in eq.(3) can be converted into a corre-

sponding recursion for the partition functions Zu of
path-systems on subtrees T = T[u], because the decom-
position of the score-maximization is unambiguous in
the sense that every conformation falls into exactly of
the case of recursion. This is a generic feature of
dynamic programming algorithms that is explored
in some depth in the theory of Algebraic Dynamic
Programming [16]. We find

Z Z Z R Ru v w

y T wx T v

xy vx wy= + −
∈∈
∑∑· exp()· ·

[][]

 (14)

with Zu = 1 if u Î L and

R R Zkx k x kx x
= + (15)

for k Î J. Note that these recursions are completely
analogous to the score optimization in eqns.(2) and (3):
the max operator is replaced by a sum, and addition of
scores is replaced by multiplication of partition func-
tions and Boltzmann factors.
In order to compute the probability Pxy of a particular

path πxy in the ensemble we have to add up the contri-
butions pϒ of all path-systems that contain πxy

Z xy

xy

() : exp(())

= −∑ ϒ
ϒ

(16)

and compute the ratio Pxy = Z(πxy)/Z. The recursions
for the restricted partition function Z(πxy) can be

computed in analogy to eq.(14), but with two additional
constraints. First, since πxy Î ϒ by definition, the leaves
i Î T[v] and j Î T[w] are constrained in eq.(14),
because only paths πij that are edge-disjoint with πxy
can be considered. The recursion for the partition func-
tion of the last common ancestor node of x and y,
denoted k, is also constrained, because πxy must go
through k. Calculation of the partition functions for the
children of k is therefore not needed to compute Zk .
Thus,

Z
R R u k

Z Z
R R

u

xy vx wy

v w

ij vi wj

=
− =

+
−

exp()• •
•

exp()• •

 if

 otherwwise
i T v j T w

xy ij
∈ ∈

∩ =∅

∑

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ [], []

(17)

In resource requirements, this backward recursion is
comparable to the forward recursion in eq.(3): Z(πxy)
and thus also Pxy can be calculated in (n3) time,
because the number of leaf-pairs that have to be consid-
ered is still in (n2). There is an additional factor
 (n) arising from the need to determine if the path πxy
is edge-disjoint with another path, which however does
not increase overall time complexity. Furthermore,
 (n2) space is needed.
The computation of partition functions is a much

more complex problem for trees with multifurcations
since it would require us in particular to compute parti-
tion functions for the interleaved matching problems.
These are not solved by means of dynamic program-
ming; instead, they use a greedy algorithm acting on
augmenting paths in the auxiliary graphs. These algo-
rithms therefore do not appear to give rise to efficient
partition function versions.

The TARGETING software
We implemented the polynomial algorithms for the
MPP in the program TARGETING. The TARGETING
program is written in C and uses Ed Rothberg’s imple-
mentation [17] of the Gabow algorithm [10] to solve the
Maximum Weight Matching Problem on general graphs.
The software also provides an user-friendly interface
and can solve the special weight variants as well. The
source code can be obtained under the GNU Public
License at http://www.bioinf.uni-leipzig.de/Software/
Targeting/.

Concluding Remarks
In this contribution, we introduced a polynomial algo-
rithm for the Maximal Pairing Problem (MPP) as well
as some variants. The efficient generalization of the
dynamic programming approach to trees with

Arnold and Stadler Algorithms for Molecular Biology 2010, 5:25
http://www.almob.org/content/5/1/25

Page 7 of 10

http://www.bioinf.uni-leipzig.de/Software/Targeting/�
http://www.bioinf.uni-leipzig.de/Software/Targeting/�

multifurcations is non-trivial, since a straightforward
approach yields run-times that are exponential in the
maximal degree of the input tree. A polynomial-time
algorithm can be constructed by interleaving the
dynamic programming steps with the solution of auxili-
ary maximum weighted matching problems. This gener-
alized algorithm for the MPP is implemented in the
software package TARGETING, providing a user-friendly
and efficient way to solve the MPP as well as some of
its variants.
Future work in this area is likely to focus on develop-

ing algorithms for the variants of the MPP on multifur-
cating trees. In particular, the interleaving of dynamic
programming for the MPP and the greedy approach for
the auxiliary matching problems does not readily gener-
alize to a partition function algorithm for multifurcating
trees. The concept of unique matchings as discussed in
[18] may be of relevance in this context.
The MPP solver presented here has applications in a

broad variety of research areas. The method of phylo-
genetically independent comparisons relies on relatively
few assumptions [1-3] and is frequently used in evolu-
tionary biology, in particular in anthropology, compara-
tive phylogenetics and, more generally, in studies that
test evolutionary hypotheses [19-22]. As highlighted ear-
lier, another application area lies in the design of studies
in which tedious and expensive data collection is the
limiting factor, so that a careful selection (phylogenetic
targeting) becomes an economic necessity [5]. As noted
in [13], alternative applications can be found in molecu-
lar phylogenetics, for example in the context of estimat-
ing relative frequencies of different nucleotide
substitutions or the determination of the fraction of
invariant sites in a particular gene.

Appendix
Pseudocode
Below, we include some pseudocode for the computa-
tion of an optimal path-system for an arbitrary tree T.
Require: ωxy ≥ 0 ∀ pairs x, y Î L and precomputed

array n(u, x) n(u, x) ∀ u Î J and x Î L
1: Sx = Rxx = Qx,x = 0 ∀x Î L
R R Sux u x ux x

= + if |chd(u)| = 2 and
R R Qux u x u xx x

= + , if |chd(u)| > 2 ∀u Î J and x Î L
2: for all u Î J in post-order tree traversal do
3: if |chd(u)| = 2 then
4: {v, ω} ¬ chd(u)
5: Su1 = Sv + Sw
6: for all paths πxy with x Î T[v] and y Î T[w] do
7: determine the path πxy that maximizes
8: Su2 = ωxy + Rv,x + Rw,y
9: end for
10: if Su2 >Su1 then
11: Fu = (x, y)

12: else
13: Fu = ∅
14: end if
15: Su = max(Su1, Su2)
16: else
17: for all pairs v′, v′′ Î chd(u) do
18: determine the path πxy that maximizes
Qv v′ ′′, and set Fv′v′′ = (x, y) and ωv′,v′′ = Qv v′ ′′,
19: end for
20: for all pairs v, v* Î chd(u) do
21: ωv,v* = Sv
22: end for
23: use computed edge weights for the following

MWM problems
24: Su = MWM(Γ(chd(u)))
25: for i = 1 to |chd(u)| do
26: k ¬ i-th child from u
27: compute δ = MWM(Γ(chd(u)\k))
28: for all leaves x Î T[k] do
29: Qux = δ
30: end for
31: end for
32: tabulate solution of all MWM problems
33: end if
34: end for
The following algorithm summarizes backtracing. It

starts at the root of the tree, but consider any vertex u:
1: if |chd(u)| = 0 then
2: return
3: end if
4: if |chd(u)| = 2 then
5: {v, w} ¬ chd(u)
6: if Fu = ∅ then
7: call backtracing for T[v] (using the solution of

the MWM for Sv if |chd(v)| > 2)
8: repeat for T[w]
9: else
10: add Fu = (x, y) = πxy to solution set
11: k = v {path from v to x}
12: while k ≠ x do
13: *
14: if |chd(k)| = 2 then
15: call backtracing for T kx[]
16: else
17: call backtracing for T[k]\T[kx] (using the

solution of the MWM for Qkx)
18: end if
19: *
20: k = kx
21: end while
22: repeat for k = w {path from w to y}
23: end if
24: else
25: {v1, v2,...,vn} ¬ chd(u)

Arnold and Stadler Algorithms for Molecular Biology 2010, 5:25
http://www.almob.org/content/5/1/25

Page 8 of 10

26: take the appropriate tabulated MWMM
27: for all edges (vi, vj)of M do
28: add Fv vi j, = (x, y) = πxy to solution set
29: k = vi {path from vi to x}
30: while k ≠ x do
31: see case differentiation for the binary case

(lines between *)
32: k = kx
33: end while
34: repeat for k = vj {path from vj to y
35: end for
36: for all edges (vi, vl*)of M do
37: call backtracing for T[vi] (using the solution of

the MWM for Svi
if |chd(vi)| > 2)

38: end for
39: end if

A useful inequality
Consider an algorithm that operates on a rooted tree
with n leaves requiring ((du)

a) time for each interior
vertex with du children. A naive estimate immediately
yields the upper bound (na+1). Using the following
lemma, however, we can obtain a better upper bound.
Although Lemma 0.1 is probably known, we could not
find a reference and hence include a proof for
completeness.
Lemma 0.1 Let T be a phylogenetic tree with n leaves,

u an interior vertex, du = |chd(u)| the out-degree of u,
and a > 1. Then

()
u

ud n∑ ≤
(18)

Proof Let h denote the total number of interior ver-
tices. Each leaf or interior vertex except the root is a
child of exactly one interior vertex. Thus ∑u du = n +
(h - 1). For fixed h, we can employ the method of
Lagrange multipliers to maximize the objective function
F d d d du u u

u
uh

(, , ,) ()
1 2

 = ∑
subject to the constraint

∑u du = n + (h - 1) = c ≤ 2n - 1. The Lagrange function
is then

Λ(, , , ,) () (()).d d d d d cu u u

u

u

u

uh1 2
 = + −∑ ∑ (19)

Setting the partial derivatives of Λ = 0 yields the fol-
lowing system of equations:

∂
∂

∂
∂

=

=

+ ∀ ∈{ }

−

−

∑

Λ

Λ

dui
d u i h

d c

u i

uu

i

•() , ,

()

1 1
(20)

This system of equations is solved by
d d d du u uh1 2

= = = = for all i Î {1, h}. The above
sum is maximal when T is a full d-ary tree for some d.
The constraint can thus be expressed as h · d = n +
h -1 and F = hda which is maximized by making d as
large as possible (i.e., n) and hence minimizing the
number h of interior vertices (i.e., 1). Hence, F(n)=na.

Author details
1Bioinformatics Group, Department of Computer Science, and
Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße
16-18, D-04107 Leipzig, Germany. 2Harvard University, Department of Human
Evolutionary Biology, Peabody Museum, 11 Divinity Avenue, Cambridge MA
02138, USA. 3Max Planck Institute for Mathematics in the Sciences,
Inselstraße 22, D-04103 Leipzig, Germany. 4Fraunhofer Institute for Cell
Therapy and Immunology, Perlickstraße 1, D-04103 Leipzig, Germany. 5Santa
Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA. 6Institute for
Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090
Wien, Austria.

Authors’ contributions
Both authors designed the study and developed the algorithms. CA
implemented the TARGETING software. Both authors collaborated in writing
the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 8 April 2010 Accepted: 2 June 2010 Published: 2 June 2010

References
1. Felsenstein J: Phylogenies and the comparative method. Amer Nat 1985,

125:1-15.
2. Maddison WP: Testing Character Correlation using Pairwise Comparisons

on a Phylogeny. J Theor Biol 2000, 202:195-204.
3. Ackerly DD: Taxon sampling, correlated evolution, and independent

contrasts. Evolution 2000, 54:1480-1492.
4. Arnold C, Nunn CL: Phylogenetic Targeting of Research Effort in

Evolutionary Biology. American Naturalist 2010, In review.
5. Arnold C, Nunn CL: Phylogenetic Targeting Website. 2010 [http://

phylotargeting.fas.harvard.edu].
6. Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R,

Price SA, Vos RA, Gittleman JL, Purvis A: The delayed rise of present-day
mammals. Nature 2007, 446:507-512.

7. Burleigh JG, Hilu KW, Soltis DE: Inferring phylogenies with incomplete
data sets: a 5-gene, 567-taxon analysis of angiosperms. BMC Evol Biol
2009, 9:61.

8. Arnold C, Matthews LJ, Nunn CL: The 10kTrees Website: A New Online
Resource for Primate Phylogeny. Evol Anthropology 2010.

9. Sanderson MJ, Driskell AC: The challenge of constructing large
phylogenetic trees. Trends Plant Sci 2003, 8:374-379.

10. Gabow H: Implementation of Algorithms for Maximum Matching on
Nonbipartite Graphs. PhD thesis Stanford University 1973.

11. Galil Z, Micali S, Harold G: An O(EV log V) algorithm for finding a maximal
weighted matching in general graphs. SIAM J Computing 1986,
15:120-130.

12. Gabow HN, Tarjan RE: Faster scaling algorithms for general graph
matching problems. J ACM 1991, 38:815-853.

13. Purvis A, Bromham L: Estimating the transition/transversion ratio from
independent pairwise comparisons with an assumed phylogeny. J Mol
Evol 1997, 44:112-119.

14. Mückstein U, Hofacker IL, Stadler PF: Stochastic Pairwise Alignments.
Bioinformatics 2002, S153-S160:18.

15. McCaskill JS: The equilibrium partition function and base pair binding
probabilities for RNA secondary structures. Biopolymers 1990,
29:1105-1119.

Arnold and Stadler Algorithms for Molecular Biology 2010, 5:25
http://www.almob.org/content/5/1/25

Page 9 of 10

http://www.ncbi.nlm.nih.gov/pubmed/10660474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10660474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108577?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108577?dopt=Abstract
http://phylotargeting.fas.harvard.edu
http://phylotargeting.fas.harvard.edu
http://www.ncbi.nlm.nih.gov/pubmed/19292928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19292928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12927970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12927970?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9010143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9010143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1695107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1695107?dopt=Abstract

16. Steffen P, Giegerich R: Versatile and declarative dynamic programming
using pair algebras. BMC Bioinformatics 2005, 6:224.

17. Rothenberg E: Solver for the Maximum Weight Matching Problem. 1999
[http://elib.zib.de/pub/Packages/mathprog/matching/weighted/].

18. Gabow HN, Kaplan H, Tarjan RE: Unique Maximum Matching Algorithms.
J Algorithms 2001, 40:159-183.

19. Nunn CL, Baton RA: Comparative Methods for Studying Primate
Adaptation and Allometry. Evol Anthropology 2001, 10:81-98.

20. Goodwin NB, Dulvy NK, Reynolds JD: Life-history correlates of the
evolution of live bearing in fishes. Phil Trans R Soc B: Biol Sci 2002,
357:259-267.

21. Vinyard CJ, Wall CE, Williams SH, Hylander WL: Comparative functional
analysis of skull morphology of tree-gouging primates. Am J Phys
Anthropology 2003, 120:153-170.

22. Poff NLR, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC:
Functional trait niches of North American lotic insects: traits-based
ecological applications in light of phylogenetic relationships. J North Am
Benthological Soc 2006, 25:730-755.

doi:10.1186/1748-7188-5-25
Cite this article as: Arnold and Stadler: Polynomial algorithms for the
Maximal Pairing Problem: efficient phylogenetic targeting on arbitrary
trees. Algorithms for Molecular Biology 2010 5:25.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Arnold and Stadler Algorithms for Molecular Biology 2010, 5:25
http://www.almob.org/content/5/1/25

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/16156887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16156887?dopt=Abstract
http://elib.zib.de/pub/Packages/mathprog/matching/weighted/

	Abstract
	Background
	Results
	Conclusions

	Background
	Algorithms
	Definitions and Preliminaries
	The Maximal Pairing Problem for binary trees
	Forward recursion
	Backtracing
	Time and Space complexity

	The Maximal Pairing Problem for multifurcating trees
	Forward recursion
	Backtracing
	Time and Space complexity

	Algorithmic variants
	Special weight functions
	Fixed number of paths
	Selecting paths or taxa in addition to already selected paths or taxa

	Probabilistic version
	The TARGETING software

	Concluding Remarks
	Appendix
	Pseudocode

	Author details
	ce
	Authors' contributions
	ce
	Competing interests
	References
	A useful inequality

	Author details
	Authors' contributions
	Competing interests
	References

