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Crowded intracellular environments present a challenge for proteins to form functional specific
complexes while reducing non-functional interactions with promiscuous non-functional partners.
Here we show how the need to minimize the waste of resources to non-functional interactions limits
the proteome diversity and the average concentration of co-expressed and co-localized proteins.
Using the results of high-throughput Yeast 2-Hybrid experiments, we estimate the characteristic
strength of non-functional protein–protein interactions. By combining these data with the strengths
of specific interactions, we assess the fraction of time proteins spend tied up in non-functional
interactions as a function of their overall concentration. This allows us to sketch the phase diagram
for baker’s yeast cells using the experimentally measured concentrations and subcellular
localization of their proteins. The positions of yeast compartments on the phase diagram are
consistent with our hypothesis that the yeast proteome has evolved to operate closely to the upper
limit of its size, whereas keeping individual protein concentrations sufficiently low to reduce
non-functional interactions. These findings have implication for conceptual understanding of
intracellular compartmentalization, multicellularity and differentiation.
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Introduction

The properties of individual proteins ranging from their structure
and folding to function and evolution have been extensively
studied. Recently, protein–protein interactions (PPIs) became
popular subjects of both experimental (Uetz et al, 2000; Ito et al,
2001; Giot et al, 2003; Li et al, 2004; Stelzl et al, 2005; Rual et al,
2005; Gavin et al, 2006) and theoretical scrutiny (Bogan and
Thorn, 1998; Lo Conte et al, 1999; Kortemme and Baker, 2002;
Aloy et al, 2004; Aloy and Russell, 2006; Kim et al, 2006). In
addition to the traditional studies, which mainly focus on the
detailed understanding of protein interactions within small sets
of functionally related proteins, the new systems biology
perspectives have emerged (Sear, 2004; Deeds et al, 2007; Maslov
and Ispolatov, 2007), which address the behaviour of large sets of
proteins of diverse types operating together inside living cells.
However, our understanding of the coexistence of different
proteins in crowded cellular environments remains quite limited.

The key issue we discuss here is whether the possibility to form
numerous non-functional interactions (Box 1) in such environ-
ments impedes proteins’ ability to engage in highly specific
biologically functional interactions. Here, the non-functional
interaction refers to a transient complex between two function-
ally unrelated proteins. Such complexes are formed following
random encounters between proteins as they diffuse in the cell
searching for their functional (specific) partners. Apparently, one
way for nature to reduce non-functional interactions is to keep
the concentrations of individual proteins in a cell to a minimum.
However, there is a limit to how low this concentration can go, as
it must allow for the efficient biological functioning of the cell as
well as formation of the specific complexes (both transient and
permanent). Obviously, under these conditions, the only
remaining way to reduce the overall concentration of proteins
and hence the formation of non-functional complexes is to limit
the diversity of the proteome, that is, the number of different
protein types that are co-expressed in a given subcellular
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compartment. If such limit on the proteome diversity does indeed
exist, how far below it are the environments inside real cells? For
instance, among the B4500 yeast protein types simultaneously
expressed under the normal conditions (Ghaemmaghami et al,
2003; Huh et al, 2003), about 1800 types are known to be co-
localized in the cytoplasm (Huh et al, 2003). How far is this
number from the theoretical upper bound?

A related question is to what extent non-functional
interactions affect the biochemical efficiency of formation of
functional protein complexes? That is to say, by how much
proteins’ search for their specific partners is slowed down by
transient non-functional complexes? The answer depends
upon both the proteome diversity and individual protein
concentrations. Were individual protein concentrations evo-
lutionarily tuned to assure the sufficient efficiency to form
specific protein complexes?

We hypothesize that in general the biological evolution
pushes an organism towards higher protein diversity. The
diversity increases until it reaches the limit beyond which non-
functional interactions start to significantly interfere with
proteins’ functions. At the same time, the average concentra-
tion of individual proteins is pushed down in evolution to
reduce the impairment of non-functional interactions to
biochemical efficiencies, until it reaches the lower limit
defined by stability of specific complexes as well as the overall
functioning of the cell.

In this study, we quantitatively address these questions and
check this hypothesis by comparing the equilibrium concen-
trations of specific and non-functional complexes and that of
unbound proteins in the monomeric form. The typical binding
energy of specific PPIs is obtained from a database (Kumar and
Gromiha, 2006) generated by manual curation of the literature.
As the information about non-functional PPIs is not usually
reported in the literature, we infer the distribution of their
binding energies from the data generated in high-throughput
Yeast 2-Hybrid (Y2H) experiments (Uetz et al, 2000; Ito et al,
2001; Giot et al, 2003; Li et al, 2004; Rual et al, 2005; Stelzl et al,
2005). As presented in Box 2, the PPIs detected in these
experiments are known to include many false-positives (Ito
et al, 2001; Aloy and Russell, 2002; Deane et al, 2002; Vidalain
et al, 2004; Huang et al, 2007), which are likely caused by non-
functional interactions (Deeds et al, 2006). Therefore, the

results of proteome-wide Y2H assays provide a unique
opportunity to estimate both the average strength and the
distribution of non-functional interactions.

Using these estimates, we find that the size of the yeast
proteome is close to the theoretical upper limit imposed by
competition between specific and non-functional interactions.
Namely, the number of protein types co-expressed and co-
localized in the cytoplasm, which is the largest compartment
of the yeast cell, is close to its theoretical upper limit. It could
be further increased only by the virtue of intracellular
compartmentalization or (in multicellular organisms) by cell-
type differentiation. At the same time, we find that the average
concentration of individual proteins expressed in the yeast
cytoplasm is close to its theoretical lower limit at which
functional interactions with a typical specific binding energy
are possible. On average, the time proteins waste in various
non-functional complexes is typically comparable with the
time they spend in the monomeric (unbound) form. However,
for some of the stickiest proteins, this lost time ratio can be
significantly higher. We conjecture that the impact of non-
functional PPIs on biochemical efficiencies of specific protein
complexes is close to the tolerable limit. Other relatively large
compartments of the yeast cell, the nucleus and mitochondria,
have fewer protein types than the cytoplasm and higher
average individual protein concentrations, although these
differences do not exceed an order of magnitude.

Results

The upper limit on protein diversity: a simple
estimate

Non-functional interactions are ubiquitous in crowded cellular
environments. As a large variety of different proteins are
forced to coexist in the same intracellular compartment,

Box 1 A non-functional interaction refers to formation of a transient
complex between two functionally unrelated proteins. Such complexes are
formed following random encounters between proteins as they diffuse in the
cell searching for their functional (specific) partners. If there are many types
of coexisting proteins in a cell compartment, the chance to encounter an
arbitrary partner in such random walk is much greater than to encounter a
protein’s specific partner. For functional interactions to dominate, this
entropic factor has to be compensated by making functional interactions, on
average, much stronger than random non-functional ones. This is achieved
by evolutionary selection of interacting surfaces for functionally interacting
proteins. Proteins expressed at lower concentrations are subject to stronger
evolutionary pressure, as they need a smaller dissociation constant to form
specific complexes. To enhance their strength and specificity, functional
interactions may involve the formation of additional hydrogen bonds and, in
some cases, salt bridges. On the other hand, non-functional interactions,
which have not been evolutionarily optimized, result from random encounters
between surfaces of two proteins. The physical nature of these interactions is
hydrophobic: it is mainly due to burial of hydrophobic groups on the transient
interface from water.

Box 2 Interactions between many proteins are systematically tested in
large-scale Y2H screens. In Y2H approach, proteins are overexpressed to
high concentration of 1 mM or higher (Estojak et al, 1995). To this end, the
Y2H approach detects PPI with binding affinities stronger than Kd

*E1 mM.
Some reported interactions (up to 19%; Nakayama et al, 2002) may not be
real, but owing to experimental artefacts such as bait self-activation (Vidalain
et al, 2004). However, the remaining of the reported interactions, although
being real in Y2H assay, may not all be observed in living cells. Many proteins
are expressed in vivo at lower concentrations than baits and preys in Y2H
experiments, and therefore they will not form complexes in cells, although in
Y2H assay they can form complexes due to overexpression. Pairs of proteins
with binding affinities close to Kd* form transient complexes in Y2H, which
may be detected in some experiments and missed in others, hence lack of
reproducibility for weaker complexes. Although these limitations may affect
the ability of Y2H to reliably detect functional PPIs, the Y2H data is very
useful to estimate strength of non-functional PPI because it massively reports
on relatively weak interactions between proteins. Here we use the Y2H data
for that purpose, assuming that fraction a of PPIs are real yet non-functional,
which are detected under high concentration conditions of the Y2H
experiment. The uncertainty in the estimate of parameter a gives rise to the
uncertainty in the estimate of mdead—the maximal number of protein types
that can be coexpressed in a cell. In the future, to obtain the complete set of
non-functional PPIs within a given interactome, it will be necessary to
systematically disrupt each interaction and test the impact of such a
disruption on biological functioning of the cell. Eventually, when large-scale
experimental information about the binding affinities of individual PPIs will
become available, one would be able to exactly calculate the effect of non-
functional interactions on biochemical efficiency of individual proteins.
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a protein encounters non-functional interaction partners much
more frequently than the few protein types with which it has
evolved to specifically interact. As was pointed out by Janin
(1996) and Deeds et al. (2007), the specific interactions must
be significantly stronger than non-functional ones to guaran-
tee that specific complexes are more common than random,
non-functional complexes. We begin the discussion of the role
of non-functional interactions from a simplified conceptual
example where we assume that: (1) all binding energies Es in a
small set (one interaction partner per protein) of specific PPIs
are the same; (2) the binding energies En of non-functional
interactions between all possible pairs of proteins are also
identical to each other and (3) the concentrations Ci of every
protein in the cell are the same. Furthermore, we consider the
case in which the biologically functional state of each protein
is when it is bound with its specific interaction partner.
Although, as will be shown below, these assumptions are
certainly an oversimplification, they represent a conceptually
useful first step towards addressing the problem of the
competition between specific and non-functional complexes.

Consider a protein of a certain type i that interacts with other
proteins of a unique type i0 through specific binding, and with
all other proteins R through non-functional binding. We
assume that proteins participating in pairwise specific and
non-functional complexes do not bind to other proteins. Then
the total concentration Ci¼C̃ of the protein i is formed by

~C ¼ ½i� þ ½ii0� þ ½iR� ð1Þ

where [i], [ii0] and [iR] are the concentrations of the three
states of the protein i: the monomeric (unbound), bound in a
specific complex and bound in any of the promiscuous non-
functional complexes. These three concentrations are related
to each other by the law of mass action

½iR� ¼ ½i�½R�
C0 expðEn=kTÞ ð2aÞ

½ii0� ¼ ½i�½i0�
C0 expðEs=kTÞ ð2bÞ

Here the normalization concentration C0¼1M is the conven-
tion and ½R� ¼

Pm
j¼1 ½ j � sums over nearly all of the m protein

types co-localized in the same compartment. The binding
energies are related to the dissociation constants by
K¼C0 exp (E/kT) and are usually negative. Among the three
terms in Equation (1), the concentration [ii0] should be the
dominant one to ensure the abundance of specific complexes
needed for proper functioning of the cell. We refer to a
situation in which [ii0] is not the largest of the three terms as a
biologically prohibitive ‘dead zone’ shown in red colour in
Figure 1. One way, the system can fall into the dead zone if
[ii0]o[i]. For a simple estimate of the boundary of this zone, let
us ignore for a moment the contribution of non-functional
interactions. In this case, precisely at the border of the dead
zone, one has [ii0]¼[i]¼[i0]¼C̃/2. Thus, according to Equation
(2b), the system is in the dead zone if the individual protein
concentration C̃ is below the critical value

~CoCcrit ¼ 2Ks ¼ 2C0 expðEs=kTÞ ð3Þ

We emphasize that the choice of [ii0]¼[i] to define the
boundary of the dead zone is purely on the basis of

convenience. In reality, the ratio [ii0]/[i] changes continuously
with C̃. Therefore, the dead zone is separated from the other
zones by a smooth crossover rather than a sharp phase
transition. The dead zone also includes the situation when
[ii0]o[iR]. By comparing Equations (2a) and (2b), we find that
this happens when the number m of co-expressed and co-
localized protein types exceeds the critical value

mdead ¼ ½R�=½i� ¼ exp½ðEn � EsÞ=kT� ð4Þ

Similar to Equation (3), mdead is a characteristic value of the
crossover. The inequality mdeadb1 follows from the observa-
tion (Janin, 1996; Deeds et al, 2007) that specific, functional,
interactions are significantly stronger, statistically, than non-
functional ones. We further divide the biologically allowed
region into two parts: the ‘safe zone’ with [iR]o[i]o[ii0]
(shown in green in Figure 1), and the ‘dangerous zone’ with
[i]o[iR]o[ii0] (shown in yellow in Figure 1). The boundary
between them in this simplified example is determined by
Equation (2a) to be:

mwarning 	 Kn=ð~C=2Þ ¼ ð2C0=~CÞ expðEn=kTÞ ð5Þ

where Kn is the dissociation constant for non-functional
interactions. If one fixes the concentration C̃ of each individual
protein type and increases the number of protein types m,
starting from the safe zone, one first enters the dangerous zone
at m¼mwarning, and finally reaches the dead zone at m¼mdead.
As C̃ decreases, mwarning increases, and the separation between
mwarning and mdead shrinks. Eventually, when C̃ reaches the
lowest value Ccrit given by Equation (3), the separation
between mwarning and mdead disappears altogether. In other
words, the three lines corresponding to Equations (3)–(5)
intersect approximately at the same ‘triple point’ (see Figure 1),
where all three terms in Equation (1) are equal to each other.

A protein in the dangerous zone has disadvantages
compared with those in the safe zone. First, to ensure the
dominance of the specific complex, [ii0]4[iR], its specific
interaction must be strong enough to resist the interference
from non-functional interactions (see Supporting Information
for details). Although this could be achieved in evolution, it is
an extra requirement the cell needs to satisfy. Moreover, even if
the specific interaction is strong enough, a protein in the

(En–Es)/kT
ln m

Es/kT

ln Ci /C0

[ii ′] < [i ]

[ii ′] < [iR ]
 [iR ] < [i ] < [ii ′]

[i ] < [iR ] < [ii ′]

Figure 1 The conceptual illustration of possible states of a protein in a
compartment of a living cell. The green, yellow and red regions represent the
‘safe zone’, the ‘dangerous zone’ and the ‘dead zone’, respectively. The
boundaries between them are given by Equations (3–5).
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dangerous zone would waste a considerable amount of time
on non-functional interactions with non-functional partners.
This increases the time it takes for it to find its specific partner
by the factor 1þ [iR]/[i]42 and thus affects the temporal
efficiency of all biochemical processes involving this protein.
Therefore, it indeed represents a ‘dangerous’, or suboptimal,
situation and imposes a soft upper limit on the protein
diversity. Outside of the dead zone, compartments of living
cells need to minimize the average losses of biochemical
efficiency experienced by proteins inside the dangerous zone.

Physical model of non-functional interactions

What happens inside intracellular compartments of real cells is
more complicated than the simplified example presented
above. Most importantly, the binding energies of both specific
and non-functional interactions as well as the concentrations
of individual proteins vary in a broad range. Therefore,
different proteins in a cell are characterized by different
‘danger levels’ [iR]/[i]. In spite of these complications, can we
still quantitatively analyse the general situation inside
compartments of real cells, for example, in the cytoplasm of
yeast cells under normal conditions? How many protein types
fall inside the dangerous zone? What is the largest value of
[iR]/[i] among all protein types present in the yeast cytoplasm?
What is the phase diagram in terms of the proteome diversity
m and the distribution of individual protein concentrations? To
address these questions, we start with a basic physical model
of non-functional interactions.

To enhance their strength, functional interactions may
involve the formation of additional hydrogen bonds and, in
some cases, salt bridges. On the other hand, non-functional
interactions, which have not been evolutionarily selected, are
formed primarily due to the hydrophobic effect. Indeed, non-
functional interactions result from random encounters be-
tween surfaces of two proteins, and the free energy gain
associated with such an encounter was shown to be propor-
tional to the total amount of buried hydrophobic residues on
these two surfaces (Janin, 1995; Bahadur et al, 2004). It has
become standard to relate the binding (free) energy to surface
hydrophobicity (Eisenberg and McLachlan, 1986; Noskov and
Lim, 2001; Bahadur et al, 2004; Deeds et al, 2006). Here, we
adopt a simple model from Deeds et al (2006) to describe the
distribution of non-functional interactions. The major premise
of the model is that the free energy of a non-functional PPI is
determined by the total hydrophobic surface that is screened
from the water upon the formation of a complex. This
assumption is strongly supported by the structural and
energetic analysis of many functional and non-functional
protein complexes (Bahadur et al, 2004). The interaction
energy between any two proteins i and j is therefore additive:

Eij ¼ Ei þ Ej þ DGð0Þ ð6Þ

Here, Ei and Ej describe the ‘stickiness’ of proteins i and j,
indicating how hydrophobic their surfaces are. In support of
this model, Figure 3 of Janin (1995) showed that experimental
result of binding energies can be described by the sum of
stickiness terms and a constant term. The constant term DG(0),
determined as B6 kcal/molE10kT from experiments (Janin,
1995; Tamura and Privalov, 1997), comes from the transla-

tional and rotational entropy the two proteins lose while
binding to each other. In other words, the effective ‘interaction
volume’ is much smaller than the convention of 1/C0¼1M�1 in
Equation (2). The fraction P of hydrophobic residues on
proteins’ surfaces has an approximately Gaussian distribution,
with the average P̄D0.22 and the standard deviation sPD0.058
(Deeds et al, 2006). As Ei is proportional to the surface
hydrophobicity, Ei/Ej¼Pi/Pj, the distribution of Ei is also
expected to be Gaussian (Figure 2a)

f1ðEiÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

2ps2
p exp �ðEi � �EÞ2

2s2

" #
ð7Þ

where

�E=s ¼ ��P=sP ¼ �0:22=0:058 ¼ �3:8 ð8Þ
(Deeds et al, 2006). The distribution of binding energy
Eij¼Eiþ EjþDG(0) of two-body non-functional interactions is
then given by

f2ðEijÞ ¼
1ffiffiffiffiffiffiffiffiffiffi

4ps2
p exp �

ðEij � 2�E � DGð0ÞÞ2

4s2

" #
ð9Þ

with the average value 2ĒþDG(0) and the standard deviationffiffiffi
2

p
s (Figure 2b). This model has been used to successfully

explain most global topological properties of PPI network
(Deeds et al, 2006).

In fact, the details of the (hydrophobic) physical nature of
non-functional interactions are not crucial for our model.
What is indeed important is the assumption that the free
energy of such interactions is proportional to the total
hydrophobic surface covered upon formation of a non-

Eij

Ei

E * 2 E + ∆G(0)

2 �√

f2 (Eij )

f1 (Ei )

� E

�

Figure 2 Gaussian distributions: (A) f1(Ei) of ‘stickiness’ parameters Ei of
individual proteins (B) f2(Eij) of binding energies Eij¼Eiþ Ej þDG(0) of pairwise
non-functional interactions. The dashed line in the panel (A) shows the fraction of
proteins in the monomer defined by Equation (10) with the chemical potential m.
The shadowed area is the product of f1(Ei) and Equation (10), and represents the
distribution of Ei in protein monomers. The shadowed region in panel (B)
corresponds to non-functional PPIs that are stronger than the detection threshold
E* and thus appear in high-throughput Y2H screens. The fraction of such
interactions among BN2/2 pairs is given by Equation (16).
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functional complex involving these two proteins. There exists
a significant evidence (Janin, 1995; Tamura and Privalov,
1997) that this may indeed be the case. The key aspect
underlying this assumption is that non-functional interactions,
having not been evolutionarily selected, represent random
encounters between protein surfaces and as such adequately
reflect the average surface composition of proteins. We use the
Y2H data (see Materials and methods) to evaluate the
significant parameters of this free energy model. In contrast,
protein surfaces participating in functional PPIs have been
presumably selected by evolution for stability and specificity,
and various types of interactions were employed to achieve
that (Lukatsky et al, 2007). As a result, these evolutionarily
selected interactions are not adequately described by the sum
of hydrophobicities of covered surfaces.

Fraction of proteins wasted in non-functional
complexes: the phase diagram

If a protein with the surface energy Ei is not bound in a specific
complex, it can either exist in a monomeric form or be bound
to any of the non-functional partners. The ratio
½iR�=½i� ¼ e�ðEi�mÞ=kT between the last two concentrations
depends on the chemical potential m of the pool of all non-
functional interaction partners (see Supporting Information
for details). Then the probability for a protein to be in a
monomeric form obeys the Fermi–Dirac distribution

½i�=ð½iR� þ ½i�Þ ¼ 1

1 þ e�ðEi�mÞ=kT
ð10Þ

shown by the dashed line in Figure 2a. The value of m can be
found by solving

e�ðEi�mÞ=kT ¼ ½iR�
½i� ¼

X
j

½j�
C0

e�Eij=kT

ffi g � m �C

C0
e�Ei=kT

Z
e�ðEjþDGð0ÞÞ=kT f1ðEjÞ

1 þ e�ðEj�mÞ=kT
dEj

ð11Þ

self-consistently. Here, we implicitly assume that the possible
correlation between individual protein concentrations Ci and
their stickiness parameters Ei can be neglected (see Supporting
Information for the justification). The parameter g is defined as
the effective fraction of the total protein concentration mC̄ that
is not tied up inside the specific complexes and thus could
participate in non-functional interactions. Although we
assumed above that specific complexes do not participate in
non-functional PPIs, in fact some of them do (however, with a
reduced affinity). Indeed, their constituent proteins typically
have more than one ‘surface side’ (Kim et al, 2006) and could
use their other (usually less hydrophobic) surface sides for
non-functional interactions. This would push the effective
fraction g closer to 1. For simplicity, throughout the manuscript
we use g¼1. This is justified, as the value of m determined by
the solution of Equation (11) only depends weakly on the value
of g within its plausible range (see Supporting Information for
details).

The chemical potential m goes up when the total protein
concentration mC̄ in the cytoplasm increases. As shown in
Figure 2a, proteins with too sticky surfaces Eiom actively

participate in non-functional bindings, and the interference of
non-functional bindings for such proteins is strong: [iR]4[i].
On the other hand, less sticky proteins with Ei4m have
[iR]o[i] and thus belong to the safe zone in which the effects
of non-functional interactions are weak. As will be described
in the Materials and methods section, the high-throughput
Y2H experiments allow us to estimate the parameters
ĒD�7.0kT and sD1.8kT of the distribution f1(Ei). For any
given number of protein types m and average concentration C̄,
one could use Equation (11) to calculate the chemical potential
m and the individual danger levels [iR]/[i] for proteins with any
energy Ei. The total fraction of proteins wasted in the non-
functional complexesP

½iR�P
ð½i� þ ½iR�Þ ffi

Z
f1ðEiÞ

e�ðEi�mÞ=kT

1 þ e�ðEi�mÞ=kT
dEi ð12Þ

is shown in colour in Figure 3. For the cytoplasm of a yeast cell
with mD1800 and C̄D1 mM (Ghaemmaghami et al, 2003),
Equation (11) gives mD�8.9kT. Thus, according to Equation
(12), at any time point about 22% of proteins that are not in
specific complexes are bound in non-functional complexes.
Figure 3 also shows the nucleus and the mitochondria of a
yeast cell by the white star and the white cross.

The next question is whether these compartments, espe-
cially the cytoplasm, fall in the dead zone. The range of the
dead zone depends on specific and non-functional binding
energies as well as concentrations, and these quantities vary
greatly for proteins within a compartment. Therefore, Equa-
tions (3) and (4) can only find the boundaries of the dead zone
for the simplified example system. However, for a realistic
compartment such as the cytoplasm, we can still find the
representative boundaries of the dead zone using the median
values. Namely, we focus on a protein with median values of
concentration, specific interaction EsE�16.5kTand stickiness
Ei¼ĒD�7.0kT, which correspond to the median non-func-
tional interaction En¼2ĒþDG(0)¼�4.0kT (see the next section
and Materials and methods for these values). Owing to the
variability of stickiness and concentrations of proteins,
Equations (3) and (4) should be modified. First, as the
distribution of individual protein concentrations is nearly

m

1041021
0.01

1

100

C (�M)

Wasted
0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Figure 3 The phase diagram for baker’s yeast. The area in shade is the ‘dead
zone’. Its boundaries, defined by Equations (13) and (15), are blurred to indicate
they are crossover rather than sharp transitions. The colours indicate the average
fraction of proteins tied up inside non-functional complexes in the yeast
cytoplasm as defined in Equation (12). The white circle shows the C̄ and m for a
group of proteins coexpressed and colocalized in the yeast cytoplasm, whereas
the white star and cross represents these parameters for the cell nucleus and
mitochondria.
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lognormal, the median concentration of individual proteins is
higher than the average value. We find CmedDC̄/6 from data of
the yeast cytoplasm. So Equation (3) becomes

Cmed ffi �C=6oCcrit ¼ 2Ks ¼ 2C0 expðEs=kTÞ ð13Þ

This gives C̄¼0.82 mM as the boundary of the dead zone for the
protein with median-specific interactions. Second, variation of
surface ‘stickiness’ changes Equation (2a) to

½iR� ¼ ½i�½R�
C0

Z
f1ðEjÞdEj

expðEij=kTÞ

¼ ½i�½R�
C0

exp � 2�E þ DGð0Þ �
s2

2

� �
=kT

	 
 ð14Þ

Comparing Equations (2b) and (14), we obtain a modification
of Equation (4)

mdead ¼ m �C

6Cmed
	 ½R�

6½i0�

¼ 1

6
exp 2�E þ DGð0Þ �

s2

2
� Es

� �
=kT

	 

ð15Þ

This results in mdeadD8200 for the cytoplasm. This value is not
necessarily very precise, as shown in Table I. mdead is smaller if
we use other Y2H data sets, or we obtain mdeadD4900 if the
full Ito data set is used. Figure 3 shows the dead zone in shade.
The boundaries of the dead zone, characterized by Equations
(13) and (15), are blurred to indicate that they are crossover
rather than sharp transitions. We can see from Figure 3 that the
cytoplasm of a yeast cell avoids the dead zone but locates near
the corner corresponding to the upper limit of m and the lower
limit of C̄. The nucleus and the mitochondria are also away but
not far from the dead zone.

The phase diagram shown in Figure 3 represents all proteins
in a given subcellular compartment by a single point. This is
just an approximation, as different proteins would have
different distances from the boundaries of the dead zone due
to the variation in their energies of specific and non-functional
interactions as well as in their concentrations. For instance,
proteins with relatively strong specific binding could afford to
have smaller concentrations Ci or, conversely, proteins with
low concentrations have more difficulty maintaining the
stability of specific complexes and thus need to have a stronger

binding energy of specific interactions. Also, sticky proteins
have stronger than average non-functional interactions and
thus tend to be more sequestered in non-functional complexes
than the average fraction colour-coded in Figure 3. The
complete description of the system should include the ratio
[i]:[ii0]:[iR] for every protein. However, the presently available
experimental data (most notably the scarcity of data on
binding energies of individual-specific interactions) does not
allow for such a complete description.

All this imposes additional evolutionary constraints on the
system. As was proposed by one of us (Maslov and Ispolatov,
2007), the result of such evolutionary pressure is that
interactions between proteins with lower Ci would be stronger,
that is, have lower (more negative) binding energy Es

translating into smaller dissociation constant Ks. However,
from the evolutionary standpoint, the strength of these
interactions must not be much stronger than the minimum
required to ensure a sufficient concentration of a specific
complex [ii0] (Maslov and Ispolatov, 2007).

Variability of individual protein concentrations
and specific binding energies

Let us compare the histogram of specific binding energies with
that of individual protein concentrations (Figure 4). The
concentrations of individual proteins in yeast cells vary greatly
(Ghaemmaghami et al, 2003; Belle et al, 2006) (open bars in
Figure 4), with the median (typical) value CmedD0.2 mM or
ln(Cmed/2C0)E�16.1.

The dissociation constants (or corresponding binding
energies) of specific interactions between yeast proteins have
not been measured systematically. The binding energy data
available from the PINT (Protein–protein Interaction Thermo-
dynamic) database (Kumar and Gromiha, 2006) is quite
limited. To gather sufficient statistics, we had to combine the
binding energy data from different species including yeast, rat,
human and so on (see Table S1, in Supporting Information).
The resulting histogram is shown with filled bars in Figure 4.

Table I The summary of data from high-throughput Y2H experiments in
different organisms and calculation results using the databases

Species n N Fraction
E�2�E�DGð0Þffiffi

2
p

s
mdead

P
½iR�P

ð½i�þ½iR�Þ

Nbait Nprey

Yeast 1600 6000 6.2 e�5 3.8 8200 22%
Worm 4000 1900 1000 1.5 e�4 3.6 5300 26%
Fly 2000 1100 1000 2.4 e�4 3.5 4100 28%
Human1 3200 4500 5600 1.8 e�4 3.6 4900 26%
Human2 2800 7200 7.4 e�5 3.8 7500 23%

The data set of yeast merges interaction data in Uetz et al (2000) and the core
data of Ito et al (2001), which contain interactions identified by at least three
interaction sequence tags. The source of other data sets are as follows: worm
(Li et al, 2004), fly (Giot et al, 2003), human1 (Stelzl et al, 2005) and human2
(Rual et al, 2005). The fraction is calculated as an/(N2/2) if NbaitDNprey, and
an/(NbaitNprey) otherwise. The parameter a¼0.7 is used in calculations.

–9–11–13–15–17–19–21–23–25–27–29–31–33
0

5

10

15

250

500

Es/kT from the PINT database

In (Ci /2C0)

Figure 4 The histograms of individual protein concentrations ln (Ci/2C0) (white
bars) and binding energies Es of specific interactions (filled bars) (Kumar and
Gromiha, 2006). Note that the peaks of these two distributions almost precisely
agree with each other, whereas the distribution of binding energies is broader,
especially on the negative side.
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The data we choose are interactions between two types of
wild-type proteins from the same species. Although most data
are not from yeast cells, it could still provide some helpful
information, because protein systems in different species have
certain similarities.

Comparing the two histograms shown in Figure 4, we find
that the median of ln (Ci/2C0)B�16.1 is just slightly above
that of Es/kTB�16.5. Therefore, most individual protein
concentrations Ci are only slightly larger than the typical
limiting value given by Equation (3). This would be enough for
proteins within the safe zone where [iR]� [i]. On the other
hand, the distribution of Es/kT below the median is noticeably
broader than that of ln (Ci/2C0). This corresponds to the
contribution of proteins that are inside the dangerous zone
([iR]4[i]) where specific interactions are required to be even
stronger than required as per Equation (3).

This validates our observation that concentrations of most
proteins are kept at or near the lower limit to ensure the
formation of specific complexes. Maintaining low individual
protein concentrations allows the cell to reduce the inter-
ference of non-functional interactions and, therefore, enhance
the evolutionarily important protein diversity (the number of
protein types that are simultaneously expressed and co-
localized in the same compartment).

Discussion

In this work, we compared the concentrations of the three
states of protein inside compartments of living cells: bound in
specific complexes [ii0], bound in non-functional complexes
[iR] and free (monomeric) [i]. As shown in Figure 1, the lower
limit of the individual protein concentration is controlled by
the requirement that [ii0]4[i], and the upper limit on the
number of types of proteins that are co-expressed in the same
intracellular compartment is set by the requirement that
[ii0]4[iR]. The average concentration of a single protein and
the protein diversity inside the yeast cytoplasm are in fact
rather close to these two limits (see Figure 3). The size of the
proteome is likely to be pushed up to the upper limit by
evolution, because higher protein diversity allows for more
complex biological functions. The average concentration of
individual proteins is then pushed down towards the lower
limit to reduce the waste of proteins in non-functional
complexes and to improve the spatial and temporal efficiency
of biochemical processes in a cell. Therefore, we suggest that
the systems of coexisting proteins inside compartments of
living cells, especially the cytoplasm, are located near the
corner of the allowed region in the phase diagram. This
requires the value of mcytoplasm/mdead to fall in the interval
0.1–0.8 and

P
½iR�=

P
ð½i� þ ½iR�Þ in the interval 0.1–0.35,

and for Ito core data this further requires a to be in the interval
0.05–15.0. Our estimated ranges aB0.3–0.9, mcytoplasm/
mdeadB0.11–0.4 and

P
½iR�=

P
ð½i� þ ½iR�Þ � 0:18 � 0:29 are

consistent with the hypothesis. Another argument in favour of
keeping the specifically bound concentration [ii0] comparable
with the free concentration [i] relies on the observation that
along this horizontal line of the phase diagram in Figure 3, the
functionally important concentration [ii0] is most sensitive
to changes in total concentration Ci. This can be used for

regulatory purposes allowing the cell to effectively turn on and
off this particular biological function by changing the
expression level of the protein i.

The phase diagram presented in Figure 3 highlights the
major trade-off faced by compartments of living cells. To
ensure the robust function, concentrations of individual
proteins should be high enough to provide for sufficient
formation of specific complexes. On the other hand, higher
concentrations lead to an increase and possible dominance of
non-functional interactions sequestering proteins and wasting
precious resources. To overcome this limitation, the evolution
could either strengthen the specific interactions, or weaken the
non-functional ones, or (better yet) do both things at once.
Nature has certainly exercised the first possibility by evolving
stronger specific PPIs between proteins in functional com-
plexes (e.g., by the virtue of cooperative binding). However,
this route has its limitations, as designing strong specific
interactions requires a prolonged evolutionary search in
sequence space, which might be quite challenging to achieve.
An alternative possibility is to evolve proteins with less
hydrophobic surfaces. An interesting manifestation of this
possibility could be seen in comparison of mesophilic with
(hyper-)thermophilic proteins. It is clear from Equation (3)
that the gap between specific and non-functional interaction
energies should increase for organisms living at higher
temperatures to keep the same proteome size. In this regard,
it is important to note that surfaces of proteins from
hyperthermophilic organisms are enriched with charged
residues (Glyakina et al, 2007) and that majority of those
residues do not form salt bridges (Goldstein, 2007). It is
therefore tempting to speculate that the main reason for this
enrichment with charged residues is to reduce non-functional
PPIs in hyperthermophiles to keep their proteome size at a
physiologically acceptable level.

Multicellular organisms, however, can go around the upper
limit of protein diversity. By separating different kinds of
proteins in different cell types, they can avoid coexistence of
too many protein types and reduce the amount of non-
functional interactions. Therefore, they are allowed to develop
more complicated functions through cellular differentiation.
This could be one of the crucial reasons for multicellular
organisms to emerge in the course of the evolution. It will be
also interesting to study whether there is a systematic
difference in stickiness of proteins from prokaryotes with less
compartmentalized cells and higher organisms whose cells are
highly compartmentalized. It could be an interesting under-
taking to systematically compare surface hydrophobicities
with specific interaction energies between groups of proteins
from simplest—not compartmentalized—cells to single-cell
eukaryotes to multicellular organisms.

The specific estimates of tolerable concentrations and
proteome sizes made in this study are on the basis of
assessment of the specific and non-functional interactions,
which are not necessarily very accurate. An important source
of uncertainty lies in the estimate of the parameter a, the
fraction of non-functional interactions among all interactions
detected in Y2H data sets. To see the impact of a on the results,
if a is in the interval 0.4–0.9, the value of mdead is in the interval
7300–10 500 and

P
½iR�=

P
ð½i� þ ½iR�Þ is in the interval

21–23%. We also face a dilemma in choosing either the full
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or the core data from Ito et al (2001). As the filtered Ito core
data requires three interaction sequence tags, many non-
functional interactions that are only slightly stronger than the
threshold Kd

*E1mM (Estojak et al, 1995) may not be included
in the data set. The number of non-functional PPIs is better
reflected by the full Ito data set, which contains B4500
interactions and results in mdead¼4900 and average fraction
[iR]/([iR]þ [i])¼26% for yeast cytoplasm. However, the full
Ito data set might contain many false interactions due to
experimental artefacts such as bait self-activation. To be
cautious, we choose the united data of Uetz et al (2000) and Ito
core rather than the full Ito data set for yeast PPIs to avoid
experimental artefacts, and keep in mind that the result
mdead¼8200 might be overestimated and the average fraction
[iR]/([iR]þ [i])¼22% might be slightly underestimated. In
consistence with this expectation, the result of mdead is also
smaller if we try the calculation with Y2H data sets of other
organisms (see Table I).

There are other sources of uncertainties in the calculation
besides the estimate of non-functional interactions in Y2H data
sets. For binding energies of specific interactions, we used the
PINT database (Kumar and Gromiha, 2006), which contains
the experimentally measured strength of specific interactions
between some of the proteins from various organisms, which
we subsequently extrapolated to yeast. The data on such
interactions are still scarce and its accuracy is not entirely
clear. For non-functional interactions, our estimates are on the
basis of a straightforward analysis of Y2H experiments that
assumes a ‘hard cutoff’ E* on binding energy Eij of detected
PPIs. A more sophisticated method that uses a ‘soft’ cutoff
assumption (Shi et al, 2006) for the detection of PPI in Y2H
experiments may give somewhat different estimates for
strength and variation of non-functional interactions. For
example, using the soft-cutoff model modifies our estimates
for the non-functional interaction energy, but still predicts that
around 15% of proteins are sequestered in non-functional
complexes (Maslov, unpublished data). However, the funda-
mental finding of this work concerns the deep interrelation
between specific and non-functional interactions and sizes of
proteomes in living cells and is independent on the specific
numeric values used in our estimates.

Above, we assumed that the biologically active state of all
proteins is in the complex with their specific binding partner.
Although this is certainly the case for a significant fraction of
all proteins in the cell, there also exist proteins that are
biologically active in their monomeric form. Our definition of
death zone for such proteins should be adjusted to require
[i]4[iR]. Instead of Equation (3), the lower bound on
concentrations of monomeric proteins is imposed by purely
physiological factors. For example, the abundance of meta-
bolic enzymes is likely to be dictated by typical concentrations
of their substrates. There are also cases of proteins with more
than one specific partner. Under these circumstances, the
condition [ii0]4[iR] should hold independently for each of the
functionally important partners.

The interference of non-functional PPIs with biochemical
efficiency of all intracellular functional processes is quantified
by the ratio [iR]/[i], indicating whether proteins that do not
participate in specific complexes are free in cytoplasm or non-
functionalally bound to non-functional partners. Although the

average ratio [iR]/([iR]þ [i])¼22% does not seem particularly
large, due to the variation in stickiness, certain proteins would
have much greater ratio [iR]/[i] than average (see Materials
and methods for details). Thus, the requirement of biochem-
ical efficiency is pushing individual protein concentrations
down in the cytoplasm. As a result, the cytoplasm of a cell can
only stay at the corner near the triple point in the phase
diagram. This conclusion might be generalized to apply to
many other cells.

Materials and methods

Obtaining individual protein concentrations
from experimental results

The expression level of proteins in yeast cell cytoplasm, nucleus and
mitochondria are taken from experiments (Ghaemmaghami et al,
2003; Huh et al, 2003; Belle et al, 2006). The average volume of a
haploid yeast cytoplasm is B25 fL (Jorgensen et al, 2007), which is
similar to the cell volume. The volume of nucleus (Jorgensen et al,
2007) and mitochondria (Visser et al, 1995) are both about 7% of cell
volume, although early results of mitochondria (Grimes et al, 1974;
Stevens, 1977) vary from 3 to 14%.

Most proteins within a given subcellular compartment diffuse over
its whole volume. Although some proteins enhance their local
concentrations through co-localization (Kuriyan and Eisenberg,
2007) near the membrane, such membrane-bound proteins are only
a small fraction among all protein types, for example, no more than
15% for the cytoplasm (Kumar et al, 2002). Thus, this effect constitutes
just a small correction to our estimates for individual subcellular
compartments and will not be considered in this study.

These individual protein concentrations were obtained mainly for
the cells in the G1 stage in the cell cycle. Are they really representative
of what happens at other stages of the cell cycle? To address this
concern, we point out that the median half-life of yeast proteins is
B40 min (Belle et al, 2006) whereas the cell cycle takes B90 min.
Therefore, the concentrations of most yeast proteins do not change
dramatically in the course of a cell cycle, and the above estimate using
the average concentration in the G1 stage remains valid.

Our calculations are quite robust with respect to random errors in
measurements of concentrations of individual proteins, as we use only
the total concentration of all proteins and the number of protein types.
Even large systematic errors in protein concentrations will not
significantly impact our qualitative results. For example, a factor of
2 or 1/2 error in the total protein concentration will change the fractionP

½iR�=
P

ð½i� þ ½iR�Þ from 22% to only 28 or 17% correspondingly.

Estimating the strength of non-functional
interactions from Y2H experiments

In this section, we estimate the mean and the standard deviation of the
binding energy of all non-functional PPI from the Y2H experiments.
This estimate was used in the previous section to derive the phase
diagram (Figure 3) for the fraction of non-functional complexes in the
cytoplasm of yeast cells.

The distribution of binding energy of non-functional interactions is
determined by its average 2ĒþDG(0) and variation

ffiffiffi
2

p
s as defined

by Equation (7). High-throughput Y2H experiments systematically
inspect PPIs between nearly all pairs of proteins encoded in the
genome of a given organism. Thus, they contain a useful information,
allowing one to estimate the values of Ē and s.

A positive signal is detected in a Y2H experiment if a PPI is
sufficiently strong, and the detection threshold for the dissociation
constant is experimentally estimated as Kd

*E1mM or E*EkT ln(Kd
*/

C0)¼�14kT (Estojak et al, 1995).
The interactions detected in Y2H experiments are not necessarily

biologically functional. For one thing, the in vivo concentrations of
individual proteins (Ghaemmaghami et al, 2003; Huh et al, 2003; Belle
et al, 2006) are often considerably lower than those of bait-and-prey
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proteins used in Y2H experiments. As a result, there is no guarantee
that even a reproducible interaction detected in a Y2H screen will occur
with any significant probability for in vivo concentrations of
interacting proteins. This view is supported by our observation
(Figure 5) that the overlap between Y2H interactions from the full
set of Ito et al (2001) and the curated set of biologically functional
interactions is biased towards proteins with high in vivo concentra-
tions. Below, we use the large-scale Y2H data sets to determine the
parameters of non-functional interactions necessary for our model. As
pointed out above, the Y2H technique detects interactions between
baits and preys at elevated concentrations, and therefore it samples a
much broader set of PPIs than those that are occurring with high
probability at in vivo concentration of proteins. Another advantage of
large-scale Y2H screens is that they check for possible interactions
among all possible pairs of proteins without any bias towards
functionally related pairs. As a result, large-scale Y2H data sets
contain ample information about the distribution of affinities for non-
functional interactions, especially for proteins with low in vivo
concentrations (see Figure 5).

We define a as the fraction of non-functional interactions among all
interactions detected in large-scale Y2H screens. The list of all
interactions detected in the largest Y2H screen of yeast proteins (Ito
et al, 2001) contains many false-positives (Deane et al, 2002; Vidalain
et al, 2004; Huang et al, 2007) due to reproducible yet non-functional
interactions as well as methodological artefacts such as bait self-
activations (Nakayama et al, 2002). The Ito core data set, formed by
the interactions repeatedly detected in the course of the experiment
(three times or more) is more reliable and reproducible, but is still
thought to contain over 40% false-positives (Deane et al, 2002). Most
importantly, the internal reproducibility condition used to generate
this data set likely eliminates most of the artefacts due to bait self-
activation. Indeed, the interaction partners of a self-activating bait are
essentially randomly selected from a large pool of prey proteins.
Hence, it is exceedingly improbable to repeatedly detect the same prey
protein three or more times. We assume that the remaining false-
positives in the Ito core data set are real and reproducible, but not
formed under the in vivo conditions inside a living cell and thus do not
contribute to its biological functioning. The lower bound on the
fraction of non-functional interactions in the Ito core data set is set by
the following observation: among the 522 interacting pairs with
known subcellular localizations of both proteins (Huh et al, 2003),
15% correspond to pairs of proteins that are never co-localized in the

same intracellular compartment, and thus in principle cannot bind
each other in vivo. We expect the fraction of all non-functional
interactions (including those caused by concentration effects of co-
localized proteins) to be significantly higher than 15%.

On the other hand, many strong and functional interactions must be
missed in large-scale Y2H screens as false-negatives, because another
filtered Y2H data set (Uetz et al, 2000) of yeast proteins has few
overlaps with the Ito core data set. Thus, we expect that many strong
enough non-functional interactions can be missed in Y2H data sets. To
take this effect into account, we merge the Ito core data set and the
filtered Uetz data set to obtain a more complete data set of yeast
proteins. Combining the estimate of false-positives in Y2H data sets
reported by Deane et al (2002) with this false-negative effect, we
propose a¼0.7 as the ballpark fraction of non-functional PPIs among
all interactions detected in Y2H screens. The impact of uncertainty in
our estimation of this parameter a is assessed in Discussion.

For N types of proteins tested in a high-throughput experiment,
there are N(Nþ 1)/2EN2/2 possible interactions. If n distinct
interacting pairs pass the dissociation constant cutoff and an
interactions are non-functional, their fraction among all pairs is given
by

an
N2=2

¼
ZE
�1

f2ðEijÞdEij ¼ ½Erf
E � 2�E � DGð0Þffiffiffi

2
p

�
ffiffiffi
2

p
s

� �
þ 1�=2 ð16Þ

where Erf is the error function. This equation defines a relationship
between the parameters Ē and s of the distribution of binding energies
of non-functional interactions and the parameters n and N of a high-
throughput Y2H experiment. The genome-wide Y2H studies in baker’s
yeast Saccharomyces cerevisiae (Uetz et al, 2000; Ito et al, 2001) contain
nE1600 interacting pairs between about ND6000 tested proteins. We
use a¼0.7 to find the number of non-functional interactions and solve
Equation (16) to get

ðE � 2�E � DGð0ÞÞ=
ffiffiffi
2

p
s 	 3:8 ð17Þ

We solve Equations (8) and (17) to find ĒD�7.0kT and sD1.8kT.
Hence, the estimated median value of non-functional interactions is
2ĒþDG(0)¼�4.0kTor KnB18 mM. This value is in agreement with the
suggestion (Kuriyan and Eisenberg, 2007) that Kn is a little larger than
10 mM for non-functional PPIs.

In Table I, we also show the value of ðE � 2�E � DGð0ÞÞ=
ffiffiffi
2

p
s for

several large-scale Y2H experiments, which are strikingly similar for
different species. Although in this study we focus on the baker’s yeast
for which protein concentrations were systematically measured, our
estimates of the parameters of non-functional interactions could be
applicable to other organisms listed in Table I.

Protein-to-protein variability of non-functional
sequestration ratio

As estimated above for yeast cytoplasm, the average fraction [iR]/
([iR]þ [i]) of proteins sequestered inside non-functional complexes
is about 22%. As the chemical potential mD�8.9kT is lower than the
median energy ĒD�7.0kT, the ratio [iR]/[i]¼exp[�(Ei�m)/kT] is
below one for most of the proteins. Around 20 of the most sticky types
of proteins have [iR]/[i]410, and for the protein with highest
hydrophobicity, the ratio reaches [iR]/[i]E60. If we add the correction
that proteins in specific complexes have reduced affinity for non-
functional interactions, the highest ratio is reduced to [iR]/[i]E35 (see
Supporting Information).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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