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Abstract 

A recent extension of the Gurson constitutive model of damage and failure of ductile 

structural alloys accounts for localization and crack formation under shearing as well as 

tension.  When properly calibrated against a basic set of experiments, this model has the 

potential to predict the emergence and propagation of cracks over a wide range of stress 

states.  This paper addresses procedures for calibrating the damage parameters of the 

extended constitutive model.  The procedures are demonstrated for DH36 steel using data 

from three tests: (i) tension of a round bar, (ii) mode I cracking in a compact tension 

specimen, and (iii) shear localization and mode II cracking in a shear-off specimen.  The 

computational model is then used to study the emergence of the cup-cone fracture mode 

in the neck of a round tensile bar.  Ductility of a notched round bar provides additional 

validation. 

Keywords: Ductile fracture; Computational fracture; Shear fracture; Damage parameters 

 

1. Introduction 

 Progress in computational fracture mechanics has paralleled advances in 

constitutive models that incorporate damage mechanisms.  For many ductile structural 

alloys the mechanism governing failure is void nucleation, growth and coalescence. The 

grand challenge for these alloys is the development of a computational capability for 

predicting localization, crack formation and crack propagation under all states of stress.  

Capturing both tensile (mode I) and shear (mode II) fractures has been particularly 

challenging.  When properly calibrated for a specific structural alloy, the Gurson model 

[1] and some of its close relatives, such as the Rousselier model [2], have shown 
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considerable promise for characterizing mode I crack growth [3-8].  In addition, the 

models have been used to simulate transitions from mode I crack growth to mixed mode 

shear cracking in the cup-cone fracture process of round tensile bars [9,10] and in three-

dimensional through-cracks in thin plates [11].  Such transition problems are generally 

more challenging because the constitutive models have not been developed to explicitly 

address damage under shear dominated conditions.  

A recent extension of the Gurson model [12] specifically incorporates damage in 

shear, adding the flexibility to address shear ruptures as well as tension dominated 

failures.  This extension will be employed here in conjunction with a suite of three tests 

(round bar tension, mode I compact tension, and mode II shear-off) to calibrate the 

constitutive parameters for the structural steel, DH36.  For verification, the calibrated 

model is then used to study the failure details of several other problems.  

To put the overall objectives of this work into some perspective, it is noted that 

three parameters are required to calibrate the extended Gurson model: the initial void 

volume fraction, 0f , a shear damage coefficient, kω  (defined below) and the finite 

element size, D .  To accurately characterize localization and fracture, D  must be on the 

order of the spacing between the voids that dominate the fracture process, typically from 

tens to hundreds of microns.  With mesh requirements this fine, it is only possible to 

predict the onset and propagation of cracks in relatively small components or in larger 

structures where the location of the failure can be anticipated in advance.  In contrast, it 

would not be feasible to employ a fracture model of this type to analyze fractures in large 

structures where the failure locations cannot be anticipated.  Under such circumstances, 

because the finite element size for a large structure is necessarily orders of magnitude 

greater than void spacing and often larger than plate thickness, coarser criteria based on a 

critical effective plastic strain or a through-thickness cohesive zone must be employed.  

These criteria must also be calibrated for each material, but against tests that make no 

attempt to resolve the fine scale fracture processes relevant for the present class of 

models.  The two classes of fracture models complement each other.  In principle, 

computations based on a fine scale model could be used to calibrate a coarse scale model. 
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2. The extended Gurson model 

The Gurson model is an isotropic formulation that employs the mean stress, 

/ 3m kkσ σ= , and the effective stress, 23 3 / 2e ij ijJ s sσ ≡ = , where 1
3ij ij kk ijs σ σ δ= −  is 

the stress deviator.  The extended model [12] employs, in addition, the third stress 

invariant 

 3
1det( ) ( )( )( )
3 ij ik jk I m II m III mJ s s s σ σ σ σ σ σ= = = − − −s    (1) 

where the expression on the right is couched in terms of principal stresses, assumed to be 

ordered as I II IIIσ σ σ≥ ≥ .  The non-dimensional metric 
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lies in the range, 0 1ω≤ ≤ , with 0ω =  for all axisymmetric stress states,

 orI II III I II IIIσ σ σ σ σ σ≥ = = ≥ ,      (3) 

and 1ω =  for all states comprised of a pure shear stress plus a hydrostatic contribution,  

 , , ( 0)I m II m III mσ τ σ σ σ σ τ σ τ= + = = − + >     (4) 

 The original Gurson model was formulated and calibrated based on the mechanics 

of void growth under axisymmetric stress states.  The extension [12] does not alter the 

model for these states.  The extension modifies the predictions for states with non-zero 

( )ω σ .  In particular, a contribution to damage growth under pure shear stress states is 

accounted for in the extension whereas the original Gurson model predicts no change in 

damage for states having 0mσ = . 

The yield surface of the extended Gurson model is the same as the original.  

Including the fitting parameters, q1, q2 and q3,  introduced by Tvergaard [13], it is given in 

terms of the effective and mean stress measures by 
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     (5) 

The current state is characterized by f , the “apparent” void volume fraction, and Mσ , 

the current effective stress governing flow of the damage-free matrix material. All 



 4

quantities not labeled with the subscript M represent overall quantities associated with the 

bulk material.  Normality implies that the plastic strain rate, P
ijD , is given by  

 1P
ij ij kl klD P P

h
σ=         (6) 

where  

1 2 2
2

3 3sinh
2

ij m
ij ij

ij M M M

sF fq q qP σ δ
σ σ σ σ

⎞⎛∂
= = + ⎟⎜∂ ⎝ ⎠

     (7) 

In finite strain formulations, ijσ  is identified with the Jaumann rate of stress.  The 

hardening modulus, h , is identified in the Appendix.  If 0mσ = , 0kkP =  and the rate of 

plastic volume change vanishes, i.e. 0P
kkD = ; this feature persists in the extension.  In the 

absence of nucleation, the extension of the Gurson model posits  

 ( ) ( )1
p

ij ijp
kk

e

s D
f f D k fω ω

σ
= − + σ       (8) 

The first contribution is that incorporated in the original model while the second is the 

crux of the extension.  As previously noted, the modification leaves the constitutive 

relation unaltered for axisymmetric stress states.  In a state of pure shear, however, (8) 

gives / 3Pf k fω γ= , where Pγ is the plastic shear strain rate and  kω  is the shear 

damage coefficient, the sole new parameter in the extended model.  The inclusion of the 

second term in (8) rests on the notion that the volume of voids undergoing shear may not 

increase, but void deformation and reorientation contribute to softening and constitute an 

effective increase in damage [14-16].  In addition, the second term can model damage 

generated by the nucleation in shear of tiny secondary voids in void sheets linking larger 

voids.  Thus, in the extension, f  is no longer directly tied to the plastic volume change.  

Instead, it must be regarded either as an effective void volume fraction or simply as a 

damage parameter, as it is for example when the Gurson model is applied to materials 

with distinctly non-spherical voids.  Further discussion and illustrations of the extension 

are given in [12], where the emphasis is on its role in shear localization.  The remaining 

equations specifying the entire description of the model are listed in the Appendix.  

Included is the specification of the widely used technique [13] that accelerates damage 
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from cf f=  to ff f= , at which point the material element is deleted.  Details of the 

numerical algorithm used to implement the constitutive model in the finite element code 

ABAQUS Explicit [16] are also presented in the Appendix. 

 

3.  Outline of the calibration protocol 

  The elastic-plastic inputs into the extended Gurson Model are the Young’s 

modulus, E , the Poisson’s ratio, ν , and the intrinsic stress-strain response of the 

damage-free material ( 0 0f = ).  The two damage-related input parameters are the initial 

effective void volume fraction, 0f , and the shear damage coefficient, kω .  Additionally, 

because the constitutive model contains no material length scale, the size of the finite 

element mesh, D , is calibrated through crack growth predictions, employing well-

established procedures [4, 7]. 

This paper addresses the general task of calibrating the three fracture-related 

parameters: 0f , kω  and D .  The procedures are demonstrated through experiments and 

analyses of DH-36 steel (Fig. 1): a high strength alloy commonly used in ship 

construction. Following extensive prior work on calibration procedures for the standard 

Gurson model (e.g., [4, 7]), the present study employs data from a mode I fracture test 

and a round bar tensile test to identify intrinsic uniaxial stress-strain behavior, 0f  and D .  

Additionally, a shear off test is added to the suite of tests to determine the shear damage 

coefficient, kω .  The paper is organized following closely the steps in the calibration 

protocol: 

Section 4:  Determination of the intrinsic stress-strain response of the undamaged 

material from round bar tensile tests and establishing that 0f , kω  and D  have 

little influence on the plastic response until neck development is quite advanced. 

Section 5:  Determination of 0f  and D  from compact tension mode I fracture 

tests and establishing that kω  has little influence on crack growth prediction when 

the crack is planar. 

Section 6:  Determination of kω  using data from shear-off tests and the previously 

determined 0f  and D . 
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Section 7:  Discussion of the applicability of the calibrated constitutive model to 

the cup-cone failure mode as one illustration and the ductility of notched round 

bars as another.  Possible variations in the identification protocol for other 

materials are also discussed. 

The three calibration tests were conducted under quasi-static loading, while all 

simulations were carried out using the dynamic code ABAQUS Explicit.  In order to 

minimize inertial effects and efficiently simulate the quasi-static tests in the explicit code, 

a preliminary series of calculations with different fixed applied loading rates was 

performed for each test configuration. At some loading rate, as the rates decrease, the 

simulations converge to a quasi-static limit.  That loading rate was then employed in all 

subsequent calculations. Material strain-rate dependence is ignored in the present 

computations.   

 

4.  Intrinsic plastic response of the undamaged material 

 The plastic response of the undamaged material ( 0 0f = ) was obtained from 

quasi-static uniaxial tensile tests on round bars coupled with elastic-plastic finite element 

computations. The test geometry and finite element mesh are shown in Fig. 2. The 

nominal axial strain  εN was measured using a non-contacting laser extensometer over a 

central 12.7 mm length within the gauge section. Prior to necking, the true (logarithmic) 

strain is given by
  
εT = ln 1+ εN( ) and the true stress by σT = σ N 1+ εN( ), where  σ N  is the 

nominal stress (load/initial area).  To ascertain the true response in the post-necking 

regime, computations were performed using an assumed form of the stress-strain relation 

(detailed below) and matching the predicted nominal stress-strain curves with those 

obtained experimentally. To accurately capture strain localization, a finite strain 

formulation of elasto-plastic theory was employed in the finite element model. Four-node 

axisymmetric elements with reduced Gaussian integration (CAX4R in ABAQUS/Explicit 

[16]) were used.  The model was based on an axisymmetric mesh comprised of square 

section elements with size, 50D mμ= , providing more than 30 elements across the gauge 

radius.  The element size was selected to be consistent with the value emerging from the 

calibration of the mode I fracture data, presented in the next section.  Nevertheless, since 
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the selected element size is already very much smaller than the macroscopic specimen 

dimensions and hence the strains are adequately resolved, further reductions in element 

size would have essentially no effect on the intrinsic (damage-free) stress-strain response. 

Additional computations were performed to demonstrate that 0f  and kω  do not affect the 

identification of the true stress-strain curve even up to strains approaching that for rupture.  

 The average true stress-strain curve from five tensile tests is plotted in Fig. 3a.  

This curve was subsequently used to characterize the stress-strain response for stresses 

below that corresponding to the load maximum, denoted peak
Tσ .  To extrapolate beyond 

peak
Tσ , a true stress-strain curve of the form ( )/

Npeak peak
T T T Tσ σ ε ε=  was assumed. A 

preliminary estimate of the strain hardening exponent N  was obtained by a least squares 

fit of the small strain data. A series of finite element computations was then performed to 

ascertain the full nominal tensile stress-strain curve, using a range of values of N , guided 

by the preceding curve fitting. As shown in Fig. 3b, the results for 0.185N =  (and 

0 0f = ) accurately replicate the experimental measurements up to the onset of rupture (at 

a nominal strain of 0.32Nε = ). In summary, the true stress-strain curve used to 

characterize the damage-free material ( 0 0f = ) is given by the experimental curve below 

peak
Tσ  and the power law extrapolation at stresses above peak

Tσ . 

 For  εN < 0.3, void growth has almost no effect on the tensile behavior of DH36.  

This result is demonstrated in Fig. 4 by comparing the experimental data with finite 

element computations based on a hardening exponent 0.185N =  and several 

representative initial void volume fractions (including the Mises limit, wherein 0 0f = ).  

Other than 0f , kω  and D , the basic parameters characterizing the constitutive model that 

are used in all simulations in this paper are: 

MPaE 210= , 3.0=ν , 0.185N = , 5.11 =q , 12 =q , 25.23 =q , 
  15.0=cf  and 25.0=ff        (9) 

The comparisons show that the effects of void growth, manifested in a divergence in the 

stress-strain response from that of a Mises material, are important only very near the 

point of final rupture for the DH36 tensile specimen. Their effect is to accelerate the 
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softening of the material such that the load drops more rapidly than that predicted for the 

damage-free material.  Further details of the failure process in the neck, including 

formation of a cup-cone fracture surface, are presented in Section 7. 

 

5.  Determination of 0f  and D  from compact tension tests 

Compact tension tests were performed on specimens with the geometry shown in 

Fig. 5a. Crack mouth opening displacement was measured using a non-contacting 

extensometer and a pair of fiducial tapes mounted on the specimen edge, separated by a 

distance of 14 mm.  Optical images of the broad sample surface were periodically 

recorded. The experimental measurements and observations are summarized in Figs. 6 

and 7. Significant nonlinearity due to plasticity is evident in both the load-displacement 

response and in the optical images at displacements above 0.5mm . Following an initial 

rising portion, the load-displacement curve reaches a maximum, at a displacement of 

about 3–4 mm.  This point corresponds to the emergence of a crack on the external 

surface of the sample (Fig. 7d-f).  Further growth both at the surface and in the interior 

occurs under decreasing load. 

The corresponding finite element model is shown in Fig. 5b.  In the present 

analysis, deformations are restricted to be symmetric with respect to the mid-plane such 

that a symmetry boundary condition is applied to the mid-plane. Consequently, the region 

meshed is only one half of the full specimen. Eight-node brick elements with reduced 

Gaussian integration (C3D8R in ABAQUS/Explicit [16]) were used.  Iterations on 

element size and meshing details were made prior to arriving at the mesh used to carry 

out the final analysis.  The smallest elements at the mid-plane in the vicinity of the crack 

tip have dimensions 30 30 50 mμ× ×  with 50 mμ  in the through-thickness direction.  

Near the surface of the specimen and near the tip the element dimensions are 

30 30 80 mμ× × .  Approximately 100  elements extend from the mid-plane to the surface 

in the vicinity of the crack tip.  The 30 mμ  in-plane mesh at the tip allows accurate 

resolution of the initial tip notch.  Further away from the notch tip in the region of crack 

propagation, the in-plane dimensions of the mesh are approximately 50 50 mμ× .  

Relatively small differences in results were found from a series of computations with 
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different meshes with element dimensions in the range from 30 mμ  to 50 mμ .  The mesh 

in Fig. 5b is regarded as having a nominal (characteristic) size 50D mμ= .  In order to 

improve computational efficiency, only the material in the region of crack propagation, 

which starts from the notch tip to the left edge of the specimen and has width of 7 mm, 

was modeled using the extended Gurson model. Outside this region, the specimen was 

modeled using von Mises plasticity (i.e., 0 0f =  and 0=ωk ).  

Load-displacement predictions for four values of 0f (including 0 0f = ) and 

kω = 2 are compared with the experimental results in Fig. 6.  Over the range plotted, the 

load of the damage-free specimen increases monotonically with displacement because 

there is no damage-induced softening or crack growth.  In contrast, the prediction for 

0 0.001f =  follows the experimental curve closely for displacements as large as 5mm . 

Furthermore, it predicts that cracking initiates at the center of the notch front, at a 

displacement of about 1mm . Thereafter, the crack grows deeper into the specimen and 

spreads laterally from the center (Fig. 7). Upon reaching the free surface, at a 

displacement of 3.6 mm , the load reaches a maximum and a load fall-off ensues. These 

results agree well with the experimental measurements. The predictions for the two larger 

values of 0f  clearly over-predict the effect of damage and cracking at displacements 

below 5mm .  They are particularly deficient in predicting the displacement at the load 

maximum. 

At displacements above 5mm , the experimental data fall below the numerical 

predictions for all three values of 0f .  This discrepancy arises for two reasons.  The 

symmetry imposed in the simulation precludes the transition to slant fractures that usually 

develop as the crack advances and the crack in the test is likely to have departed from the 

imposed symmetry.  In addition, element deletion was used to mimic the crack 

propagation such that the element is deleted when ff f= .  As the crack advances, it 

encounters larger elements in the mesh and these dissipate more energy prior to failure 

than the calibrated elements with 50D mμ= .  It is indeed observed from Fig. 8 for the 

case of the crack month opening displacement reaching 8 mm that some of the deleted 

elements are much larger than 50D mμ= .  It remains for the future to verify that 
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predictions based on the present choices of 0f  and D can replicate the present 

experimental results for larger displacements using a computational model with no 

symmetry restrictions, as well as a uniform mesh with the same calibrated element size 

throughout the region of crack propagation. Unfortunately, this would result in a 

significant increase in computational size that would not be feasible for the calibration 

procedure1.     

Although the results in Fig. 6b were computed with 2kω = , the shear damage 

coefficient has essentially no effect on these predictions.  To illustrate this, results for 

0 0.001f =  computed with  kω =2, 2.5 and 3 are plotted in Fig. 6a. The response 

undergoes only very slight softening with increasing kω  but remains well within the 

range of the experimental data. The weak dependence on kω  is consistent with the fact 

that mode I cracking occurs over the range of load-displacement data used for the fitting. 

In summary, based on the agreement between prediction and experiment for 

displacements below 5mm , the choices 0 0.001f =  with 50D mμ≈  are made for DH36.   

 

6.  Determination of kω  from a shear-off test 

 The fixture in Fig. 9 was designed to create a controlled test in which shear 

localization gives way to mode II fracture [17].  The corresponding load-displacement 

curve is used to infer the shear damage coefficient, kω .  In the test, a plate specimen 

(3mm thick) is clamped between two thick steel platens, each with a through-hole of 

diameter19.2 mm.  Cylindrical steel plungers, 19.05 mm in diameter, are inserted into 

each of the two holes, leaving a narrow (0.075 mm) radial gap between the plunger 

surface and the hole.  An additional pair of plungers with slightly reduced diameter (to 

accommodate Teflon bearings) is then inserted into the holes. The four plungers and the 

test specimen are then clamped together with a single bolt passing through open holes in 

each of three of the plungers and the test specimen and a threaded hole in the last plunger, 

as shown in Fig. 9.  With one side of the assembly placed on a stiff supporting base, the 

                                                 
1 More than ten days were required for each calculation based on the current mesh using a personal 
computer with memory requirements up to 1GB. The trade-off between efficiency and accuracy suggests 
that the present calibration strategy is a reasonable compromise.   
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plunger on the opposite side is load axially in compression. The movement of the 

plungers induces shear deformation within a narrow cylindrical ring in the specimen. 

Failure starts as shear localizations near the upper and lower surfaces of the plate which 

subsequently develop into mode II cracks as the deformation progresses into the plate.   

 The experimental measurements are summarized in Fig. 10. The coordinate axes 

are the nominal applied shear stress,τ ≡ P / (2πRH )  (R being the plunger radius and H 

the plate thickness) and the normalized displacement, / Hδ . The resulting curves exhibit 

features reminiscent of those obtained in tension tests. That is, the initial linear region 

gives way to plasticity at a shear stress of σO 2 ≈ 240 MPa (σO  being the tensile yield 

stress, obtained from Fig. 3).  Following a period of strain hardening, the load reaches a 

peak, at a displacement of / Hδ ≈ 0.3–0.4, and subsequently diminishes with increasing 

displacement. Scanning electron micrographs of a cross-section through a test specimen 

that had been interrupted following loading to a displacement / Hδ ≈0.5 are presented in 

Fig. 11.  They reveal a diffuse damage zone within the region of intense shear as well as 

well-defined shear cracks emanating from the specimen surface in the vicinity of the 

plunger periphery.  

A detail of the finite element mesh is depicted in the inset of Fig. 9a. Based on the 

prior calibrations, computations of shear-off employ an initial void fraction 0 0.001f =  

and element size 50D mμ=  in the region of shear localization and cracking. As in the 

compact tension simulations, computational efficiency was enhanced by only employing 

the extended Gurson model and the smallest elements in the region of shear localization. 

Outside this region, the plate was modeled using Mises plasticity and represented by a 

coarser mesh.  Boundary conditions were applied such that the bottom of the lower 

clamping plate, as well as a small section of the upper clamping plate representing the 

constraining effect of the clamping bolts, were restricted from all rotation and 

displacement. Contact between the plate and the clamps and punch was enforced with no 

tangential sliding.  Separation was permitted when the normal traction became tensile. 

The punch and clamps were modeled as being elastic. Four-node axisymmetric elements 

with reduced Gaussian integration and hourglass control (CAX4R in ABAQUS Explicit 

[16]) were used for all components. 
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 The results of the simulations are plotted and compared with experimental 

measurements in Fig. 10.  Simulations for the Mises material ( f0 = 0, kω = 0) correlate 

well with the experimental data for small displacements ( / Hδ <0.15).   However, they 

over-predict the stresses at larger displacements and do not reveal a load maximum.  The 

results for the standard Gurson model ( 0)kω = yield essentially identical results up to 

/ Hδ ≈ 0.35, with only small amounts of softening at larger displacements. Among the 

other simulations, the best fit of the experimental data for displacements / 0.5Hδ <  is 

that with   kω = 2.5 .  Fig. 10 gives a clear trend of the sensitivity of the predictions to the 

shear damage parameter: the erosion of the shear-off load is significantly underestimated 

if 1kω =  and significantly overestimated if 4kω = .   

Some details of the progression of the shear-off process – at maximum load 

  
δ / H = 0.32( )  and at a point just before entire ligament fracture ( / 0.49Hδ = ) – are 

shown in Fig. 12.  At maximum load, shear localization and fracture has occurred at the 

top and bottom surfaces of the plate and some damage has occurred across the entire 

plate thickness.  However, the level of damage in the central region is no larger than 

about 0.005f = , well below that at which the shear stress reaches a maximum 

( 0.03f ≈  ) [12].  The inference is that for DH36 the present test leads to mode II crack 

propagation emanating from the plate surfaces rather than global (net-section) rupture.  In 

the second case, for / 0.49Hδ = , the ring cracks have extended well into the plate 

interior and the damage parameter in the center has almost reached the failure level, 

0.25Ff f≈ = .  The ligament undergoes complete fracture in the next increment and the 

load drops abruptly to zero.  The final stages of the failure process are not accurately 

captured because the simulation does not account for friction between contacting crack 

surfaces.  Element deletion also plays a role.  In the narrow region of shear-off, the 

plastic strain and damage is almost uniform before the shear-off fracture occurs.  Multiple 

elements are predicted to fail almost simultaneously predicting of a loss of load carrying 

capacity that is almost certainly too rapid.  Nevertheless, the main features of the 

initiation of damage growth in shear and its progression to a well-developed mode II 
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crack in DH36 appear to be well represented by the extended Gurson Model with 

2.5kω =  when 0 0.001f =  and 50D mμ= . 

 

7.  Applications of the computational model 

7.1 Cup-cone fracture of a round tensile bar. 

 In the discussion of Fig. 4 it was noted that damage plays almost no role in the 

tensile behavior of a round bar of DH36 well beyond the onset of necking.  Not until the 

load has fallen to below 60% of the maximum load does damage have noticeable effect 

on the overall load-elongation behavior.  In this section, the computational model with 

the calibrated parameter values for DH36 ( 0 0.001f = , 2.5kω = ) is used to analyze the 

development of damage within the neck and the trajectory of the ensuing macroscopic 

crack.  This provides a further test of the predictive capability of the extended Gurson 

model. The key feature of interest is the transition from normal to shear fracture that 

gives rise to a cup-cone appearance.  

Details of the fracture surfaces of the round tensile bars are depicted in Fig. 13.  In 

addition to the classical cup-cone shape observed when the specimen is viewed at low 

magnifications, three other features are evident. (i) The central (cup) region comprises 

equi-axed ductile dimples associated with the growth and coalescence of voids in mode I. 

Although a broad distribution of dimple size is apparent, the average value appears to be 

of the order of 10 μm. This dimension correlates with the spacing between pearlite 

colonies (Fig. 1) and suggests that the pearlite serves as the principal void nucleating 

constituent. (ii) The cone region comprises highly-elongated “smeared” dimples, 

consistent with void coalescence by shear localization. The latter dimples are comparable 

in size to those in the cup region, suggesting that the same population of void nucleating 

sites is activated in both failure modes. (iii) In some regions, the cone consists of more 

than one shear fracture plane. For instance, on the right side of the surface in Fig. 13(a), 

the transition from cup to cone first occurs by a downward deviation of the mode I crack 

as it grows radially from the specimen center. It subsequently deviates from this path and 

adopts an upward shear path, thereby yielding two distinct shear lips. Furthermore, a 

closer examination of the cup region near the first transition further suggests that 

analogous processes occur at smaller length scales. That is, the mode I crack first 
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attempts to deviate onto an upward path (over a distance of about 100 μm) before diving 

down to form the first dominant shear lip. These deviations in crack path are likely due to 

the severity of the neck and the corresponding reduction in stress at even short axial 

distances from the neck plane.  

 Tvergaard and Needleman [9] carried out the first detailed computational study of 

the failure mode in the neck of a round tensile bar based on the unmodified Gurson model.  

Their work demonstrated that a transition from the planar mode I crack nucleated in the 

center of the neck to a conical mixed mode shear crack can occur for this constitutive 

model if a sufficiently fine mesh is used and if a relatively large damage level is invoked.  

These authors took 0 0f =  and assumed that a 4% volume fraction of voids would be 

nucleated under increasing strain.  Thus, the total void volume fraction nucleated in their 

simulations far exceeds the void fraction considered to be representative for materials 

such as DH36.  The present calculations suggest that, for realistic void volume fractions 

(of order 310− ), the transition to conical shear cracking does not occur when the 

unmodified Gurson model is employed.  This finding is borne out by an extensive study 

of fracture modes in round tensile bars and in plane strain specimens by Besson, Steglich 

and Brocks [10] using several damage-based constitutive models.  More recently, 

Leblond [18] has pursued these issues further by considering the extended Gurson Model 

with findings similar to those reported below. 

 Even when shear damage is included ( 2.5kω = ), simulations with a square mesh 

in the neck ( 50 50 mμ× ) do not predict a transition to a conical crack.  Reducing the 

initial element height such that the element aspect ratio at the onset of fracture is 

approximately unity at the onset of fracture accommodates a mixed mode conical crack 

propagating at roughly 45o to the axis of the specimen.  Although this modification does 

not lead to a transition when the initial element width is set at 50D mμ= , a well-defined 

cup-and-cone fracture mode is predicted for slightly smaller element widths (Fig. 14).    

The fracture patterns in Fig. 14 were computed using the mesh just described for 

deformations restricted to be axisymmetric but with no symmetry imposed with respect to 

the plane through the center of the neck. The mesh ( 40 6 mμ× ) in Fig. 14(c) gives rise to 

a near-planar crack in the center of the specimen followed by the transition to a conical 
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crack after a hesitating start in the opposite direction, broadly consistent with the 

experimental observations.  

7.2  Ductility of straight and notched round bars 

 The standard definition of the ductility of a metal alloy is the logarithmic strain at 

failure of a round tensile bar as determined by ε f = ln( A0 / A)  with 0 /A A  being the ratio 

of initial to final cross-sectional areas at the neck.  The ductility predicted for the round 

bar of DH35 with 0 0.001f = , 2.5kω =  and the 40 6 mμ×  mesh is 1.38fε = . This value 

is in close agreement with that measured experimentally: 1.35 0.04fε = ±  (from five 

specimens).  The ductility prediction is not nearly as sensitive to meshing as the 

prediction of the transition to the slanted fracture path.  For example, the ductility 

predictions for the other meshes in Fig. 13 are 1.41fε =  for a), 1.44fε =  for b) and 

1.36fε =  for d).  The fact that ductility predictions are less sensitive to meshing details 

than crack path transition is consistent with the fact that the overall load-elongation 

behavior is also relatively insensitive to meshing details.  This can be seen in Fig. 15 

where nominal stress-strain curves are presented corresponding to some of the same 

meshes used in the mode transition study in Fig. 14.  The cross-sectional area of the neck 

becomes nearly “frozen” as soon as a normal localization band forms in the center of the 

neck much before the mode transition.  Thus, an accurate ductility prediction relies 

primarily on the ability of the constitutive model to capture the onset of a normal 

localization since the onset itself is not very sensitive to mesh size, assuming the mesh is 

adequate to accurately resolve the stresses and strains in the neck.   

 As a final validation of the calibrated computational model, the ductility of a 

notched round bar of DH36 has been computed.  The specimen geometry and the mesh in 

the critical region are shown in Fig. 16.  The predicted ductility is 0.98fε = . By 

comparison, the experimentally measured values from three test specimens fall in the 

range 0.91 0.93fε = − .  Thus the model correctly predicts the reduction in ductility due to 

the increased stress triaxiality arising from the notch geometry. 
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8.  Concluding remarks 

This paper has demonstrated that, when properly calibrated, the extended Gurson 

model has considerable promise as a computational tool for predicting the formation of 

cracks and their subsequent propagation in ductile structural alloys under a wide range of 

stress states.  By incorporating a parameter to characterize damage in shear, the extended 

model widens the scope of applications to failure modes with a heavy component of shear.  

The calibration protocol employed here uses three types of tests: (i) uniaxial tension of a 

round bar, to infer the intrinsic stress-strain behavior of the undamaged material; (ii) 

mode I cracking in a compact tension specimen, to calibrate the initial void volume 

fraction and the element size; and (iii) mode II cracking in a newly-designed shear-off 

test, to determine the shear damage coefficient.  For the alloy in the present study, DH36, 

it was established that these three calibration steps can be conducted independently, 

assuming that the sequential order listed above is followed.  The calibration process 

might turn out to be more complicated for other materials, e.g., the shear damage 

coefficient might influence the calibration of the other two parameters in step (ii).  It is 

worth noting that a variation on the procedure employed here in step (ii) would be to 

choose 0f  and D  to fit resistance curve data in the form of the J -integral vs. crack 

growth, ( )RJ aΔ , extracted from a side-grooved compact tension specimen designed to 

sustain a straight crack front.  The work of Xia and Shih [4] reveals that IC YJ C Dσ=  

where C  lies in the range from 2 to 5 depending on N  and 0f .   For DH36 with 

0.185N =  and 0 0.001f = , 5C ≅  such that the formula gives 2120ICJ kJm−≅  with 

50D mμ= .  This variation based on ( )RJ aΔ  has the attraction that the calibration is 

directly tied to the mode I toughness of the material. 

As noted in the Introduction, it is not feasible to use the fine scale computational 

model developed here for failure analysis of large structures, except possibly when the 

precise location of the crack path can be anticipated.  The element size in the region of 

fracture for relatively tough structural alloys will be in the range from tens to hundreds of 

microns.  Thus, application of damage models of the present type will usually be 

restricted to the study of basic aspects of crack formation and to cracking in structural 

components and in metal forming and joining processes.  A method being developed [19] 
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that is capable of analyzing the failure of large plate and shell structures is the extended 

finite element method (XFEM) wherein localizations and cracks occur within large 

elements (compared to plate thickness, for example) and aligned in any direction.  In such 

coarse scale formulations the fracture process is usually represented by a cohesive zone 

representing the overall traction-separation behavior averaged through the thickness of 

the plate or shell.  The present fine scale computational model can be used to generate the 

criterion for the propagation direction and the overall traction-separation relation required 

for implementing the XFEM model. 

The extended Gurson model can also be used to study detailed aspects of crack 

formation and growth as illustrated by the cup-cone failure mode of the round tensile bar.  

However, to properly capture the transition from mode I to shear cracking, the finite 

element mesh must be designed to produce elements with nearly unit aspect ratio at 

failure in the rupture-critical locations.  To satisfy this criterion with rectangular elements, 

the initial element aspect ratio (width to height) must be taken to be about 3 / 2fe ε . For 

DH36, with ε f ≈1.4, the required aspect ratio is about 8. This value is consistent with that 

used for the mesh designs that most accurately predicted the transition in failure modes 

(Figs. 14(c) and (d)).  Even more challenging are the three dimensional aspects of the 

transition of a mode I through-crack in a plate to the mixed mode slant crack that emerges 

when the crack advance is extensive.  As the crack advances, a neck forms ahead of the 

current crack tip, localizing the plastic deformation and developing into a slanted shear 

crack in the final stages of separation.  As noted in connection with the cup-cone 

simulations, the prediction of a change in direction of crack path involving a transition 

from a mode I to a mixed mode separation process is quite sensitive to mesh design [10, 

18].  Further effort is needed to create more robust predictive capabilities.  A fine scale 

XFEM formulation using the extended Gurson model to generate the details of the 

cohesive zone behavior would be worth exploring. 
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Appendix—The remaining equations governing the modified Gurson model and 

details of the numerical algorithm  

The remaining equations governing increments in the modified model are now 

listed.  Void nucleation is not included but it can readily be incorporated [13,20].  The 

consistency condition for continued plastic loading,  
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and Mh  is the modulus of the matrix material defined in terms of the logarithmic plastic 

strain and true stress in uniaxial tension as 

 1 P
M

M M

d
h d

ε
σ

=          (14) 

 The matrix material (i.e. the undamaged material with 0f = ) is defined by its 

Young’s modulus, E , Poisson’s ratio, ν , and relation between logarithmic plastic strain 

and true stress in uniaxial tension, ( )P
M Mε σ , also considered as the relation between 

effective plastic strain and effective stress.  These are inputs to the modified Gurson 

Model along with the new parameter kω  and the initial value of f .  As in the original 

model, plastic work in the matrix is equated to macroscopic plastic work according to  

 (1 ) P P
M M ij ijf Dσ ε σ− = ,        (15) 

such that increments in matrix flow stress can be computed from 
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−

        (16) 

 The final step is to identify the stress-rate for finite strain applications and to 

combine the elastic and plastic strain increments.  The stress increments, ijσ , in the 

above development are identified with objective Jaumann increments, whose Cartesian 

components coincide with true stress increments for straining in axes parallel to principal 

stress axes.  Void damage diminishes the overall elastic moduli of the material.  However, 
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this is a small effect compared to void influence on plastic behavior and the effect on 

elasticity is neglected, as usually done in this type of model.   Isotropic elastic behavior is 

assumed.  Combining elastic strain rates, e
ijD , and plastic strain rates from (6) gives the 

total strain rate as  

 ij ijkl klD M σ=          (17) 

with instantaneous compliances 
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The inverse is  
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with instantaneous moduli 
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where the elastic moduli are  
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Plastic loading has been assumed in writing both (17) and (18); if the increment is elastic, 

only the elastic moduli and compliances are used.  The effective plastic strain-rate is 

defined in terms of the logarithmic strain rates in the usual way as 

 2 / 3P P P
e ij ijD Dε =         (19) 

 The final failure process beginning with the onset of coalescence and terminated 

by element deletion is modeled in the manner that has been commonly adopted [13] 

wherein the growth of the effective void volume fraction is accelerated when cf f>  

according to 
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As detailed in [13],  f  is replaced by *f  in the yield function (5) and in all the other 

equations except that f   in (8) remains unchanged.  The material fails when ff f= . 
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A variety of numerical algorithms for the integration of elastoplastic constitutive 

equations have been proposed in the literature [21-23]. A class of backward Euler method 

has proven to lead to accurate and stable results [24] and is now widely used. Aravas [25] 

established the backward Euler scheme for pressure-dependent plasticity. Within the 

same framework, the integration algorithm for the present extended Gurson model is 

derived and briefly described here. Throughout this section, boldface symbols indicate a 

matrix/vector formulation.  

The backward Euler algorithm is based on the following scheme. During the 

calculations in each time increment, the stresses and state variables are known at the 

beginning of the increment and their values need to be updated at the end of the 

increment for given incremental strains εΔ . The updated stresses and state variables must 

satisfy the yield condition, flow rules and evolution laws of the state variables 

corresponding to the total strains. To do this, the increment is assumed to be purely 

elastic at the beginning so that the trial stresses are first obtained from the elasticity 

relation. If the yield function evaluated from the trial stress is greater than zero, a 

correction procedure is performed to ensure the updated stresses “returning” to the yield 

surface. In the following, all quantities are evaluated at the end of the increment, unless 

otherwise indicated. 

The elasticity equations give 

( ) pelel

t
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is the elastic predictor (or trial stress tensor), 
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elε  is the elastic strain at the start of the 
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is the linear isotropic elasticity tensor with G  and K  being the shear and bulk modulus, 
respectively, and Π  and I  being the fourth- and second-order identity tensors, 



 23

respectively. Considering the effective stress eσ  and the mean stress mσ  as independent 
variables, the yield condition (5) is given by  

( ) 0,,, =p
Mme fF εσσ . (24) 

The flow rule (6) can be rewritten as  

nIε em
p εε Δ+Δ=Δ

3
1  (25) 

where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Δ=Δ
m

m
F
σ

λε  (26) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Δ=Δ
e

e
F
σ

λε  (27) 

el
e

el

e σσ 2
3

2
3 ssn ==  (28) 

with s  and els  are the stress tensors corresponding to the updated stress tensor σ  and the 

trial stress tensor elσ , respectively. Eliminating the plastic multiplier λΔ  from Eqs. (26) 

and (27), one obtains an alternative expression of the flow rule, 
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In the extended Gurson model, there are two state variables: the equivalent plastic strain 

in the matrix material, p
Mε , and the “apparent” void volume fraction  f . Substitution of 

(25) and (28) into (8) gives the evolution law for f  as 

( ) ( ) em fkff εωε ω Δ+Δ−=Δ σ1  (30) 

The evolution law for p
Mε  follows from (25), (28) and (15):  
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Then (11) can be rewritten using (25) as  
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Furthermore, projecting (21) onto I  and n , one obtains 

m
el
mm K εσσ Δ−=  (33) 

e
el
ee G εσσ Δ−= 3  (34) 

In general, solving the above set of nonlinear equations for the six unknowns: mσ , eσ , 

mεΔ , eεΔ , p
MεΔ , fΔ  completes the integration algorithm. More efficiently, equations 

(24) and (29) are regarded as the basic equations with mεΔ  and eεΔ  as the primary 
unknowns to be solved using Newton’s method. With mz , and ez  as the corrections for 

mεΔ  and eεΔ , the Newton method requires 
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where the coefficients 11K , 12K , 21K  and 22K  are readily obtained.  

The values of mεΔ  and eεΔ  are then updated: 
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 (36) 

and the values of mσ , eσ , p
MεΔ , fΔ  are determined from (33), (34), (30) and (31), 

respectively.  The iterative loop is continued until mεΔ  and eεΔ  converge. 

An alternative integration method recently developed in [26] employed all six stress 

components as independent variables to solved simultaneously using Newton’s method. 

In contrast, the algorithm described here deals with only two independent variables and is 

more efficient. The present algorithm was implemented into ABAQUS/Explicit [16] 

through its user material subroutine interface (VUMAT). Several benchmark tests 

described in [M7] have been performed to verify the code. 
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Fig. 1 Optical micrograph of polished and etched cross-section through DH-36 steel plate, 
showing a microstructure of ferrite (light) and pearlite (dark). 

 
 

 
 
Fig. 2.  Tensile specimen geometry and finite element mesh. (Dimensions in mm.) 



 
Fig. 3.  (a) Power law extrapolation of the true tensile stress-strain curve beyond the onset of 

necking and (b) the corresponding nominal stress-strain response obtained from finite 
element analysis. Error bars represent the full range of experimental measurements 
from six tests. Strain measurements were made using a non-contacting extensometer 
over a 12.7mm gauge length near the specimen center. The nominal strain, defined as 
the extension divided by the extensometer gauge length, was consistently employed in 
both the experiments and the finite element calculations. The tests were performed at a 
nominal strain rate of 10-3 s-1. 



 
 

 
 
Fig. 4.  Effects of initial void volume fraction fo on the computed nominal tensile stress-strain 

response. Over the pertinent range of fo, the computed results are indistinguishable from 
the experimental measurements up to the point of final fracture. 
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Fig. 5.  (a) Compact tension test geometry employed in the experimental study and (b) 

corresponding finite element model. Specimen thickness is 12.5 mm. Crack mouth 
opening displacements were measured using a non-contacting extensometer and a pair 
of fiducial tapes mounted on the specimen edge, separated by a distance of 14 mm. The 
same definition was used in the subsequent finite element calculations. 



 
 
Fig. 6.  Effects of (a) fo and (b) kω on the load–displacement response of compact tension tests. 

Error bars represent the full range of experimental measurements from five tests. Tests 
were performed at a displacement rate of 1.2 mm/min. Open circles in (a) correspond to 
images in Fig. 7. 

 



 

 
 
 

Fig. 7 Images of broad face of compact tension specimen with increasing crack mouth 
opening displacements.  Arrows in the right column indicate the emerging near-surface 
crack.  



 
 
 
Fig. 8  Evolution of plastic strain and crack growth from finite element calculations of the 

compact tension test.  



  
 
 

 
 

Fig. 9  (a) Shear-off test assembly and detail of finite element model in the region of intense 
plastic deformation. (b) Macrophotograph of specimen interrupted during shear-off test 
and sectioned by electrodischarge machining (EDM).  

 



 

 

 

 

Fig. 10 Measured and computed shear-off response. 
 



 

 

 

 

Fig. 11 Scanning electron micrographs of polished cross-sections through shear-off specimen, 
interrupted at displacement δ/H=0.5. 



 
 
 
 

 
 
 

Fig. 12  Evolution of plastic strain and damage from finite element calculations of a shear-off 
test. Inset (right) shows a shear crack developed in the vicinity of the edge of the 
contacting punch. 

 

 



 

 

Fig. 13  Fracture surface of DH-36 tensile bar showing: (a) cup-cone failure mode; (b, c) 
equiaxed dimples caused by void growth and coalescence in the central region; and (c, 
d) elongated dimples formed by void coalesence during shear lip formation.



 

 

 

Fig. 14  Effects of initial element size and kω  on the crack trajectory in an initially unnotched 
round tensile bar. 

 

Fig. 15  Effects of initial element size on the computed tensile stress-strain curve. 



 

 

Fig. 16  Notched tensile geometry and corresponding finite element mesh. 
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