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Supplemental Material  

 

Manuscript Title: Reduced Caudate and Nucleus Accumbens Response to Rewards in 

Unmedicated Subjects with Major Depressive Disorder 

Authors: Diego A. Pizzagalli, Avram J. Holmes, Daniel G. Dillon, Elena L. Goetz, 

Jeffrey L. Birk, Ryan Bogdan, Darin D. Dougherty, Dan V. Iosifescu, 

Scott L. Rauch, Maurizio Fava 

 

Methods 

 

Individual titration and optimization of monetary incentive delay task  

To increase the believability of the feedback manipulation, the target presentation 

duration was varied across successful trials (gains on reward trials, no-change on loss trials) and 

unsuccessful trials (no-change on reward trials, penalties on loss trials). To this end, prior to 

fMRI collection, participants completed 40 practice trials. For each subject, the 85th and 15th 

percentiles of the reaction time distribution during practice were used as the target durations on 

successful and unsuccessful trials, respectively. Because participants were instructed that the 

outcome of a trial depended on how fast they pressed a button after the appearance of the target, 

this manipulation served to justify outcome delivery (e.g., unsuccessful outcomes were 

associated with short target durations to which participants would have difficulty responding to 

quickly enough). Finally, to maximize task engagement, participants were instructed that good 

performance would yield an opportunity to play a sixth bonus block associated with increased 

gains ($3.63-$5.18) and infrequent penalties. Every participant “qualified” for the bonus block. 
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This combination of instructions and task design has been shown to lead to sustained task 

engagement and robust recruitment of brain reward circuitry (S1). Throughout the task, no 

information regarding cumulative earnings was provided. 

The trial sequence was determined using Optseq (http://surfer.nmr.mgh.harvard.edu/ 

optseq/) to optimize de-convolution of the hemodynamic response (S2). In addition, inter-

stimulus interval and inter-trial interval durations were selected using a genetic algorithm to 

maximize the statistical orthogonality of the design and optimize estimation of hemodynamic 

responses (S3).   

 

Functional and structural MRI data collection 

Functional data were collected with z-shimming and a tilted slice acquisition (30o from 

the AC-PC line). This sequence has been shown to increase signal recovery in the orbitofrontal 

cortex  and medial temporal lobes without compromising temporal resolution or overall coverage 

(S1, S4). Data from the sixth “bonus” block were collected using non-optimized acquisition 

parameters to assess signal recovery in the behavioral blocks of interest, and are not included in 

the present analyses. Head movement was minimized with padding. 

 

Methods and quality control of the MRI segmentation procedure 

Structural labeling of the basal ganglia was achieved using FreeSurfer’s subcortical 

segmentation procedure (S5), which was run along with the accompanying cortical parcellation 

algorithms (S6). FreeSurfer’s segmentation processes work by incorporating information about 

the image intensity of different tissue classes with probabilistic information about the relative 

location of different brain regions, such that each voxel in a participant’s structural image is 
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assigned a neuroanatomical label (S5, S7). Importantly, the probabilistic information is derived 

from a training data set that was manually labeled using validated techniques developed by the 

Center for Morphometric Analysis at Massachusetts General Hospital (e.g., S8, S9). Although 

FreeSurfer’s steps can be run in fully automated mode and are designed to permit segmentation 

of very large numbers of brains per day (S5), in the present study they were run in stages and 

quality control was implemented at three separate points. The first set of quality controls 

involved checking that: (1) the participant’s T1 image was correctly cross-registered to the 

MNI305 atlas in Talairach space (to increase the reliability of the probabilistic labeling); (2) a 

skull stripping procedure used to remove the skull and dura from the image was completed 

correctly; and (3) intensity normalization of the images was correct such that subsequent 

intensity-based segmentation steps would be accurate. Problems were rarely detected at any of 

the quality control points, but they were most frequent at this point and usually consisted of an 

inaccurate cross-registration and/or incomplete stripping of dura or eyes from around the 

orbitofrontal cortex. These problems were manually corrected by the second and third authors 

and the first stage was re-run and re-checked afterwards. The second set of quality controls was 

done to confirm that: (1) outlines of the pial and white matter surfaces of the brain were correctly 

drawn; (2) segmentation of white matter was accurate; and (3) the subcortical segmentation—

including the segmentation of basal ganglia structures—was complete. Problems at this stage 

were generally minor and involved small errors in the pial and white matter surfaces (e.g., dura 

included in the pial surface, incomplete coverage of white matter in the superior temporal lobes). 

Again, these problems were manually corrected and the stage was re-run and re-checked 

afterwards. The final set of quality controls consisted of inspection of inflated cortical surfaces 
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and accompanying cortical parcellations (S6). Errors were very rarely detected at this stage, 

probably due to the careful checks implemented at points one and two.  

 

Comparisons between manual and automatic anatomical tracings  

Findings emerging from recent studies indicate that FreeSurfer’s automated approach 

provides segmentation accuracy comparable to expert manual labeling. For the caudate (i.e., the 

region emerging from the current study as being significantly related to anhedonic symptoms), 

the percent spatial overlap between manual and automated tracings in prior studies ranged from 

satisfactory (0.76: S10) to excellent (>0.85; S5; 0.88: S11). Moreover, the test-retest reliability of 

FreeSurfer’s dorsal striatum volume in a prior study was excellent (0.96; S12). 

Of particular relevance to the current study, the Center for Morphometrical Analysis 

(Massachusetts General Hospital, Boston, MA) recently performed a comparison between 

FreeSurfer automatic tracing and manual tracing methods of the basal ganglia for a sample of 20 

adults recruited from the community (age: 26.72±4.83, 11 females, 75% Caucasian). Data were 

collected at the same neuroimaging facility and using a similar MPRAGE acquisition protocol 

(TR/TE: 2530/3.30 voxel dimensions: 1.33 mm3; flip angle = 7 degrees) as done in the current 

study. Before tracing, structural data were motion-corrected. As shown in Table S1, Pearson’s 

correlations between the manual and automatic tracing methods were highly significant for the 

regions emerging from the current study (caudate, putamen, nucleus accumbens). With the 

exception of the left nucleus accumbens (r=0.556) all correlations exceeded r=0.78 (courtesy of 

Dr. Nikos Makris, Center for Morphometric Analysis, Massachusetts General Hospital, Boston, 

MA). 
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Correction for multiple comparisons using Monte Carlo simulations 

In addition to evaluating results using the voxel and extent thresholds reported in the 

main text (p<.005, 12 voxels), between-groups differences in the contrast of primary interest 

(gains - no change feedback) were examined following correction for multiple comparisons 

using Monte Carlo simulations (mri_glmfit program in FS-FAST). To this end, the fMRI data for 

each subject was replaced with white Gaussian noise that was spatially smoothed to the same 

degree as the fMRI data, as measured from the residuals from the group analysis. The full 

analysis was then performed on this synthetic data set. Clusters were defined as connected sets of 

voxels whose p-values were less than 0.005 (the voxel-wise threshold). This was repeated 10,000 

times to empirically determine the null distribution of the largest cluster size under our 

experimental conditions. This distribution was then used to compute the p-values of the clusters 

when the real data were analyzed.  

Given our a priori interest in basal ganglia reward responses, the simulation only 

considered the basal ganglia. A mask of the four basal ganglia regions of interest (nucleus 

accumbens, caudate, putamen, pallidus) was generated by running the FreeSurfer subcortical 

segmentation on the high resolution “Collins” brain and then transforming the mask to Talairach 

space, and the Monte Carlo simulation was restricted to this mask volume. Accordingly, the 

results of this simulation were used only to determine the significance of findings in basal 

ganglia regions. 
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Results 

Target Presentation Duration 

MDD and comparison subjects had very similar 15th and 85th percentile reaction time 

values during practice, which were used to set target durations on unsuccessful and successful 

trials, respectively, during the experimental blocks (15th: 270.43±42.55 ms vs. 272.32±27.24 ms, 

t=-0.21, df=59, p>0.83; 85th: 370.27±66.46 ms vs. 385.52±83.72 ms; t=-0.79, df=59, p>0.43). In 

addition, analyses of reaction times collected during fMRI scanning revealed no main effects of 

Group (F=0.17, df=1,59, p>0.68; see Main Text), due to comparable overall reaction times in 

comparison 350.38±68.91) and MDD (357.01±75.60) subjects.  

 

General performance in the Monetary Incentive Delay task 

To further evaluate possible group differences in task difficulty, we computed (1) the 

percentage of reward trials ending in gains, (2) the percentage of loss trials ending in penalties, 

(3) the total number of errors committed (e.g., pressing the button in response to the cue instead 

of the target), and (4) the total money won, lost, and earned (i.e., won minus lost). As 

summarized in Table S2, no group differences emerged. Collectively, analyses of both reaction 

time and “accuracy” data collected during both the practice and imaging session suggest that 

fMRI findings were not confounded by group differences in task difficulty.  

 

Affective ratings  

Anticipation phase. Due to technical problems, the valence ratings for reward cues were 

lost for one comparison subject. The ANOVA revealed a main effect of Group (F=5.62, df=1,58, 

p<0.021) due to overall reduced positive affect in MDD versus comparison subjects (2.78±0.57 
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vs. 3.08±0.42) (Figure S1, panel A). The Group x Cue interaction was not significant (F=1.54, 

df=2,116, p>0.22). A trend for a main effect of Cue also emerged (F=2.99, df=2,116, p<0.054), 

due to significantly more positive valence ratings for the reward (3.07±0.87) versus loss cue 

(2.77±0.79; p<0.035).  

For arousal ratings, the ANOVA revealed a main effect of Cue (F=4.50, df=2,118, 

p<0.013), due to increased arousal in response to both reward (3.05±0.69; p<0.017) and loss 

(3.07±0.75; p<0.015) cues relative to neutral cues (2.81±0.83). There was no difference in 

arousal elicited by reward and loss cues (p>0.84). Neither the main effect of Group (F=0.13, 

df=1,59, p>0.71) nor the Group x Cue interaction (F=2.32, df=2,118, p>0.10) was significant 

(Figure S1, panel B).  

Outcome phase. For valence ratings, there was a main effect of Group (F=12.26, df=1,59, 

p<0.001) due to significantly less positive ratings in MDD than comparison subjects (2.79±0.44 

vs. 3.16±0.38) (Figure S1, panel C). The Group x Outcome interaction was not significant 

(F=1.38, df=2,118, p>0.25). Additionally, the main effect of Outcome was significant (F=191.57, 

df=2,118, p<0.0001). As expected, gains elicited significantly more positive ratings (4.16±0.77) 

than penalties (1.80±0.82; p<0.0001) or no-change feedback (2.97±.47; p<0.0001). Moreover, 

penalties were rated as significantly more negative than no-change feedback (p<0.0001).  

For arousal ratings, the ANOVA revealed a main effect of Outcome (F=9.02, df=2,118, 

p<0.0005) that was qualified by a significant Group x Outcome interaction (F=3.20, df=2,118, 

p<0.045). The main effect of Group was not significant (F=0.24, df=1,59, p>0.87). The Outcome 

effect reflected the fact that gains elicited significantly greater arousal (3.48±0.85) than penalty 

(3.08±1.13; p<0.015) or no-change feedback (2.87±0.89; p<0.0001), which did not differ from 

each other (p>0.15). Critically, however, relative to comparison subjects, MDD subjects reported 
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significantly less arousal in response to gains (p<0.045) but not penalties or no-change feedback 

(ps>0.42) (Figure S1, panel D). Moreover, within-group follow-up analyses indicated a lack of 

modulation for MDD subjects (ps>0.16). For comparison subjects, on the other hand, gains 

elicited significantly more arousal (3.69±0.79) than penalties (2.97±1.12; p<0.0002) or no-

change feedback (2.81±0.75; p<0.0002). Collectively, these results show that cue and outcome 

stimuli generally elicited the intended affective responses, and indicate that MDD subjects 

experienced less positive affect during the anticipatory and consummatory phases of the task. 

Moreover, after receiving gains, MDD subjects reported less intense affective responses.      

 

Secondary fMRI findings  

Complete lists of regions showing group differences during incentive anticipation and 

consummation are presented in Tables S3 and S4, respectively. 

Reward Anticipation (Reward cue – No-incentive cue). As described in the main text, 

relative to comparison subjects, MDD subjects showed relatively weaker activation to reward 

cues in the left posterior putamen. To further investigate this finding, a Group x Cue (reward, 

loss, no-incentive) ANOVA on beta weights extracted from this region was performed. The only 

significant finding was the Group x Cue interaction (F=5.10, df=2,110, p<0.008). Follow-up 

tests revealed that, for comparison subjects, both reward (mean=0.032±0.08; p<0.005) and loss 

(mean=0.031±0.06; p<0.007) cues elicited stronger activation compared to the no-incentive cue 

(mean=-0.019±0.08). For MDD subjects, on the other hand, reward cues (mean=-0.002±0.10), 

loss cues (mean=0.021±0.08), and no-incentive cues (mean=0.022±0.07) elicited similar 

responses, and no cue-related modulation was observed (ps>0.21). Follow-up tests revealed that 

groups differed in their responses to no-incentive (p<0.05) but not reward (0>.15) or loss 
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(p>0.60) cues. However a between-groups t-test of the reward minus no-incentive cue difference 

was also significant, t(55) = -2.96, p = .005, directly confirming the whole-brain result 

(comparison: mean=0.050±0.09; MDD: mean=-0.024±0.10). 

Relative to comparison subjects, MDD subjects were characterized by significantly 

increased bilateral activation in various dorsolateral prefrontal cortex regions encompassing the 

middle and inferior frontal gyri (Figure S2). For the bilateral clusters (x=24, y=22, z=40; x=-28, 

y=24, z=40), beta weights were extracted and entered in a Group x Hemisphere x Condition 

ANOVA. The only significant finding was the Group x Condition interaction (F=11.00, 

df=2,110, p<0.0001). Follow-up analyses indicated that, relative to comparison subjects, MDD 

subjects had significantly greater bilateral dorsolateral prefrontal activation to reward (p<0.009) 

but not loss (p>0.78) or no-incentive (p>0.16) cues (Figure S2). Within-group analyses revealed 

that comparison subjects were characterized by significantly reduced activation in response to 

reward relative to no-incentive cues (p<0.015). MDD subjects, on the other hand, showed 

significantly greater activation in response to reward cues compared to both loss (p<0.025) and 

no-incentive (p<0.005) cues. The remaining two prefrontal clusters (left inferior frontal gyrus: 

x=-46, y=16, and z=28; right middle frontal gyrus: x=30, y=26, z=29) showed similar patterns.  

Reward Outcomes (Gains – No-change feedback). In addition to showing a weaker 

striatal response to gains relative to comparison subjects, the MDD group also showed 

significantly weaker activation in the dorsal anterior cingulate cortex (x=10, y=18, z=30; Figure 

S3), a region that has been implicated in integrating reinforcement history over time (S13-S16). 

Analysis of beta weights (gains, penalties, no-change feedback) extracted from the dorsal 

anterior cingulate cortex revealed a significant Group x Condition interaction (F=6.61, df=2,110, 

p<0.002), due to a significant between-group difference (comparison > MDD) for gains 
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(p<0.001) but not penalty or no-change feedback (ps<0.42). Whereas comparison subjects 

showed significantly greater cingulate activation in response to gains versus no-change feedback 

(p<0.015), MDD subjects showed a significantly weaker response to gains compared to both 

penalties and no-change feedback (ps<0.05; Figure S3). 

Loss Anticipation (Loss cue – No-incentive cue). Relative to comparison subjects, MDD 

subjects showed significantly increased activation during anticipation of a potential loss in 

various regions, including the left insula (x=-38, y=-7, z=-6), right middle frontal gyrus (x=40, 

y=44, z=8), and dorsal anterior cingulate cortex (x=2, y=23, z=16) (Figure S4). Follow-up 

analyses indicated that MDD subjects activated these regions more strongly in response to loss 

(and reward) cues relative to no-incentive cues, whereas comparison subjects generally did not 

show any cue-specific modulation. These observations were corroborated by significant Group x 

Condition interactions for all three regions (Fs>3.39, df=2,110, ps<0.045); for the left insula and 

right middle frontal gyrus, the main effect of Condition was also significant (Fs>6.64, df=2,110, 

ps<0.002). Within-group analyses indicated that MDD subjects activated the left insula, right 

middle frontal gyrus, and dorsal anterior cingulate cortex more strongly in response to both loss 

and reward cues compared to the no-incentive cue (all ps<0.009; Figure S4). Comparison 

subjects, on the other hand, showed no condition-specific modulation in the right middle frontal 

gyrus or cingulate (all ps>0.25); for the left insula, comparison subjects showed significantly 

higher activation to the reward compared to loss cue (p<0.015). The only region showing 

significantly higher activation for comparison relative to MDD subjects was the cerebellum 

(Table S2).   

Loss Outcomes (Penalties – No-change feedback). Relative to comparison subjects, the 

MDD group was characterized by significantly reduced activation in response to penalties in 
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various regions, including the bilateral caudate, thalamus, and right prefrontal cortex, among 

other regions (Table S3). For all these regions, including the left (x=-8, y=-2, z=12) and right 

(x=14, y=23, z=11) caudate, the ANOVA revealed significant Group x Condition interactions 

(Fs>3.17, df=2,110, ps<0.047) in the absence of Group main effects (Figure S5). Within-group 

analyses showed that comparison subjects activated both the left and right caudate significantly 

more to penalties (and gains) versus no-change feedback (ps<0.05), whereas MDD subjects 

showed no modulation (ps>0.15). Moreover, in this left caudate cluster, comparison subjects 

showed significantly higher activation than MDD subjects to penalties (p<0.015); there was no 

between-group difference in response to penalties in the right caudate. Relatively increased 

activation for MDD relative to comparison subjects was observed only in the right cerebellum 

and left precuneus.    

 

Morphometical Basal Ganglia Data  

The absolute and proportional volumes of single basal ganglia regions are listed in Table 

S5. The Group x Hemisphere x Region ANOVA revealed a significant main effect of Structure 

and a Structure x Hemisphere interaction, which were not explored further. The main effect of 

Group was not significant (F=0.73, df=1,59, p>0.35). The only other effect approaching 

significance was the Group x Hemisphere x Structure interaction (F=2.47, df=3,177, p=0.086, 

ε=0.67). However, follow-up analyses revealed no volumetric group differences (all ps>0.18). 

 

Control analyses  

Analyses comparing MDD subject with (N=14) vs. without (N=16) comorbid anxiety 

disorders. For the reaction time data, a MDD Subgroup (MDD with vs. without comorbid 
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anxiety disorder) x Cue ANOVA revealed no effects involving MDD Subgroup (Fs<0.40, 

ps>0.50). For the affective ratings, the only effects of interest were main effects of MDD 

Subgroup for the arousal ratings for both the anticipatory (F=8.57, df=1,28, p<0.008) and 

consummatory (F=7.83, df=1,28, p<0.009) phase, which were due to higher arousal rating for 

MDD subjects with comorbid anxiety relative to MDD subjects without anxiety comorbidity. No 

effects involving MDD Subgroup emerged for the left putamen (anticipatory phase), left nucleus 

accumbens (consummatory phase), or caudate (consummatory phase) clusters (all Fs<1.24, all 

ps>0.29).     

Functional MRI findings adjusted for affective ratings. For the main regions-of-interest 

emerging from the whole-brain between-group analyses, hierarchical regression analyses were 

performed to evaluate whether differences remained after accounting for group differences in the 

affective ratings. For the left posterior putamen region implicated in reward anticipation, valence 

ratings in response to the reward cues were entered in the first step, whereas Group (dummy-

coded) was entered in the second step. For the left nucleus accumbens and bilateral caudate 

regions emerging from the analyses of gains, valence and arousal ratings in response to gains 

were entered in the first step, and Group was entered in the second step (data from the caudate 

were first averaged across hemispheres). For all regions the model was significant, indicating 

that Group predicted differences in left putamen (ΔR2=0.104), left nucleus accumbens 

(ΔR2=0.094), and caudate (ΔR2=0.187) activation above and beyond group differences in 

affective ratings (all ΔF>5.74, all ps<0.020). 

Functional MRI findings adjusted for striatal volume. A second set of hierarchical 

regression analyses were performed to evaluate whether the group differences in left nucleus 

accumbens and bilateral caudate responses to gains remained after adjusting for proportional 
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volume. For both regions (left nucleus accumbens: ΔR2=0.116; caudate: ΔR2=0.243), Group 

predicted activation to gains after controlling for volume (all ΔFs>7.33, ps<0.009).           

Functional MRI findings adjusted for reward-related reaction time modulation. A final 

set of hierarchical regression analyses were performed to evaluate whether the group differences 

in left nucleus accumbens and bilateral caudate responses to gains remained after adjusting for 

group differences in reward-related reaction time modulation (no-incentive – reward difference 

score). For both regions, Group uniquely predicted activation to gains after controlling for 

reaction time differences (left nucleus accumbens: ΔR2=0.130; caudate: ΔR2=0.212), (all 

ΔFs>8.10, ps<0.007). 

Corrections for multiple comparisons using Monte Carlo simulations. Of the five basal 

ganglia clusters evident at p<.005, 12 voxel extent, three were significant at p<.05 following 

correction for multiple comparisons: both clusters in the right caudate and one in the left caudate 

(Table S4). The second cluster in the left caudate and the left nucleus accumbens cluster were 

not significant, p>.05, likely due to their smaller size. 

Correlations between functional MRI and volumetric data. At the request of an 

anonymous reviewer, correlational analyses between functional and volumetric data were 

performed. To this end, beta weights in response to gains were extracted from structurally 

defined left nucleus accumbens and bilateral caudate regions. The mean beta weight across the 

entire structure was then correlated with the volume of the region. For both MDD and 

comparison subjects, no significant correlations emerged for either the nucleus accumbens 

(MDD: r=0.35, p>0.075; comparison: r=-0.03, p>0.88) or bilateral caudate (MDD: r=0.06, 

p>0.78; comparison: r=-0.09, p>0.65).       
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Table S1: Summary of Pearson’s correlations between basal ganglia volumes determined by 

FreeSurfer automatic tracing and manual tracing methods for a sample of 20 community adults 

(courtesy of Dr. Nikos Makris, Center for Morphometric Analysis, Massachusetts General 

Hospital, Boston, MA). 

  

Basal Ganglia Volume Pearson r p-value 

Right Caudate 0.880 0.0000003 

Left Caudate 0.875 0.0000005 

Right Putamen 0.932 0.0000001 

Left Putamen 0.795 0.0000279 

Right Accumbens 0.784 0.0000435 

Left Accumbens 0.556 0.0108939 
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Table S2: Summary of task “performance” in the MID task.  

 

 Comparison  

subjects 

MDD 

subjects 

T 

statistic 

p-value 

% Reward trials ending in gains 48.68 (1.76) 48.31 (1.91) -0.76 0.45 

% Loss trials ending in penalties 47.94 (2.68) 47.62 (2.86) -0.44 0.67 

Total number of errors 4.06 (3.92) 4.92 (4.81) 0.74 0.46 

Total $ won 41.72 (1.59) 41.10 (2.46) -1.14 0.26 

Total $ lost 47.05 (6.50) 49.00 (9.16) -0.91 0.37 

Total $ earned -5.13 (7.19) -7.91 (9.93) -1.22 0.23 

 

Note: the overall net loss reflects the fact that while gains were slightly larger than penalties, 

participants were penalized $2 for each error. The sixth “bonus” block included three large gains 

($3.68, $4.72, and $5.18) against one scheduled loss (-$1.53), so that most participants would 

experience a net gain. Each participant was paid $20-22 dollars for playing the game. 
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TABLE S3. Regions Showing Group Differences Between MDD (N=26) and Comparison 

Subjects (N=31) During the Anticipation of a Potential Reward or Loss  

 
Region x y z Volume 

(mm3) 
Peak Voxel 

p-value 
A. Reward Cue – No Incentive Cue 

Comparison Subjects > MDD 
L Putamen -28 -13 -2 192 0.0001 
R Occipitofrontal Fasciculus 30 -34 32 144 0.0010 
R Middle Occipital Gyrus 38 -65 1 136 0.0002 

MDD > Comparison Subjects 
R. Uncus/Parahippocampal gyrus  34 -2 -28 128 0.0011 
R Inferior Frontal Gyrus  55 34 -3 504 0.0002 
L Inferior Frontal Gyrus -46 16 28 176 0.0012 
R Middle Frontal Gyrus 24 22 40 432 0.0001 
 30 26 29 304 0.0001 
L Middle Frontal Gyrus -28 24 40 480 0.0003 
R. Subgenual Cingulate  12 32 -9 176 0.0004 
R. Superior Temporal Gyrus  57 -10 5 120 0.0004 
L. Occipitofrontal Fasciculus/Cingulum  -24 30 1 688 0.0002 
L. Inferior Parietal Lobule  -24 -36 30 96 0.0007 
R. Lingual Gyrus  12 -51 5 352 0.0009 
R. Cerebellum  32 -71 -34 160 0.0013 

B. Loss Cue – No Incentive Cue 
Comparison Subjects > MDD 

R. Cerebellum  20 -56 -17 96 0.0009 
MDD > Comparison Subjects 

L Insula  -38 -7 -6 472 0.0000 
R Medial Frontal Gyrus 2 30 40 224 0.0001 
L Postcentral Gyrus  -40 -17 31 96 0.0003 
Dorsal Anterior Cingulate  2 23 16 176 0.0011 
R Posterior Cingulate  6 -20 41 96 0.0002 
L Middle Temporal Gyrus  -34 -65 12 248 0.0001 
L Lingual Gyrus  -28 -61 -1 296 0.0001 

 
Note: x, y, and z correspond to the Talairach coordinates of the peak voxel. Talairach coordinates 

were computed from MNI space using the formula proposed by Brett and coworkers (S9). 

Volume = Size of the region exceeding the statistical threshold (p<0.005); R= right; L=left.  
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TABLE S4. Regions Showing Group Differences Between MDD (n = 26) and Comparison 

Subjects (n = 31) In Response to Gains and Penalties  

Region x y Z Volume 
(mm3) 

Peak Voxel 
p-value 

A. Gain – No-Change Feedback 
Comparison Subjects > MDD 

R Caudate   14 15 11 320 0.0001† 
                    16 0 19 424 0.0005† 
L Caudate -12 -4 21 336 0.0004† 
 -20 -27 19 104 0.0017 
L Nucleus Accumbens* -8 10 -8 64 0.0002 
R Insula 32 17 2 120 0.0006 
L Insula -32 -4 20 128 0.0004 
R Inferior Frontal Gyrus 50 24 24 160 0.0002 
R Middle Frontal Gyrus 20 48 8 384 0.0001 
 51 18 37 896 0.0001 
 28 15 48 344 0.0001 
R Medial Frontal Gyrus 4 47 30 216 0.0005 
L Precentral Gyrus -51 -3 31 264 0.0002 
R Rostral Anterior Cingulate 6 29 9 280 0.0005 
R Dorsal Anterior Cingulate 10 18 30 136 0.0006 
L Posterior Cingulate -2 -29 28 136 0.0003 
R Middle Temporal Gyrus 51 -57 0 408 0.0002 
L Cerebellum -8 -62 -20 208 0.0002 
 -16 -76 -24 160 0.0002 

MDD > Comparison Subjects 
L Fusiform Gyrus -40 -14 -25 456 0.00024 

B. Penalty vs. No-Change Feedback 
Comparison Subjects > MDD 

R Caudate 14 23 11 296 0.0007 
L Caudate -8 -2 12 168 0.0005 
L Thalamus -18 -25 15 576 0.0001 
R Inferior Frontal Gyrus 44 29 20 1472 0.0000 
R Middle Frontal Gyrus 30 15 43 152 0.0007 
L Precentral Gyrus -53 -3 31 224 0.0004 
L Posterior Cingulate  -2 -13 27 96 0.0012 
R Superior Temporal Gyrus 50 10 -11 144 0.0001 
R Middle Temporal Gyrus 67 -40 3 640 0.0000 
L Middle Temporal Gyrus -61 -51 7 128 0.0005 
L Inferior Occipital Gyrus -34 -81 -7 128 0.0003 

MDD > Comparison Subjects 
L Precuneus  -16 -54 22 440 0.0000 
R Cerebellum 30 -76 -26 168 0.0013 
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Note: x, y, and z correspond to the Talairach coordinates of the peak voxel. Talairach coordinates 

were computed from MNI space using the formula proposed by Brett and coworkers (S9). 

Volume = Size of the region exceeding the statistical threshold (p<0.005); R= right; L=left.  

*8 voxels, did not reach cluster size significance threshold. † Significant at p < .05 following 

correction for multiple comparisons with Monte Carlo simulation restricted to basal ganglia 

volume. 
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TABLE S5. Absolute and proportional volume (adjusted for total intracranial volume) for the 

four basal ganglia regions for MDD (n = 26) and Comparison (n = 31) subjects. Volumes are 

expressed in cubic millimeters. 

 

 

Comparison 

subjects 

MDD 

subjects 

 Mean SD Mean SD 

Intracranial volume 1562421 191574 1520071 150388 

     

Absolute volumes      

Left Caudate 3433 447 3427 507 

Left_Putamen 5472 732 5550 697 

Left_Pallidus 1718 252 1659 248 

Left_NAcc 630 114 617 118 

Right_Caudate 3592 520 3645 516 

Right_Putamen 5369 717 5364 697 

Right_Pallidus 1781 279 1658 287 

Right_NAcc 548 74 560 128 

     

Proportional volume      

Left_Caudate 0.00221 0.00025 0.00226 0.00027 

Left_Putamen 0.00353 0.00044 0.00366 0.00037 

Left_Pallidus 0.00111 0.00015 0.00109 0.00013 

Left_NAcc 0.00041 0.00009 0.00041 0.00008 

Right_Caudate 0.00231 0.00027 0.00240 0.00027 

Right_Putamen 0.00346 0.00040 0.00354 0.00038 

Right_Pallidus 0.00114 0.00015 0.00109 0.00016 

Right_NAcc 0.00035 0.00006 0.00037 0.00007 

NAcc = nucleus accumbens
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Supplemental Material Figure Legends 

 

FIGURE S1. Affective ratings during the monetary incentive delay task in MDD (N=30) and 

comparison (N=31) subjects. (A) Cue-related valence ratings; (B) cue-related arousal ratings; (C) 

outcome-related valence ratings; and (D) outcome-related arousal ratings collected during the 

task (averaged across the assessments occurring after blocks 2 and 4). Ratings were made using 

5-point scales to evaluate affective response to the cues and outcomes with respect to valence 

(e.g., “Please rate how you felt while waiting to push the button on a reward trial”; 1=most 

negative feeling, 5=most positive feeling) and arousal (e.g., “Please rate the strength of this 

feeling”; 1=low intensity, 5=high intensity).  

 

FIGURE S2. Secondary findings emerging from analyses investigating reward-related 

anticipatory activation in MDD (N=26) and comparison (N=31) subjects.  

Relative to comparison subjects, the MDD group showed relatively higher activation to reward 

cues [Reward cue – No-incentive cue] in bilateral dorsolateral prefrontal cortex (PFC) (x=24, 

y=22, z=40 and x=-28, y=24, z=40). Follow-up analyses revealed group differences for reward 

cues (p<0.009) but not loss or no-incentive cues. L = Left.  

 

FIGURE S3. Secondary findings emerging from analyses investigating reward-related 

consummatory activation in MDD (N=26) and comparison (N=31) subjects. 

Relative to comparison subjects, the MDD group showed relatively lower activation to gain 

feedback [Gain feedback – No-change feedback] in the dorsal anterior cingulate cortex (x=10, 
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y=18, z=30). Follow-up analyses revealed group differences for reward feedback (p<0.001), but 

not penalty or no-change feedback. L = Left.  

 

FIGURE S4. Secondary findings emerging from analyses investigating penalty-related 

anticipatory activation in MDD (N=26) and comparison (N=31) subjects.  

Relative to comparison subjects, MDD subjects showed relatively higher activation to penalty 

cues [Loss cue – No-incentive cue] in the (A) left insula (x=-38, y=-7, z=-6), (B) right 

ventrolateral prefrontal cortex (PFC) (X=40, Y=44, Z=8), and (C) dorsal anterior cingulate 

cortex (ACC) (x=2, y=23, z=16). Follow-up analyses revealed that the insula finding was due to 

significantly lower activation to no-incentive cues in MDD relative to comparison subjects 

(p<0.015); for the right ventrolateral PFC and dorsal ACC regions, MDD subjects had 

significantly higher activation to both loss and reward cues (p<0.05). L = Left, A = Anterior.  

 

FIGURE S5. Secondary findings emerging from analyses investigating penalty-related 

consummatory activation in MDD (N=26) and comparison (N=31) subjects.  

Relative to comparison subjects, MDD subjects showed significantly lower relative activation to 

penalty feedback [Penalty Feedback – No-change feedback] in the (A) right caudate (x=14, 

y=23, z=11), and (B) left caudate (x=-8, y=-2, z=12). Follow-up analyses revealed that the right 

caudate finding was due to a trend for higher activation to no-incentive cues for MDD relative to 

comparison subjects (p=0.074); for the left caudate, follow-up analyses revealed that MDD 

subjects had decreased activation only to penalty feedback (p<0.013). L = Left.  
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FIGURE S6. Examples of the automated labeling of the caudate in four representative MDD 

participants. For each participant, images on the left display high-resolution coronal and axial 

slices cutting passing through the caudate; images on the right show the same slices with the left 

caudate highlighted in green are. 
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FIGURE S1 
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FIGURE S2  

 

  

 

 



- 28 - 

FIGURE S3 
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FIGURE S4 
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FIGURE S5 
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FIGURE S6 

 


