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Evolutionary dynamics are strongly affected by population struc-
ture. The outcome of an evolutionary process in a well-mixed
population can be very different from that in a structured popu-
lation. We introduce a powerful method to study dynamical
population structure: evolutionary set theory. The individuals of a
population are distributed over sets. Individuals interact with
others who are in the same set. Any 2 individuals can have several
sets in common. Some sets can be empty, whereas others have
many members. Interactions occur in terms of an evolutionary
game. The payoff of the game is interpreted as fitness. Both the
strategy and the set memberships change under evolutionary
updating. Therefore, the population structure itself is a conse-
quence of evolutionary dynamics. We construct a general mathe-
matical approach for studying any evolutionary game in set struc-
tured populations. As a particular example, we study the evolution
of cooperation and derive precise conditions for cooperators to be
selected over defectors.

cooperation � game � social behavior � stochastic dynamics

Human society is organized into sets. We participate in
activities or belong to institutions where we meet and

interact with other people. Each person belongs to several sets.
Such sets can be defined, for example, by working for a particular
company, living in a specific location, going to certain restau-
rants, or holding memberships at clubs. There can be sets within
sets. For example, the students of the same university have
different majors, take different classes, and compete in different
sports. These set memberships determine the structure of human
society: they specify who meets whom, and they define the
frequency and context of meetings between individuals.

We take a keen interest in the activities of other people and
contemplate whether their success is correlated with belonging
to particular sets. It is therefore natural to assume that we do not
only imitate the behavior of successful individuals, but also try
to adopt their set memberships. Therefore, the cultural evolu-
tionary dynamics of human society, which are based on imitation
and learning, should include updating of strategic behavior and
of set memberships. In the same way as successful strategies
spawn imitators, successful sets attract more members. If we
allow set associations to change, then the structure of the
population itself is not static, but a consequence of evolutionary
dynamics.

There have been many attempts to study the effect of popu-
lation structure on evolutionary and ecological dynamics. These
approaches include spatial models in ecology (1–8), viscous
populations (9), spatial games (10–15), and games on graphs
(16–19).

We see ‘‘evolutionary set theory’’ as a powerful method to
study evolutionary dynamics in structured populations in the
context where the population structure itself is a consequence of
the evolutionary process. Our primary objective is to provide a
model for the cultural evolutionary dynamics of human society,
but our framework is applicable to genetic evolution of animal
populations. For animals, sets can denote living at certain
locations or foraging at particular places. Any one individual can
belong to several sets. Offspring might inherit the set member-
ships of their parents. Our model could also be useful for
studying dispersal behavior of animals (20, 21).

Let us consider a population of N individuals distributed over
M sets (Fig. 1). Individuals interact with others who belong to the
same set. If 2 individuals have several sets in common, they
interact several times. Interactions lead to payoff from an
evolutionary game.

The payoff of the game is interpreted as fitness (22–26). We
can consider any evolutionary game, but at first we study the
evolution of cooperation. There are 2 strategies: cooperators, C,
and defectors, D. Cooperators pay a cost, c, for the other person
to receive a benefit, b. Defectors pay no cost and provide no
benefit. The resulting payoff matrix represents a simplified
Prisoner’s Dilemma. The crucial parameter is the benefit-to-cost
ratio, b/c. In a well-mixed population, where any 2 individuals
interact with equal likelihood, cooperators would be outcom-
peted by defectors. The key question is whether dynamics on sets
can induce a population structure that allows evolution of
cooperation.

Individuals update stochastically in discrete time steps. Payoff
determines fitness. Successful individuals are more likely to be
imitated by others. An imitator picks another individual at
random, but proportional to payoff, and adopts his strategy and
set associations. Thus, both the strategy and the set memberships
are subject to evolutionary updating. Evolutionary set theory is
a dynamical graph theory: who interacts with whom changes
during the evolutionary process (Fig. 2). For mathematical
convenience we consider evolutionary game dynamics in a
Wright–Fisher process with constant population size (27). A
frequency-dependent Moran process (28) or a pairwise com-
parison process (29), which is more realistic for imitation dy-
namics among humans, give very similar results, but some
aspects of the calculations become more complicated.

The inheritance of the set memberships occurs with mutation
rate v: with probability 1 � v, the imitator adopts the parental
set memberships, but with probability v a random sample of new
sets is chosen. Strategies are inherited subject to a mutation rate,
u. Therefore, we have 2 types of mutation rates: a set mutation
rate, v, and a strategy mutation rate, u. In the context of cultural
evolution, our mutation rates can also be seen as ‘‘exploration
rates’’: occasionally, we explore new strategies and new sets.

We study the mutation-selection balance of cooperators ver-
sus defectors in a population of size N distributed over M sets.
In the supporting information (SI) Appendix, we show that
cooperators are more abundant than defectors (for weak selec-
tion and large population size) if b/c � (z � h)/(g � h). The term
z is the average number of sets 2 randomly chosen individuals
have in common. For g we pick 2 random, distinct, individuals in
each state; whether they have the same strategy, we add their
number of sets to the average, otherwise we add 0; g is the
average of this average over the stationary distribution. For
understanding h we must pick 3 individuals at random: then h is
the average number of sets the first 2 individuals have in common

Author contributions: C.E.T., T.A., H.O., and M.A.N. performed research and wrote
the paper.

The authors declare no conflict of interest.

1To whom correspondence should be addressed. E-mail: martin_nowak@harvard.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0903019106/DCSupplemental.

www.pnas.org�cgi�doi�10.1073�pnas.0903019106 PNAS � May 26, 2009 � vol. 106 � no. 21 � 8601–8604

EV
O

LU
TI

O
N

http://www.pnas.org/cgi/data/0903019106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/content/full/0903019106/DCSupplemental
http://www.pnas.org/cgi/content/full/0903019106/DCSupplemental


given that there is a nonzero contribution to the average only if
the latter 2 share the same strategy. We prove in the SI Appendix
that for the limit of weak selection these 3 quantities can be
calculated from the stationary distribution of the stochastic
process under neutral drift. Our calculation uses arguments from
perturbation theory and coalescent theory that were first devel-
oped for studying games in phenotype space (30).

Analytical calculations are possible if we assume that each
individual belongs to K out of the M sets. We obtain exact results
for any choice of population size and mutation rates (see SI
Appendix). For large population size N and small strategy
mutation rate, u, the critical benefit to cost ratio is given by

b
c

�
K

M � K
�� � 2� �

M
M � K

�2 � 3� � 3
��� � 2�

. [1]

Here, we introduced the parameter � � 2Nv, which denotes an
effective set mutation rate scaled with population size: it is twice
the expected number of individuals who change their set mem-
berships per evolutionary updating. Eq. 1 describes a U-shaped
function of �. If the set mutation rate is too small, then all
individuals belong to the same sets. If the set mutation rate is too
large, then the affiliation with individual sets does not persist
long enough in time. In both cases, cooperators have difficulties
to thrive. But there exists an intermediate optimum set mutation
rate which, for K �� M is given by �opt � �M/K. At this optimum
value of �, we find the smallest critical b/c ratio for cooperators
to outcompete defectors. If each individual can only belong to a
small number of all available sets, K �� M, then the minimum
ratio is given by

�b
c�min

� 1 � 2 �K
M

. [2]

Smaller values of K and larger values of M facilitate the evolution
of cooperation. For a given number of sets, M, it is best if
individuals belong to K � 1 set. Larger values of K make it harder
for cooperators to avoid exploitation by defectors. But the

Table 1. The minimum benefit-to-cost ratio

K L K* Minimum b/c

1 1 1 2.17
2 1 2 3.13
2 2 2/9 1.42
3 1 3 4.29
3 2 5/4 2.30
3 3 1/12 1.24
4 1 4 5.80
4 2 64/21 4.35
4 3 19/21 2.09
4 4 1/21 1.18
5 1 5 7.94
5 2 605/126 7.44
5 3 45/14 4.58
5 4 5/6 2.02
5 5 5/126 1.16
6 1, 2 6 11.26
6 3 121/21 10.31
6 4 27/7 5.55
6 5 1 2.17
6 6 1/21 1.18
7 1, 2, 3, 4 7 17.23
7 5 16/3 8.87
7 6 19/12 2.72
7 7 1/12 1.24
8 1, 2, 3, 4, 5, 6 8 31.24
8 7 10/3 4.74
8 8 2/9 1.42
9 1, 2, 3, 4, 5, 6, 7, 8 9 104.7
9 9 1 2.17

Each individual belongs to K sets. Cooperation is triggered if the other
person has at least L sets in common. For a fixed total number of sets, M � 10,
we can vary K � 1,. . .,9 and L � 1,. . .,K. The effective number of set mem-
berships, K*, is given by Eq. 54 in the SI Appendix. For a finite population of
N � 100, we calculate the minimum benefit-to-cost ratio that is needed for
selection to favor cooperators over defectors. For given K, cooperators are
favored by larger L, and the smallest b/c ratio is obtained by L � K. The global
minimum occurs for L � K � M/2. Smaller values of K* imply smaller values of
the critical b/c. Note that various symmetries lead to identical K* values.

Fig. 1. Evolutionary set theory offers a powerful approach for modeling
population structure. The individuals of a population are distributed over sets.
Individuals can belong to several sets. Some sets might contain many individ-
uals, whereas others are empty. Individuals interact with others who share the
same sets. These interactions lead to payoff from evolutionary games. Both
the strategy (� behavior in the game) and the set memberships of individuals
are updated proportional to payoff. Sets that contain successful individuals
attract more members. In this example, there are 2 strategies (indicated by red
and blue). The population size is n � 10, and there are M � 5 sets.

Fig. 2. Evolutionary set theory is a dynamical graph theory. The set mem-
berships determine how individuals interact. If 2 individuals have several sets
in common, then they interact several times. In this example, there are N � 5
individuals over M � 4 sets. Each individual belongs to K � 2 sets. The broken
lines indicate the weighted interaction graph. The graph changes as one
individual moves to new sets. The evolutionary updating of strategies and set
memberships happens at the same timescale.
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extension, which we will discuss now, changes this particular
property of the model and makes it advantageous to be in more
sets.

Let us generalize the model as follows: As before, defectors
always defect, but now cooperators only cooperate, if they have
a certain minimum number of sets, L, in common with the other
person. If a cooperator meets another person in i sets, then the
cooperator cooperates i times if i � L; otherwise cooperation is
not triggered. L � 1 brings us back to the previous framework.
Large values of L mean that cooperators are more selective in
choosing with whom to cooperate. Interestingly, it turns out that
this generalization leads to the same results as before, but K is
replaced by an ‘‘effective number of set memberships,’’ K*,
which does not need to be an integer and can even be �1 (see
SI Appendix). In Table 1, we show K* and the minimum b/c ratio
for a fixed total number of sets, M, and for any possible values
of K and L. For any given number of set memberships, K, larger
values of L favor cooperators. We observe that belonging to
more sets, K � 1, can facilitate evolution of cooperation, because
for given M the smallest minimum b/c ratio is obtained for K �
L � M/2.

In Fig. 3, we compare our analytical theory with numerical
simulations of the mutation-selection process for various param-
eter choices and intensities of selection. We simulate evolution-
ary dynamics on sets and measure the frequency of cooperators
averaged over many generations. Increasing the benefit-to-cost
ratio favors cooperators, and above a critical value they become
more abundant than defectors. The theory predicts this critical
b/c ratio for the limit of weak selection. We observe that for
decreasing selection intensity the numerical results converge to
the theoretical prediction.

Our theory can be extended to any evolutionary game. Let A
and B denote 2 strategies whose interaction is given by the payoff
matrix [(R, S),(T, P)]. We find that selection in set structured
populations favors A over B provided �R � S � T � �P. The
value of � is calculated in the SI Appendix. A well-mixed
population is given by � � 1. Larger values of � signify increasing
effects of population structure. We observe that � is a one-
humped function of the set mutation rate, �. The optimum value
of �, which maximizes �, is close to �M/K*. For K � L � 1 the
maximum value of � grows as �M, but for K � L � M/2 the
maximum value of � grows exponentially with M. This demon-
strates the power of sets.

Suppose A and B are 2 Nash equilibrium strategies in a
coordination game, defined by R � T and P � S. If R � S �
T � P, then B is risk-dominant. If R � P then A is Pareto
efficient. The well-mixed population chooses risk dominance,
but if � is large enough, then the set structured population
chooses the efficient equilibrium. Thus, evolutionary dynamics
on sets can select efficient outcomes.

We have introduced a powerful method to study the effect of
a dynamical population structure on evolutionary dynamics. We
have explored the interaction of 2 types of strategies: uncondi-
tional defectors and cooperators who cooperate with others if
they are in the same set or, more generally, if they have a certain
number of sets in common. Such conditional cooperative be-
havior is supported by what psychologists call social identity
theory (31). According to this idea people treat others more
favorably, if they share some social categories (32). Moreover,
people are motivated to establish positive characteristics for the
groups with whom they identify. This implies that cooperation
within sets is more likely than cooperation with individuals from
other sets. Social identity theory suggests that preferential

Fig. 3. Agreement between numerical simulations and the analytical theory. A population of size N � 40 is distributed over M � 10 or M � 15 sets. Individuals
can belong to K � 1 or K � 2 sets. Each point indicates the frequency of cooperators averaged over 5 � 108 generations. Increasing the benefit-to-cost ratio,
b/c, favors cooperators. At a certain b/c ratio cooperators become more abundant than defectors (intersection with the horizontal line). We study 3 different
intensities of selection, � � 0.05, 0.1, and 0.2. There is excellent agreement between the numerical simulations and the analytical prediction for weak selection,
which is indicated by the vertical blue line. Other parameters values are L � 1, u � 0.002, v � 0.1, b � 1, and c varies as indicated.
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cooperation with group members exists. Our results show that it
can be adaptive if certain conditions hold. Our approach can also
be used to study the dynamics of tag based cooperation (33–35):
some of our sets could be seen as labels that help cooperators to
identify each other.

In our theory, evolutionary updating includes both the stra-
tegic behavior and the set associations. Successful strategies
leave more offspring, and successful sets attract more members.
We derive an exact analytic theory to describe evolutionary
dynamics on sets. This theory is in excellent agreement with
numerical simulations. We calculate the minimum benefit-to-
cost ratio that is needed for selection to favor cooperators over

defectors. The mechanism for the evolution of cooperation
(36) that is at work here is similar to spatial selection (10) or
graph selection (17). The structure of the population allows
cooperators to ‘‘cluster’’ in certain sets. These clusters of coop-
erators can prevail over defectors. The approach of evolutionary
set theory can be applied to any evolutionary game or ecological
interaction.
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Foundation, the National Science Foundation/National Institutes of Health
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This ‘Supplementary Information’ has the following structure. In Section 1 (‘Evolution of

cooperation on sets’) we discuss the basic model and derive a general expression for the critical

benefit-to-cost ratio. In Section 2 (‘Belonging to K sets’) we calculate the critical benefit-to-cost

ratio for the model where all individuals belong to exactly K sets and cooperators cooperate with

all other individuals in the same set. In Section 3 (’Triggering cooperation ’) we generalize the basic

model to the situation where cooperators are only triggered to cooperate if the other individual

has at least L sets in common. In Section 4 (’The minimum benefit-to-cost ratio’) we calculate the

optimum set mutation rate that minimizes the critical benefit-to-cost ratio. The results of Sections

3 and 4 are derived for large population size, N . In Section 5 (’Finite population size’) we give the

analytic expressions for any N . In Section 6 (‘Numerical Simulations’) we compare our analytical

results with computer simulations. In Section 7 (‘General Payoff Matrix’) we study the competition

between two strategies, A and B, for a general payoff matrix. In the Appendix we give the analytic

proof of our results.

1 Evolution of cooperation on sets

Consider a population of N individuals distributed over M sets. Each individual belongs to exactly

K sets, where K ≤ M . Additionally, each individual has a strategy si ∈ {0, 1}, refered to as

cooperation, 1, or defection, 0.

The system evolves according to a Wright-Fisher process [1]-[3]. There are discrete, non-

verlapping generations. All individuals update at the same time. The population size is constant.

Individuals reproduce proportional to their fitness [4], [5]. An offspring inherits the sets of the

1



parent with probability 1− v or adopts a random configuration (including that of the parent) with

probability v. Any particular configuration of set memberships is chosen with probability v/
(M

K

)

.

Similarly, the offspring inherits the strategy of the parent with probability 1 − u; with probability

u he adopts a random strategy. Thus, we have a strategy mutation rate, u, and a set mutation

rate, v.

If two individuals belong to the same set, they interact; if they have more than one set in

common, they interact several times. An interaction can be any evolutionary game, but first we

consider a simplified Prisoner’s Dilemma game given by the payoff matrix:





C D

C b − c −c

D b 0



 (1)

Here b > 0 is the benefit gained from cooperators and c > 0 is the cost cooperators have to pay.

The payoff gained by an individual in each interaction is added to his total payoff, p. The fitness

of an individual is f = 1 + δp, where δ corresponds to the intensity of selection [6]. The limit of

weak selection is given by δ → 0. Neutral drift corresponds to δ = 0.

A state S of the system is given by a vector s and a matrix H. s is the strategy vector; its

entry si describes the strategy of individual i. Thus, si = 0 if i is a defector and it is 1 if i is a

cooperator. H is an N × M matrix whose ij-th entry is 1 if individual i belongs to set j and is 0

otherwise. We will refer to row i of H as the vector hi; this vector gives the set memberships of

individual i.

Considering that two individuals interact as many times as many sets they have in common

and that we do not allow self-interaction, we can now write the fitness of individual i as

fi = 1 + δ
∑

j !=i

(hi · hj)(−csi + bsj) (2)

Thus, individual i interacts with individual j only if they have at least one set in common

(hi · hj &= 0). In this case, they interact as many times as they find themselves in joint sets, which

is given by the dot product of their set membership vectors. For each interaction, i pays a cost if

he is a cooperator (si = 1) and receives a benefit if j is a cooperator (sj = 1).

2



Let FC be the total payoff for cooperators, FC =
∑

i sifi. Let FD be the total payoff for

defectors, FD =
∑

i(1 − si)fi. The total number of cooperators is
∑

l sl. The total number of

defectors is N −
∑

l sl. Provided that the number of cooperators and that of defectors are both

non-zero, we can write the average payoff of cooperators and defectors as

fC =

∑

i sifi
∑

l sl
fD =

∑

i(1 − si)fi

N −
∑

l sl
(3)

The average fitness of cooperators is greater than that of defectors, fC > fD, if

∑

i

sifi(N −
∑

l

sl) >
∑

l

sl

∑

i

(1 − si)fi ⇐⇒ (4)

N
∑

i

sifi >
∑

l

sl

∑

i

fi (5)

We rewrite equation (2) in a more convenient form, using the fact that hi · hi = K for any i.

fi = 1 + δ
(

∑

j

hi · hj(−csi + bsj) − K(b − c)si

)

(6)

Then inequality (5) leads to

b
∑

i,j

sisjhi · hj − c
∑

i,j

sihi · hj >
b − c

N

∑

i,j,l

sislhi · hj −
K(b − c)

N

∑

i,l

sisl +
K(b − c)

N

∑

i

si (7)

In order for cooperators to be favored, we want this inequality to hold on average, where the

average is taken in the stationary state, that is over every possible state S of the system, weigthed

by the probability πS of finding the system in each state.

b
〈

∑

i,j

sisjhi·hj

〉

−c
〈

∑

i,j

sihi·hj

〉

>
b − c

N

〈

∑

i,j,k

siskhi·hj

〉

−
K(b − c)

N

〈

∑

i,k

sisk

〉

+
K(b − c)

N

〈

∑

i

si

〉

(8)

The angular brackets denote this average. Thus, for example,

〈

∑

i,j

sisjhi · hj

〉

=
∑

S

(

∑

i,j

sisjhi · hj

)

· πS (9)
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So far this has been an intuitive derivation. A more rigorous analytic derivation which explains

why we take these averages is presented in the Appendix; it also appears in a different context in

[7]. We further show in the Appendix that when we take the limit of weak selection, the above

condition (7) is equivalent to the one where we take these averages in the neutral stationary state

(see equations (90), (92) and the discussion following them). Neutrality means that no game is

being played and all individuals have the same fitness. Thus, we show that in the limit of weak

selection the decisive condition is

b
〈

∑

i,j

sisjhi·hj

〉

0
−c
〈

∑

i,j

sihi·hj

〉

0
>

b − c

N

〈

∑

i,j,k

siskhi·hj

〉

0
−

K(b − c)

N

〈

∑

i,k

sisk

〉

0
+

K(b − c)

N

〈

∑

i

si

〉

0

(10)

The zero subscript refers to taking the average in the neutral state, δ = 0. For example, the term

〈
∑

i,j sisjhi · hj〉0 is
〈

∑

i,j

sisjhi · hj

〉

0
=
∑

S

(

∑

i,j

sisjhi · hj

)

· π(0)
S (11)

Here π(0)
S is the neutral stationary probability that the system is in state S. As before, the sum is

taken over all possible states S.

Solving for b/c we obtain the critical benefit-to-cost ratio

(

b

c

)∗

=
〈
∑

i,j sihi · hj〉0 − 1
N 〈
∑

i,j,l sisjhj · hl〉0 − K〈
∑

i si〉0 + K
N 〈
∑

i,j sisj〉0
〈
∑

i,j sisjhi · hj〉0 − 1
N 〈
∑

i,j,l sisjhj · hl〉0 − K〈
∑

i si〉0 + K
N 〈
∑

i,j sisj〉0
(12)

Thus, we have expressed the critical b/c ratio in the limit of weak selection, only in terms of

correlations from the neutral stationary state. Now we can focus on the neutral case to obtain the

desired terms. Nevertheless, the results we derive hold in the limit of weak selection, δ → 0.

The strategies and the set memberships of the individuals change independently. All correlations

in (12) can be expressed as averages and probabilities in the stationary state. We will describe each

necessary term separately.

First we consider the term

〈

∑

i

si

〉

0
= NPr(si = 1) =

N

2
(13)

This is simply the average number of cooperators. In the absence of selection this is N/2.
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Next we consider

〈

∑

i,j

sisj

〉

0
= N2Pr(si = sj = 1) =

N2

2
Pr(si = sj) (14)

The first equality is self-explanatory. The second equality follows from the fact that in the

neutral stationary state the two strategies are equivalent. Thus we can interchange any 0 with any

1 and we can express everything in terms of individuals having the same strategy rather than being

both cooperators. Thus in the absence of selection, Pr(si = sj = 1) = Pr(si = sj)/2. We will use

the same idea for all terms below.

Next, we consider the term

〈

∑

i,j

sihi · hj

〉

0
= N2〈hi · hj 1si=1〉0 =

N2

2
〈hi · hj〉0 (15)

The function 1(·) is the indicator function. It is 1 if its argument is true and 0 if it is false.

For the last two terms of the equality, i and j are any two individuals picked at random, with

replacement.

In the sum
∑

i,j sihi ·hj , we add the term hi ·hj only if si = 1; otherwise, we add 0. Nevertheless,

our sum has N2 terms. This leads to the first equality. To be more precise, we should say that

〈
∑

i,j sihi · hj〉0 = N2 · E[〈hi · hj 1si=1〉0], where the expectation is taken over the possible pairs

(i, j). For simplicity, we will omit the expectation symbol.

We can think of the term 〈hi · hj 1si=1〉0 as the average number of sets two random individuals

have in common given that they have a non-zero contribution to the average only if the first one is

a cooperator. By the same reasoning as above, any i can be interchanged with any j and thus we

can obtain the second equality in (15). Thus, the term we end up calculating is 〈hi · hj〉0 which is

the average number of sets two random individuals have in common.

The same reasoning leads to the final two correlations. We have

〈

∑

i,j

sisjhi · hj

〉

0
= N2〈hi · hj 1si=sj=1〉0 =

N2

2
〈hi · hj 1si=sj 〉0 (16)

Using the same wording as above, equation (16) is the average number of sets two individuals

have in common given that only individuals with the same strategy have a non-zero contribution

5



to the average.

Finally, we can write

〈

∑

i,j,l

sisjhj · hl

〉

0
= N3〈hj · hl 1si=sj=1〉0 =

N3

2
〈hj · hl 1si=sj 〉0 (17)

For this term we need to pick three individuals at random, with replacement. Then, (17) is the

average number of sets the latter two have in common, given that they have a non-zero contribution

to the average only if the first two are cooperators.

Therefore, we can rewrite the critical ratio as

(

b

c

)∗

=
N〈hi · hj〉0 − N〈hj · hl 1si=sj 〉0 − K + K · Pr(si = sj)

N〈hi · hj 1si=sj 〉0 − N〈hj · hl 1si=sj 〉0 − K + K · Pr(si = sj)
(18)

For simplicity, we want to find the above quantities when the three individuals are chosen

without replacement. We know, however, that out of two individuals, we pick the same individual

twice with probability 1/N . Moreover, given three individuals i, j and l, the probability that two

are the same but the third is different is (1/N)(1− 1/N), whereas the probability that all three are

identical is 1/N2.

Let us make the following notation

y = Pr(si = sj | i &= j) (19)

z = 〈hi · hj | i &= j〉0 (20)

g = 〈hi · hj 1si=sj | i &= j〉0 (21)

h = 〈hj · hl 1si=sj | i &= j &= l〉0 (22)

Then the quantities of interest in (18) become

Pr(si = sj) =
1

N

N

2
+

N − 1

N
y (23)

〈hi · hj〉0 = K
1

N
+

N − 1

N
z (24)

〈hi · hj 1si=sj 〉0 = K
1

N
+

N − 1

N
g (25)

〈hj · hl 1si=sj 〉0 = K
1

N2
+

(N − 1)(N − 2)

N2
h +

N − 1

N2
(z + g + Ky) (26)
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The critical ratio can now be expressed in terms of z, g and h as

(

b

c

)∗

=
(N − 2)(z − h) + z − g

(N − 2)(g − h) − z + g
(27)

Note that y cancels. In the limit N → ∞ we have

(

b

c

)∗

=
z − h

g − h
(28)

For calculating the critical benefit-to-cost ratio in the limit of weak selection, it suffices to find

z, g and h in the neutral case: z is the average number of sets two randomly picked individuals

have in common; g is the average number of sets they have in common given that only individuals

with the same strategy have a non-zero contribution to the average. For h we need to pick three

individuals at random; then h is the average number of sets the latter two have in common given

that they have a non-zero contribution to the average only if the first two have the same strategy.

In general these quantities cannot be written as independent products of the average number

of common sets times the probability of having the same strategy. However, if we fix the time to

their most recent common ancestor (MRCA), then the set mutations and strategy mutations are

obviously independent. If we knew that the time to their MRCA is T = t, we could then write g,

for instance, as the product:

〈hi · hj | i &= j, T = t〉0 · Pr(si = sj | i &= j, T = t) (29)

Two individuals always have a common ancestor if we go back in time far enough. However, we

cannot know how far we need to go back. Thus, we have to account for the possibility that T = t

takes values anywhere between 1 and ∞. Note that T = 0 is excluded because we assume that the

two individuals are distinct. Moreover, we know that this time is affected neither by the strategies,

nor by the set memberships of the two individuals. It is solely a consequence of the W-F dynamics.

We can calculate z, g and h provided that we know that the time to their MRCA is T . We first

calculate the probability that given two random individuals, i and j, their MRCA is at time T = t:

Pr(T = t) =

(

1 −
1

N

)t−1 1

N
(30)
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Next, we calculate the probability that given three randomly picked individuals i, j and k, and

looking back at their trajectories, the first merging happens at time t3 while the second one takes t2

more time steps. If we follow the trajectories of these individuals back in time, the probability that

there was no coalescence event in one time step is (1 − 1/N)(1 − 2/N). Two individuals coalesce

with probability 3/N(1 − 1/N). When two individuals have coalesced, the remaining two merge

with probability 1/N during an update step. For the probability that the first merging happens at

time t3 ≥ 1 and the second takes t2 ≥ 1 more time steps, we obtain

Pr(t3, t2) =
3

N2

[(

1 −
1

N

)(

1 −
2

N

)]t3−1(

1 −
1

N

)t2

(31)

The probability that all three paths merge simultaneously at time t3 is:

Pr(t3, 0) =
1

N2

[(

1 −
1

N

)(

1 −
2

N

)]t3−1

(32)

We can calculate both the case of finite N and the limit N → ∞. The results for finite N will

be discussed in Section 5. Here we deal only with the N → ∞ limit. In this case, we introduce the

notations τ = t/N , τ2 = t2/N and τ3 = t3/N . We use a continuous time description, with τ, τ2, τ3

ranging between 0 and ∞. In the continuous time limit, the coalescent time distributions in (30)

and (31) are given by

p(τ) = e−τ (33)

and

p(τ3, τ2) = 3e−(3τ3+τ2) (34)

Due to the non-overlapping generations of the W-F process, each individual is newborn and has

the chance to mutate both in strategy and in set configuration. In the N → ∞ and u, v → 0 limits,

we can consider our process to be continuous in time, with strategy mutations arriving at a rate

µ = 2Nu and set membership mutations arriving at a rate ν = 2Nv in the ancestry line of any two

individuals.
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2 Belonging to K sets

First, we find the probability that two individuals have the same strategy at time t from their

MRCA. Next we find the average number of sets two individuals have in common, a quantity which

is necessary for finding z, g and h. Finally, we calculate the critical benefit-to-cost ratio.

2.1 Probability that two individuals have the same strategy

The first quantity we need is the probability that two individuals have the same strategy at time t

from their MRCA. Imagining the two paths of two individuals i and j starting from their MRCA,

it is easy to note that two players have the same strategy at time t if the total number of mutations

which occurred in their ancestry lines is even. The probability that an even number of mutations

has occurred is

y(t) = Pr(si = sj | T = t) =
t
∑

l=0

(

2t

2l

)

(

1 −
u

2

)2t−2l (u

2

)2l
=

1 + (1 − u)2t

2
(35)

In the continuous time limit, making the substitutions τ = t/N and µ = 2Nu, we obtain

y(τ) = lim
N→∞

1 +
(

1 − µ
2N

)2τN

2
=

1 + e−µτ

2
(36)

The limits above are taken for µ = constant.

2.2 Average number of sets two individuals have in common

The first quantity we need is z = 〈hi · hj | i &= j〉0. As in the previous subsection, we begin by

calculating this probability given that the MRCA of the two individuals is at time τ . We use the

notation

z(τ) = 〈hi · hj | i &= j, T = τ〉0 (37)

We can interpret z as the average number of sets two randomly chosen, distinct individuals

have in common. Then z(τ) is this same average, but taken now only over the states where T = τ .

We start by finding the probability that two such individuals have 0 ≤ i ≤ K sets in common.

We then have two options at time τ from their MRCA: neither of the two have changed their
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configuration or at least one of them has changed his configuration. In the second case, the two

individuals become random in terms of the comparison of their set memberships.

Thus, we analyze the following possibilities:

• neither has changed with probability e−ντ and in this case they still have K sets in common;

• at least one has changed with probability 1−e−ντ and in this case they can have i ∈ {0, . . . ,K}

sets in common with probability:
(

K

i

)

(M−K
K−i

)

(M
K

) (38)

Hence, the probability that two individuals have i ≤ K sets in common at time T = τ from

their MRCA is

πi(τ) =







e−ντ + (1 − e−ντ )/
(M

K

)

if i = K

(1 − e−ντ )
(K

i

)(M−K
K−i

)

/
(M

K

)

if i < K
(39)

Our goal is to calculate the average number of sets they have in common. We obtain

z(τ) =
K
∑

i=1

i · πi(τ) = Ke−ντ + (1 − e−ντ )
K−1
∑

i=1

i

(

K

i

)

(M−K
K−i

)

(M
K

)

= e−ντ

(

K −
K2

M

)

+
K2

M

(40)

2.3 Finding the critical ratio

Once we know the average number of sets two individuals have in common at time τ from their

MRCA, we can again use the method of the coalescent to express z = 〈hi · hj | i &= j〉0 in the

continuous time limit as

z =

∫ ∞

0
z(τ)p(τ) dτ =

K(M + νK)

M(ν + 1)
(41)

The next quantity we need is g = 〈hi · hj 1si=sj | i &= j〉0. As explained above, this can be

interpreted as the average number of sets two distinct random individuals have in common given

that they have a non-zero contribution to the average only if they have the same strategy. Let

g(τ) = 〈hi · hj 1si=sj | i &= j, T = τ〉0. Once we fix the MRCA, the set mutations and strategy

mutations are independent. Thus g(τ) can be written as a product of the probability that i and j

have the same strategy and the average number of sets two distinct individuals have in common.
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We can then write g(τ) as

g(τ) = z(τ)y(τ) (42)

In the continuous time limit, we have

g =

∫ ∞

0
z(τ)y(τ)p(τ) dτ =

K

2M

(

M + νK

1 + ν
+

K

1 + µ
+

M − K

1 + ν + µ

)

(43)

Finally, we need to find h = 〈hj · hl 1si=sj | i &= j &= l〉0. This can be interpreted as follows: we

pick three distinct random individuals i, j and l and ask how many sets j and l have in common on

average, given that they have a non-zero contribution to the average only if i and j have the same

strategy. As before, we need to fix the time up to the MRCA of the particular pairs of individuals.

Let T (i, j) (respectively T (j, l)) be the time up to the MRCA of i and j (respectively j and l). If

we look back far enough, all three individuals will have an MRCA (all their paths will coalesce).

However, we do not know which two paths coalesce first, so we have to analyze all possibilities

(shown in the figure below). Let τ3 be the time up to the first coalescence and let τ2 be the time

between the first and the second coalescence. Then, we can find T (i, j) and T (j, l) in each case

!
!

!
!!

"
"

"
""

!
!!

i j l

τ3

τ2

i and j coalesce first

T (i, j) = τ3
T (j, l) = τ2 + τ3

!
!

!
!!

"
"

"
""

"
""

i j l

τ3

τ2

j and l coalesce first

T (i, j) = τ2 + τ3
T (j, l) = τ3

"
"

"
""

!
!

!
!!

!
!!

i l j

τ3

τ2

i and l coalesce first

T (i, j) = τ2 + τ3
T (j, l) = τ2 + τ3

The possibility that all three coalesce simultaneously is included in these three cases (when τ2 = 0).

Let h(τ3, τ2) = 〈hj · hl 1si=sj | i &= j &= l〉0. Once we fix the times to the MRCA’s, the

set mutations and the strategy mutations become independent. Then we can write h(τ3, τ2) as a

product. We already know the probability y(τ) that two individuals have the same strategy at

time τ from their MRCA (36). Moreover, we know z(τ), the average number of sets they have in

common if the time to their MRCA is T = τ . So we only need to use the times T (i, j) and T (j, l)

calculated in each of the three cases.
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With probability 1/3 we are in the first case, where i and j coalesce first and then they coalesce

with l. In this case, we can write h(τ3, τ2) = y(τ3)z(τ3 + τ2). With probability 1/3 we are in

the second case, where j and l coalesce first and then they coalesce with i. Then h(τ3, τ2) =

y(τ3 + τ2)z(τ3). Finally, with probability 1/3 we are in the last case, where i and l coalesce first

and then they coalesce with j. In this case h(τ3, τ2) = y(τ3 + τ2)z(τ3 + τ2).

We finally obtain the expression for h = 〈hj · hl 1si=sj | i &= j &= l〉0 by adding the values in all

three cases, multiplied by the corresponding probabilities.

h =
1

3

∫ ∞

0
dτ3

∫ ∞

0
dτ2 [y(τ3)z(τ3 + τ2) + y(τ3 + τ2)z(τ3) + y(τ3 + τ2)z(τ3 + τ2)]p(τ3, τ2)

=
νK2(3 + 10µ + 6µ2 + µ3 + ν2(2 + µ) + 2ν(2 + µ)2)

2M(1 + ν)(1 + µ)(1 + ν + µ)(3 + ν + µ)
+

+
MK(3 + 11µ + 6µ2 + µ3 + ν2(2 + µ) + ν(8 + 9µ + 2µ2))

2M(1 + ν)(1 + µ)(1 + ν + µ)(3 + ν + µ)

(44)

Now we have calculated d, g and h. We can use (28) to obtain the critical b/c ratio

(

b

c

)∗

=
K

M − K
(ν + 2 + µ) +

M

M − K

ν2 + 3ν + 3 + 2(ν + 2)µ + µ2

ν(ν + 2 + µ)
(45)

Note that the critical b/c ratio depends only on M/K and not on both M and K.

For µ → 0 we have

(

b

c

)∗

=
K

M − K
(ν + 2) +

M

M − K

ν2 + 3ν + 3

ν(ν + 2)
(46)

If the benefit-to-cost ratio exceeds this value, then cooperators are more frequent than defectors

in the equilibrium distribution of the mutation-selection process.

3 Triggering cooperation

We will now study an extended model, where cooperation is only triggered if the other person has

L sets in common. We have 1 ≤ L ≤ K. Setting L = 1 takes us back to the previous framework.
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In order to account for this conditional interaction, we define the following variable:

γij =







1 if hi · hj ≥ L

0 otherwise
(47)

The fitness of individual i can be written as

fi = 1 + δ
∑

j !=i

γijhi · hj(−csi + bsj) (48)

Everything follows exactly as before, with the only change that wherever we have the product

hi · hj , it will be replaced by γijhi · hj . The quantity y(τ) remains unchanged and represents the

probability that two random, distinct individuals have the same strategy at time τ from their

MRCA. The quantity that is affected by the change is z(τ) which now becomes z(τ) = 〈γijhi ·hj〉0;

this is now the average number of sets two individuals have in common, provided that they have

at least L sets in common. Implicitly, z, g and h will change: instead of accounting for the average

number of sets in common, they account for the average number of sets in common, provided that

there are at least L common sets.

As before, we can express z, g and h as follows

z =

∫ ∞

0
z(τ)p(τ) dτ (49)

g =

∫ ∞

0
Pr(si = sj | T = τ)〈γijhi · hj | T = τ〉0p(τ) dτ =

∫ ∞

0
z(τ)y(τ)p(τ) dτ (50)

h =
1

3

∫ ∞

0
dτ3

∫ ∞

0
dτ2 [y(τ3)z(τ3 + τ2) + y(τ3 + τ2)z(τ3) + y(τ3 + τ2)z(τ3 + τ2)]p(τ3, τ2) (51)

We obtain the same expressions (27) and (28) in terms of these new z, g and h.

The only quantity that has changed and needs to be calculated is z(τ) = 〈γijhi · hj | T = τ〉0. The

reasoning is as before, but we now need to account for the γij . We start by finding the probability

that two random individuals have 0 ≤ i ≤ K sets in common. This follows exactly as before: the

probability that two individuals have i ≤ K sets in common at time T = τ from their MRCA is

πi(τ) =







e−ντ + (1 − e−ντ )/
(M

K

)

if i = K

(1 − e−ντ )
(K

i

)(M−K
K−i

)

/
(M

K

)

if i < K
(52)
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Our goal is to estimate the quantity z(τ) = 〈γijhi · hj | T = τ〉0. We know that γij = 0 if

they have less than L sets in common. Only the cases when they have at least L sets in common

contribute to our average. Therefore, we have

z(τ) = 〈γijhi · hj | T = τ〉0 =
K
∑

i=L

i · πi(t) (53)

We have already analyzed the case L = 1. We will now study the case 1 < L ≤ K. We denote:

K∗ =
M

K

K
∑

i=L

i

(

K

i

)(

M − K

K − i

)

/

(

M

K

)

= K
K
∑

i=L

(

K − 1

i − 1

)(

M − K

K − i

)

/

(

M − 1

K − 1

)

(54)

Note that K∗ need not be an integer and that for L = 1 we obtain K∗ = K.

Using (53) and (39), we can rewrite z(τ) as

z(τ) = K(1 −
K∗

M
)e−ντ + K

K∗

M
(55)

The critical ratio (28) becomes

(

b

c

)∗

=
K∗

M − K∗
(ν + 2 + µ) +

M

M − K∗

ν2 + 3ν + 3 + 2(ν + 2)µ + µ2

ν(ν + 2 + µ)
(56)

Since for L = 1 we have K∗ = K, we recover the previous result, (45). For µ → 0 we have

(

b

c

)∗

=
K∗

M − K∗
(ν + 2) +

M

M − K∗

ν2 + 3ν + 3

ν(ν + 2)
(57)

The critical benefit-to-cost ratio is the same as given by equation (46) but now K is replaced

by K∗, which is the ’effective’ number of sets that each individual belongs to. The smaller K∗ is,

the smaller is the critical benefit-to-cost ratio. The critical benefit-to-cost ratio depends on M/K∗.

The mechanism for the evolution of cooperation in our model is similar to the clustering that

occurs in spatial games [8] and games on graphs [9], [10]. Cooperators cluster together in some sets

and thereby gain an advantage over defectors. But the difference between evolutionary graph theory

and evolutionary set theory is the following. In evolutionary graph theory, both the interaction

(which leads to payoff) and the evolutionary updating must be local for cooperators to evolve.

In evolutionary set theory, the interactions are local (among members of the same set), but the
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evolutionary updating is global: every individual can choose to imitate every other individual.

Our model is also very different from standard models of group selection. In standard models of

group selection, (i) each individual belongs to one group; (ii) there is selection on two levels (that

of the individual and that of the group); (iii) and there is competition between groups resulting

in turnover of groups. In contrast, in evolutionary set theory, (i) individuals can belong to several

sets; (ii) there is only selection on the level of the individual; (iii) and there is no turnover of sets.

4 The minimum benefit-to-cost ratio

The critical b/c ratio given by eqn (57) has a minimum as a function of ν. To find this minimum,

we differentiate (b/c)∗ as a function of ν and set the result equal to zero. We obtain

M

K∗
= ν2 ·

ν2 + 4ν + 4

ν2 + 6ν + 6
(58)

It is easy to show that the solution, νopt, of this equation satisfies the inequality
√

M
K∗ < νopt <

√

M
K∗ + 1. Consequently, when M/K∗ is large, the optimum ν is

νopt =

√

M

K∗
(59)

Thus, for M/K∗ large, we obtain

(

b

c

)

min

= 1 + 2

√

K∗

M
(60)

Figure S1 shows the critical benefit-to-cost ratio as a function of the effective set mutation rate

ν = 2Nv for various choices of K and L. We use M = 10, N → ∞ and u → 0. As a function of

ν, the benefit-to-cost ratio is a U-shaped function. If the set mutation rate is too small, then all

individuals belong to the same sets. If the set mutation rate is too large, then set affiliations do

not persist long enough in time. In both cases the population behaves as if it were well-mixed and

hence cooperators have difficulties to thrive. In between, there is an optimum set mutation rate

given by (59).
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5 Finite population size

In order to do the exact calculation for finite population size, we start from equation (27):

(

b

c

)∗

=
(N − 2)(z − h) + z − g

(N − 2)(g − h) − z + g

We deal from the beginning with the general case, 1 ≤ L ≤ K. First we calculate the probability

that two individuals have the same strategy at time t from their MRCA. This is given in (35) as

y(t) =
1 + (1 − u)2t

2
(61)

Next we calculate z(t) = 〈γijhi · hj | T = t〉0. The reasoning is the same as in the continuous

time case. We analyze the following possibilities:

• neither has changed with probability (1 − v)2t and in this case they still have K sets in

common;

• at least one has changed with probability 1 − (1 − v)2t and in this case they can have i ∈

{0, . . . ,K} sets in common with probability

(

K

i

)

(M−K
K−i

)

(M
K

) (62)

Hence, the probability that two individuals have i ≤ K sets in common at time T = t from

their MRCA is given by

πi(t) =







(1 − v)2t + (1 − (1 − v)2t)/
(M

K

)

if i = K

(1 − (1 − v)2t)
(K

i

)(M−K
K−i

)

/
(M

K

)

if i < K
(63)

We obtain:

z(t) = 〈γijhi · hj | T = t〉0 =
K
∑

i=L

i · πi(t) = (K − K
K∗

M
)(1 − v)2t + K

K∗

M
(64)
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This gives z = 〈γijhi · hj〉0, taking into account the fact that t ranges between 1 and ∞:

z =
∞
∑

t=1

〈γijhi · hj | T = t〉0Pr(T = t) =
∞
∑

t=1

d(t)

(

1 −
1

N

)t−1 1

N
(65)

We find g and h similarly and use (27) to find the exact critical b/c in the u → 0 limit

(

b

c

)∗

=
K∗α1 + Mα2

K∗α3 + Mα4
(66)

where α1, α2, α3, α4 are the following polynomials in v and N

α1 = (N − 1)N3v(2 − v)[v(2 − v)(−Nv(2 − v) + 4(1 − v)2) + (1 − v)2(5v2 − 10v + 4)

α2 = −(N − 1)(1 − v)2[N2v(2 − v)(−Nv(2 − v) − 4v2 + 8v − 3)−

− (1 − v)2(N(5v2 − 10v + 3) − 2(1 − v)2)]

α3 = −v(2 − v)[N4v(2 − v) + N2(1 − v)2(2N − 1)]

α4 = (1 − v)4(2(1 − v)2 − N(7v2 − 14v + 3)) − N2v(2 − v)(1 − v)2(−N2v(2 − v)−

− N(5v2 − 10v + 2) + 9v2 − 18v + 8)

The exact benefit-to-cost formula (66) gives perfect agreement with our numerical simulations;

see Fig. 3 of the main paper.

Figures S2 and S3 illustrate the critical benefit-to-cost ratio as a function of the population size

N and of the number of sets M for various choices of K and L. We use v = 0.01 and u = 0.0002.

As a function of N (Fig. S2), the benefit-to-cost ratio is a U-shaped function. If the population size

is too small then the effect of spite is too strong. In the limit of N = 2, it never pays to cooperate.

If the population size is too large (for a fixed number of sets M and a fixed set mutation rate v),

then all the sets get populated by defectors and cooperators can not survive. As a function of the

number of sets M (Fig. S3), the benefit-to-cost ratio is a declining function. Adding more sets is

always helpful for the cooperators.
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Fig. S 1: Critical benefit-to-cost ratio as a function of the effective set mutation rate ν = 2Nv.
The strategy mutation rate is u = 0.0002 and the population size is large, N → ∞. (a) Critical
b/c ratios for L = 1, K = 1, 2, 3, and total number of sets M = 10. This shows that increasing K is
worse for cooperation. (b) Critical b/c ratios for K = 1 and for L = 1, . . . , 5, K = 5, and M = 10.
This shows that larger K can be better for cooperation, as long as L is sufficiently large.
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Fig. S 2: Critical benefit-to-cost ratio as a function of the population size N . The set mutation rate
is v = 0.01. The strategy mutation rate is u = 0.0002. (a) Critical b/c ratios for L = K = M/2
and M = 6, 8, 10, 20. (b) Critical b/c ratios for L = 1, 2, 3, 4, 5, K = 5 and M = 10.
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Fig. S 3: Critical benefit-to-cost ratio as a function of the number of sets M . The set mutation rate
is v = 0.01. The strategy mutation rate is u = 0.0002. (a) Critical b/c ratios for L = 1, K = 1, 2, 3
and N = 20. (b) Critical b/c ratios for L = 1, 2, 3, K = 3 and N = 20.
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6 Numerical simulations

We have performed numerical simulations in order to test the results of our analytical theory

(see Figure 3 of the main paper and Figure S3 here). We consider a population of N individuals

distributed over M sets. Each individual is in K sets. There are two types of strategies: cooperators,

C, and defectors, D. Cooperators pay a cost, c, for another individual to receive a benefit, b. The

fitness of an individual is given by 1+ δP , where P is the payoff of the individual. We simulate the

Wright-Fisher process for a given intensity of selection, δ.

In each generation we compute the fitness of each individual. The total population size, N , is

constant. For the next generation, each individual leaves offspring proportional to its fitness. Thus,

selection is always operating. Reproduction is subject to a strategy mutation rate, u, and a set

mutation rate v, as explained previously. We follow the population over many generations in order

to calculate an accurate time average of the frequency of cooperators in this mutation-selection

process.

In Figure S3 we show the time average of the frequency of cooperators as a function of the

benefit-to-cost ratio, b/c. We simulate the Wright-Fisher Process for four different intensities of

selection ranging from δ = 0.05 to 0.4. The red points indicate the average frequency of cooperators

in the mutation selection process. Each point is an average over t = 5×108 generations. As expected

the average frequency of cooperators increases as a function of b/c. We are interested in the value of

b/c when cooperators become more abundant than defectors (when their frequency exceeds 1/2.).

The vertical blue line is the critical b/c ratio that is predicted from our analytical theory for the

limit of weak selection, δ → 0. We observe excellent agreement between theory and simulations.

For weaker intensity of selection the critical value moves closer to the theoretical prediction.
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Fig. S 4: Numerical simulation of the mutation-selection process for population size N = 80
and various intensities of selection ranging from δ = 0.05 to δ = 0.4. The red dots indicate the
frequency of cooperators averaged over t = 5×108 generations. The cooperator frequency increases
as a function of the b/c ratio. For a certain ratio, cooperators become more abundant than defectors
(intersection with black horizontal line). The blue vertical line is the theoretical prediction of the
critical b/c ratio in the limit of weak selection, (b/c)∗ = 3.8277. Parameter values: population size
N = 80, number of sets M = 10, number of set memberships K = 1, set mutation rate v = 0.1,
strategy mutation rate u = 0.004. We fix b = 1 and vary c.
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7 General Payoff Matrix

Let us now study a general game between two strategies A and B given by the payoff matrix





A B

A R S

B T P



 (67)

A derivation similar to the one presented in the Appendix leads to the following condition

necessary for strategy A to be favored over B

(R − S)g + (S − P )z > (R − S − T + P )η + (S + T − 2P )h (68)

The quantities z, g and h are as before and η is defined as follows

η = 〈γjlhj · hl 1si=sj=sl
| i &= j &= l〉 (69)

To interpret η, we pick three distinct individuals randomly. Then η is the average number of sets

the last two individuals have in common given that they hav a non-zero contribution to the average

only if all three have the same strategy. To calculate η we proceed similarly as for h. We fix the

times τ3 up to the first coalescence and τ2 extra steps up to the second. We denote by y(τ3, τ2) the

probability that the three individuals have the same strategy given these times to the coalescence.

We can now rewrite η as

η =

∫ ∞

0
dτ2

∫ ∞

0
e−3τ3−τ2y(τ3, τ2)[z(τ3) + z(τ2 + τ3) + z(τ2 + τ3)]dτ3 (70)

The only quantity we need to compute is y(τ3, τ2). Let us assume that i and j coalesce first,

and then they coalesce with l. As before, in order for i and j to have the same strategy, the total

number of mutations that happen up to their coalescence must be even. Therefore, either both

underwent an even number of mutations from their MRCA, or an odd one. If i underwent an odd

number, then in order for i and l to have the same number of mutations, it must be that, in the

remaining total time (which is τ2 + 2τ3) there must be an odd number of mutations. Thus, in this
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case we can write the probability that all three have the same strategy as

1

8
(1 − e−

µ
2
τ3)2(1 − e−

µ
2
(τ3+τ2)) (71)

When i undergoes an even number of mutations up to its coalescence with j, the probability

that all three have the same strategy is similarly obtained as

1

8
(1 + e−

µ
2
τ3)2(1 + e−

µ
2
(τ3+τ2)) (72)

Thus, we can write

y(τ3, τ2) =
1

8
(1 − e−

µ
2
τ3)2(1 − e−

µ
2
(τ3+τ2)) +

1

8
(1 + e−

µ
2
τ3)2(1 + e−

µ
2
(τ3+τ2)) (73)

Plugging into (70) we obtain the expression for η. Substituting z, g, h and η into (68) and

rearranging terms, we obtain

σR + S > T + σP (74)

where

σ =
1 + ν + µ

3 + ν + µ
·
K∗(ν2 + 2ν + νµ) + M(3 + 2ν + µ)

K∗(ν2 + 2ν + νµ) + M(1 + µ)
(75)

Note that if ν &= 0, the condition σ > 1 is equivalent to M > K∗, which is always true. Therefore,

σ is always larger than one when ν &= 0. Furthermore, σ is exactly one in the following limits: when

ν → 0, when ν → ∞ or when M/K∗ → 1. In all of these cases, the population is well-mixed.

For µ = 0, we obtain

σ =
1 + ν

3 + ν
·
K∗ν(2 + ν) + M(3 + 2ν)

K∗ν(2 + ν) + M
(76)

We observe that σ is a one-humped function of ν. It attains a maximum, which we denote by

σmax. To find the value of ν for which this maximum is achieved we differentiate (76) and set it

equal to zero. We obtain the same expression as in (58). Therefore, it has the same solution which

satisfies
√

M/K∗ < νopt <
√

M/K∗ + 1. For large M/K∗, the optimum ν is
√

M/K∗. Then we

can write

σmax =
(1 +

√

M/K∗)2

3 +
√

M/K∗
(77)
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Thus, when M/K∗ is large, σmax grows like
√

M/K∗.

We can also calculate σmax for a fixed number of sets M . Since K∗ is a function of L, K and

M , each case has to be studied separately. For instance, if L = K = 1, then K∗ = 1 and thus σmax

is proportional to
√

M for M large enough.

If K ≥ 1 and L = K = M/2 we find K∗ = M/
(

2
( M−1
M/2−1

)

)

. When M is large, M/K∗ is

also large and thus σmax grows proportional to
√

2
( M−1
M/2−1

)

∼ 2M/2/M1/4. Thus, σmax grows

exponentially as a function of the number of sets, M .

Figure S5 shows the dependence of σmax on M . The decisive condition for strategy A to be

favored over B is σR + S > T + σP (see eqn (74)). For a well-mixed population we have σ = 1.

Larger values of σ indicate greater deviation from the well-mixed case and greater effect of the

population structure. For σ = 1, strategy A is selected if R + S > T + P . In a coordination

game (R > T and S < P ) this is the well-known condition of risk-dominance. For large values of

σ, strategy A is selected if R > P . In a coordination game, this is the well-known condition of

Pareto efficiency. Therefore evolutionary dynamics in set structured populations help to achieve

the efficient equilibrium.
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Fig. S 5: σmax as a function of the number of sets M. We define σmax to be the maximum value of
σ given by eqn (76). (a) L = K = 1. (b) L = K = M/2.
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Appendix – Analytic proof

Let ωi represent the average number of offspring of individual i. After one update step (which is

one generation) we have:

ωi =
Nfi
∑

j fj
(78)

An individual is chosen to be a parent with probability given by its payoff relative to the total

payoff and this choice is made independently N times per update step. Using (2) we can rewrite

the denominator of ωi as:

∑

j

fj = N + δ(b − c)
∑

j

sj

(

hj ·
∑

i

hi − K

)

(79)

We are interested in the limit of weak selection, δ → 0. Then, (78) becomes

ωi = 1 + δ



−csi



hi ·
∑

j

hj − K



+ bhi ·
∑

j !=i

sjhj −
b − c

N

∑

i,j,l

sisjhj · hl



+ O(δ2) (80)

Let p denote the frequency of cooperators in the population. We think about an update step as

having two parts: a selection part and a mutation part. We want to study the effect of mutation

and selection on the average change in p. We denote by 〈∆p〉sel the effect due to selection, and

by 〈∆p〉mut the effect due to mutation. Since the average value of p is constant, these effects must

cancel:

〈∆p〉sel + 〈∆p〉mut = 0 (81)

In what follows, we will show that 〈∆p〉sel is continuous as a function of δ. Then, we can write

its Taylor expansion at δ = 0 using the fact that when δ = 0 both of the above terms go to zero

due to the symmetry of strategies in the neutral state

〈∆p〉sel = 0 + δ〈∆p〉(1)sel + O(δ2) (82)

Here 〈∆p〉(1)sel is the first derivative of 〈∆p〉sel with respect to δ, evaluated at δ = 0.

Thus, when 〈∆p〉(1)sel is positive, it means that there is an increase in the frequency of cooperators

due to selection. In this case, selection favors cooperators. If it is negative, then selection favors
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defectors. Therefore, for the critical parameter values we must have

〈∆p〉(1)sel = 0 (83)

This condition holds for arbitrary values of the mutation rates. As the mutation rate goes to

zero, the above equation corresponds to the equality of the fixation probabilities.

We will next detail the calculation of the change due to selection which we can write as

〈∆p〉sel =
∑

S

(∆p)S · πS (84)

Here (∆p)S is the average number of A individuals in a given state S of the system and πS is the

probability to find the system in that state. Next we detail the calculation of this quantity.

Let si be the strategy of individual i, where si = 1 denotes A and si = 0 denotes B. Then, in

a given state S of the system, the expected change of p due to selection in one update step is the

number of offspring of A individuals minus the number of A individuals in the previous generation,

divided by the population size. Thus, it is given by

(∆p)S =
1

N

(

∑

i

siωi −
∑

i

si

)

(85)

where ωi is the expected number of offspring of individual i.

From (80), we see that ωi is a polynomial in δ. Hence, (∆p)S is also a polynomial in δ and thus

it is continuous and infinitely differentiable at δ = 0. Hence, we can write the Taylor expansion,

using the fact that for the ωi function (80), (∆p)(0)S = 0

(∆p)S = 0 + δ
d(∆p)S

dδ

∣

∣

∣

∣

δ=0

+ O(δ2) =
δ

N

∑

i

si
dωi

dδ

∣

∣

∣

∣

∣

δ=0

+ O(δ2) (86)

The probability πS that the system is in state S is also a function of δ. We will show that

πS is continuous and infinitely differentiable around δ = 0 and thus that we can write its Taylor

expansion

πS = π(0)
S + δπ(1)

S + O(δ2) (87)

The 0 superscript refers to the neutral state, δ = 0 and π(1)
S is the first derivative of πS as a function
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of δ, evaluated at δ = 0.

Next we show that πS is continuous at δ = 0 for all S. In order to find πS , we need the transition

probabilities Pij to go from state Sj to state Si. Then the stationary distribution is given by a

vector of probabilities πS , which is a normalized eigenvector corresponding to eigenvalue 1 of the

stochastic matrix P . In our case, for the Wright-Fisher process with mutation, there is no absorbing

subset of states. From every state of the system you can eventually reach every other state. This

means that the matrix P is primitive, i.e. there exists some integer k such that P k > 0.

For a primitive, stochastic matrix P , the Perron-Frobenius theorem ensures that 1 is its largest

eigenvalue, that it is a simple eigenvalue and that it has a corresponding unique eigenvector with

positive entries summing up to 1. This is precisely our vector of probabilities which gives the

stationary distribution.

To find this eigenvector we perform Gaussian elimination (also referred to as row echelon reduc-

tion) on the system Pv = v. Since 1 is a simple eigenvalue for P , the system we need to solve has

only one degree of freedom; thus we can express the eigenvector in terms of the one free variable,

which without loss of generality can be vn:

v1 = −vna1, . . . vi = −vnai, . . . vn−1 = −vnan−1 (88)

The eigenvector that we are interested in is the vector with non-zero entries which sum up to

1. For this vector we have

1 = vn(−a1 − . . . − an−1 + 1) (89)

This proof is general for any primitive stochastic matrix. Let us now return to our structure and

the WF process. In our case, the transition probabilities come from the fitness f = 1+δ·payoff; they

are fractions of such expressions and thus they are continuous at δ = 0 and have Taylor expansions

around δ = 0. Thus, we can write all transition probabilities as polynomials in δ. Because of

the elementary nature of the row operations performed, the elements of the reduced matrix are

fractions of polynomials (i.e. rational functions of δ). Thus, ai above are all rational functions of δ.

Therefore, from (89) we conclude that vn must also be a rational function of δ. This implies that

in our vector of probabilities, all the entries are rational functions.

Thus πS is a fraction of polynomials in δ which we write in irreducible form. The only way
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that this is not continuous at δ = 0 is if the denominator is zero at δ = 0. But in that case,

limδ→0 πS = ∞ which is impossible since πS is a probability. Therefore, πS is continuous at δ = 0.

Once we have the Taylor expansions for both (∆p)S and πS we can substitute them into (84)

to obtain

〈∆p〉sel =
∑

S

(∆p)S · πS = δ
∑

S

d(∆p)S

dδ

∣

∣

∣

∣

δ=0

· π(0)
S + O(δ2) (90)

=
δ

N

∑

S

(

∑

i

si
dωi

dδ

∣

∣

∣

∣

∣

δ=0

)

· π(0)
S + O(δ2) (91)

=:
δ

N

〈

∑

i

si
dωi

dδ

〉

0

+ O(δ2) (92)

The last line is just notation. The angular brackets denote the average and the 0 subscript

refers to the neutral state δ = 0. Note that we start by writing the average change in the presence

of the game in equation (90) and we end up with an expression depending on the neutral state

(92), but containing the parameters b and c. Therefore we have shown that we only need to do our

calculations in the neutral state.

Now using (80) in (92), the first derivative of the effect of selection in the stationary state

evaluated at δ = 0 becomes

〈∆p〉(1)sel =
1

N



−c

〈

∑

i,j

siγijhi · hj

〉

0

− K(b − c)

〈

∑

i

si

〉

0

+ K
b − c

N

〈

∑

i,j

sisj

〉

0

+ b

〈

∑

i,j

sisjγijhi · hj

〉

0

+
b − c

N

〈

∑

i,j,l

sisjγjlhj · hl

〉

0





(93)

As discussed above, the critical b/c ratio is obtained when equation (83) holds. From this we

obtain

(

b

c

)∗

=
〈
∑

i,j siγijhi · hj〉0 − 1
N 〈
∑

i,j,l sisjγjlhj · hl〉0 − K〈
∑

i si〉0 + K
N 〈
∑

i,j sisj〉0
〈
∑

i,j sisjγijhi · hj〉0 − 1
N 〈
∑

i,j,l sisjγjlhj · hl〉0 − K〈
∑

i si〉0 + K
N 〈
∑

i,j sisj〉0
(94)

Hence, we have derived the expression for the critical b/c ratio given by (12).
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