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Abstract 

A theoretical framework is presented for converting Blood Oxygenation Level Dependent 

(BOLD) images to temperature maps, based on the idea that disproportional local changes in 

cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption 

(CMRO2) during functional brain activity, lead to both brain temperature changes and the BOLD 

effect. Using an oxygen limitation model and a BOLD signal model we obtain a transcendental 

equation relating CBF and CMRO2 changes with the corresponding BOLD signal, which is 

solved in terms of the Lambert W function. Inserting this result in the dynamic bio-heat equation 

describing the rate of temperature changes in the brain, we obtain a non autonomous ordinary 

differential equation that depends on the BOLD response, which is solved numerically for each 

brain voxel. In order to test the method, temperature maps obtained from a real BOLD dataset 

are calculated showing temperature variations in the range: (-0.15, 0.1) which is consistent with 

experimental results. The method could find potential clinical uses as it is an improvement over 

conventional methods which require invasive probes and can record only few locations 

simultaneously. Interestingly, the statistical analysis revealed that significant temperature 

variations are more localized than BOLD activations. This seems to exclude the use of 

temperature maps for mapping neuronal activity as areas where it is well known that electrical 

activity occurs (such as V5 bilaterally) are not activated in the obtained maps. But it also opens 

questions about the nature of the information processing and the underlying vascular network in 

visual areas that give rise to this result.  
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1. Introduction 

The balance between metabolic heat production (due to the oxidation of glucose), heat removal 

by cerebral blood flow ( )CBF , and conductive heat loss from the region of interest (ROI) to 

neighbouring regions, characterize the temperature dynamics in the ROI (Trübel et al., 2006). 

Thus, it has been proposed (Yablonskiy et al., 2000)
 
that disproportional changes in cerebral 

metabolic rate of oxygen consumption ( )2CMRO  and CBF  evoked by neuronal activity
 
can 

explain the variation in brain tissue temperature (in the range of 00.2 C± ) revealed by functional 

studies in humans (Yablonskiy et al., 2000; Shevelev et al., 1993; Gorbach et al., 2003) and 

animals (Trübel et al., 2006; Serota and Gerard, 1938; McElligot and Melzack, 1967; Melzack 

and Casey, 1967; Hayward and Baker, 1968; LaManna et al., 1989; Gorbach, 1993; Shevelev 

and Tsicalov, 1997; Shevelev, 1998). 

Conventional methods for measuring brain temperatures require invasive probes and can monitor 

only one or a few locations simultaneously (Le Bihan, 1995). Clearly, a reliable non-invasive 

method is highly desirable and could have many clinical uses. Non-invasive methods like 

microwave or infrared based measurements allow temperature to be measured only to a limited 

depth. Compared to them, magnetic resonance (MR) imaging has the advantage of producing 

three-dimensional anatomic images of any part of the body in any orientation with high 

resolution, and the frequency of the MR signal is temperature dependent (Hindman, 1966). It has 

been demonstrated that this effect can be used for estimating tissue temperature changes (Parker 

et al., 1983; Kuroda, 1996). On the other hand, changes in the MR imaging (MRI) signal 

intensity due to blood oxygenation level-dependent (BOLD) contrast (Bandettini et al., 1992; 

Frahm et al., 1992;  Kwong et al., 1992; Ogawa et al., 1992), i.e., the functional MRI (fMRI) 

signal, is currently the most widely used signal for brain mapping and studying the neural basis 
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of human cognition. The origin of the BOLD effect is that haemoglobin is diamagnetic when 

oxygenated and paramagnetic when deoxygenated. Thus, the presence of deoxyhaemoglobin 

produces a slight alteration in the local MR signal. Then, the larger increase in CBF  than 

2CMRO
 

following neuronal activity results in a net decrease of the amount of 

deoxyhaemoglobin present, which produces an increase in the MR signal, the BOLD response 

(Buxton et al., 2004). Since both BOLD and temperature responses have the same common 

origin in CBF  and 2CMRO  changes, it is tempting to propose a model for coupling them.  

In this paper, we rewrite the coupling between oxygen consumption and cerebral blood flow 

given by the oxygen limitation model (Buxton and Frank, 1997) as a gamma function. When 

substituting this new equation in the BOLD signal model of Davis et al (1998) we obtain a 

transcendental equation relating CBF  and BOLD responses, which is solved in terms of the 

Lambert W function (Corless et al., 1996). Thus, given the BOLD signals we are able to calculate 

the underlying CBF  and 2CMRO  changes. These equations for CBF  and 2CMRO  as functions 

of the BOLD signal, are inserted in the dynamic bio-heat equation Pennes, 1948; Yablonskiy et 

al., 2000;  Trübel et al., 2006) that describes the rate of temperature changes in the ROI. If we 

have the BOLD time series for each brain voxel, then we can calculate the corresponding 

temperature response by solving numerically a non-autonomous differential equation.  In this 

paper we investigate with simulations the temperatures responses associated to different BOLD 

time series. We also show temperature maps calculated from real BOLD data (Büchel and 

Friston, 1997).   
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2. Model development 

2.1 Modelling temperature changes 

The dynamic bio-heat equation describes the rate of temperature change in the brain, ( )T tɺ ,  

when the resting state is disturbed by global changes in blood flow, incoming blood temperature, 

or oxygen consumption (Pennes, 1948; Yablonskiy et al., 2000;  Trübel et al., 2006): 

 

( ) ( ) ( ) ( ) ( )( )

( )( )

2 0 0

01

t b B B a

t

t

C T t H H CMRO m t C CBF f t T t T

C
e T t Tτ

ρ

τ

−

= ∆ − ∆ − − −

 
− − − 

 

�ɺ

 (1) 

where ( )m t  and ( )f t  are 
2

CMRO  and CBF  normalized to rest, respectively. The 

physiological interpretation and values of the parameters of this equation are shown in Table 1. 

The first term at the right side of equation (1) accounts for the amount of heat locally generated 

per gram of brain tissue per minute due to the oxidation of glucose from which most of the 

energy required for brain activity is generated. The second term is the rate of heat removal from 

brain tissue by cerebral blood flow, and the third term describes conductive heat loss within brain 

tissue (Trübel et al., 2006).  By substituting 0T =ɺ  in (1) we found the temperature at rest ( )0T : 

 
( ) 2 0

0

0

b

a

B B

H H CMRO
T T

C CBFρ

∆ − ∆
= +

�

 (2) 

If ( )E t  is the oxygen extraction fraction, that is, the ratio of oxygen consumption to oxygen 

delivered, then the following equation holds (Buxton et al., 2004): 

 ( ) ( )
( )

0

E t
m t f t

E
=  (3) 

where 0E  is the oxygen extraction fraction at rest. Several works have modelled the relationship 

between ( )m t  and ( )f t  (Buxton and Frank, 1997; Hyder et al., 1998; Vafaee and Gjedde, 
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2000; Zheng et al., 2002; Takuya et al., 2003).  Particularly, the oxygen limitation model 

proposed by Buxton and Frank (1997) has been widely employed as part of biophysical models 

of the generation of the BOLD signal (Buxton et al., 1998; Friston et al., 2000; Friston et al., 

2003; Babajani and Zoltanian-Zadeh, 2006; Riera et al., 2006; Riera et al., 2007; Babajani et al., 

2008; Blockley et al., 2009): 

 ( ) ( ) ( )
1

01 1 f tE f E= − −  (4) 

Nevertheless, in order to solve the transcendental equation (3)  for ( )f t , is necessary to write 

(4) in a more suitable way. For this, we generated ( )E t  data using equation (4) and adjusted to it 

the gamma function (5) for a f  range of [ ]0.7 2− : 

 
( )

( ) ( )

0

bf tc
E f

af t e
E

−
=  (5) 

Estimated values for a, b, and c are displayed in Table 1. With this approximation, the 

relationship between oxygen consumption and blood flow given by (3) becomes: 

 ( ) ( ) ( )1 bf tcm t af t e
−+=  (6) 

BOLD signal changes 
0

S

S

∆
 can be expressed in terms of ( )f t  and ( )m t as (Davis et al., 1998): 

 
( ) ( )

( ) ( )( )0

0 0

1
S t S t S

A f t m t
S S

α β β−∆ −
= = −  (7) 

Substituting (6) in (7) and rearranging terms: 

 ( )
( )

( )
1

0

c

b
f t

c

S t
A

S
f t e

Aa

α β

β

α β

β

+

−
+

 ∆ 
−  

  =
 
  
 

 (8) 
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Multiplying both sides by 
b

c

β

α β
−

+
: 

 ( )
( )

( )
1

0

c

b
f t

c

S t
A

Sb b
f t e

c c Aa

α β

β

α β

β

β β

α β α β

+

−
+

 ∆ 
−  

  − = −
 + +
  
 

 (9) 

This is a transcendental equation. For obtaining an analytic solution for ( )f t  we use the fact 

that an equation of the form: 

 z
ze x=  (10) 

has solution in terms of the Lambert W function (Corless et al., 1996): 

 ( )z W x=  (11) 

This function is implemented in softwares like Maple, Matlab and Mathematica.  

Using this, ( )f t  can be obtained from equation (9) as: 

 ( ) ( )( )
c

f t W y t
b

α β

β

+
= −  (12) 

where ( )y t  is a function of the BOLD signal: 

 ( )

( )
1

0

cS t
A

Sb
y t

c Aa

α β

β

β

α β

+ ∆ 
−  

  = −
 +
  
 

 (13) 

Using equations (6) and (12)-(13), oxygen consumption and blood flow time series are calculated 

from the corresponding BOLD signal. Then, the temperature in a brain voxel can be obtained 

from the associated BOLD signal by solving numerically the following non autonomous ordinary 

differential equation: 
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 ( ) ( ) ( ) ( )T t p t T t g t+ =ɺ  (14) 

with initial condition given by (2), and ( )p t  and ( )g t  given by: 

 ( )
( )

( )( )0B B

tissue

C CBF c
p t W y t

b C

ρ α β

β

+
= −  (15) 

 
( )

( )
( )( )

( )( )

( )

1

2 0

c c
W y t

b

tissue

arterial

CMRO H H c
g t a W y t e

C b

T p t

α β

βα β

β

+ +∆ − ∆  +
= − + 

 

+

�

 (16) 

An alternative solution to equation (14) is given in integral form by:  

 ( )
( )

( ) ( )( )0
0

1 t

T t T g d
t

µ λ λ λ
µ

= + ∫  (17) 

where: 

 ( )
( )

0

t

p d

t e
ω ω

µ ∫=  (18) 

 

3. Results 

In this section we first use computational simulations to explore the temperature temporal 

dynamics associated to different BOLD time series. After that, we show temperature maps 

calculated from actual BOLD data. 

 

3.1 From simulated BOLD data to temperature time series 

In this paper we propose that the temperature temporal response ( )T t  can be obtained from the 

BOLD time series by solving the ordinary differential equation (14). We solve this equation 

numerically with the fourth order Runge-Kutta method. All the parameters values needed are 

displayed in Table 1. The simulated BOLD data were generated with a step size of 0.1s  using 
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the Metabolic/Hemodynamic Model (MHM) proposed in Sotero and Trujillo-Barreto (2007)
 
with 

the standard parameters set used in that paper. 

 

Table 1. Values and physiological interpretation of the parameters.  

Parameter Interpretation Value 

tissue
C  Tissue heat capacity 3.664J/(gK)  

0
H∆  Enthalpy released in the oxidation of glucose:  

6 12 6 2 2 2
6 6 6C H O O CO H O+ → +  

5
4.7 10 J⋅  

b
H∆  Enthalpy used for releasing oxygen from hemoglobin 4

2.8 10 J⋅  

2 0
CMRO  Cerebral metabolic rate of oxygen consumption at rest ( )6

0.0263 10 mol/ gs
−⋅  

0
CBF  Cerebral blood flow at rest 30.0093cm /(gs)  

0E  Oxygen extraction fraction at rest 0.4 

B
C  Blood heat capacity 3.894J/(gK)  

B
ρ  Blood density 31.05g/cm  

A  Maximum BOLD signal change that could occur 

corresponding to complete removal of deoxyhemoglobin 
from the voxel 

0.22  

α  Steady state flow-volume relation 0.4  

β  Parameter dependent on the field strength 1.5  

a
T  Arterial blood temperature 309.15 K  

, ,a b c  Parameters of the gamma function fitted from the 

( ) vsE f f curve 

0.1870 , 0.1572  and 

-0.6041 

 
 

Figure 1 displays in the same column the positive BOLD responses (PBRs) and the associated 

2
CMRO  normalized to baseline ( )m , CBF  normalized to baseline ( )f  and the variation with 
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respect to baseline of the temperature ( )T∆  . In the case of PBRs, we found they are associated 

with a decrease in brain temperature. On the other hand, negative BOLD responses (NBRs) are 

associated with increases in brain temperature (Figure 2). That is, the assumption that CBF  is 

always greater than 
2

CMRO  (imposed by the oxygen limitation model) leads to the conclusion 

that the sign of temperature is always opposite to the sign of CBF changes. In the case of PBRs, 

CBF  increases (see Figure 1), and this evokes a decrease in temperature. In the case of NBRs 

we found that both 
2

CMRO  and CBF  decrease (in agreement with Shmuel et al., 2002) which 

leads to an increase in the temperature.  

 

Figure 1. Temperature signals associated to positive BOLD responses. In each column from top to down: BOLD 

signal, 
2

CMRO  normalized to baseline ( )m , CBF  normalized to baseline ( )f  and the temperature variation 

with respect to baseline ( )T∆ .  

 

 

While the time characterizing BOLD changes in the brain is in the order of seconds, in the case 

of temperature changes is in the order of minutes
 
(Trübel et al., 2006). This explains why while 
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there is no interaction between the multiples BOLD responses in Figure 1 and Figure 2, there is 

at the resulting temperature signals. 

Finally we investigate the influence of one of the parameters, the oxygen extraction fraction at 

rest ( )0E  on the results. Figure 3 shows T∆  for three values of 0E , finding  that varying 0E  in an 

small range ( )0.35 0.45−  causes temperature variations one order of magnitude lower (0.002 

degrees) than variations due to neuronal activity (Figures 1 and 2).  

 

 

Figure 2. Temperature signal associated to negative BOLD responses. In each column from top to down: BOLD 

signal, 
2

CMRO  normalized to baseline ( )m , CBF  normalized to baseline ( )f  and the temperature variation 

with respect to baseline ( )T∆ .  
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Figure 3. Influence of the oxygen extraction fraction ate rest ( )0E  on the temperature. a) T∆  is plotted for three 

values of 0E : 0.35, 0.40 and 0.35. b) An augmented detail of  b).  

 

3.2 From real BOLD data to brain temperature maps 

The real BOLD dataset was obtained from the Wellcome Department of Imaging Neuroscience, 

Institute of Neurology, University College London 

(http://www.fil.ion.ucl.ac.uk/spm/data/#epoch) and is described in Büchel and Friston (1997). 

The experiment was performed on a 2 Tesla Siemens VISION scanner. Contiguous multislice 

T2*−weighted fMRI images were obtained with a TR of 3.22 s. The original data had 32-3 mm 

slices covering 9.6 cm of the cortex and extending to the upper cerebellum. Subjects were 

scanned during four runs, each lasting 5 min 22 s. One hundred image volumes were acquired in 

each run. The first 10 volumes of each run were discarded to allow stabilization of the BOLD 

signal. Each condition lasted 10 scans or 32.2 seconds.  

In this work, image processing and statistical analysis of the BOLD dataset were carried out 

using SPM2 (http://www.fil.ion.ucl.ac.uk/spm). A structural MRI acquired using a standard three 

dimensional T1 weighted sequence (1x1x3 mm
3
 voxel size) was co-registered to the 
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T2*−weighted. All the images were spatially normalized to a standard template and the data 

were smoothed using a 6 mm full width at half maximum isotropic Gaussian kernel. 

Using the normalized T1 image, a brain mask was created and BOLD signals for the mask points 

were extracted from previously T2* processed images. Then, CBF , 
2

CMRO  and Temperature 

signals were calculated for each voxel in the mask, using expressions (6) and (12)-(16).  For each 

variable (CBF , 
2

CMRO  and Temperature) the calculated temporal signals were saved as a new 

image set. 

Data activation statistical analysis on BOLD, CBF , 
2

CMRO  and Temperature image sets were 

performed by modeling the different conditions
 
(‘attention to motion’, ‘no attention to motion’, 

‘fixation’ and ‘stationary’) as reference waveforms in the context of the general linear model as 

employed by SPM2. To identify brain regions important in early visual processing, the 

comparison between conditions involving visual motion (‘attention to motion’ and ‘no attention 

to motion’) and ‘fixation’ was employed. 

Figure 4 displays the BOLD data (first row) and the corresponding T∆ calculated with our 

method (second row) at four time instants: 4.83min, 9.66min, 14.49min and 19.32min. As 

shown in the legend, the calculated T∆  values ( )0.15 :0.1−  are within the experimentally 

observed range. Figure 5 shows the activated regions (P < 0.001, Bonferroni corrected) obtained 

from the statistical analysis of BOLD, f , m  and T∆  data (labelled A, B, C, and D, 

respectively). For this dataset we obtained that f  and m  present similar activation patterns than 

the original BOLD data (i.e. activations mainly localized on visual regions V1, V2 and V5/MT). 

Nevertheless, we found temperature responses to be more localized than the BOLD, f and m 

responses (i.e. activations mainly localized on region V2). 
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Figure 4. Temperature maps obtained from an actual BOLD dataset at four time instants: 4.83min, 9.66min, 

14.49 min and 19.32 min. A) original BOLD dataset. B) Temperature variations.  
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Figure 5. Activated maps obtained from the statistical analysis of the maps shown in Figure 4 (P < 0.001, Bonferroni 

corrected). A) BOLD, B) CBF  normalized to baseline ( )f , C)
 2
CMRO  normalized to baseline ( )m , D) 

temperature variation with respect to baseline ( )T∆ . At the end of each row a time series extracted from the 

activated region is shown. 

 

 

4. Discussion 

In this paper we presented a theoretical framework for obtaining CBF , 2
CMRO  and temperature 

responses from registered BOLD signals.  This is could have potential clinical applications, as 

conventional methods for measuring brain temperatures require invasive probes and can monitor 

only one or a few locations simultaneously (Le Bihan, 1995). Using simulated BOLD data we 

confirmed that PBRs are linked to decreases in brain temperature, whereas NBRs are associated 

to temperature increases. We also demonstrated that stimulations paradigms producing multiple 

non-interacting BOLD responses can produce interacting temperature responses, due to the 

slower temporal dynamics of temperature changes. In addition, we converted real BOLD data 

(Büchel and Friston, 1997) 
 
 into CBF , 2

CMRO  and temperature datasets. The calculated T∆  

values ( )0.15 :0.1−  are within the range experimentally observed, being smaller than the ones 

reported in Yablonskiy et al. (2000) and consistent with the more moderate values obtained by 

Gorbach  et al. (2003).  

Interestingly, the data analysis found that statistically significant temperature variations are more 

localized than BOLD activations, failing to show activations activation in brain areas where it is 

well known that electrical activity occurs, such as V5 bilaterally. Thus the most parsimonious 

interpretation of this result is that temperature data provide a less sensitive mapping of brain 

activity tan fMRI. This result also opens questions about the nature of the information processing 
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and the underlying vascular network in visual areas that give rise to the difference in temperature 

found here (Figures 4 and 5). 

In the present paper, temperature responses were obtained by solving numerically (fourth order 

Runge-Kutta method) a non-autonomous differential equation that depends on the BOLD signal 

(see (14)-(16) ). An alternative to solving this differential equation is to numerically calculate 

two integrals (see (17)-(18)) with a quadrature method. In the case of our simulated data, which 

was generated with a temporal resolution of 0.1s , both alternatives gave the same result (not 

shown here). Nevertheless, actual BOLD signals have a poorer temporal resolution. For data 

simulated with 1 3 s−  temporal resolution we found the Runge-Kutta method to have better 

accuracy than quadrature methods like trapeze and Simpson.  Finding a more efficient numerical 

method is a topic for future research.  

The method proposed here deals only with the temporal dynamics of the temperature. For 

obtaining the spatial distribution in the brain (temperature maps as shown in Figure 4) we 

calculate the temperature voxel by voxel. For modeling the spatial distribution of brain 

temperature, partial differential equations need to be employed (Collins et al., 2004; Sustanskii 

and Yablonskiy, 2006). The oxygen limitation model (Buxton and Frank, 1997) and the model 

for the BOLD signal change (Davis et al., 1998) are also temporal models. Then, the spatial 

correlations in CBF, 
2

CMRO and temperature maps are forced by correlations in the BOLD 

signals, and not due to model design.  

In the calculations presented here, we have assumed that the parameters (see Table 1) do not 

vary across the brain tissue. Nevertheless, it has been reported (Dunn et al., 2005) a slight spatial 

dependence in the power law coefficient ( )α  relating changes in CBF and cerebral blood 

volume (CBV ). Additionally, the oxygen consumption at rest ( )2 0
CMRO

 
should be affected by 
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the inhomogeneities found in cortical tissue. That is, the motor cortex, for example, has a 

relatively sparse population of neurons, while sensory cortices tend to be more densely populated 

than the average. Furthermore, even within a given cytoarchitectonic region neuronal densities 

vary considerably (Abeles, 1991). 
0

CBF  should also have spatial variations, as we know that 

vascular density is area specific (Weber et al., 2008).  Nevertheless, despite these spatial 

variability in oxygen consumption and blood flow, there is a relatively uniformity of 0E  across 

the brain (Gusnard and Raichle, 2001).  Using simulations we found that T∆  doesn’t change 

appreciably in the 0E  range: 0.35: 0.45 (see Figure 3).  

In this work, by using the oxygen limitation model we have assumed a tight coupling between 

blood flow and oxygen consumption. Thus, it is important to note that experimental evidences 

suggest that energy demand does not directly control CBF increases (Attwell and Iadecola, 

2002), and in fact global changes of CBF  independent of local energy needs have been found 

(Reis and Golanov, 1997). Nevertheless, changes in CBF do correlate with oxygen usage during 

functional activation (Hoge et al., 1999). Thus, the oxygen limitation model is used here only as 

a practical way of coupling CBF and oxygen consumption, without deepening in the complex 

nature of that link.  

Finally, our model is deterministic. Nevertheless, several studies have shown the importance of 

the physiological noise contribution to fMRI signal fluctuations
 
(Biswal et al., 1995; Krüger and 

Glover, 2001). Thus, future refinements of the present model should include physiological noise. 
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