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Abstract

In embryonic stem (ES) cells, bivalent chromatin domains with overlapping repressive (H3 lysine 27 tri-methylation) and
activating (H3 lysine 4 tri-methylation) histone modifications mark the promoters of more than 2,000 genes. To gain insight into
the structure and function of bivalent domains, we mapped key histone modifications and subunits of Polycomb-repressive
complexes 1 and 2 (PRC1 and PRC2) genomewide in human and mouse ES cells by chromatin immunoprecipitation, followed
by ultra high-throughput sequencing. We find that bivalent domains can be segregated into two classes—the first occupied by
both PRC2 and PRC1 (PRC1-positive) and the second specifically bound by PRC2 (PRC2-only). PRC1-positive bivalent domains
appear functionally distinct as they more efficiently retain lysine 27 tri-methylation upon differentiation, show stringent
conservation of chromatin state, and associate with an overwhelming number of developmental regulator gene promoters. We
also used computational genomics to search for sequence determinants of Polycomb binding. This analysis revealed that the
genomewide locations of PRC2 and PRC1 can be largely predicted from the locations, sizes, and underlying motif contents of
CpG islands. We propose that large CpG islands depleted of activating motifs confer epigenetic memory by recruiting the full
repertoire of Polycomb complexes in pluripotent cells.
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Introduction

Increasing evidence suggests that Polycomb- (PcG) and

trithorax-group (trxG) proteins and associated histone modifica-

tions are critical for the plasticity of the pluripotent state, for the

dynamic changes in gene expression that accompany ES cell

differentiation, and for subsequent maintenance of lineage-specific

gene expression programs [1–4].

PcG proteins are transcriptional repressors that function by

modulating chromatin structure [2–4]. They reside in two main

complexes, termed Polycomb repressive complexes 1 and 2 (PRC1

and PRC2). PRC2 contains Ezh2, which catalyzes histone H3

lysine 27 tri-methylation (H3K27me3), as well as Eed and Suz12.

PRC1 contains Ring1, an E3 ubiquitin ligase that mono-

ubiquitinylates histone H2A at lysine 119 (H2Aub1) [5,6]. Other

PRC1 components include Bmi1, Mel-18, and Cbx family

proteins with affinity for H3K27me3 [2,3].

Interplay between PcG complexes and modified histones has

been proposed to mediate stable transcriptional repression [2,3].

In the prevailing model, PRC2 is recruited to specific genomic

locations where it catalyzes H3K27me3. The modified histones in

turn recruit PRC1, which catalyzes H2Aub1 and thereby impedes

RNA polymerase II elongation [7,8]. PRC1 may also affect PRC2

function through as yet undefined mechanisms [2,3].

Several groups have combined chromatin immunoprecipitation

(ChIP) with microarrays to examine the genomic localizations of

individual PcG subunits [9–13]. Lee et al used tiling arrays to map

the PRC2 subunit Suz12 in human ES cells, identifying nearly

2000 gene targets. Boyer et al used promoter arrays to identify 512

genes co-occupied by PRC2 and PRC1 components in mouse ES
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cells. In both studies, the implicated gene sets were highly enriched

for developmental transcription factors (TFs), many of which

become de-repressed upon ES cell differentiation or in a PRC2-

deficient background.

Concurrent studies of histone methylation in ES cells led to the

unexpected finding that virtually all sites of PcG activity not only

carry the repressive H3K27me3 modification, but are also strongly

enriched for the activating, trxG-associated H3 lysine 4 tri-

methylation (H3K4me3) mark [14,15]. Genomic regions with the

two opposing modifications were termed ‘bivalent domains’ and

proposed to silence developmental regulators while keeping them

‘poised’ for alternate fates. Upon ES cell differentiation, most

bivalent promoters resolve to a ‘univalent’ state. Induced genes

become further enriched for H3K4me3 and lose H3K27me3,

while many non-induced genes retain H3K27me3 but lose

H3K4me3 [15,16].

Despite this progress, our understanding of PcG regulation and

bivalent domains remains limited. In the current study we sought to

address two outstanding issues. The first relates to whether all

bivalent domains have the same regulatory structure. The recent

observation that human and mouse ES cells show overlapping

H3K27me3 and H3K4me3 at over 2000 promoters, only a portion

of which have developmental functions, suggests that bivalent

domains may reflect multiple, distinct regulatory entities [16–18].

The second relates to the mechanisms that underlie the targeting of

PcG complexes and the establishment of bivalent domains in ES

cells. In Drosophila, PcG complexes are recruited to DNA elements

termed Polycomb response elements (PREs). However, mammalian

equivalents of these elements have yet to be identified [4].

We addressed these outstanding issues through genomewide

analysis of PcG complex localization in mouse and human ES

cells. We used the newly developed ‘ChIP-Seq’ method, which

leverages ultra high-throughput sequencing to generate uniquely

comprehensive maps of protein-DNA interactions [16,19].

The data reveal two classes of bivalent domains with distinct

regulatory properties. The first class corresponds to bivalent domains

with both PRC2 and PRC1. These ‘PRC1-positive’ bivalent

domains show striking evolutionary conservation, correspond to

large H3K27me3 regions in ES cells that are significantly more likely

to retain H3K27me3 upon differentiation, and account for a vast

majority of implicated developmental regulator genes. By contrast,

PRC1-negative bivalent domains, which are exclusively bound by

PRC2, are weakly conserved, poorly retain H3K27me3, and largely

correspond to membrane proteins or genes with unknown functions.

Remarkably, computational genomic analysis of the ChIP-Seq data

suggests a simple genomic code in which the locations, sizes and

motif contents of CpG islands may predict the genomewide

localizations of PRC2, PRC1 and bivalent domains in ES cells.

Based on these data, we propose a model in which large CpG islands

depleted of activating transcription factor motifs confer epigenetic

memory elements through mammalian development by recruiting

PRC2 and PRC1 during early embryogenesis.

Results

Overview of ChIP-Seq Datasets
To gain insight into the structure, function and conservation of

bivalent chromatin, we used ChIP-Seq to acquire genomewide maps

of PcG complex components and related histone modifications in ES

cells (Table S1). Chromatin from mouse v6.5 ES cells or human H9

ES cells was immunoprecipitated using antibodies against Ezh2,

Suz12, Ring1B, H3K4me3, H3K27me3 or H3K36me3 (Materials

and Methods). We also used biotin-streptavidin interaction (bio-

ChIP) to purify chromatin from a transgenic mouse ES line in which

endogenous Ring1B is fused to biotin ligase recognition peptide.

DNA isolated in each ChIP experiment was sequenced to high depth

using the Illumina Genome Analyzer. Aligned reads were integrated

into maps that indicate enrichment of a given epitope as a function of

genome position. In total, we created eight genomewide maps that

each reflects two to eleven million aligned reads and together

represent over 2 Gb of sequence. All data are publicly available at

http://www.broad.mit.edu/seq_platform/chip/.

Evolutionary Conservation of Chromatin State in ES Cells
The availability of genomewide data for mouse and human ES

cells acquired using identical antibodies and methodologies

provides an opportunity to study the conservation of chromatin

state in pluripotent cells. We systematically compared chromatin

state at 13,200 orthologous promoters, identifying striking

similarities at orthologous genomic loci (Figure 1A, Figure S1;

Table S2, S3, and S4).

In both mouse and human ES cells, roughly three-quarters of

gene promoters are marked by H3K4me3. There is strong

correspondence between species as .94% of promoters with

H3K4me3 in mouse also carry H3K4me3 in human. Roughly one

fifth of H3K4me3 promoters also carry H3K27me3, and thus are

bivalent (mouse: n = 2978; human: n = 2529) (Figure S1C). There

is again strong conservation, with more than half of bivalent

mouse promoters also carrying bivalent chromatin in human ES

cells (Figure 1B and Figure S1A). As shown previously, many

bivalent mouse promoters correspond to homeobox TFs or other

developmental regulators [14,15]. These gene categories show

particularly strong conservation of chromatin state, with roughly

70% correspondence between mouse and human. Still, there are

numerous developmental regulators whose chromatin state differs

between species (Figure S3). Closer inspection of these genes

reveals a number of interesting cases that appear to reflect

biological differences between the two pluripotency models:

Author Summary

Polycomb-group (PcG) proteins play essential roles in the
epigenetic regulation of gene expression during develop-
ment. PcG proteins are repressors that catalyze lysine 27
tri-methylation on histone H3. They are antagonized by
trithorax-group proteins that catalyze lysine 4 tri-methyl-
ation. Recent studies of ES cells revealed a novel chromatin
pattern consisting of overlapping lysine 27 and lysine 4 tri-
methylation. Genomic regions with these opposing
modifications were termed ‘‘bivalent domains’’ and
proposed to silence developmental regulators while
keeping them ‘‘poised’’ for alternate fates. However, our
understanding of PcG regulation and bivalent domains
remains limited. For instance, bivalent domains affect over
2,000 promoters with diverse functions, which suggests
that they may function in diverse cellular processes.
Moreover, the mechanisms that underlie the targeting of
PcG complexes to specific genomic regions remain
completely unknown. To gain insight into these issues,
we used ultra high-throughput sequencing to map PcG
complexes and related modifications genomewide in
human and mouse ES cells. The data identify two classes
of bivalent domains with distinct regulatory properties.
They also reveal striking relationships between genome
sequence and chromatin state that suggest a prominent
role for the DNA sequence in dictating the genomewide
localization of PcG complexes and, consequently, bivalent
domains in ES cells.

Genomewide Analysis of Polycomb
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(i) The promoters of Fgf2, Fgfr3, Activin A, Lefty1 and Lefty2

are bivalent in mouse ES cells but show active ‘H3K4me3

only’ states in human (Figure 1C). This is consistent with

known expression patterns for these genes, which are

associated with the human ES cell-specific Activin/NODAL

pathway [20–22]. Another example is SOCS1, an inhibitor

of STAT3 signaling that is specifically expressed in human

ES cells where it may block response to LIF [23].

(ii) Conversely, the chromatin maps reveal developmental

regulators that are bivalent only in human ES cells, and

these may also relate to known physiologic differences

between the models (Figure 1C). Examples include Fgf4

and Gbx2, which are associated with the inner cell mass and

specifically expressed in mouse ES cells [20,24,25].

Thus, comparative analysis of human and mouse ES cells suggests

extensive conservation of the pluripotent chromatin state while also

illuminating divergent chromatin regulation associated with signal-

ing pathways and transcriptional programs known to vary between

the studied cell models (see also Figure S3). The strong conservation

of bivalent domains seen here contrasts with the surprisingly weak

correspondence observed previously for Oct4 and Nanog targets

between mouse and human ES cells [26]. Consistent with prior

studies, our data suggest that global patterns of H3K27me3 and

H3K4me3 are intimately tied to transcriptional programs and

cellular state, and that the bivalent combination is a conserved mark

of silent developmental regulators in pluripotent cells.

PcG Complex Occupancy Defines Two Classes of Bivalent
Domains

PRC2 Occupies Essentially All Bivalent Domains. To

gain insight into the establishment and function of bivalent

domains, we next considered the localization of PcG complexes in

mouse ES cells. ChIP-Seq maps for the PRC2-components Ezh2

and Suz12 reveal .3000 sites in the mouse genome significantly

enriched for one or both factors. Roughly three-quarters of these

PRC2 bound sites correspond to known gene promoters: Ezh2

occupies 2461 promoters, while Suz12 occupies 1944 promoters.

There is extensive overlap between these sets of promoters, with

more than 89% of Suz12 targets also having Ezh2 (rphi = 0.77).

There is also overwhelming overlap with bivalent promoters:

nearly all Suz12 and Ezh2 targets have bivalent histone markings

Figure 1. Conservation of chromatin state in mouse and human ES cells. (A) ChIP-Seq signals for H3K4me3 (green), H3K27me3 (red) and
H3K36me3 (blue) are plotted across 120 kb of orthologous sequence in mouse and human ES cells. (B) The proportion of promoters that have a given
chromatin state in human ES cells is indicated contingent on their state in mouse ES cells. (C) ChIP-Seq signals are shown for developmental regulator
loci with divergent chromatin state in mouse and human ES cells. The divergent states correspond to known differences between the two
pluripotency models (see text).
doi:10.1371/journal.pgen.1000242.g001

Genomewide Analysis of Polycomb
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and, conversely, 78% of bivalent promoters have Ezh2 or Suz12

(Figure 2A,C).

Since PRC2 is the only known complex capable of catalyzing

H3K27me3 [2], we considered the minority (22%) of bivalent

promoters for which PRC2 was not detected by ChIP-Seq. Many

of these promoters show relatively low levels of H3K27me3, and

we considered whether PRC2 was simply missed due to sensitivity

or thresholding issues. Consistent with this possibility, ChIP with

quantitative real-time PCR (qPCR) confirmed modest but

significant Ezh2 enrichment at each of these promoters (ratios

from 2- to 7-fold; Figure S2A). This suggests that PRC2 is present

at essentially all bivalent promoters. Notably, the correspondence

between H3K27me3 and PRC2 is not limited to annotated gene

promoters, as near-universal PRC2 binding is also evident at the

roughly 1000 sites of bivalent chromatin that do not correspond to

known genes (see Materials and Methods).

PRC1 Occupies a Conserved Subset of Bivalent

Domains. We next turned to examine PRC1 localization,

focusing on its catalytic component Ring1B. ChIP-Seq maps reveal

roughly 1500 significantly enriched genomic sites in mouse ES cells,

including 1308 annotated gene promoters. Nearly all (90%) Ring1B

targets correspond to bivalent, PRC2-bound genomic regions.

However, just 39% of bivalent promoters are enriched for Ring1B

(Figure 2B,C). This occupancy rate is roughly half that observed for

Ezh2. As an added measure, we created an Ezh2 ChIP-Seq dataset

with exactly the same number of reads as the Ring1B dataset (by

randomly selecting reads). Analysis of this truncated dataset reveals

Ezh2 binding at 74% of bivalent promoters (compare to 75% for the

full Ezh2 ChIP-Seq dataset). Hence, sequencing depth does not

account for the difference between Ezh2 and Ring1B occupancy.

Thus, ChIP-Seq analysis suggests that while PRC2 is ubiqui-

tously present at bivalent promoters, PRC1 occupies only a

distinct subset. Since PRC2 and PRC1 have generally been

described at common genes and loci [9,10], we sought to confirm

this unexpected result by orthogonal approaches, as follows:

(i) First, we used ChIP and qPCR to exclude the possibility that

the absence of Ring1B at a subset of bivalent promoters

reflected a lack of sensitivity of the ChIP-Seq data. This

analysis confirmed that Ring1B-negative bivalent promoters

also do not show any enrichment by qPCR (Figure 2D).

(ii) Next, to rule out antibody-related bias, we used bioChIP to

purify Ring1B-bound chromatin from transgenic ES cells

carrying a fusion between Ring1B and biotin ligase

recognition peptide (Figure S2B). Ring1B-positive bivalent

promoters again showed consistent enrichment, while

Ring1B-negative bivalent promoters showed similar en-

richment to background controls.

Figure 2. PcG complex occupancy at bivalent domains. (A) ChIP-Seq signals are shown for H3K4me3, H3K27me3 and PRC2 subunits, Suz12
and Ezh2, at a representative panel of bivalent gene promoters. (B) ChIP-Seq signal for the PRC1 subunit Ring1B at these loci. (C) Venn diagram
illustrating overlap between promoters marked by H3K27me3, PRC2 and Ring1B. (D) ChIP-qPCR data for Ring1B at bivalent promoters classified by
ChIP-Seq as ‘Ring1B-positive’ or ‘Ring1B-negative’. Error bars show standard deviation.
doi:10.1371/journal.pgen.1000242.g002
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(iii) Third, to test whether the existence of Ring1B-positive and

negative bivalent domains is a conserved phenomenon, we

examined Ring1B occupancy in human ES cells by ChIP-

Seq. We again found that Ring1B occupies only a subset

of bivalent domains. The locations of PRC1 show

remarkable cross-species conservation: 60% of Ring1B-

positive promoters in human are also Ring1B-positive in

mouse (Table S4).

(iv) Finally, to confirm that Ring1B status is reflective of PRC1

status, we studied the localization of a distinct PRC1

component, Bmi1. Using an epitope tagged construct in

ES cells, we showed that Bmi1 specifically localizes to

Ring1B-positive bivalent domains (Figure S2C). This

suggests that our findings on Ring1B generally apply to the

PRC1 complex. Henceforth, the two sets of bivalent domains

are notated as ‘PRC1-positive’ and ‘PRC1-negative’.

PRC1-Bound Bivalent Domains Are Functionally Distinct
The identification of a distinct set of bivalent promoters targeted

by Ring1B prompted us to investigate the functional significance

of PRC1 occupancy. We made several striking observations

relevant to chromatin regulation, epigenetic memory, develop-

ment and differentiation:

PRC1 Occupancy Correlates with Functional Repres-

sion. We first considered whether physical targets of PRC1, as

defined above, are also regulated by the complex. Since Ring1B and

Ring1A are functionally redundant, we employed a conditional

Ring1A/B double-knockout ES cell system in which Ring1B

depletion is induced by addition of 4-hydroxy tamoxifen (OHT)

[13]. We profiled expression changes after 48 hours of OHT

treatment, at which time Ring1B protein levels are markedly

depleted while Oct4 levels remain essentially unchanged [8,13]. We

found that 32% of PRC1-positive bivalent promoters are up-

regulated by at least 50%, compared to just 5% of all genes

(Figure 3B). A much smaller proportion of PRC1-negative bivalent

promoters are up-regulated at this time point (16%). The difference

between the two sets is statistically significant (p,10210), and is not

explained by baseline expression levels as bivalent promoters show

very low activity, regardless of PRC1 status.

Several factors could contribute to de-repression of this smaller

set of PRC1-negative bivalent promoters. The changes may reflect

indirect effects as expression is measured after 2 days of OHT

treatment. Also, the Ring1 knockout experiment and the location

analyses were done in different ES lines, and this could be the basis

of some of the discrepancy. Nonetheless, the fact that the PRC1-

positive set shows a significantly greater response indicates that

PRC1 occupancy correlates with functional repression. As a

control, we examined expression changes associated with PRC2

loss. We found that PRC1-positive and PRC1-negative bivalent

promoters are de-repressed to roughly equal extents in ES cells

lacking the PRC2 component Eed (Figure S4) [13].

PRC1-Positive Bivalent Domains Correspond to Large

and Conserved Sites of H3K27me3. Next, we asked whether

the patterns of histone modification vary between the two sets of

bivalent domains. We observed two significant trends. First,

PRC1-positive bivalent domains are associated with much larger

regions of H3K27me3 than PRC1-negative bivalent domains

(median size of 3.2 kb versus 1.0 kb). The large size is consistent

with a proposed role for H3K27me3 in PRC1 recruitment [2,3].

Second, PRC1-positive bivalent domains exhibit greater

conservation of chromatin state: bivalent mouse promoters with

PRC1 have a bivalent human ortholog in 71% of cases, compared

to just 43% of bivalent mouse promoters without PRC1 (p,10210;

Figure 3C). Thus, PRC1 occupancy correlates with larger bivalent

domains that appear to reflect highly conserved functions.

PRC1-Positive Bivalent Domains Correspond to

Developmental Regulator Genes. Next, we examined the

gene targets associated with the different classes of bivalent

promoters. The PRC1-positive set contains a dramatic enrichment

of genes encoding TFs (30%, p,10220), including members of the

Hox, Sox, Pax and Pou domain families, or cell signaling and

morphogenesis molecules, such as Wnts and Fgfs (Figure S3). In

contrast, the PRC1-negative set of bivalent promoters is instead

over-represented for genes that encode membrane proteins (50%;

p,10210). Remarkably, despite the strong correlation of PcG

proteins with developmental TFs, this PRC1-negative (PRC2-

only) subset of bivalent domains shows statistically significant

depletion of TF genes relative to the genome average (4.1% vs

10.2%; p,10210 ).

PRC1-Positive Bivalent Domains Efficiently Maintain

Repressive Chromatin Environment. Finally, we compared

the behavior of PRC1-positive and PRC1-negative bivalent

promoters upon ES cell differentiation. We examined ChIP-Seq

data for a population of neural progenitors (NPCs) derived from

the same ES cell line [16]. Since PRC1 is implicated in the

maintenance of a repressive chromatin state, we reasoned that

promoters with PRC1 should more efficiently retain H3K27me3

upon differentiation. Consistent with this hypothesis, we found

that 33% of PRC1-positive bivalent promoters retain H3K27me3

in the NPCs, compared to just 10% of PRC1-negative bivalent

promoters (p,10210) (Figure 3D). Many PRC1-positive bivalent

promoters that lose the repressive mark upon differentiation do so

in association with transcriptional activation as roughly one-fifth

are induced at least 5-fold in the NPCs. Thus, PRC1 occupancy is

associated with more stable retention of PcG-associated chromatin

marks through differentiation.

We conclude that two distinct sets of bivalent domains can be

defined based on PcG complex occupancy in ES cells. Bivalent

domains that carry both PRC2 and PRC1 are larger, more

conserved and more efficiently retained through differentiation.

They account for the vast majority of implicated developmental

regulators. By contrast, bivalent domains occupied by PRC2 only

are poorly maintained, correspond to distinct non-developmental

gene sets, and thus may reflect alternate regulatory processes.

Sequence Elements and Motifs Predict PcG Complex
Localization in ES Cells

We next studied the chromatin maps to gain insight into

another fundamental unanswered question – namely, the

mechanisms that underlie the initial recruitment of PcG complexes

and the formation of bivalent domains in ES cells. The extensive

epigenetic reprogramming that precedes the pluripotent state

suggests that elements in the genomic sequence itself must play

central roles in this process [1,27,28]. Yet the identity of these

PcG-determining sequence elements has remained elusive.

PRC2 Associates with CG-Rich Sequences Genome-

wide. To identify sequence elements that could contribute to

PcG recruitment, we applied computational sequence analysis and

the new ChIP-Seq data. We focused initially on Ezh2, reasoning that

this catalytic PRC2 subunit would most closely reflect the initial

recruitment mechanisms. Bivalent domains and PcG target sites

have been shown previously to correlate with CG-rich DNA; for

example, ,50% of Suz12 binding sites in human ES cells

correspond to CpG islands [11,16,29]. The ChIP-Seq data for

mouse Ezh2 reveal an even higher correspondence, with a full 88%

of enriched intervals coinciding with an annotated CpG island.

H3K27me3-enriched intervals similarly correlate with CpG islands

Genomewide Analysis of Polycomb
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Figure 3. PRC1-positive bivalent domains are functionally distinct. (A) Box plot shows 25th, 50th and 75th percentile Ring1B ChIP-Seq signals
for Ring1B-positive bivalent promoters, Ring1B-negative bivalent promoters, and for H3K4me3 only promoters. (B) Plot illustrates fraction of genes
up-regulated (red) or down-regulated (blue) in PRC1-deficient ES cells for the indicated gene sets (see text for details on Ring1A/B dKO ES cell model).
De-repression is evident for a significantly greater proportion of PRC1-positive bivalent promoters (p-value by Fisher’s exact test). (C) The proportion
of bivalent mouse promoters for which the human ortholog also carries H3K27me3 is indicated, contingent on Ring1B status in mouse ES cells. (D)
The proportion of bivalent promoters for which H3K27me3 is retained in ES cell-derived neural progenitors (‘NPCs’), contingent on Ring1B status in
mouse ES cells. (E) Gene Ontology categories over-represented in PRC1-positive or PRC1-negative bivalent gene sets.
doi:10.1371/journal.pgen.1000242.g003

Genomewide Analysis of Polycomb
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in 79% of cases. Remarkably, the fraction of Ezh2/H3K27me3 sites

that coincide with CpG islands is substantially higher than that of

H3K4me3 (68%), which has previously been associated with CpG

islands [15]. It is also far greater than that of other chromatin

structures (Figure S5), including H3K9me3 (1.1%) and H4K20me3

(0.7%).

When we examined the small minority (12%) of Ezh2 binding

sites that do not correspond to an annotated CpG island, we found

that three-quarters of these sites overlap highly CG-rich sequences

that just fall short of the defined threshold for CpG islands (see

Materials and Methods). Including those sites, .97% of Ezh2

binding sites in the ES cell genome correspond to annotated CpG

islands or other highly CG-rich sequences. These results suggest

that such CG-rich sequences, known to be largely un-methylated

at the DNA level in ES cells [27], may contribute to the

recruitment of PRC2 and the subsequent establishment of

H3K27me3 at bivalent domains.

Still, only a minority of CpG islands carries Ezh2 or H3K27me3

in ES cells – that is, are PRC2-positive. Most are enriched for

H3K4me3 only and are PRC2-negative (Figure 4A). We thus

considered whether additional sequence characteristics distinguish

between PRC2-positive and PRC2-negative CpG islands. We

collated two sets of CpG islands, one showing clear Ezh2 binding

based on ChIP-Seq (n = 2608) and the other lacking any Ezh2

signal (n = 9097). To maximize the power of our analysis, we

excluded a subset of CpG islands showing intermediate levels of

Ezh2 enrichment (n = 3443).

We considered CpG island length, CG density and the

frequency of all possible dinucleotides (Figure S6) as potential

characteristics. PRC2-positive CpG islands show a greater median

length (721 bp vs 526 bp) and a slightly lower median CpG

observed-to-expected ratio (0.88 vs 0.92). However, the overall

distributions of length and ratio are largely similar and do not

discriminate between PRC2-positive and negative sets.

We also compared the conservation properties of these CpG

island sets. Mammalian genomes contain ,200 large regions

characterized by striking enrichment for highly conserved non-

coding elements [30,31] and exceptionally low CpG divergence rates

[32]. These loci contain promoters for many developmental genes,

most of which are bivalent in ES cells [33]. Although it has been

suggested that conserved elements within these loci contribute to

PcG recruitment, we find that only ,10% of Ezh2 binding sites

occur within these regions. Overall, we find that PRC2-positive CpG

islands show modestly higher sequence conservation relative to

PRC2-negative islands, but with overlapping distributions (Materials

and Methods). Thus, conservation analysis does not present an

obvious explanation for observed PRC2 binding patterns.

PRC2-Positive CpG Islands Can Be Distinguished Based

on Motif Content. Because the distinction between PRC2-

positive and PRC2-negative CpG islands is not explained by

simple sequence composition, we next considered more complex

sequence motifs. In D. melanogaster, PcG recruitment is mediated by

combinations of motifs recognized by specific TFs [4]. We thus

explored whether TF motifs could predict PRC2 localization in

mammalian ES cells. Since the motifs and TFs implicated in fly

show little or no conservation in vertebrates, we broadened our

analysis to include all 668 vertebrate DNA binding motifs

annotated in the TRANSFAC and Jaspar databases [34,35].

We used the MAST algorithm [36] and position weight

matrices (PWMs) from these databases to identify motifs. Taking

an unbiased approach, we searched for motifs over-represented in

either Ezh2-positive or Ezh2-negative CpG islands. Over-

represented motifs were ranked by enrichment ratio, and their

significance was confirmed using Fisher’s exact test. We also

excluded the possibility that enriched motifs simply reflected

differences in underlying nucleotide content by repeating each

survey with scrambled PWMs. Finally, since there is redundancy

among factors and PWMs in the TRANSFAC and Jaspar

databases, a clustering algorithm was used to collapse highly

similar PWMs to a single representative motif. This analysis

yielded a total of 14 motifs enriched between 1.2 and 1.3-fold in

the Ezh2-positive CpG islands, and these fall into 10 motif clusters.

It also revealed 11 motifs enriched between 2.3 and 6.0-fold in the

Ezh2-negative CpG islands, falling into 6 clusters (Figure 4B,C,

Figure S8).

We initially focused on the motifs associated with Ezh2-positive

CpG islands as these could potentially mediate PRC2 recruitment.

Although the enrichment ratios were relatively low, it is

conceivable that combinations of factors might be required, as in

Drosophila. However, most of the corresponding TFs are not

actually expressed in ES cells, but rather are expressed in

differentiated cells. These include developmental regulators

induced along specific differentiation pathways, such as MyoD

(myogenesis), Lmo2 (hematopoiesis), Brachyury (paraxial meso-

derm) and Pou6F1 (neurogenesis) [37–40]. PRC2 targets include

many developmental genes with complex expression patterns

which may explain why they are enriched for lineage-specifying

TF motifs. Hence, it is unlikely that these non-expressed TFs

contribute to PRC2 localization in ES cells.

However, three of the factors identified in the Ezh2-positive

islands are expressed in ES cells, and these cases are illustrative

(Figure 4D). The most highly-expressed is neuron-restrictive

silencing factor (NRSF/REST), a potent transcriptional repressor

essential for ES cell pluripotency [41]. Notably, the NRSF motif is

among the best characterized and highly predictive binding

elements in mammalian genomes [42]. A second expressed factor

is Cux1, which also functions as a transcriptional repressor [43].

The third expressed factor is NFkB, a widely studied transcrip-

tional regulator with diverse functions related to immunity,

inflammation and differentiation [44]. Although NFkB is clearly

expressed, its activity is strongly inhibited in ES cells by the

pluripotency factor Nanog [45]. Thus, motifs enriched in Ezh2-

positive CpG islands are recognized either by repressors or by TFs

that are inactive in ES cells (see Text S2).

Next, we turned to examine motifs enriched in the Ezh2-

negative CpG islands. We were immediately struck that these

motifs are recognized by several well-characterized classes of

transcriptional activators that are highly expressed in ES cells

(Figure 4C,D). Some of the implicated factors have key functions

in the ES cell regulatory network (e.g., NFY, Myc) while others are

constitutive activators with general housekeeping functions (e.g.,

Ets1; see Text S2) [46–48]. The magnitudes of enrichment

observed for these activating motifs are much greater than those

observed for motifs identified in Ezh2-positive sequences above.

Thus, the strongest sequence correlate of Ezh2 binding at a CpG

island appears to be the absence of motifs capable of conferring

transcriptional activity.

A simple count of the motif occurrences within a CpG island

allows accurate prediction of roughly two-thirds of Ezh2 binding sites

(see Materials and Methods; Figure 4E). This compares favorably

with the Polycomb response elements predicted in Drosophila, which

are present at 6 to 27% of experimentally-determined PcG binding

sites [4,49–51]. Notably, the motif occurrences we identified in

mouse also have considerable predictive value for identifying PcG

targets in human ES cells (Figure 4F).

In sum, we find that PRC2-positive CpG islands are

characterized by an over-representation of repressor motifs and

a strong depletion of transcriptional activator motifs. While it is
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possible that the implicated repressors directly mediate PRC2

recruitment, each has been well-studied and linked to distinct

biological processes. Rather, we favor the view that the paucity of

activating motifs and, to a lesser extent, the presence of repressive

motifs dictate a transcriptionally inactive state in ES cells that is

permissive to PRC2 binding. We suggest that CpG islands play a

central role in PRC2 recruitment and, in the absence of

transcriptional activity, assume a bivalent chromatin state by

‘default’ in ES cells (see Discussion).

PRC1 Occupies Large PRC2-Positive CpG Islands. Lastly,

we considered whether PRC1 association can also be predicted from

genome sequence. PRC1 occupies roughly half of all PRC2 sites in

ES cells, and is essentially never observed in the absence of this

second PcG complex. We collated and compared two sets of Ezh2-

positive CpG islands, one with Ring1B (n = 1036) and the other

without Ring1B (n = 981) (see Methods). We found no significant

differences in nucleotide content (CG-density, dinucleotide

frequencies) or in the occurrences of the motifs discussed above.

Figure 4. CG-density and DNA motif occurrences predict genomewide PcG complex localization. (A) Proportion of CpG islands with a
given chromatin state in mouse ES cells. More than 97% of Ezh2 sites in mouse ES cells correspond to CpG islands or other highly CG-rich sequences.
A systematic screen reveals sets of DNA motifs over-represented in (B) Ezh2-positive CpG islands or (C) Ezh2-negative CpG islands (enrichment in
parentheses). (D) Expression levels of implicated TFs in mouse ES cells. Motifs enriched in Ezh2-positive CpG islands correspond to repressors or to TFs
that are not expressed. Motifs enriched in Ezh2-negative CpG islands correspond to highly expressed activators. (E) Ezh2 ChIP-Seq signals for CpG
islands predicted as PRC2-positive or PRC2-negative based on motif occurrences. (F) H3K27me3 ChIP-Seq signals for human ES cells for CpG islands
predicted to be PRC2-positive or PRC2-negative based on occurrences of the motifs originally identified in mouse.
doi:10.1371/journal.pgen.1000242.g004
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Rather, the best predictor appears to be the length of CG-rich

DNA. PRC1-positive CpG islands are roughly twice as large as

those that carry only PRC2 (Figure S9). They are also much more

likely to reside in close proximity to other bivalent CpG islands.

Consideration of CpG island size and proximity to other bivalent

islands enables accurate prediction of PRC1 status for .70% of

PRC2-positive CpG islands (see Materials and Methods). Thus,

our findings suggest that the genomewide localization of the two

main PcG complexes in ES cells may be largely predicted from the

location, size and underlying motif content of CpG islands.

Discussion

We have applied ChIP-Seq and computational genomic

analysis to study the genomewide distributions of key histone

modifications and PcG subunits in mouse and human ES cells,

thereby gaining insight into the structure, function and establish-

ment of bivalent domains.

The ChIP-Seq data reveal two distinct sets of bivalent domains

in ES cells. One set, defined based on co-occupancy by both

PRC1 and PRC2, shows special epigenetic properties, including

higher evolutionary conservation of chromatin state and robust

retention of repressive chromatin through differentiation. This set

is exquisitely enriched for developmental targets in that over one

third of the corresponding genes encode TFs, morphogens or

cytokines. In striking contrast, a second set of bivalent domains,

occupied by PRC2 only, is actually under-represented for TF

genes relative to the genome average, and shows weak

conservation and retention of the PcG-associated chromatin

marks. We suggest that the complete repertoire of PcG machinery

is needed for full functionality of bivalent domains and associated

chromatin in the epigenetic regulation of key developmental genes.

The data also suggest a potential model for understanding the

initial recruitment of PcG complexes for the coordinated

establishment of bivalent chromatin. In particular, we find that

PRC2 association in ES cells is entirely restricted to sequences with

high CpG content, the vast majority being annotated CpG islands.

The status of a given CpG island – whether it carries PRC2 and

bivalent H3K4me3/H3K27me3 chromatin or only H3K4me3 –

correlates with underlying motif content. CpG islands with PRC2

show a striking depletion of transcriptional activator motifs and a

modest enrichment of repressor motifs. Thus, PRC2 appears to

localize to CpG islands that are transcriptionally silent in ES cells

because they lack activating DNA sequence motifs.

CpG islands have been extensively correlated with trxG

complexes and H3K4me3; recruitment of the former likely involves

CXXC proteins with affinity for un-methylated CpG dinucleotides

[15,52,53]. We propose that CpG islands by default similarly

mediate PcG recruitment and catalysis of H3K27me3 in mamma-

lian ES cells, except when the default is over-ridden by transcrip-

tional activity. In this model, the extent of PcG/H3K27me3 and

trxG/H3K4me3 at any given CpG island is determined by its

baseline transcriptional status which is dictated by underlying motif

content. The view that transcriptional status is upstream of PcG

status in ES cells is consistent with the subtle transcriptional changes

evident in PcG-deficient ES cells [9,54]. Although our analyses do

not shed light on the underlying mechanisms, PRC2 recruitment

may also involve proteins with affinity for un-methylated CpGs or

may be mediated indirectly through recognition of other histone

modifications such as H3K4me3. In either case, active transcription

within a locus would preclude stable PRC2 association and thereby

restrict it to inactive CpG islands.

Large PRC2-positive CpG islands tend to also carry PRC1. The

expansive regions of H3K27me3 associated with these islands may

contribute to PRC1 recruitment via chromodomain proteins [2,3].

As discussed above, bivalent domains that carry both PRC2 and

PRC1 appear to have unique epigenetic regulatory properties. We

therefore propose that large CpG islands depleted of activating

motifs confer epigenetic regulation by recruiting both key PcG

complexes in pluripotent cells. Such islands may thereby reflect

mammalian memory elements analogous to Polycomb response

elements in flies.

The tight correspondence between DNA sequence and PcG

localization may have implications for important cellular process-

es, such as development and epigenetic reprogramming. Induced

pluripotent stem (iPS) cells and ES cells exhibit nearly identical

chromatin patterns, including the locations of bivalent domains

[55,56]. The sequences described above may function as templates

for the robust assembly and appropriate positioning of PcG

complexes and bivalent domains during pre-implantation devel-

opment or the artificial reprogramming of somatic cells to iPS cells

[1,28].

What then might be the purpose of an initial chromatin state

fully encoded by genetic sequence and an associated transcrip-

tional program? Based on existing evidence, we suggest that PcG

complexes and associated chromatin buffer the pluripotent ground

state by reinforcing the repression of factors that induce

differentiation. The initial chromatin architecture also appears

poised for the dynamic expression changes that accompany

differentiation and for the subsequent engagement of epigenetic

controls to maintain lineage-specific transcriptional programs. Our

analysis suggests that such epigenetic functions mainly apply to

large bivalent CpG islands that also carry PRC1. It remains to be

seen whether small PRC1-negative bivalent domains have distinct

regulatory functions or are simply byproducts of the mechanisms

that have evolved for establishment of the former.

Further studies are needed to determine the precise DNA

elements and protein interactions that mediate PcG recruitment.

As discussed above, the proposed central role for CG-rich sequences

implies the involvement of CXXC domains or other proteins that

recognize CG dinucleotides. However, several factors complicate the

interpretation of our genomic findings. In particular, CpG islands

are at least partly a consequence of reduced CpG deamination rates

in regions that lack DNA methylation in the germ line [27]. PcG-

occupied regions are largely un-methylated at the DNA level, at least

in ES cells [57], and this could favor retention of CG-rich sequences.

Thus, it remains possible that evolutionary dynamics and/or the

generally high CpG content of target regions are masking other key

sequence features.

Finally, it should be emphasized that our findings on the

relationships among PRC2 and PRC1 and the sequences that

underlie their genomic localizations pertain specifically to ES cells.

PcG complexes show remarkable tissue-specificities in terms of their

expression levels, stoichiometry and localization [2,3,11,12]. Further

study is needed to understand how the genomic localizations and

regulatory functions of PcG complexes vary with differentiation,

lineage specification, environment, and disease.

Materials and Methods

Cell Culture
Mouse v6.5 (genotype 129SvJae6C57BL6, male, passages 10–

15) ES cells were cultured on fibroblast feeders in DMEM (Sigma)

with 15% fetal bovine serum (Hyclone), GlutaMax (Invitrogen),

MEM non-essential amino acids (Invitrogen), pen/strep (Invitro-

gen), ESGRO (Chemicon) and 2-mercaptoethanol (Sigma),

incubating at 37uC, 5% CO2 [16]. Prior to harvest, these cells

were passaged 2–3 times on feeder-free gelatinized tissue culture
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plates. A transgenic ES cell line expressing a fusion between

Ring1B and biotin ligase recognition peptide from the endogenous

Ring1B locus and the BirA biotin ligase from the Rosa26 locus

(H.K., unpublished) was cultured as described above.

Human H9 (female, passage 45) ES cells were cultured as

described [58] and at http:/www.WiCell.org. Briefly, the human

ES cells were cultivated on irradiated MEFs (strain DR4) in

Knockout DMEM (Invitrogen) containing 10% Knockout Serum

Replacement (Invitrogen), 10% Plasmanate (Bayer Healthcare),

GlutaMax (2 mM), pen/strep, MEM non-essential amino acids

(0.1 mM), 10 ng/ml b-FGF (Invitrogen) and 2-mercaptoethanol.

Cells were incubated at 37uC, 5% CO2. MEF-free ES cells were

used for analysis. MEF-free culture was prepared in the following

manner: First, MEFs were depleted at the time of trypsin

passaging through brief transfer (thirty minutes) of hES cells onto

gelatin-coated plates. MEF-subtracted ES cells were then propa-

gated on plates coated with Matrigel (Invitrogen). ES cells grown

on Matrigel were supported with the aforementioned human ES

cell medium that had first been conditioned on MEFs for

24 hours. Fresh b-FGF was added to the conditioned medium

immediately prior to use.

Generation of Flag-Bmi1 mES Cells
Doxycyclin-inducible Flag-Bmi1 transgenic ES cell line was

generated by PCR amplifying a 16 flag tagged Bmi1 ORF

(Addgene) with primers that incorporate a 36 flag tag as well as

EcoRI and XbaI restriction enzyme sites (59-GGAATTCCAC-

CATGGACTACAAAGACCATGACGGTGATTATAAAGAT-

CATGATATCGACTACAAGGACG-39, 59- GCTCTAGAG-

CACCAGATGAAGTTGCTGATGACCCATTTAGTGATG-

ATTTT-39). This was cloned into the pLox vector (pPGK-loxP-

neoEGFP) and incorporated into Ainv15 mouse ES cells using a

cre recombinase expression vector as previously described [59].

Flag-Bmi1 ES cells were cultured similarly to wild-type mES cells

as described above. Prior to harvest, Flag-Bmi1 expression was

induced by incubating with 1 mg/ml of Doxycycline for two days

on gelatinized culture plates.

Chromatin Immunoprecipitation and Antibodies
ChIP experiments for H3K4me3, H3K27me3 and H3K36me3,

Ring1B and Flag-Bmi1 were carried out as described [15,16]. ES

cells were crosslinked in 1% formaldehyde, lysed and sonicated

with either a Branson 250 Sonifier (mouse ES cells) or a

Diagenode bioruptor (human ES cells) to obtain chromatin

fragments in a size range between 200 and 700 bp. Solubilized

chromatin (whole cell lysate or ‘WCE’) was diluted in ChIP

dilution buffer (1:10) and incubated with antibody overnight at

4uC. Protein A sepharose beads (Sigma) were used to capture the

antibody-chromatin complex and washed with low salt, LiCl, as

well as TE (pH 8.0) wash buffers. Enriched chromatin fragments

were eluted at 65uC for 10 min, subjected to crosslink reversal at

65uC for 5 hrs, and treated with Proteinase K (1 mg/ml), before

being extracted by phenol-chloroform-isoamyl alcohol, and

ethanol precipitated. ChIP DNA was then quantified by Quant-

iT Picogreen dsDNA Assay kit (Invitrogen).

ChIP experiments for Ezh2 and Suz12 were carried out on

nuclear preps. Crosslinked ES cells were incubated in swelling

buffer (0.1 M Tris pH 7.6, 10 mM KOAc, 15 mM MgOAc, 1%

NP40), on ice for twenty minutes, passed through a 16G needle 20

times and centrifuged to collect nuclei [60]. Isolated nuclei were

then lysed, sonicated and immunoprecipitated as described above.

BioChIP assays were carried out using transgenic Ring1B-Biotin

ligase recognition peptide ES cells (above). Nuclei were isolated,

lysed and sonicated as described above. Dynabeads M-280

Streptavidin (Invitrogen 112.05D) were used to capture biotinylated

Ring1B-DNA complex. Beads were washed with a 2% SDS buffer

and a high salt buffer (50 mM HEPES, pH 7.5, 1 mM EDTA,

500 mM NaCl, 1% Triton X-100, 0.1% Deoxycholate), in addition

to the regular washes. Elution and cross-link reversal were done

simultaneously by incubating Dynabeads in 300 mM NaCl at 65uC
overnight [46]. DNA was isolated as described above.

Antibodies used in this study include anti-H3K4me3 (Abcam

ab8580), anti-H3K27me3 (Upstate 07-449), anti-H3K36me3

(Abcam ab9050), anti-Ezh2 (Active Motif 39103), anti-Suz12

(Abcam ab12073), anti-Ring1B [61] and anti-Flag (M2) (Sigma

F1804). Details on antibody specificity are provided in Text S1.

Sequencing Library Preparation and Illumina/Solexa
Sequencing

Library preparation and ultra high-throughput sequencing were

carried out as described [16]. Briefly, one to ten nanograms (ng) of

ChIP DNA were end-repaired and 59phosphorylated using END-

It DNA End-Repair Kit (Epicentre). We then followed steps four

through seven of Illumina standard sample prep protocol (v1.8)

using Genomic DNA Sample Prep Kit (Illumina) with minor

modifications. A single Adenine was added to 39 ends by Klenow

(39R59 exo2), and double-stranded Illumina Adapters were

ligated to the ends of the ChIP fragments. Adapter-ligated ChIP

DNA fragments between 275 bp to 700 bp were gel-purified and

subjected to 18 cycles of PCR. Prepared libraries were quantified

using PicoGreen and sequenced on the Illumina Genome

Analyzer per standard operating procedures.

Read Alignment and Generation of Density Maps and
Modified Intervals

Sequence reads (36 bases) from each ChIP experiment were

compiled, post-processed and aligned to the appropriate reference

genome using a general purpose computational pipeline as

described previously [16]. Aligned reads are used to estimate the

number of end-sequenced ChIP fragments that overlap any given

genomic position (at 25-bp resolution). For each position, we

counted the number of reads that are oriented towards it and

closer than the average length of a library fragment (,300 bp).

The result is a high-resolution density map that can be viewed

through the UCSC Genome Browser [62] and is used for

downstream analyses. Prior comparisons to microarray analysis

and quantitative real-time PCR have shown that ChIP-Seq density

maps accurately reflect enrichment [16]. ChIP-Seq data can be

accessed at http://www.broad.mit.edu/seq_platform/chip/.

We used a Hidden Markov Model (HMM) to demarcate

chromosomal segments likely to be enriched for a given chromatin

modification or PcG protein [16]. In order to model ChIP-Seq

read density variations along the genome, we define four observed

states: masked, low density, medium density, and high density.

This discretization of the data into the four states was based on the

signal intensity in known modified regions versus known

unmodified regions as determined in prior ChIP-Seq, microarray

and ChIP-PCR analyses [15,16], and adjusted for each sample.

The model was then used to discriminate enriched and unenriched

intervals genome wide. In order to more properly classify enriched

regions containing several short interspersed peaks and facilitate

subsequent analyses intervals within 2 kb were merged.

Promoter Classification and Definition of Gene and
Transcript Intervals

We defined 17760 mouse and 18522 human promoters for

17442 and 17383 genes, respectively, as the sequences between
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20.5 kb and +2.0 kb of the annotated transcription start site,

using the mouse mm8 and human hg18 genome builds.

Transcripts were defined for these genes as the range from

transcription start to end [62]. To identify regions enriched for

histone marks or chromatin-associated proteins, we generated a

null-hypothesis background model by dividing the alignable parts

of each chromosome into 200 bp bins and randomly redistributing

the reads aligned on this chromosome. Based on a histogram of the

cumulative distribution of reads per bin, a cutoff threshold was

determined. Stability of the calculated background cutoff thresh-

old was confirmed through 1000 independent simulations for each

ChIP-Seq track and showed remarkable invariance. For promot-

ers, a 200 bp sliding window was moved across the 2.5 kb

promoter region and the ratio of median read density over

background was calculated. The maximum enrichment achieved

in any window at this promoter site was then used for further

analysis. Maximum enrichment cutoff thresholds were determined

empirically for all tracks, and promoters were then classified based

on the maximum enrichment for the various histone marks and

PcG proteins. The same procedure was applied to a pan-H3

(modification-insensitive) ChIP-Seq dataset as control where

virtually no significant enrichment over background was found.

Ring1B-positive bivalent promoters were defined based on

normalized ChIP-Seq signal and comprise 40% of all bivalent

promoters. A set of Ring1B-negative bivalent promoters was also

defined based on absence of ChIP-Seq enrichment, and includes

another 40% of all bivalent promoters. The remaining bivalent

promoters (20%) with indeterminate Ring1B ChIP-Seq signals

were excluded from this analysis.

For conservation analyses of human and mouse promoter states,

we used NCBI HomoloGene (build 58) gene clusters to assign

orthologous human promoters and transcripts to the 17442 mouse

promoters and transcripts, yielding a set of 13200 orthologous

promoters and 13625 orthologous transcripts for which human

and mouse chromatin state could be compared (ftp://ftp.ncbi.nih.

gov/pub/HomoloGene/). Genes with multiple start sites were

excluded from this analysis. Promoters were associated with CpG

states as described previously [16].

For comparison of Ezh2 and Ring1B occupancy at target genes,

a reduced Ezh2 read set was generated by randomly selecting the

same number of reads that were available for Ring1B from the full

Ezh2 read pool (,3.5 million). Read mapping to the mouse

genome and analysis of promoter state were performed as

described above.

Real-Time PCR
PCR primer pairs were designed to amplify designated genomic

regions using Primer3 (http://fokker.wi.mit.edu/primer3/input.

htm). Real-time PCR assays were carried out on ABI 7000 or 7500

detection systems. We used Quantitect SYBR green PCR mix

(Qiagen) with 0.1 ng ChIP or 0.1 ng un-enriched input DNA

(WCE) as template. Log2 enrichment was calculated from

geometric means obtained from three independent ChIP exper-

iments, each evaluated by duplicate PCR assays. Background was

subtracted by normalizing over negative genomic control.

Gene Expression Analysis
Gene expression data for Ring1A/B-dKO (Ring1A2/2;Ring1Bfl/fl;

Rosa26::CreERT2) ES cells (2 day post-tamoxifen treatment and

no-treatment control, H. Koseki unpublished data) and Eed KO ES

cells (Eed 2/2 and control Eed+/+ ES) [13], acquired with

Affymetrix Mouse Genome 430 2.0 Arrays, were normalized using

the Genepattern expression data analysis package (http://www.

broad.mit.edu/cancer/software/genepattern). CEL files were pro-

cessed with RMA, quantile normalization and background correc-

tion [63]. For a given comparison (Ring1A/B-dKO vs control; or

Eed 2/2 vs +/+), we only considered probes in which at least one of

the experiments had a ‘‘P’’ significance call. Fold changes were

calculated for each passing probe. Genes with multiple correspond-

ing probes were assigned the geometric average fold change value.

Gene expression data for mouse v6.5 mES and NPCs were obtained

from previously published Affymetrix mRNA profiles [16].

Gene Class Enrichment Analysis
Gene ontology (GO) functional annotation for the Ring1B

positive and negative sets was done using DAVID analysis tool

(http://david.abcc.ncifcrf.gov/home.jsp). P-values were adjusted

for multiple hypothesis testing using Bonferroni correction.

CG Content and Motif Enrichment Analysis
The HMM described above was used to define enriched

intervals for each modification or chromatin protein from the

mouse ES cell ChIP-Seq data. We determined the extent to which

Ezh2 intervals (and those for other epitopes) overlap with CG-rich

sequences. CpG island coordinates were obtained from the UCSC

Genome Browser [62]. We identified all Ezh2 intervals that

overlap these CpG island coordinates within 500 bp. Next, the

EMBOSS analysis package [64] was used to determine the portion

of remaining Ezh2 intervals overlapping a ‘mini’ CpG island

defined as a 100 bp window with at least 50% GC content and an

O:E ratio .0.6 (instead of the standard CpG island window of

200 bp).

We next classified CpG islands according to their chromatin

state (e.g., Ezh2-positive v. Ezh2-negative, H3K4me3 v. bivalent).

This was done by computing the median ChIP-Seq read density

across each defined CpG island, and setting thresholds using a null

background model of randomized reads. For these analyses we

excluded CpG islands that fall within unalignable regions, typically

due to low complexity sequence, and thus could not be evaluated

by ChIP-Seq (,7% of all CpG islands). To maximize discrimi-

natory power, we excluded intermediate CpG islands with sub-

threshold Ezh2 signal.

We computed median values and distributions for length, CG

density and observed-to-expected ratio for the different CpG

island sets, and also evaluated nucleotide content by calculating

the frequencies of all 16 dinucleotide combinations. Conservation

scores were determined for each CpG island by aligning the

regions between mouse and rat, and performing a dinucleotides

level comparison of the conservation between the two species.

Both CpG and non-CpG dinucleotides were conserved at slightly

higher levels in the Ezh2-bound CpG islands (Figure S7).

We next screened the CpG island sets for TF motif occurrences.

668 position weight matrices (PWMs) were obtained from the Jaspar

(Release 3.0 [34]) and TRANSFAC (Release 9.4; [35]) databases,

excluding any non-vertebrate factors. We prepared sets of Ezh2-

positive and Ezh2-negative sequences by extracting each CpG island

along with flanking sequence equal to 50% of its length. The MAST

algorithm [36] was then used to search for significant PWM matches

(p,5e-5) in the Ezh2-positive and negative sets. Occurrences were

length-normalized and used to calculate ratios that reflect the

enrichment in the Ezh2-positive set relative to the Ezh2-negative set,

or vice versa. We identified significantly over-represented motifs

using Fisher’s exact test with Bonferroni-adjusted p-values. These

candidate motifs were then scrambled, re-scored, and excluded if

any enrichment was observed in the scramble.

We used a clustering algorithm to collapse similar motifs identified

as enriched in one of the sets to a single consensus sequence [65].

This was necessary due to high motif redundancy in the databases.

Genomewide Analysis of Polycomb
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After clustering, all intra-cluster motif occurrences overlapping by

more than 50% were counted as a single instance. Expression values

for corresponding DNA binding proteins were determined from

previously published Affymetrix mRNA profiles for v6.5 ES cells

[16].

A simple count-based model was used to determine the extent to

which motif occurrences are predictive of Ezh2 status. The motif

content which allowed for maximum discrimination in mouse is as

follows: a CpG island was predicted to be Ezh2-positive if it either

(i) contained .8 ‘Ezh2-positive’ motifs or (ii) contained .4 ‘Ezh2-

positive’ motifs and ,2 ‘Ezh2-negative’ motifs. Ezh2 status in

human was predicted using the motifs identified in mouse but with

the following metric: a CpG island was predicted to be Ezh2-

positive if it contained .15 ‘Ezh2-positive’ motifs and ,2 ‘Ezh2-

negative’ motifs.

In order to quantify Ring1B presence in CpG islands, we

considered the distribution of ChIP-Seq reads in control regions.

We specifically used all alignable, H3K4me3-only CpG islands as

our null hypothesis background model. The distribution of Ring1B

ChIP-Seq read densities across these islands was calculated and a

threshold was set to minimize the false positive detection rate. We

then calculated Ring1B ChIP-Seq read density in sliding 200 bp

windows in all Ezh2-positive CpG islands, with a CpG island

assigned the maximum enrichment in any of its 200 bp windows.

For maximum discriminatory power, we excluded 20% of CpG

islands with sub-threshold Ring1B signal. Ring1B status was

predicted using the length of CpG-richness in PRC2-positive CpG

islands. Islands were predicted to be Ring1B-positive if they were

either .1200 bp or within 2 kb of another CpG island.

Supporting Information

Figure S1 Comparison of chromatin states in mouse and human

ES cells. (A) Conservation of H3K4me3 for 13,200 transcription

start sites between human and mouse. Dashed lines indicate cutoff

thresholds used to binarize the data for further analysis. Genes that

carry H3K4me3 are likely to be conserved (upper right quadrant),

as are those that are not marked (lower left quadrant). Less than

12% of genes are differentially methylated between human and

mouse (upper left and lower right quadrants). (B) Conservation of

H3K27me3 for the same regions used in (A). Most genes in both

mouse and human are not marked with H3K27me3 (bottom left

quadrant). Only slightly more than half the genes that carry

H3K27me3 in mouse do so in human also. (upper and lower right

quadrant). (C) H3K4me3 vs. H3K27me3 plotted for 17,760

mouse genes reveal three prominent marks in ESC: H3K4me3

only, (lower right quadrant), H3K4me3+H3K27me3/bivalent

(upper right quadrant) and ‘‘no mark’’ (lower left quadrant). Very

few genes are marked with H3K27me3 only (upper left quadrant).

Found at: doi:10.1371/journal.pgen.1000242.s001 (3.85 MB PDF)

Figure S2 Quantitative PCR enrichment for Ezh2 ChIP,

Ring1B bioChIP and Flag-Bmi1 ChIP. (A) Plot shows Log2

ChIP-qPCR enrichment of Ezh2 in mouse v6.5 ES cells at

bivalent gene promoters. Included are promoters classified as

PRC2-bound (orange) or PRC2-unbound (yellow) by ChIP-Seq.

(B) Plot shows Log2 enrichment of Ring1B bioChIP-qPCR in

transgenic mouse ES cells expressing biotin-tagged Ring1B (mES*)

at bivalent promoters classified by ChIP-Seq as PRC1-bound

(purple) or PRC1-unbound (blue). H3K4me3 only genes are

green. (C) Plot shows fold enrichment of Flag ChIP-qPCR in

transgenic mouse ES cells expressing Flag-tagged Bmi1 (mEŜ) at

bivalent promoters classified by ChIP-Seq as PRC1-bound

(purple) or PRC1-unbound (blue).

Found at: doi:10.1371/journal.pgen.1000242.s002 (0.31 MB PDF)

Figure S3 Chromatin states of species-specific factors from ES

cell Pathways. Divergent chromatin states of species-specific

factors in transcription and signaling pathways observed in mouse

and human ES cells reflect known distinctive biological functions

between the two pluripotency models.

Found at: doi:10.1371/journal.pgen.1000242.s003 (0.28 MB PDF)

Figure S4 Expression analysis in PRC2 wild-type (WT) and

knock-out (KO) mouse ES cells. Expression changes for all genes,

Ring1B-positive bivalent and Ring1B-negative bivalent genes in

PRC2 knock-out (Eed2/2) mouse ES cells.

Found at: doi:10.1371/journal.pgen.1000242.s004 (0.15 MB PDF)

Figure S5 Analysis of the CG-richness of HMM-defined

intervals of H3K4me3, H3K27me3, H3K36me3, H3K9me3,

H3K20me3, and Ezh2. (A) The fraction of intervals that either

directly overlap or are within 500 bp of a CpG island. (B) The

maximum CpG observed-to-expected ratio in any 200 bp window

within the interval. The dashed line marks 0.6, one of the criteria

used to define a CpG island.

Found at: doi:10.1371/journal.pgen.1000242.s005 (0.21 MB PDF)

Figure S6 Comparison of Ezh2-positive and Ezh2-negative

CpG islands. No marked difference was observed in CpG

observed-to-expected ratio (A), percent CpG (B), or percent GC

(C), whereas Ezh2-positive CpG islands tend to be longer (median

721 bp vs 526 bp; D).

Found at: doi:10.1371/journal.pgen.1000242.s006 (0.22 MB PDF)

Figure S7 Conservation of Ezh2-bound and Ezh2-unbound

dinucleotides between rat and mouse. Aligning regions in rat (rn4)

for both classes of CpG island were identified, and a dinucleotide

level comparison was performed on the conservation between the

two species. Both non-CpG (A) and CpG (B) dinucleotides were

conserved at slightly higher levels in the Ezh2-bound CpG islands

than in those islands that did not bind Ezh2.

Found at: doi:10.1371/journal.pgen.1000242.s007 (0.70 MB PDF)

Figure S8 Motif clusters and their respective enrichment p-

values for Ezh2-positive and Ezh2-negative CpG islands. The top

ranking motifs (and their Bonferroni-corrected p-values from

Fisher’s exact test) for Ezh2-negative (A) and positive (B) CpG

islands. The motifs were clustered and collapsed to reduce

redundancy.

Found at: doi:10.1371/journal.pgen.1000242.s008 (0.49 MB PDF)

Figure S9 Length of CpG islands in Ring1B-positive and

Ring1B-negative bivalent promoters. Ring1B-positive bivalent

CpG islands are larger than bivalent CpG islands that are only

bound by PRC2.

Found at: doi:10.1371/journal.pgen.1000242.s009 (0.12 MB PDF)

Table S1 List of ChIP-Seq datasets showing numbers of aligned

reads.

Found at: doi:10.1371/journal.pgen.1000242.s010 (0.28 MB PDF)

Table S2 Chromatin states of analyzed promoters in mES cells.

Found at: doi:10.1371/journal.pgen.1000242.s011 (3.72 MB XLS)

Table S3 Chromatin states of analyzed promoters in hES cells

(Microsoft Excel file).

Found at: doi:10.1371/journal.pgen.1000242.s012 (2.81 MB XLS)

Table S4 Comparison of chromatin states of analyzed promot-

ers between mES and hES cells.

Found at: doi:10.1371/journal.pgen.1000242.s013 (1.69 MB XLS)

Table S5 PCR primers used for Ezh2, Ring1B and Flag-Bmi1

ChIP-qPCR in mouse ES cells.

Found at: doi:10.1371/journal.pgen.1000242.s014 (0.61 MB PDF)
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Text S1 Supporting information on the specificity of antibodies.

Western blots using mouse ES cell protein extracts demonstrate

the specificity of anti-Ring1B and anti-Ezh2 (Active Motif 39103),

antibodies used in this study. *Indicates the expected molecular

weight. Previous publications that demonstrate the specificity of

the antibodies used are listed.

Found at: doi:10.1371/journal.pgen.1000242.s015 (1.83 MB PDF)

Text S2 Relevant references for transcription factors (TFs) that

correspond to implicated motifs and are active in ES cells.

Found at: doi:10.1371/journal.pgen.1000242.s016 (0.63 MB PDF)
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