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Running title: Gene orientation and non-coding transcripts as noise modulators

For some genes, notably essential genes, expression when expression is needed is vital 

hence low noise in expression is favourable. For others noise is necessary for coping 

with stochasticity or for providing dice-like mechanisms to control cell fate.  But how is 

noise in gene expression modulated?   We hypothesise that  gene orientation may be 

crucial,  as for divergently organized gene pairs  expression of one gene could affect 

chromatin of a neighbour thereby reducing noise. Transcription of antisense non-coding 

RNA from a shared promoter is similarly argued to be a noise-reduction mechanism. 

Stochastic simulation models confirm the expectation.   The model correctly predicts: 

that protein coding genes with bi-promoter architecture, including those with a ncRNA 
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partner,  have  lower  noise  than  other  genes;  divergent  gene  pairs  uniquely  have 

correlated  expression  noise;  distance  between  promoters  predicts  noise;  ncRNA 

divergent transcripts are associated with genes that a priori would be under selection for 

low noise;  essential  genes  reside  in  divergent  orientation  more  than  expected;  bi-

promoter pairs are rare subtelomerically, cluster together and are enriched in essential 

gene clusters.  We conclude that gene orientation and transcription of ncRNAs, even if 

unstable, are candidate modulators of noise levels.

Abbreviations: CUTs, cryptic unstable transcripts; FOP, optimal codon usage; ncRNA, 

non-coding RNA; NFR, nucleosome free region; SUTs, stable annotated transcripts; TF, 

transcription factor; TSS, transcription start site

Introduction

Between genetically identical cells we see variation in abundance of any given 

transcript or protein.  This variation is noise in gene expression .  There is also 

considerable variation between genes in the level of noise . In part the between-gene 

variation in noise, assayed as the coefficient of variation (standard deviation/mean 
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across individuals), is accounted for by expression level, there being lower noise for 

more highly expressed genes .  Even controlling for this, using an abundance corrected 

noise measure, there remains, however, striking variation . What are the underlying 

determinants of this abundance-independent variation in noise levels between genes and 

might the variation between genes in their noise levels reflect the activity of selection? 

For some genes high noise is likely to be significantly deleterious.  In particular, 

essential genes are, by definition, genes for which reductions (but not necessarily 

increases) in dosage are highly deleterious.  Stochastic fluctuation in abundance of such 

proteins is thus likely to be highly deleterious as dose can, by chance, sink to fitness-

reducing low levels .  We should then expect such proteins to be under selection to have 
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low noise.  That they do have low noise is consistent with such a model . Haplo-

insufficient genes have yet lower noise, as might be expected .  Conversely noise can be 

advantageous to some degree. Noise, for example, can provide the underlying basis of 

dice-like behaviour necessary for alternative cell fate specification in a genetically 

uniform population of cells (e.g. the developing embryo) . Further, if the environment is 

stochastic, noisy gene expression can be an effective mechanism to cope with 

uncertainty .  Noise in the expression of metabolic import channels is, for example, 

potentially advantageous when nutrient availability is fluctuating. It is striking that of 

all metabolic genes, import channels are the most noisy . Stress response genes are also 

expected to be high noise genes, these also being responsive to an uncertain 

environment . 
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While noise may then be an important target of selection, this leaves the issue of how 

mechanistically noise is modulated.  At the transcript level slow translation rates and 

low mRNA half lives are likely to reduce noise . Much noise modulation is probably 

achieved at the transcriptional control level. TATA controlled genes, in particular, tend 

to be especially noisy  and expression noise of genes is increased when the binding site 

of GAL1 promoter is moved closer to a TATA-box . The underlying cause of an 

association with TATA is unresolved.  The high expression variation of TATA-box 

containing gene may be owing to the binding stability of transcription-mediating factor 

TBP  or related to the high nucleosome occupancy , suggesting a link to chromatin 

dynamics. A recent report of the lack of activating histone modifications in this region 
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supports the latter.  

The above results go someway to unifying TATA control with chromatin level control, 

also thought to be important in noise modulation . In one striking example , a pair of 

genes inserted in tandem showed co-ordinated spiking in their gene expression, while 

the same pair when unlinked showed little co-ordination. This result suggests a model 

whereby opening of chromatin permits accessibility to transcription factors.  Regular 

opening and closing of chromatin then leads to co-ordinated expression, and correlated 

noise levels, of neighbours.  Such a model correctly predicts that across a genome, 

controlling for similarity of transcription factor control, linked genes show much higher 

levels of co-expression than do unlinked genes . This in turn is related to nucleosome 
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occupancy . The magnitude of this effect is noteworthy: two random unlinked genes 

regulated by the same set of transcription factors show no higher co-expression than a 

pair of linked genes with no similarity in their transcription factors .

This class of model has led to the suggestion that the genomic distribution of essential 

genes and chromatin control should co-evolve such that essential genes end up clustered 

into domains with largely open chromatin, thereby ensuring low noise and expression 

when expression is needed . The model has some predictive power.  It correctly 

predicts, for example, that essential genes should be rare subtelomerically in yeast, 

these being domains inconsistent with permanently open chromatin. It also correctly 

predicts nucleosome occupancy in domains rich in essential genes and that noise levels 
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of non-essential genes should be predicted by the local density of essential genes .  Here 

we extend the logic of chromatin mediated noise modulation to propose that modulation 

of noise by DNA dynamics might affect gene pairs differentially dependent on their 

orientation. 

Gene pairs can come in one of three orientations: convergent ( ), co-oriented ( or ) 

or divergent ( ).  These three classes are not equally conserved. In human, mouse, and 

rat bidirectional gene organization tends to be both ancient and more conserved than 

alternative orientations . Similarly, through the fungi, divergent gene pairs are more 

conserved in orientation than convergent or co-oriented gene pairs . In some cases of 

divergent genes the promoter domains overlap.  Here we define such bidirectional-
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promoter genes as those where the nucleosome free region (NFR) of the two genes 

overlap. In Saccharomyces cerevisiae we find, in agreement with prior results , that 

more than 60% of non-overlapping divergent protein coding transcripts share the same 

promoter region.  For convenience we refer to genes with a bidirectional promoter as bi-

promoter genes.

Bipromoter gene pairs are especially well conserved as a pair. This can be seen when 

comparing the current gene order in Saccharomyces cerevisiae with that seen in the 

ancestor, prior to the whole genome duplication .  Comparing bipromoter pairs to 

divergent but non-bipromoter pairs using logistic regression, we find that bipromoter 

pairs are much better conserved as a pair (p = 3 x 10-7), even when controlling for co-
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expression level (p = 0.03) and intergene distance (p = 0.00136), known predictors of 

pair conservation .  This conservation may reflect nothing more than the fact that 

inversions that break up bidirectional gene pairs are more likely to disrupt promoter 

architecture. 

Here we note that divergent orientation, bipromoter architecture in particular, is peculiar in that 

it puts in proximity the promoters of the two genes.  This we argue may well have consequences 

for noise levels as for divergent genes the transcription, or priming for transcription by PolII 

loading, makes the transcription of the neighbour more likely, either because it might decrease 

the probability that the relevant chromatin stochastically closes or increases the probability of it 

being opened.  That neighbouring genes show co-ordinated expression , that such co-ordination 
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is not simply owing to similarity in transcription factors and is related to local nucleosome 

occupancy , while noise of a transgene is dependent on the insertion site  all point to a coupling 

between chromatin neighbourhood and noise. That transcription affects chromatin status 

suggests in turn that bipromoter genes are unlikely to have uncoupled expression.  Indeed, in 

humans, it has been shown that intensive transcription at one locus frequently spills over into its 

physical neighbouring loci (both upstream and downstream) resulting in a time lagged burst of 

expression subsequent to the upregulation of the focal gene . This spill over is thought to be at 

least in part owing to local relaxation of chromatin associated with the expression of the focal 

gene, as evidenced by changes in histone modifications . The same effect is seen in yeast, only 

here the effect is much more highly localized, the spill over extending no further than 3kb  as 

opposed to 100kb in humans. 
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Based on these observations, we propose that for bipromoter genes, the gene pair acts as 

it were as a partially self re-inforcing domain of open chromatin. Such bi-promoter 

domains should, we hypothesise, increase the net likelihood that chromatin is open and 

should thus be conducive to low noise, enabling expression when expression is needed. 

This could explain why some genes have non-coding unstable RNAs produced off a 

bidirectional promoter. Below we start by examining the hypothesis by reference to 

stochastic simulations.

Results:

The stochastic simulation model

Consider a pair of neighbouring genes.  The promoter of each we presume can exist in 
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one of two states, either in open chromatin or closed.  Transcription is only possible, we 

assume, when chromatin is open. Here, note, we ignore the possibility that transcription 

factors might also act to open chromatin. Assuming independent behaviour of the two 

genes, the probability that open chromatin closes within a fixed time interval is pc, 

while the probability closed chromatin opens in po.  If chromatin is open, then 

transcription is possible, occurring with a probability pt.  A transcriptional event results 

in N proteins before the mRNA is lost and protein decays with probability pd.  

The novel component of the simulation is to suppose that transcription of one gene 

might alter chromatin dynamics of the other and in turn affect transcription. There are 

two ways (not mutually exclusive) by which transcription of one gene might mediate 
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such effects: either by reducing the probability that chromatin of the other promoter will 

shut, if open, or by increasing the probability of the chromatin opening if shut.  We 

model both independently and consider a third model combining both.

We start by considering the case where the probability of shutting alone is modified 

(model 1).  We can then define a parameter, i, for the level of independence between the 

genes, such that if one gene is being transcribed the probability that chromatin 

associated with the other gene’s promoter will shut will be i.pc.  For i=1, the two genes 

are perfectly independent (e.g. not bidirectional).  For i=0, transcription of one gene 

holds open the chromatin of the other gene, if the chromatin was already open.  In this 

model, if the chromatin of the other gene is closed, it isn’t forced to open by the activity 
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of the neighbour. This coupling is hence in the form of resilience to chromatin closure.  

In the second model, we consider that transcription of one gene increases the chances 

that the promoter of the other is opened if closed, but doesn’t affect the probability of 

closure if open. If one gene is been transcribed, the probability that the chromatin of the 

other gene will open, if closed, is (2- i).pO.  In the final model (model 3), we incorporate 

both effects.  For further details see supplementary experimental procedures 1.

For each simulation we follow the chromatin state, the transcriptional state and the 

protein level over 10,000 time units, updating status each time unit.  Noise for the 

protein is defined as the standard deviation in protein level over the time course / mean 

level (note that variation over the time course is equivalent to variation between 

unsynchronized replicates at any given time).  An analogous definition is used for the 
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transcript-level noise.  Co-expression between the two genes is the Pearson product 

moment correlation through the time course of the pair.  Chromatin fluctuation is the 

probability of observing a change in chromatin state in a randomly chosen iteration. 

In the model in which transcription exclusively increases the chances of closed 

chromatin opening (model 2), in nearly all parameter space increasing interdependence 

(i -> 0) promotes low noise.  Given this, we present in detail the less permissive model 

(model 1).  The results from models 2 and 3 are presented in Supplementary figures 1 

and 2.

A typical result for model 1 is presented in figure 1.  Here pc = po =0.5.  Note that as the 
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likelihood of coupling decreases so noise goes up and co-expression is reduced. More 

generally, for a variety of parameter values we need to consider the correlation between 

noise level and i.  If, as in figure 1, this is positive, then increased coupling, (i->0), 

ensures reduced noise. We consider simulations in which for the two genes all 

parameters are the same, but we vary independently both pc and po over the range 0.05 

to 1 under increments of 0.05 with 10 replicates for each set of parameter values.  We 

find that as regards transcriptional noise a positive correlation is always seen (Fig 2, 

blue points). However, owing to stochasticity in protein degradation this does not 

necessarily translate to protein level noise always decreasing with decreasing 

independence.  
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We find that protein noise can be increased when the stochastic probability of 

chromatin closure is high and thus most of the time no transcription is happening (Fig 

2, red points). This is largely dependent on pc not being too high (Fig 3a), as opposed to 

variation in po (Fig 3b). The causality of the negative correlation when closure 

probability is high is intimately related to effects on protein abundance.  When closure 

probabilities are high (and transcription rates low), there is a positive correlation 

between protein abundance and protein noise (Fig 4), while, when closure rates are 

lower this correlation switches to a negative correlation. This most likely reflects the 

fact that when closure rates are high, little transcription is seen and protein levels can 

descend to zero, thereby reducing the variance in levels until the next transcriptional 

event.  With some degree of coupling between the genes the protein abundance level is 
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raised and so noise is raised.  The transcripts are, however, rare and lost almost 

immediately. As in yeast we see a negative correlation between protein noise and 

protein abundance , we surmise that true closure rates are relatively low, predicting a 

decrease in protein noise with increasing coupling.

Noise reduction has abundance-dependent and abundance-independent 

components

While in the above models we see a robust relationship between coupling and noise, 

much of this effect is likely to be owing to there commonly being lower noise for highly 

abundant proteins.  In the simulations, increased coupling increases the abundance of 

the protein product by permitting a higher opportunity for transcription.  This agrees 
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with the prior suggestion that, for essential genes, an increase in dose may be beneficial 

as it both reduces noise and moves the mean expression level away from the danger 

zone, where low dose equates to large fitness effects . Note too that dose sensitive 

genes, such as essential genes are asymmetrically dose sensitive.  While reduction of 

dosage is very costly (hence they are deemed essential) increases in dose do not have 

any similar effect.  Indeed, it is notable that the set of genes for which gross over-

expression has a phenotype shows little overlap with the set showing fitness on 

reduction in dosage .  We conclude that it is likely to be advantageous for some dose 

sensitive genes to be configured in bipromoter architecture as it increases net 

abundance. 
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Given the above logic, we might also ask whether bipromoter genes are expected to 

have lower noise, even allowing for the increased abundance.  To approach this we 

consider simulations in which we alter abundance by modifying factors that affect 

protein abundance independent of the effects of chromatin opening and shutting, and 

transcriptional bursting.  We can then ask whether an independent gene pair (i=1) and a 

coupled pair (i=0) show different noise levels when steady state protein abundance 

levels are equal owing to differences in decay rates (higher for coupled genes).  We find 

for all three models that bipromoter genes still show lower noise levels at any given 

abundance level (Supplementary figures 3).  We also consider the possibility that 

transcripts that result from bipromoter activity produce fewer translated proteins than 

do those from independent genes, keeping the decay rates constant.  Again we find that 
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controlling for net protein abundance that coupled genes (i=0) have much lower noise 

than do independent ones (Supplementary figures 3).  We conclude that noise 

modulation by modification of transcriptional bursting, owing to coupled gene activity, 

can have both abundance-dependent and abundance-independent causality. These 

results are in many regards comparable to those of Cook et al., who, in 

examining a role for ploidy in noise modulation, identify both an abundance-dependent 

and abundance-independent component to noise modulation. 

Bi-promoter transcribed genes have low expression noise

We tested the hypothesis that bi-promoter protein coding genes have low protein noise 
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with the help of recently published yeast whole genome transcription data  to define 

gene orientation and presence of ncRNA, coupled with high resolution noise data on 

rich media provided for over 2000 protein coding genes specified by Newman et al. . In 

all, we analysed 7,272 well identified transcripts, of which 1,772 are non-coding 

transcripts (stable unannotated transcripts and cryptic unstable transcripts, SUTs and 

CUTs) which is approximately 25% of all transcripts . Among transcripts with a 

mapped 5’ nucleosome free region (NFR), 61% of the unannotated transcripts and 48% 

of the protein-coding transcripts initiated bidirectionally from shared 5’ NFRs rather 

than initiating from their own promoters . 

If our hypothesis is correct, protein-coding genes with a bi-promoter architecture 
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(shared with either a protein coding gene or a ncRNA) should show lower expression 

noise. As we are not so interested in the hypothesis that bipromoter architecture might 

modify noise through modification of abundance, we restrict analysis to abundance 

corrected noise measures, as defined by Newman et al. .   We also repeated analysis 

using residuals from a loess regression of noise against abundance and find no 

important differences (data not shown).  After removing the confounding transcript 

types (5'NFR tandem transcript, 3'NFR antisense transcript and 3'NFR tandem 

transcript) annotated by , we find that protein-coding genes with a bi-promoter 

structure, sharing their 5’ NFR either with a coding gene or with a non-coding gene, 

show significantly lower expression noise than the genes that do not have a bi-promoter 

transcript structure (mean noise of bi-promoter genes = 0.33 +/- 0.11; of all non-bi-
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promoter genes: 1.76 +/- 0.15; Brunner-Munzel test p = 4.1x 10-13, Fig 5). More 

generally, divergent genes (regardless of their NFR) have lower noise than those in 

alternative configurations (noise of non-divergent genes = 1.50 +/- 0.18, mean noise of 

divergent genes = 0.88 +/- 0.12, Brunner-Munzel test p = 0.0077). By contrast, 

convergent genes don’t show significant differences in noise level compared with co-

oriented genes (p = 0.68, Brunner-Munzel test). 

Noise reduction and divergent ncRNA

This model not only has applicability in the case where both genes in the pair are 

protein coding.  It also has the potential to explain why some genes have antisense non-

coding RNA specified from a bi-directional domain. Such transcripts are now widely 
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reported.  In yeast, of the unannotated transcripts (ncRNA) which have mapped 5’ NFR, 

61% are bidirectional initiated from a shared promoter region . Similarly, mapping 

millions of short RNA reads generated from murine embryonic stem cells and other 

differentiated cell types has revealed abundant short transcription start site–associated 

RNAs, many of which are antisense transcripts . Likewise in humans, depletion of the 

exonucleolytic RNA exosome reveals lots of highly unstable RNA of promoter upstream 

transcripts . Similar RNAs are reported in chicken and Drosophila . 

One model sees these as spurious transcripts, a consequence of illegitimate 

transcription factor activity .  Our model suggests a functional explanation. For the 

chromatin to remain open and for noise to be reduced, permitting expression when 
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expression is needed, polII priming or transcription of a ncRNA through a promoter on 

the opposite strand to that of the focal protein coding gene would be an efficient 

mechanism to enable accessibility of the promoter domain of the focal gene. As 

expected, we find that bi-promoter protein coding genes have low noise both when they 

are partnered with a protein coding gene (p = 5.0x 10-14 compared with all other genes; 

Brunner-Munzel test), and when the partner is not protein coding (p = 0.0030, Fig. 5). 

Is noise more important than co-expression?

In simulations we find that co-expression is higher when genes are coupled (r=-0.86). 

While then the above results support the noise model, can we be confident that the 

function of bi-promoter architecture is ever to reduce noise rather than to increase co-
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expression levels?  For the most highly co-expressed 2% gene pairs it is known that they 

tend to belong to the same functional class, are preserved as a pair over evolutionary 

time and are enriched in divergent orientation .  For these there is little doubt that co-

expression is functionally relevant.  However, several findings support the proposition 

that noise modification is relevant. First, we see no significant correlation between co-

expression level and mean noise, neither for divergent gene pairs (r = -0.064, p = 

0.424), convergent gene pairs (r = -0.1038, p = 0.152), nor co-oriented gene pairs (r = 

-0.0672, p = 0.257). We do, nonetheless and as expected, find higher co-expression rates 

for divergent gene pairs (divergent gene pairs: mean co-expression =0.140 +/- 0.012; 

convergent gene pairs, mean co-expression: 0.107 +/- 0.010; co-oriented gene pairs: 

mean co-expression: 0.101 +/- 0.009; p = 0.0467 between divergent and convergent; p = 
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0.0019 between divergent and co-oriented and p = 0.333 between convergent and co-

oriented, Brunner-Munzel test). 

Second, co-presence of the product of transcription is unlikely to be the case for one 

class of ncRNA, cyptic unstable transcripts (CUTS), as these tend to be rapidly targeted 

for degradation . Importantly then, we find that when we consider protein coding genes 

partnered with CUTs through bi-promoters, they too have lower noise than other genes 

(p=0.012), but no different from that of protein coding genes partnered with protein 

coding genes in a bi-promoter architecture (p>0.05).  

A third line of evidence derives from examination of a class of genes where a priori we 

might know the fellow genes with which they might benefit from being co-expressed. 
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The best candidates in this regard are proteins that belong to the same protein complex, 

that do indeed have high co-expression scores with fellow members (mean co-

expression of genes from same complex: 0.1877 +/- 0.0026 and mean co-expression of 

genes from different complexes: 0.0253 +/- 0.0001, p < 2.2 x 10-16 in Wilcoxon rank sum 

test) .  Given the need for transcription when transcription is needed, as expected 

complex-associated genes do indeed have low noise (p = 7.3 x 10-7 Brunner-Munzel 

Test). Further, as we would expect, genes specifying proteins in a complex tend to have 

bipromoter architecture more than expected by chance (p < 2.2 x 10-16, Fisher's Exact 

Test), this being true after control for essentiality (p < 2.2 x 10-16, Fisher's Exact Test). 

While, however, complex related genes both have low noise and are found more 

commonly in bipromoter architecture than expected by chance, we find no cases where 
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two genes specifying proteins in the same complex are located in the same bi-promoter 

pair. These results strongly suggest that noise modulation above co-expression is key to 

selection on bi-promoter genes.  A very few bi-promoter genes may well also benefit 

from their mutual co-expression, but the more relevant force may well be selection for 

noise modulation.

For noise, orientation of the ncRNA matters

While above we show that nCRNA in divergent orientation is associated with low noise 

of the protein coding gene, this does not demonstrate that oritentation per se is 

important.  Is then low noise a general property of genes associated with ncRNAs, 

regardless of orientation, or is the divergent orientation important? We find that noise 
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levels of proteins with an ncRNA from the same strand as the protein coding gene have 

higher expression noise than proteins with a ncRNA derived from a bidirectional 

promoter (bi-promoter with ncRNA noise=0.65, co-oriented with ncRNA noise=2.07, 

p=0.036; Brunner-Munzel test). This both supports the hypothesis that the function of 

bi-promoter ncRNA is to reduce noise of the paired protein-coding gene and suggests 

that noise, rather than co-expression, can be the focus of selection. Moreover, genes 

with ncRNA from the same strand as the protein coding gene have higher expression 

noise than the protein coding genes which have a same strand protein coding gene 

neighbour (p = 0.026). This suggests that co-oriented ncRNAs may be a means to 

increase expression noise, a possibility we will not examine further.
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Results are robust to covariate controls

The above results are all consistent with our hypothesis but may have alternative 

explanations. Previous analysis of divergent promoters in mammals suggests that 

several particular binding motifs are enriched in bi-promoter structures  and a particular 

binding protein, GABP, binds to more than 80% percent of divergent promoters . This 

raises the possibility that differential utilization of transcription factors might explain 

the low noise of bi-promoter genes. 

To test this, we take three transcription factors  that each regulate more than 100 genes 

and ask whether the mean expression noise of bi-promoter genes bound by these three 

TFs is lower than the noise of other genes that are bound by the same TFs. Second, we 
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ask whether the expression noise of bi-promoter genes bound exclusively by other TFs 

(i.e. not the main three) is lower than that of non-bi-promoter genes bound exclusively 

by other TFs. The results show that TF binding cannot explain the low noise in bi-

promoter genes (Table 1). Further, when we control for the number of transcription 

factors regulating a gene, bi-promoter genes still show lower expression noise than other 

genes (p<0.0001 from randomization; Supplementary Fig 5). 

 

The existence of a TATA-box appears to be linked to increased noise levels . As bi-

directional genes in both human and Drosophila melanogaster  often lack TATA 

control, the result could reflect TATA presence/absence rather than bidirectionality per  

se. In yeast, we find the same bias: of the 2111 protein coding genes involved in bi-
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promoter pairs, only 509 are annotated as containing a TATA-box, which is 

significantly lower compared to other genes (p < 2.2e-16, Fisher's Exact Test).

We thus compared the noise of bi-promoter TATA-containing genes with that of non-bi-

promoter TATA-containing genes, and the noise of bi-promoter TATA-less genes with 

that of non-bi-promoter TATA-less genes. As expected, TATA is a predictor of noise 

(e.g. in bi-promoter genes, genes with a TATA-box show higher noise levels than genes 

without a TATA-box, p = 0.0064, Brunner-Munzel test). However, this fails to explain 

the low noise of bi-promoter genes: bi-promoter genes have lower noise than non-bi-

promoter genes even when only considering those genes without a TATA-box; the same 

holds when considering only genes with a TATA-box (Table 2). 
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Type II promoters already are nucleosome free and so don’t benefit from 

bidirectional architecture. 

There are two types of promoter regions: those that favour nucleosomes, and those that 

don’t . Genes with nucleosome-favoring promoters usually have high expression noise, 

while genes with nucleosome disfavoring promoters usually have low expression noise . 

How does this relate to gene orientation? 

We utilized a prior definition of type I and type II promoters . Here a type I promoter is 

defined as a promoter containing a TATA-box with at least 80% of the length of its 

binding sites covered by nucleosomes. A type II promoter is TATA-less with at most 

20% of the total length of its binding sites covered by nucleosomes. We find that non-
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bi-promoter genes have higher noise than bi-promoter genes when restricting our 

analysis to nucleosome-favouring promoters (>80% occupancy; mean noise =1.81 in bi-

promoter genes, noise=5.46 in other genes, p = 0.00020, Brunner-Munzel test; Table 3). 

This remains true after controlling for gene essentiality (Table 3). 

By contrast, for genes with nucleosome-disfavouring promoters (occupancy <20%), we 

see no evidence for a noise reduction through bi-promoter architecture (Table 3).  If 

Seila et al  are correct this result is to be expected.  They conjecture that RNAPII 

complexes are simultaneously engaged at the boundaries of the nucleosome-depleted 

region surrounding TSSs and that these divergently engaged polymerases could directly 

reinforce the -1 and +1 nucleosome positions, effectively enhancing the boundaries of 
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the nucleosome-free region, allowing transcription factors access to the promoter , and 

maybe further maintaining the “loose” chromatin during transcription .  Such genes are, 

in effect, primed for transcription, regardless of orientation: an ‘interrupted form’ of bi-

directional transcription occurs even if there is no bi-promoter.  For those bi-promoter 

pairs that do not exclude nucleosomes in this manner from the bi-promoter region 

during transcription (type I pairs), dependence between the two genes is re-inforced and 

noise reduced, much as we modelled. If the above picture is true, we would expect that 

the class II (nucleosome-free) genes in non-bidirectional orientation should have lower 

noise than class I genes in the same orientation, which indeed we observe (mean noise 

level is 0.10 +/- 0.17 and 5.46 +/- 0.70, respectively. p < 2.2e-16, Brunner-Munzel test; 

this remains true when controlling for gene essentiality). In short, nucleosome depletion 
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and bidirectional orientation we suggest to be two alternative mechanisms to ensure low 

noise by resisting stochastic chromatin closure. 

Only bi-promoter genes show correlated noise of neighbours 

For any gene we can assay its noise level under a variety of parameter values. The 

simulation suggests that when two genes are coupled (i->0) the noise levels of the two 

proteins across these multiple conditions are correlated.  More generally, across all 

simulations we consider the correlation in protein noise between the neighbours for a 

given value of independence i.  We find this to be strongest when coupling is strongest 

(r=-0.96). Our simulations thus predict that the correlation in noise levels between 

neighbours should be strongest when coupling is strongest and hence when genes are 
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divergent. If independence of divergent genes is in turn modulated by intergene 

distance, by the same logic we expect for divergent genes the correlation in noise levels 

to be higher when intergene distance is lower.

Confirming these predictions, we find a significant correlation of the noise of two 

divergent transcripts. Conversely, neither convergent nor co-oriented gene pairs show 

correlated noise levels (Spearman rank correlation for divergent pairs r = 0.148, p = 

0.031 (r = 0.151, p = 0.047 after removing type II genes); for convergent pairs r = 

0.0089, p = 0.45; for co-oriented pairs r = -0.0008, p = 0.51; p-values determined by 

randomization).  Also as predicted the mean noise level of the transcripts in divergent 

gene pairs is correlated with the distance between transcription start sites, a correlation 
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not seen for convergent and co-oriented pairs (Spearman rank correlation for divergent 

pairs r = 0.0936, p = 0.0055; for convergent pairs r = -0.0194, p = 0.49; for co-oriented 

pairs r = -0.0282, p = 0.29). 

Essential genes tend to be low noise with bi-promoter architecture, while the 

opposite is seen for stress response genes.

Of all genes, those that are lethal on knockout (i.e., essential) are most likely to be under 

selection for reduced noise levels . Conversely, stress related genes are thought to be 

under selection for high noise .  Many features of essential genes are consistent with low 

noise.  They tend to be highly expressed, but even controlling for this they have low 

noise .  Counter-intuitively for highly expressed genes the mRNAs have short half lives , 
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a feature consistent with low noise .  They tend not to be TATA controlled and reside 

clustered in genomic low noise/open chromatin domains . 

If bi-promoter architecture is a mechanism to enable low noise and expression when 

needed, we might also expect such genes to be in divergent or bi-promoter orientation 

more than expected by chance.  This is indeed the case in yeast.  Of 6600 protein coding 

genes in yeast, 2627 are divergent with a partner protein coding gene.  Of these, 537 

(20.4%) are essential, while only 577 (14.5%) of the 3973 non-divergent genes are 

essential.  There is thus enrichment of essential genes in the divergent class (p = 4.9 x 

10-10, Fisher’s exact test).  There is a corresponding enrichment of essential genes in 

gene pairs with bi-promoter architecture. Of 2111 genes in bi-promoter organization, 
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22% are essential, while only 649 of 4489 (14.4%) non-bi promoter genes are essential 

(p=5.9 x 10-13, Fisher’s exact test).  An analogous excess in divergent orientation has 

recently been reported in Drosophila . Moreover, we see more bidirectional pairs of two 

essentials genes than expected by chance: there are 79 bidirectional essential gene pairs 

in yeast, this being more than ever found in 1000 gene order randomizations, p<0.001). 

Also as expected, haploinsufficent genes tend to be in bipromoter architecture more 

than expected (41% versus 31% of all others; p=0.005).

For stress-related genes, where we expect selection for high noise, we see the opposite 

pattern.  While those that are bi-promoter have lower noise than stress related genes in 

different configurations (mean noise for bi-promoter stress genes 1.59 +/- 0.30, for non-
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bi-promoter stress genes 3.63 +/- 0.27, p=1.6 x 10-8, Brunner-Munzel test), stress related 

genes tend to avoid having a bi-promoter architecture. Only 509 (24.1%) bi-promoter 

genes are stress related, while 1525 (34.0%) of non-bi-promoter genes are stress related 

(Fisher's exact test, p = 2.7 x10-16).  Similarly, stress genes tend not to be in divergent 

orientation (28% divergent, 32.5% non-divergent; p = 0.00024, Fisher’s exact test). 

What of the essential genes that are not bi-promoter with another protein coding gene? 

We predict to see more cases of antisense ncRNA than expected by chance associated 

with such genes, if ncRNA is a mechanism of noise reduction. This we observe. Of 309 

genes with an antisense CUT, 65 (21%) are essential genes, while only 624 (14.1%) of 

4441 genes without an antisense CUT are essential (p = 0.0014, Fisher's exact test). 
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If there are peculiar features of essential genes (e.g. short half life, low usage of optimal 

codons), can we exclude the possibility that bi-promoter genes have low noise just 

because of this enrichment for essential genes? Mean noise level of the 1646 non-

essential bi-promoter genes is significant lower than other non-essential genes (0.43+/- 

0.12 versus 1.83+/- 0.15, p= 5.5x10-12 in Brunner-Munzel test). That non-essential genes 

with bi-promoter control have lower expression noise than essential genes (in all 

orientations) (p = 0.035) further suggests that dispensability cannot alone account for 

the low noise of bi-promoter genes. 

There must, however, be alternative methods to modulate noise.  Notably, we find that 

the mean noise of bi-promoter essential genes (with either an ncRNA or a protein 
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coding gene partner) is not significantly lower than the noise of non-bi-promoter 

essential genes (0.18+/-0.22 versus 0.22+/- 0.26, p=0.82 in Brunner-Munzel test; 

0.03+/-0.20 versus 0.29+/-0.30, p = 0.76 after removing type II genes). These results are 

then consistent with bi-promoter architecture being a means to reduce noise, but, 

unsurprisingly, not the only mechanism.  

What the other mechanisms might be is not immediately transparent.  For example, 

while essential genes have a shorter mRNA half life than non-essential genes (p = 2.8x 

10-16, Brunner-Munzel test), the mean mRNA half life for bi-promoter essential genes is 

no different to that of non-bi-promoter essential gene (16.65 versus 16.91 respectively: p 

= 0.25, Brunner-Munzel test).  Increased usage of codons that specify abundant tRNAs 
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is expected to enable fast translation and be associated with high noise. As expected, 

there is a positive correlation between the frequency of optimal codon usage (FOP) and 

expression noise in yeast (r = 0.107, p = 4.6 x 10-07, Spearman's rank correlation). 

However, FOP of bi-promoter essential genes does not differ from that of either 

essential non-bi-promoter genes or essential non-divergent genes (p = 0.16 and 0.63, 

respectively, Brunner-Munzel tests). 

Bi-promoter gene pairs and CUTs are rare in noisy subtelomeric domains

Does the fact that bi-promoter gene pairs have low noise affect not only which sort of 

genes are found in this architecture but also where on chromosomes they are found? 

Previously it was reported that essential genes and non-essential genes flanked by a 
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high density of essential genes tend to have low noise .  Could it be that non-bi-

promoter essential genes tend to reside in essential gene clusters, thus giving them low 

noise?  Alternatively might genes requiring low noise not only adopt bi-promoter 

architecture but also aggregate into low noise chromosomal domains? Ignoring genes 

+1 and -1 from a focal essential gene (direct neighbours) and then asking about the 

number of essential genes in the flanking 5 genes on either side, we find that both bi-

promoter essential genes (p=0.022) and bi-promoter non-essential genes (p=0.018) have 

more essential genes in their vicinity than expected by chance (Table 4).  Thus bi-

promoter genes tend to be enriched in the vicinity of essential gene clusters, these 

having unusually low noise levels .  Clustering of bipromoter genes doesn’t however 

fully account for the low noise of genes in such domains.  Examining non-bipromoter 
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genes, those in essential gene clusters have lower noise than those not in clusters 

(P=0.0007; controlling for essentiality, P=0.01).

Yeast subtelomeric domains are high-noise domains and are depauperate in essential 

genes .  From the logic that bi-promoter architecture is a genomic device to minimize 

noise, we might expect that genes found in subtelomeric domains should be favoured to 

be high noise genes and hence not in a bi-promoter architecture. Considering all genes, 

28 of 324 gene pairs (8.6%) are bi-promoter in subtelomeric domains (20kb from 

chromosome ends), while 2083 of 6276 (33%) non-subtelomerics are bi-promoter 

(p<2.2 x 10-16, Fisher’s exact test).  However, as essential genes tend to be bi-promoter 

and avoid subtelomeric domains, we may be seeing nothing more than the biased 
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distribution of essential genes.  Considering only non-essential genes, we see the same 

bias (8% subtelomeric non-essential genes in bi-promoter architecture versus 31% non-

subtelomeric, p <2.2 x 10-16, Fisher’s exact test).  We similarly find that bi-promoter 

CUT associated genes are rare subtelomerically (1.2% subtelomeric genes have a bi-

promoter CUT compared with 4.8% otherwise, p=0.001 Fisher’s exact test; this remains 

when controlling for essentiality of the neighbour, p=0.006).  The high noise of 

subtelomeric genes and the avoidance of subtelomeric domains by bipromoter genes 

cannot explain the low noise of bipromoter genes, as they have low noise even 

compared with genes that are not subtelomeric (P<10-11).

Discussion
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We have found, via simulation, that if transcription of one gene increases the probability 

of transcription of a neighbour and vice versa, then low noise of both is expected across 

broad and realistic parameter space. We propose that divergent gene pairs, bi-promoter 

gene pairs in particular, are thus expected to be low noise genes, even allowing for any 

effect on protein abundance.  This model has striking predictive ability.  Bi-promoter 

genes are indeed low noise and, as predicted, the noise is modulated by intergene 

distance.  Similarly, bipromoter pairs have correlated noise. The model can predict 

biases both in which genes are or are not in bipromoter architecture (essential/complex 

genes and stress response genes respectively) and which classes of gene should be more 

likely to have ncRNA in bi-promoter architecture.  Indeed, that our model can predict 

noise levels and skew in gene type associated with CUTs, strengthens the view that 
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noise control, independent of co-expression modulation, is a focus of selection.  The 

model also predicts that bipromoter pairs should be rare subtelomerically as observed, 

such domains being high noise domains. 

These results suggest that gene orientation may well be an important feature in the 

control of noise, they also suggest that, as with transcription at SER3 , it is the act of 

transcription, rather than the product of transcription, that can be important.  While the 

CUT associated with SER3 (a sense transcript) is associated with control of the 

expression of the downstream gene, we argue that transcription from the opposing 

strand is an effective mechanism for priming a focal sense strand gene for expression 

and hence for reduction in noise. The transcript may well be unwanted, but it doesn’t 
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follow that the making of the transcript is without functional relevance. This is also 

supported by the observation that upstream RNA PolII transcripts usually cannot be 

elongated effectively .

We might then also wonder how much expression in protein coding genes from 

bidirectional promoters is to enable noise control rather than produce the protein 

product itself. Such a hypothesis could explain why many relatively highly co-expressed 

neighbours (0.4>r>0.2) in yeast have no functional (GO class) similarity . 

These findings add to recent evidence that a substantial component of selection on gene 

arrangement within genomes is to modulate noise levels. In yeast the clustering of 

essential genes may be owing to such selection (see also ).  In bacteria co-linearity, the 
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tendency for genes to appear in the same order in the operon as the proteins are needed 

in a temporal fashion, appears also best explained by the consequences of selection on 

noise .  What remains to be resolved is whether noise modulation mediated by changes 

in gene order/orientation is relevant in less compact genomes, such as those of 

mammals.  

Materials and methods:

Dataset

All yeast (Saccharomyces cerevisiae) transcripts as observed by tiling arrays under 

three conditions (YPE, YPD and YPGal) and their genomic coordinates were obtained 

from . Two transcripts were considered as bi-promoter transcripts if they share the same 

5’ nucleosome free region (NFR), where NFR was defined as a nucleosome deplete 
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region ≥80bp, according to . These transcripts were defined as divergent ( ), 

convergent t ( ) or co-oriented (  or ) by their coordinates in the genome. Essential 

genes in rich media were downloaded from the web site of the Saccharomyces Genome 

Deletion Project (http://www-

sequence.stanford.edu/group/yeast_deletion_project/deletions3.html). Both the yeast 

gene order (Version 2) and genome annotation information were taken from 

(http://wolfe.gen.tcd.ie/ygob/). For more than 2,000 proteins, expression noise data in 

rich media were obtained from .  We used the distance to median noise level 

(DM_YEPD) in our analysis to get rid of the confounding influence of protein 

abundance. Genes whose promoter contains a TATA-box were derived from a large 

TATA-box gene enquiry experiment . Codon usage bias (FOP) was obtained from . The 
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relationships between transcription factors (TF) and their target genes were derived 

from the yeast transcriptional regulatory network .  In total, 12873 regulatory 

interactions were indentified in this network. Stress-related genes and growth-related 

genes were obtained from  and co-expression level of adjacent gene pairs as previously 

reported . Haploinsufficent genes were taken from  and Genes with type I and type II 

promoters were obtained from . 431 type I genes and 565 type II genes were included in 

our analysis. Protein complexes were gained from . 

Data analysis

Transcripts that share the same 5’ NFR were described in Xu et al. . The noise of each 

protein measured by Newman et al.  was used to represent the noise of the transcript. In 
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the comparison of the noise of proteins derived from divergent transcripts to the noise 

of proteins without divergent transcripts, transcripts with complex annotations were 

excluded (e.g. the annotation “other”, which means the transcript contains multiple 

open reading frames or is a mixture of non-coding and coding parts). In the calculation 

of the correlation between noise levels of protein pairs, transcripts that contain multiple 

annotation features (e.g. the annotation “other”, which means the transcript contains 

multiple open reading frames or is a mixture of non-coding and coding parts) were 

excluded. In the calculation of the correlation between noise level and the distance 

between transcription start sites, we used the mean noise level of the two proteins if the 

noise of both proteins had been measured.  If one gene transcript shares its promoter 

with a non-coding transcript, the noise of this gene was chosen to represent the noise of 
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the two transcripts in the calculation. We used the lawstat package in R to perform the 

Brunner-Munzel test .

Randomization test of the correlation between noise levels of gene pairs.

Our model predicts that the expression noises of two divergent genes should be 

positively correlated due to the shared chromatin regulation, as chromatin regulation 

processes are responsible for much of the expression noise in yeast . To check if there is 

a positive correlation between expression noise in divergent, convergent and co-oriented 

gene pairs, and to obtain the significance level of any such correlation, we employed a 

randomization procedure. In this we extract the noise level for each protein, orient the 

gene pairs by their strand location for divergent and convergent gene pairs, by their 
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transcription order for co-oriented gene pairs, calculate the spearman correlation level 

for this data, randomize one column of genes 10,000 times and determine the 

correlation for each. The significance level of the observed correlation is (m+1)/10001 

where m is the rank of the true correlation compared against the randomizations. 

Randomization test to determine whether essential-essential gene pairs are more 

likely to be divergent gene pairs.

The S. cerevisiae gene order was taken from the Yeast Gene Order Browser 

(http://wolfe.gen.tcd.ie/ygob/), Version 2. The procedure is as follows: 1: count the 

number of divergent essential gene pairs in the S.cerevisiae genome; 2. randomize the 

position of essential genes in each chromosome 1,000 times and calculate the number of 

divergent essential gene pairs for each; 3. The significance level of this number is 

59

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
79

2.
1 

: P
os

te
d 

20
 A

ug
 2

01
0

http://wolfe.gen.tcd.ie/ygob/


(m+1)/1001, where m is the rank of the true number compared with the randomizations.

Method to test to the density of essential genes in different gene types.

To calculate the density of essential genes surrounding essential bi-promoter genes and 

essential non-bi-promoter genes, a +/- 5 gene window was used to scan the yeast 

chromosomes (the S. cerevisiae gene order we used is from 

http://wolfe.gen.tcd.ie/ygob/, as described above). To avoid biases caused by the fact 

that essential genes tend to be in divergent gene pairs, the direct (+1 and -1) gene 

neighbors were excluded from the scan. 
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Figure Legends

Figure 1. The relationship between the independence between two neighbouring 

genes and various noise and co-expression parameters.  For this plot pc=po=0.5. 

Data: transcriptional noise, blue; protein noise, red; co-expression, green; chromatin 

fluctuation, black; proportion of time chromatin open, grey. Other parameter values: 

N=100, pf= 0.9, d=0.7. 
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Figure 2. The correlation between noise and independence as a function of the 

ratio of the probabilities of chromatin opening and shutting.  A positive correlation 

indicates decreased noise with increasing inter-dependence. Protein noise, red; 

transcriptional noise, blue. Other parameter values, N=100, pf= 0.9, d=0.7. 
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Figure 3. The correlation between noise and independence as a function of the 

probabilities of chromatin shutting (3a) and opening (3b).  A positive correlation 

indicates decreased noise with increasing inter-dependence. Protein noise, red; 

transcriptional noise, blue. Other parameter values, N=100, pf= 0.9, d=0.7. 
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Figure 4. The relationship between the correlation between protein noise and 

protein abundance as a function of the probability of chromatin closure. 
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Figure 5. Genes which share a promoter (5’ NFR) with either a non-coding 

transcript or coding transcript (ORF) show lower expression noise than genes 

without any bi-promoter transcript. Number of genes that have noise value in each 

categories, With non-coding: 216; With orf: 537; Other (genes that do not share 5’NFR 

with other transcript): 1072. In this plot, the boxes are drawn with widths proportional 

to the square-roots of the number of observations in the groups”. Non-overlapping 

notches on the boxes are roughly equivalent to non-over sem error bars.
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Table 1. Binding of particular transcription factors cannot explain the low noise of 

bi-promoter genes. The noise level of bi-promoter genes is significantly lower than that 

of other genes both in the case of genes regulated by the same common transcription 

factor, and for those regulated by other transcription factors. p- values from Brunner-

Munzel tests.

Regulated by particular TFs Regulated by other TFs

Bi-promoter genes 0.09 +/- 0.24 (322) 0.43 +/- 0.12 (1789)
Non-bi-promoter genes 1.15 +/- 0.26 (568) 1.57 +/- 0.15 (3921)

p-value 0.0013 4.0e-08
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Table 2. The low noise of bi-promoter genes cannot be explained by TATA boxes. 

Noise levels of bi-promoter genes are significantly lower than those of other genes, both 

in genes with TATA box containing promoters in TATA-less genes. Mean noise+/-

standard error (number of genes).  p- values from Brunner-Munzel tests.

TATA box-containing genes TATA-less genes

Bi-promoter genes 1.01+/-0.25 (509) 0.13+/-0.11 (1602)
Non-bi-promoter genes 2.71+/-0.27 (1587) 0.70+/-0.12 (2902)

p-value 2.1e-06 0.0013
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Table 3. Nucleosome favouring bi-promoter genes have lower noise than 

nucleosome favouring non-bi-promoter genes. In the control for essentiality we just 

examine the non-essentials. p value determined by the Brunner-Munzel test.

nucleosome favouring nucleosome disfavouring

bi-promoter 1.81 +/- 0.66 (103) 0.09 +/- 0.30 (233)
non bi-promoter 5.463+/- 0.698 (328) 0.10+/- 0.17 (331)

p  0.00020 0.16

control for essentiality nucleosome favoured nucleosome disfavoured

bi-promoter 2.491 +/- 0.829 (87) -0.2801 +/- 0.2018 (162)
non bi-promoter 6.1434 +/- 0.756 (301) 0.188 +/- 0.203 (241)

p 0.0028 0.065
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Table 4. The density of essential genes among the 10 genes flanking focal genes.  Here 

we ignore genes +1 and -1 of a focal gene (direct neighbours). 

Bi-promoter Not bi-promoter p-value

Essential 0.212 +/- 0.006 0.195 +/- 0.005 0.022
Not essential 0.188 +/- 0.003 0.180 +/- 0.003 0.018

p-value 0.00089 0.010
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