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Abstract

Matching estimators are widely used for the evaluation of programs or treat-
ments. Often researchers use bootstrapping methods for inference. However, no for-
mal justification for the use of the bootstrap has been provided. Here we show that
the bootstrap is in general not valid, even in the simple case with a single continu-
ous covariate when the estimator is root-N consistent and asymptotically normally
distributed with zero asymptotic bias. Due to the extreme non-smoothness of near-
est neighbor matching, the standard conditions for the bootstrap are not satisfied,
leading the bootstrap variance to diverge from the actual variance. Simulations
confirm the difference between actual and nominal coverage rates for bootstrap
confidence intervals predicted by the theoretical calculations. To our knowledge,
this is the first example of a root-N consistent and asymptotically normal estimator
for which the bootstrap fails to work.
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1 Introduction

Matching methods have become very popular for the estimation of treatment effects.1

Often researchers use bootstrap methods to calculate the standard errors of matching

estimators.2 Bootstrap inference for matching estimators has not been formally justified.

Because of the non-smooth nature of some matching methods and the lack of evidence

that the resulting estimators are asymptotically linear (e.g., nearest neighbor matching

with a fixed number of neighbors), there is reason for concern about their validity of the

bootstrap in this context.

At the same time, we are not aware of any example where an estimator is root-N

consistent, as well as asymptotically normally distributed with zero asymptotic bias and

yet where the standard bootstrap fails to deliver valid confidence intervals.3 This article

addresses the question of the validity of the bootstrap for nearest-neighbor matching

estimators with a fixed number of neighbors. We show in a simple case with a single

continuous covariate that the standard bootstrap does indeed fail to provide asymptoti-

cally valid confidence intervals, in spite of the fact that the estimator is root-N consistent

and asymptotically normal with no asymptotic bias. We provide some intuition for this

failure. We present theoretical calculations for the asymptotic behavior of the difference

between the variance of the matching estimator and the average of the bootstrap variance.

These theoretical calculations are supported by Monte Carlo evidence. We show that the

bootstrap confidence intervals can have over-coverage as well as under-coverage. The

1E.g., Dehejia and Wahba, (1999). See Rosenbaum (2001) and Imbens (2004) for surveys.
2A partial list of recent papers using matching with bootstrapped standard errors includes Agodini

and Dynarski (2004), Dehejia and Wahba (1999, 2002), Galasso and Ravaillon (2003), Guarcello, Mealli,
and Rosati (2003), Heckman, Ichimura and Todd (1997), Ichino and Becker (2002), Imai (2005), Jalan
and Ravallion (1999), Lechner (2002), Myers, Olsen, Seftor, Young, and Tuttle (2002) Pradhan, and
Rawlings (2003), Puhani (2002), Sianesi (2004), Smith and Todd (2005), Yamani, Lauer, Starling,
Pothier, Tuzcu, Ratliff, Cook, Abdo, McNeil, Crowe, Hobbs, Rincon, Bott-Silverman, McCarthy and
Young (2004).

3Familiar examples of failure of the bootstrap for estimators with non-normal limiting distributions
arise in the contexts of estimating the maximum of the support of a random variable (Bickel and
Freedman, 1981), estimating the average of a variable with infinite variance (Arthreya, 1987), and
super-efficient estimation (Beran, 1984). Resampling inference in these contexts can be conducted using
alternative methods such as subsampling (Politis and Romano, 1994; Politis, Romano, and Wolf, 1999)
and versions of the bootstrap where the size of the bootstrap sample is smaller than the sample size
(e.g., Bickel, Götze and Van Zwet, 1997). See Hall (1992) and Horowitz (2003) for general discussions.
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results do not address whether nearest neighbor estimators with the number of neighbors

increasing with the sample size do satisfy asymptotic linearity or whether the bootstrap

is valid for such estimators as in practice many researchers have used estimators with

very few (e.g., one) nearest neighbor(s).

In Abadie and Imbens (2006) we have proposed analytical estimators of the asymp-

totic variance of matching estimators. Because the standard bootstrap is shown to be

invalid, together with subsampling (Politis, Romano, and Wolf, 1999) these are now the

only available methods of inference that are formally justified.4

The rest of the article is organized as follows. Section 2 reviews the basic notation

and setting of matching estimators. Section 3 presents theoretical results on the lack of

validity of the bootstrap for matching estimators, along with simulations that confirm

the formal results. Section 4 concludes. The appendix contains proofs.

2 Set up

2.1 Basic Model

In this article we adopt the standard model of treatment effects under unconfoundedness

(Rubin, 1978; Rosenbaum and Rubin, 1983, Heckman, Ichimura and Todd, 1997, Rosen-

baum, 2001, Imbens, 2004). The goal is to evaluate the effect of a treatment on the basis

of data on outcomes and covariates for treated and control units. We have a random sam-

ple of N0 units from the control population, and a random sample of N1 units from the

treated population, with N = N0 + N1. Each unit is characterized by a pair of potential

outcomes, Yi(0) and Yi(1), denoting the outcomes under the control and active treatment

respectively. We observe Yi(0) for units in the control sample, and Yi(1) for units in the

treated sample. For all units we observe a covariate vector, Xi.5 Let Wi indicate whether

a unit is from the control sample (Wi = 0) or the treatment sample (Wi = 1). For each

unit we observe the triple (Xi,Wi, Yi) where Yi = Wi Yi(1)+(1−Wi) Yi(0) is the observed

4Politis, Romano, and Wolf (1999) show that subsampling produces valid inference for statistics with
stable asymptotic distributions.

5To simplify our proof of lack of validity of the bootstrap we will consider in our calculations the case
with a scalar covariate. With higher dimensional covariates there is the additional complication of biases
that may dominate the asymptotic distribution of matching estimators (Abadie and Imbens, 2006).
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outcome. Let X an N -column matrix with column i equal to Xi, and similar for Y and

W. Also, let X0 denote the N -column matrix with column i equal to (1 −Wi) Xi, and

X1 the N -column matrix with column i equal to Wi Xi. The following two assumptions

are the identification conditions behind matching estimators.

Assumption 2.1: (unconfoundedness) For almost all x, (Yi(1), Yi(0)) is indepen-

dent of Wi conditional on Xi = x, or

(
Yi(0), Yi(1)

)
⊥⊥ Wi

∣∣∣ Xi = x, (a.s.)

Assumption 2.2: (overlap) For some c > 0, and almost all x

c ≤ Pr(Wi = 1|Xi = x) ≤ 1− c.

In this article we focus on matching estimation of the average treatment effect for the

treated:6

τ = E[Yi(1)− Yi(0)|Wi = 1]. (2.1)

A nearest neighbor matching estimator of τ matches each treated unit i to the control

unit j with the closest value for the covariate, and then averages the within-pair outcome

differences, Yi − Yj, over the N1 matched pairs. Here we focus on the case of matching

with replacement, so each control unit can be used as a match for more than one treated

units.

Formally, for all treated units i (that is, units with Wi = 1) let Di be the distance

between the covariate value for observation i and the covariate value for the closest

(control) match:

Di = min
j=1,...,N :Wj=0

‖Xi −Xj‖.

Then let

J (i) = {j ∈ {1, 2, . . . , N} : Wj = 0, ‖Xi −Xj‖ = Di}
6In many cases, the interest is in the average effect for the entire population. We focus here on the

average effect for the treated because it simplifies the calculations below. Since the overall average effect
is the weighted sum of the average effect for the treated and the average effect for the controls it suffices
to show that the bootstrap is not valid for one of the components.
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be the set of closest matches for treated unit i. If unit i is a control unit, then J (i)

is defined to be the empty set. When Xi is continuously distributed, the set J (i) will

consist of a single index with probability one, but for bootstrap samples there will often

be more than one index in this set (because an observation from the original sample may

appear multiple times in the bootstrap sample). For each treated unit, i, let

Ŷi(0) =
1

#J (i)

∑

j∈J (i)

Yj

be the average outcome in the set of the closest matches for observation i, where #J (i)

is the number of elements of the set J (i). The matching estimator of τ is then

τ̂ =
1

N1

∑

i:Wi=1

(
Yi − Ŷi(0)

)
. (2.2)

For the subsequent discussion it is useful to write the estimator in a different way. Let

Ki denote the weighted number of times unit i is used as a match (if unit i is a control

unit, with Ki = 0 if unit i is a treated unit):

Ki =






0 if Wi = 1,
∑

Wj=1

1{i ∈ J (j)} 1

#J (j)
if Wi = 0.

Then we can write

τ̂ =
1

N1

N∑

i=1

(Wi −Ki)Yi. (2.3)

Let

K ′
i =






0 if Wi = 1,
∑

Wj=1

1{i ∈ J (j)}
( 1

#J (j)

)2

if Wi = 0.

Abadie and Imbens (2006) prove that under certain conditions (for example, when X is

a scalar variable) the nearest-neighbor matching estimator in (2.2) is root-N consistent

and asymptotically normal with zero asymptotic bias.7 Abadie and Imbens propose two

7More generally, Abadie and Imbens (2002) propose a bias correction that makes matching estimators
root-N consistent and asymptotically normal regardless of the dimension of X.
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variance estimators:

V̂ AI,I =
1

N2
1

N∑

i=1

(
Wi −Ki

)2

σ̂2(Xi,Wi),

and

V̂ AI,II =
1

N2
1

N∑

i=1

(
Yi − Ŷi(0)− τ̂

)2

+
1

N2
1

N∑

i=1

(K2
i −K ′

i) σ̂2(Xi,Wi),

where σ̂2(Xi, Wi) is an estimator of the conditional variance of Yi given Wi and Xi based

on matching. Let lj(i) be the j-th closest match to unit i, in terms of the covariates,

among the units with the same value for the treatment (that is, units in the treatment

groups are matched to units in the treatment group, and units in the control group are

matched to units in the control group).8 Define

σ̂2(Xi,Wi) =
J

J + 1

(
Yi −

1

J

J∑

j=1

Ylj(i)

)2

. (2.4)

Let V(τ̂) be the variance of τ̂ , and let V(τ̂ |X,W) the variance of τ̂ conditional on X

and W. Abadie and Imbens (2006) show that (under weak regularity conditions) the

normalized version of first variance estimator, N1V̂ AI,I is consistent for the normalized

conditional variance, N1V(τ̂ |X,W):

N1 (V(τ̂ |X,W)− V̂ AI,I)
p−→ 0,

for fixed J as N → ∞. The normalized version of the second variance estimator,

N1V̂ AI,II , is consistent for the normalized marginal variance, N1V(τ̂):

N1 (V(τ̂)− V̂ AI,II)
p−→ 0,

for fixed J as N →∞.
8To simplify the notation, here we consider only the case without matching ties. The extension to

accommodate ties is immediate (see Abadie, Drukker, Herr, and Imbens, 2004), but it is not required
for the purpose of the analysis in this article.
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2.2 The Bootstrap

We consider two versions of the bootstrap in this discussion. The first version centers the

bootstrap variance at the matching estimate in the original sample. The second version

centers the bootstrap variance at the mean of the bootstrap distribution of the matching

estimator.

Consider a random sample Z = (X,W,Y) with N0 controls and N1 treated units.

The matching estimator, τ̂ , is a functional t(·) of the original sample: τ̂ = t(Z). We

construct a bootstrap sample, Zb, with N0 controls and N1 treated by sampling with

replacement from the two subsamples. We then calculate the bootstrap estimator, τ̂b,

applying the functional t(·) to the bootstrap sample: τ̂b = t(Zb). The first version of the

bootstrap variance is the second moment of (τ̂b − τ̂) conditional on the sample, Z:

V B,I = vI(Z) = E
[
(τ̂b − τ̂)2

∣∣Z
]
. (2.5)

The second version of the bootstrap variance centers the bootstrap variance at the boot-

strap mean, E[τ̂b|Z], rather than at the original estimate, τ̂ :

V B,II = vII(Z) = E
[
(τ̂b − E [τ̂b|Z])2

∣∣Z
]
. (2.6)

Although these bootstrap variances are defined in terms of the original sample Z, in

practice an easier way to calculate them is by drawing B bootstrap samples. Given B

bootstrap samples with bootstrap estimates τ̂b, for b = 1, . . . , B, we can obtain unbiased

estimators for these two variances as

V̂ B,I =
1

B

B∑

b=1

(τ̂b − τ̂)2 ,

and

V̂ B,II =
1

B − 1

B∑

b=1

(
τ̂b −

(
1

B

B∑

b=1

τ̂b

))2

.

We will focus on the first bootstrap variance, V B,I , and its unconditional expectation,

E[V B,I ]. We shall show that in general N1 E[V B,I ] does not converge to N1 V(τ̂). We will

show that in some cases the limit of N1(E[V B,I ]−V(τ̂)) is positive and that in other cases
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this limit is negative. As a result, we will show that N1V B,I is not a consistent estimator

of the limit of N1V(τ̂). This will indirectly imply that N1V B,II is not consistent either.

Because

E
[
(τ̂b − τ̂)2

∣∣Z
]
≥ E

[
(τ̂b − E [τ̂b|Z])2

∣∣Z
]
,

it follows that E[V B,I ] ≥ E[V B,II ]. Thus in the cases where the limit of N1(E[V B,I ]−V(τ̂))

is smaller than zero, it follows that the limit of N1(E[V B,II ]−V(τ̂)) is also smaller than

zero.

In most standard settings, both centering the bootstrap variance at the estimate in

the original sample or at the average of the bootstrap distribution of the estimator lead

to valid confidence intervals. In fact, in many settings the average of the bootstrap

distribution of an estimator is identical to the estimate in the original sample. For

example, if we are interested in constructing a confidence interval for the population

mean µ = E[X] given a random sample X1, . . . , XN , the expected value of the bootstrap

statistic, E[µ̂b|X1, . . . , XN ], is equal to the sample average for the original sample, µ̂ =
∑

i Xi/N . For matching estimators, however, it is easy to construct examples where the

average of the bootstrap distribution of the estimator differs from the estimate in the

original sample. As a result, the two bootstrap variance estimators will lead to different

confidence intervals with potentially different coverage rates.

3 An Example where the Bootstrap Fails

In this section we discuss in detail a specific example where we can calculate the limits

of N1V(τ̂) and N1E[V B,I ] and show that they differ.

3.1 Data Generating Process

We consider the following data generating process:

Assumption 3.1: The marginal distribution of the covariate X is uniform on the in-

terval [0, 1]

Assumption 3.2: The ratio of treated and control units is N1/N0 = α for some α > 0.
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Assumption 3.3: The propensity score e(x) = Pr(Wi = 1|Xi = x) is constant as a

function of x.

Assumption 3.4: The distribution of Yi(1) is degenerate with Pr(Yi(1) = τ) = 1, and

the conditional distribution of Yi(0) given Xi = x is normal with mean zero and variance

one.

The implication of Assumptions 3.2 and 3.3 is that the propensity score is e(x) = α/(1+

α).

3.2 Exact Variance and Large Sample Distribution

The data generating process implies that conditional on X = x the treatment effect

is equal to E[Y (1) − Y (0)|X = x] = τ for all x. Therefore, the average treatment

effect for the treated is equal to τ . Under this data generating process
∑

i Wi Yi/N1 =
∑

i Wi Yi(1)/N1 = τ , which along with equation (2.3) implies:

τ̂ − τ = − 1

N1

N∑

i=1

Ki Yi.

Conditional on X and W the only stochastic component of τ̂ is Y. By Assumption 3.4

the Yi-s are mean zero, unit variance, and independent of X. Thus E[τ̂ − τ |X,W] = 0.

Because (i) E[Yi Yj|Wi = 0,X,W] = 0 for i *= j, (ii) E[Y 2
i |Wi = 0,X,W] = 1 and (iii)

Ki is a deterministic function of X and W, it also follows that the conditional variance

of τ̂ given X and W is

V(τ̂ |X,W) =
1

N2
1

N∑

i=1

K2
i .

Because V(E[τ̂ |X,W]) = V(τ) = 0, the (exact) unconditional variance of the matching

estimator is therefore equal to the expected value of the conditional variance:

V(τ̂) =
N0

N2
1

E
[
K2

i |Wi = 0
]
. (3.7)

Lemma 3.1: (Exact Variance of Matching Estimator)

Suppose that Assumptions 2.1, 2.2, and 3.1-3.4 hold. Then
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(i) the exact variance of the matching estimator is

V(τ̂) =
1

N1
+

3

2

(N1 − 1)(N0 + 8/3)

N1(N0 + 1)(N0 + 2)
, (3.8)

(ii) as N →∞,

N1 V(τ̂) → 1 +
3

2
α, (3.9)

and (iii),

√
N1 (τ̂ − τ)

d−→ N
(

0, 1 +
3

2
α

)
.

All proofs are given in the Appendix.

3.3 The Bootstrap Variance

Now we analyze the properties of the bootstrap variance, V B,I in (2.5). As before, let

Z = (X,W,Y) denote the original sample. We will look at the distribution of statistics

both conditional on the original sample, as well as over replications of the original sample

drawn from the same distribution. Notice that

E
[
V B,I

]
= E

[
E

[
(τ̂b − τ̂)2

∣∣Z
]]

= E
[
(τ̂b − τ̂)2] (3.10)

is the expected bootstrap variance. The following lemma establishes the limit of N1 E[V B,I ]

under our data generating process.

Lemma 3.2: (Bootstrap Variance I) Suppose that Assumptions 3.1-3.4 hold. Then,

as N →∞:

N1 E[V B,I ] → 1 +
3

2
α

5 exp(−1)− 2 exp(−2)

3 (1− exp(−1))
+ 2 exp(−1). (3.11)

Recall that the limit of the normalized variance of τ̂ is 1 + (3/2) α. For small values of

α the limit of the expected bootstrap variance exceeds the limit variance by the third

term in (3.11), 2 exp(−1) , 0.74, or 74%. For large values of α the second term in

(3.11) dominates and the ratio of the limit expected bootstrap and limit variance is

equal to the factor in the second term of (3.11) multiplying (3/2)α. Since (5 exp(−1)−
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2 exp(−2))/(3 (1− exp(−1))) , 0.83, it follows that as α increases, the ratio of the limit

expected bootstrap variance to the limit variance asymptotes to 0.83, suggesting that in

large samples the bootstrap variance can under as well as over estimate the true variance.

So far, we have established the relation between the limiting variance of the estimator

and the limit of the average bootstrap variance. We end this section with a discussion

of the implications of the previous two lemmas for the validity of the bootstrap. The

first version of the bootstrap provides a valid estimator of the asymptotic variance of the

simple matching estimator if:

N1

(
E

[
(τ̂b − τ̂)2

∣∣Z
]
− V(τ̂)

)
p−→ 0.

Lemma 3.1 shows that:

N1V(τ̂) −→ 1 +
3

2
α.

Lemma 3.2 shows that

N1E
[
(τ̂b − τ̂)2

]
−→ 1 +

3

2
α

5 exp(−1)− 2 exp(−2)

3(1− exp(−1))
+ 2 exp(−1).

Assume that the first version of the bootstrap provides a valid estimator of the asymptotic

variance of the simple matching estimator. Then,

N1E
[
(τ̂b − τ̂)2

∣∣Z
] p−→ 1 +

3

2
α.

Because N1E [ (τ̂b − τ̂)2|Z] ≥ 0, it follows by Portmanteau Lemma (see, e.g., van der

Vaart, 1998, page 6) that, as N →∞,

1 +
3

2
α ≤ lim E

[
N1E

[
(τ̂b − τ̂)2

∣∣Z
] ]

= lim N1E
[
(τ̂b − τ̂)2

]

= 1 +
3

2
α

5 exp(−1)− 2 exp(−2)

3(1− exp(−1))
+ 2 exp(−1).

However, the algebraic inequality

1 +
3

2
α ≤ 1 +

3

2
α

5 exp(−1)− 2 exp(−2)

3(1− exp(−1))
+ 2 exp(−1),

does not hold for large enough α. As a result, the first version of the bootstrap does not

provide a valid estimator of the asymptotic variance of the simple matching estimator.
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The second version of the bootstrap provides a valid estimator of the asymptotic

variance of the simple matching estimator if:

N1

(
E

[
(τ̂b − E[τ̂b|Z])2

∣∣Z
]
− V(τ̂)

)
p−→ 0.

Assume that the second version of the bootstrap provides a valid estimator of the asymp-

totic variance of the simple matching estimator. Then,

N1E
[
(τ̂b − E[τ̂b|Z])2

∣∣Z
] p−→ 1 +

3

2
α.

Notice that E [ (τ̂b − E[τ̂b|Z])2|Z] ≤ E [ (τ̂b − τ̂)2|Z]. By Portmanteau Lemma, as N →∞

1 +
3

2
α ≤ lim inf E

[
N1E

[
(τ̂b − E[τ̂b|Z])2

∣∣Z
] ]
≤ lim E

[
N1E

[
(τ̂b − τ̂)2

∣∣Z
] ]

= lim N1E
[
(τ̂b − τ̂)2

]
= 1 +

3

2
α

5 exp(−1)− 2 exp(−2)

3(1− exp(−1))
+ 2 exp(−1).

Again, this inequality does not hold for large enough α. As a result, the second version

of the bootstrap does not provide a valid estimator of the asymptotic variance of the

simple matching estimator.

3.4 Simulations

We consider three designs: N0 = N1 = 100 (Design I), N0 = 100, N1 = 1000 (Design II),

and N0 = 1000, N1 = 100 (Design III), We use 10,000 replications, and 100 bootstrap

samples in each replication. These designs are partially motivated by Figure 1, which

gives the ratio of the limit of the expectation of the bootstrap variance (given in equation

(3.11)) to limit of the actual variance (given in equation (3.9)), for different values of α.

On the horizontal axis is the log of α. As α converges to zero the variance ratio converges

to 1.74; at α = 1 the variance ratio is 1.19; and as α goes to infinity the variance ratio

converges to 0.83. The vertical dashed lines indicate the three designs that we adopt in

our simulations: α = 0.1, α = 1, and α = 10.

The simulation results are reported in Table 1. The first row of the table gives

normalized exact variances, N1V(τ̂), calculated from equation (3.8). The second and

third rows present averages (over the 10,000 simulation replications) of the normalized

12



variance estimators from Abadie and Imbens (2006). The second row reports averages of

N1V̂ AI,I and the third row reports averages of N1V̂ AI,II . In large samples, N1V̂ AI,I and

N1V̂ AI,II are consistent for N1V(τ̂ |X,W) and N1V(τ̂), respectively. Because, for our data

generating process, the conditional average treatment effect is zero for all values of the

covariates, N1V̂ AI,I and N1V̂ AI,II converge to the same parameter. Standard errors (for

the averages over 10,000 replications) are reported in parentheses. The first three rows

of Table 1 allow us to assess the difference between the averages of the Abadie-Imbens

(AI) variance estimators and the theoretical variances. For example, for Design I, the

normalized AI Var I estimator (N1V̂ AI,I) is on average 2.449, with a standard error of

0.006. The theoretical variance is 2.480, so the difference between the theoretical and AI

variance I is approximately 1%, although it is statistically significant at about 5 standard

errors. Given the theoretical justification of the variance estimator, this difference is a

finite sample phenomenon.

The fourth row reports the limit of normalized expected bootstrap variance, N1E[V B,I ],

calculated as in (3.11). The fifth and sixth rows give normalized averages of the estimated

bootstrap variances, N1V̂ B,I and N1V̂ B,II , over the 10,000 replications. These variances

are estimated for each replication using 100 bootstrap samples, and then averaged over

all replications. Again it is interesting to compare the average of the estimated bootstrap

variance in the fifth row to the limit of the expected bootstrap variance in the fourth

row. The differences between the fourth and fifth rows are small (although significantly

different from zero as a result of the small sample size). The limited number of bootstrap

replications makes these averages noisier than they would otherwise be, but it does not

affect the average difference. The results in the fifth row illustrate our theoretical calcula-

tions in Lemma 3.2: the average bootstrap variance can over-estimate or under-estimate

the variance of the matching estimator.

The next two panels of the table report coverage rates, first for nominal 90% confi-

dence intervals and then for nominal 95% confidence intervals. The standard errors for

the coverage rates reflect the uncertainty coming from the finite number of replications

(10,000). They are equal to
√

p (1− p)/R where for the second panel p = 0.9 and for
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the third panel p = 0.95, and R = 10, 000 is the number of replications.

The first rows of the last two panels of Table 1 report coverage rates of 90% and 95%

confidence intervals constructed in each replication as the point estimate, τ̂ , plus/minus

1.645 and 1.96 times the square root of the variance in (3.8). The results show coverage

rates which are statistically indistinguishable from the nominal levels, for all three designs

and both levels (90% and 95%). The second row of the second and third panels of Table

1 report coverage rates for confidence intervals calculated as in the preceding row but

using the estimator V̂ AI,I in (2.5). The third row report coverage rates for confidence

intervals constructed with the estimator V̂ AI,II in (2.6). Both V̂ AI,I and V̂ AI,II produce

confidence intervals with coverage rates that are statistically indistinguishable from the

nominal levels.

The last two rows of the second panel of Table 1 report coverage rates for bootstrap

confidence intervals obtained by adding and subtracting 1.645 times the square root of

the estimated bootstrap variance in each replication, again over the 10,000 replications.

The third panel gives the corresponding numbers for 95% confidence intervals.

Our simulations reflect the lack of validity of the bootstrap found in the theoreti-

cal calculations. Coverage rates of confidence intervals constructed with the bootstrap

estimators of the variance are different from nominal levels in substantially important

and statistically highly significant magnitudes. In Designs I and III the bootstrap has

coverage larger the nominal coverage. In Design II the bootstrap has coverage smaller

than nominal. In neither case the difference is huge, but it is important to stress that

this difference will not disappear with a larger sample size, and that it may be more

substantial for different data generating processes.

The bootstrap calculations in this table are based on 100 bootstrap replications. In-

creasing the number of bootstrap replications significantly for all designs was infeasible

as matching is already computationally expensive.9 We therefore investigated the im-

plications of this choice for Design I, which is the fastest to run. For the same 10,000

9Each calculation of the matching estimator requires N1 searches for the minimum of an array of
length N0, so that with B bootstrap replications and R simulations one quickly requires large amounts
of computer time.
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replications we calculated both the coverage rates for the 90% and 95% confidence in-

tervals based on 100 bootstrap replications and based on 1,000 bootstrap replications.

For the confidence intervals based on V̂ B,I the coverage rate for a 90% nominal level

was 0.002 (s.e. 0.001) higher with 1,000 bootstrap replications than with 100 bootstrap

replications. The coverage rate for the 95% confidence interval was 0.003 (s.e., 0.001)

higher with 1,000 bootstrap replications than with 100 bootstrap replications. Because

the difference between the bootstrap coverage rates and the nominal coverage rates for

this design are 0.031 and 0.022 for the 90% and 95% confidence intervals respectively, the

number of bootstrap replications can only explain approximately 6-15% of the difference

between the bootstrap and nominal coverage rates. We therefore conclude that using

more bootstrap replications would not substantially change the results in Table 1.

4 Conclusion

In this article we prove that the bootstrap is not valid for the standard nearest-neighbor

matching estimator with replacement. This is a somewhat surprising discovery, because

in the case with a scalar covariate the matching estimator is root-N consistent and

asymptotically normally distributed with zero asymptotic bias. However, the extreme

non-smooth nature of matching estimators and the lack of evidence that the estimator is

asymptotically linear explain the lack of validity of the bootstrap. We investigate a special

case where it is possible to work out the exact variance of the estimator as well as the limit

of the average bootstrap variance. We show that in this case the limit of the average

bootstrap variance can be greater or smaller than the limit variance of the matching

estimator. This implies that the standard bootstrap fails to provide valid inference for

the matching estimator studied in this article. A small Monte Carlo study supports the

theoretical calculations. The implication for empirical practice of these results is that

for nearest-neighbor matching estimators with replacement one should use the variance

estimators developed by Abadie and Imbens (2006) or the subsampling bootstrap (Politis,

Romano and Wolf, 1999). It may well be that if the number of neighbors increases with

the sample size the matching estimator does become asymptotically linear and sufficiently
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regular for the bootstrap to be valid. However, the increased risk of a substantial bias

has led many researchers to focus on estimators where the number of matches is very

small, often just one, and the asymptotics based on an increasing number of matches

may not provide a good approximation in such cases.

Finally, our results cast doubts on the validity of the standard bootstrap for other

estimators that are asymptotically normal but not asymptotically linear (see, e.g., Newey

and Windmeijer, 2005).
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Appendix

Before proving Lemma 3.1 we introduce some notation and preliminary results. Let X1, . . . , XN be a
random sample from a continuous distribution. Let Mj be the index of the closest match for unit j.
That is, if Wj = 1, then Mj is the unique index (ties happen with probability zero), with WMj = 0,
such that ‖Xj −XMj‖ ≤ ‖Xj −Xi‖, for all i such that Wi = 0. If Wj = 0, then Mj = 0. Let Ki be the
number of times unit i is the closest match for a treated observation:

Ki = (1−Wi)
N∑

j=1

Wj 1{Mj = i}.

Following this definition Ki is zero for treated units. Using this notation, we can write the estimator for
the average treatment effect on the treated as:

τ̂ =
1

N1

N∑

i=1

(Wi −Ki) Yi. (A.1)

Also, let Pi be the probability that the closest match for a randomly chosen treated unit j is unit i,
conditional on both the vector of treatment indicators W and on vector of covariates for the control
units X0:

Pi = Pr(Mj = i|Wj = 1,W,X0).

For treated units we define Pi = 0.
The following lemma provides some properties of the order statistics of a sample from the standard
uniform distribution.

Lemma A.1: Let X(1) ≤ X(2) ≤ · · · ≤ X(N) be the order statistics of a random sample of size N from
a standard uniform distribution, U(0, 1). Then, for 1 ≤ i ≤ j ≤ N ,

E[Xr
(i)(1−X(j))s] =

i[r](N − j + 1)[s]

(N + 1)[r+s]
,

where for a positive integer, a, and a non-negative integer, b: a[b] = (a + b− 1)!/(a− 1)!. Moreover, for
1 ≤ i ≤ N , X(i) has a Beta distribution with parameters (i,N − i + 1); for 1 ≤ i ≤ j ≤ N , (X(j) −X(i))
has a Beta distribution with parameters (j − i,N − (j − i) + 1).

Proof: All the results of this lemma, with the exception of the distribution of differences of order
statistics, appear in Johnson, Kotz, and Balakrishnan (1994). The distribution of differences of order
statistics can be easily derived from the joint distribution of order statistics provided in Johnson, Kotz,
and Balakrishnan (1994). !
Notice that the lemma implies the following results:

E[X(i)] =
i

N + 1
for 1 ≤ i ≤ N,

E[X2
(i)] =

i(i + 1)
(N + 1)(N + 2)

for 1 ≤ i ≤ N,

E[X(i)X(j)] =
i(j + 1)

(N + 1)(N + 2)
for 1 ≤ i ≤ j ≤ N.

First we investigate the first two moments of Ki, starting by studying the conditional distribution of Ki

given X0 and W.
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Lemma A.2: (Conditional Distribution and Moments of Ki)
Suppose that assumptions 3.1-3.3 hold. Then, the distribution of Ki conditional on Wi = 0, W, and X0

is binomial with parameters (N1, Pi):

Ki|Wi = 0,W,X0 ∼ B(N1, Pi).

Proof: By definition Ki = (1 −Wi)
∑N

j=1 Wj 1{Mj = i}. The indicator 1{Mj = i} is equal to one if
the closest control unit for Xj is i. This event has probability Pi. In addition, the events 1{Mj1 = i}
and 1{Mj2 = i}, for Wj1 = Wj2 = 1 and j1 *= j2, are independent conditional on W and X0. Because
there are N1 treated units the sum of these indicators follows a binomial distribution with parameters
N1 and Pi. !
This implies the following conditional moments for Ki:

E[Ki|W,X0] = (1−Wi) N1 Pi,

E[K2
i |W,X0] = (1−Wi)

(
N1 Pi + N1 (N1 − 1)P 2

i

)
.

To derive the marginal moments of Ki we need first to analyze the properties of the random variable
Pi. Exchangeability of the units implies that the marginal expectation of Pi given N0, N1 and Wi = 0
is equal to 1/N0. To derive the second moment of Pi it is helpful to express Pi in terms of the order
statistics of the covariates for the control group. For control unit i let ι(i) be the order of the covariate
for the ith unit among control units:

ι(i) =
N∑

j=1

(1−Wj) 1{Xj ≤ Xi}.

Furthermore, let X0(k) be the kth order statistic of the covariates among the control units, so that
X0(1) ≤ X0(2) ≤ . . . X0(N0), and for control units X0(ι(i)) = Xi. Ignoring ties, a treated unit with
covariate value x will be matched to control unit i if

X0(ι(i)−1) + X0(ι(i))

2
≤ x ≤

X0(ι(i)+1) + X0(ι(i))

2
,

if 1 < ι(i) < N0. If ι(i) = 1, then x will be matched to unit i if

x ≤
X0(2) + X0(1)

2
,

and if ι(i) = N0, x will be matched to unit i if

X0(N0−1) + X0(N0)

2
< x.

To get the value of Pi we need to integrate the density of X conditional on W = 1, f1(x), over these
sets. With a uniform distribution for the covariates in the treatment group (f1(x) = 1, for x ∈ [0, 1]),
we get the following representation for Pi:

Pi =






(X0(2) + X0(1))/2 if ι(i) = 1,(
X0(ι(i)+1) −X0(ι(i)−1)

)
/2 if 1 < ι(i) < N0,

1− (X0(N0−1) + X0(N0))/2 if ι(i) = N0.
(A.2)

Lemma A.3: (Moments of Pi)
Suppose that Assumptions 3.1–3.3 hold. Then
(i), the second moment of Pi conditional on Wi = 0 is

E[P 2
i |Wi = 0] =

3N0 + 8
2N0(N0 + 1)(N0 + 2)

,
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and (ii), the M th moment of Pi is bounded by

E[PM
i |Wi = 0] ≤

(
1 + M

N0 + 1

)M

.

Proof: First, consider (i). Conditional on Wi = 0, Xi has a uniform distribution on the interval [0, 1].
Using Lemma A.1 and equation (A.2), for interior i (i such that 1 < ι(i) < N0), we have that

E[Pi|1 < ι(i) < N0,Wi = 0] =
1

N0 + 1
,

and

E
[
P 2

i |1 < ι(i) < N0,Wi = 0
]

=
3
2

1
(N0 + 1)(N0 + 2)

.

For the smallest and largest observations:

E[Pi|ι(i) ∈ {1, N0},Wi = 0] =
3
2

1
N0 + 1

,

and

E[P 2
i |ι(i) ∈ {1, N0},Wi = 0] =

7
2(N0 + 1)(N0 + 2)

.

Averaging over all units includes two units at the boundary and N0 − 2 interior values, we obtain:

E[Pi|Wi = 0] =
N0 − 2

N0

1
(N0 + 1)

+
2

N0

3
2

1
(N0 + 1)

=
1

N0
,

and

E[P 2
i |Wi = 0] =

N0 − 2
N0

3
2

1
(N0 + 1)(N0 + 2)

+
2

N0

7
2

1
(N0 + 1)(N0 + 2)

=
3N0 + 8

2N0(N0 + 1)(N0 + 2)
.

For (ii) notice that

Pi =






(X0(2) + X0(1))/2 ≤ X0(2) if ι(i) = 1,(
X0(ι(i)+1) −X0(ι(i)−1)

)
/2 ≤

(
X0(ι(i)+1) −X0(ι(i)−1)

)
if 1 < ι(i) < N0,

1− (X0(N0−1) + X0(N0))/2 ≤ 1−X0(N0−1) if ι(i) = N0.
(A.3)

Because the right-hand sides of the inequalities in equation (A.3) all have a Beta distribution with
parameters (2, N0− 1), the moments of Pi are bounded by those of a Beta distribution with parameters
2 and N0−1. The Mth moment of a Beta distribution with parameters α and β is

∏M−1
j=0 (α+j)/(α+β+j).

This is bounded by (α+M−1)M/(α+β)M , which completes the proof of the second part of the Lemma.
!
Proof of Lemma 3.1:
First we prove (i). The first step is to calculate E[K2

i |Wi = 0]. Using Lemmas A.2 and A.3,

E[K2
i |Wi = 0] = N1 E[Pi|Wi = 0] + N1 (N1 − 1) E[P 2

i |Wi = 0]

=
N1

N0
+

3
2

N1(N1 − 1)(N0 + 8/3)
N0(N0 + 1)(N0 + 2)

.

Substituting this into (3.7) we get:

V(τ̂) =
N0

N2
1

E[K2
i |Wi = 0] =

1
N1

+
3
2

(N1 − 1)(N0 + 8/3)
N1(N0 + 1)(N0 + 2)

,
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proving part (i).
Next, consider part (ii). Multiply the exact variance of τ̂ by N1 and substitute N1 = α N0 to get

N1 V(τ̂) = 1 +
3
2

(α N0 − 1)(N0 + 8/3)
(N0 + 1)(N0 + 2)

.

Then take the limit as N0 →∞ to get:

lim
N→∞

N1 V(τ̂) = 1 +
3
2

α.

Finally, consider part (iii). Let S(r, j) be a Stirling number of the second kind. The Mth moment of
Ki given W and X0 is (Johnson, Kotz, and Kemp, 1993):

E[KM
i |X0,Wi = 0] =

M∑

j=0

S(M, j)N0!P j
i

(N0 − j)!
.

Therefore, applying Lemma A.3 (ii), we obtain that the moments of Ki are uniformly bounded:

E[KM
i |Wi = 0] =

M∑

j=0

S(M, j)N0!
(N0 − j)!

E[P j
i |Wi = 0] ≤

M∑

j=0

S(M, j)N0!
(N0 − j)!

(
1 + M

N0 + 1

)j

≤
M∑

j=0

S(M, j)(1 + M)j .

Notice that

E
[

1
N1

N∑

i=1

K2
i

]
=

N0

N1
E[K2

i |Wi = 0] → 1 +
3
2

α,

V
(

1
N1

N∑

i=1

K2
i

)
≤ N0

N2
1

V(K2
i |Wi = 0) → 0,

because cov(K2
i ,K2

j |Wi = Wj = 0, i *= j) ≤ 0 (see Joag-Dev and Proschan, 1983). Therefore:

1
N1

N∑

i=1

K2
i

p→ 1 +
3
2

α. (A.4)

Finally, we write

τ̂ − τ =
1

N1

N∑

i=1

ξi,

where ξi = −Ki Yi. Conditional on X and W the ξi are independent, and the distribution of ξi is
degenerate at zero for Wi = 1 and normal N (0,K2

i ) for Wi = 0. Hence, for any c ∈ R:

Pr

(( 1
N1

N∑

i=1

K2
i

)−1/2√
N1(τ̂ − τ) ≤ c

∣∣∣X,W

)
= Φ(c),

where Φ(·) is the cumulative distribution function of a standard normal variable. Integrating over the
distribution of X and W yields:

Pr

(( 1
N1

N∑

i=1

K2
i

)−1/2√
N1(τ̂ − τ) ≤ c

)
= Φ(c).
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Now, Slustky’s Theorem implies (iii). !

Next we introduce some additional notation. Let Rb,i be the number of times unit i is in the bootstrap
sample. In addition, let Db,i be an indicator for inclusion of unit i in the bootstrap sample, so that
Db,i = 1{Rb,i > 0}. Let Nb,0 =

∑N
i=1(1 − Wi) Db,i be the number of distinct control units in the

bootstrap sample. Finally, define the binary indicator Bi(x), for i = 1 . . . , N to be the indicator for the
event that in the bootstrap sample a treated unit with covariate value x would be matched to unit i.
That is, for this indicator to be equal to one the following three conditions need to be satisfied: (i) unit
i is a control unit, (ii) unit i is in the bootstrap sample, and (iii) the distance between Xi and x is less
than or equal to the distance between x and any other control unit in the bootstrap sample. Formally:

Bi(x) =
{

1 if |x−Xi| = mink:Wk=0,Db,k=1 |x−Xk|, and Db,i = 1,Wi = 0,
0 otherwise.

For the N units in the original sample, let Kb,i be the number of times unit i is used as a match in the
bootstrap sample.

Kb,i =
N∑

j=1

Wj Bi(Xj)Rb,j . (A.5)

We can write the estimated treatment effect in the bootstrap sample as

τ̂b =
1

N1

N∑

i=1

Wi Rb,i Yi −Kb,i Yi.

Because Yi(1) = τ by Assumption 3.4, and
∑N

i=1 WiRb,i = N1, then

τ̂b − τ = − 1
N1

N∑

i=1

Kb,i Yi.

The difference between the original estimate τ̂ and the bootstrap estimate τ̂b is

τ̂b − τ̂ =
1

N1

N∑

i=1

(Ki −Kb,i) Yi =
1

α N0

N∑

i=1

(Ki −Kb,i) Yi.

We will calculate the expectation

N1 E[V B,I ] = N1 · E[(τ̂b − τ̂)2] =
N1

α2 N2
0

E




N∑

i=1

N∑

j=1

(Ki −Kb,i) Yi(Kj −Kb,j)Yj



 .

Using the facts that E[Y 2
i |X,W,Wi = 0] = 1, and E[Yi Yj |X,W,Wi = Wj = 0] = 0 if i *= j, this is

equal to

N1 E[V B,I ] =
1
α

E
[
(Kb,i −Ki)2|Wi = 0

]
.

The first step in deriving this expectation is to establish some properties of Db,i, Rb,i, Nb,0, and Bi(x).

Lemma A.4: (Properties of Db,i, Rb,i, Nb,0, and Bi(x))
Suppose that Assumptions 3.1-3.3 hold. Then, for w ∈ {0, 1}, and n ∈ {1, . . . , N0}
(i)

Rb,i|Wi = w,Z ∼ B(Nw, 1/Nw),
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(ii)

Db,i|Wi = w,Z ∼ B
(
1, 1− (1− 1/Nw)Nw

)
,

(iii)

Pr(Nb,0 = n) =
(

N0

N0 − n

)
n!

NN0
0

S(N0, n),

(iv)

Pr(Bi(Xj) = 1|Wj = 1,Wi = 0, Db,i = 1, Nb,0) =
1

Nb,0
,

(v) for l *= j

Pr(Bi(Xl)Bi(Xj) = 1|Wj = Wl = 1,Wi = 0, Db,i = 1, Nb,0) =
3Nb,0 + 8

2Nb,0(Nb,0 + 1)(Nb,0 + 2)
,

(vi)

E[Nb,0/N0] = 1− (1− 1/N0)N0 → 1− exp(−1),

(vii)

1
N0

V(Nb,0) = (N0−1) (1− 2/N0)
N0 +(1− 1/N0)

N0 −N0 (1− 1/N0)
2N0 → exp(−1)(1−2 exp(−1)).

Proof: Parts (i), (ii), and (iv) are trivial. Part (iii) follows easily from equation (3.6) in page 110 of
Johnson and Kotz (1977). Next, consider part (v). First condition on X0b and Wb (the counterparts of
X0 and W in the b-th bootstrap sample), and suppose that Db,i = 1. The event that a randomly chosen
treated unit will be matched to control unit i conditional on X0b and Wb depends on the difference in
order statistics of the control units in the bootstrap sample. The equivalent in the original sample is
Pi. The only difference is that the bootstrap control sample is of size N0,b. The conditional probability
that two randomly chosen treated units are both matched to control unit i is the square of the difference
in order statistics. It marginal expectation is the equivalent in the bootstrap sample of E[P 2

i |Wi = 0],
again with the sample size scaled back to Nb,0. Parts (vi) and (vii) can be derived by making use of
equation (3.13) on page 114 in Johnson and Kotz (1977). !
Next, we prove a general result for the bootstrap. Consider a sample of size N , indexed by i = 1, . . . , N .
Let Db,i be an indicator whether observation i is in bootstrap sample b. Let Nb =

∑N
i=1 Db,i be the

number of distinct observations in bootstrap sample b.

Lemma A.5: (Bootstrap) For all m ≥ 0:

E
[(

N −Nb

N

)m]
→ exp(−m),

and

E
[(

N

Nb

)m]
→

(
1

1− exp(−1)

)m

.

Proof: From parts (vi) and (vii) of Lemma A.4 we obtain that (N − Nb)/N
p→ exp(−1). By the

Continuous Mapping Theorem, N/Nb
p→ 1/(1− exp(−1)). To obtain convergence of moments it suffices

that, for any m ≥ 0, E[((N −Nb)/N)m] and E[(N/Nb)m] are uniformly bounded in N (see, e.g., van der
Vaart, 1998). For E[((N − Nb)/N)m] uniform boundedness follows from the fact that, for any m ≥ 0,
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((N −Nb)/N)m ≤ 1. For E[(N/Nb)m] the proof is a little bit more complicated. As before, it is enough
to show that E[(N/Nb)m] is uniformly bounded for N ≥ 1. Let λ(N) = (1 − 1/N)N . Notice that
λ(N) < exp(−1) for all N ≥ 1. Let 0 < θ < exp(1)− 1. Notice that, 1− (1 + θ)λ(N) > 0. Therefore:

E
[(

N

Nb

)m]
= E

[(
N

Nb

)m (
1

{
N

Nb
<

1
1− (1 + θ)λ(N)

}
+ 1

{
N

Nb
≥ 1

1− (1 + θ)λ(N)

})]

≤
(

1
1− (1 + θ) exp(−1)

)m

+E
[(

N

Nb

)m ∣∣∣
N

Nb
≥ 1

1− (1 + θ)λ(N)

]
Pr

(
N

Nb
≥ 1

1− (1 + θ)λ(N)

)

≤
(

1
1− (1 + θ) exp(−1)

)m

+ Nm Pr
(

N

Nb
≥ 1

1− (1 + θ)λ(N)

)
.

Therefore, for the expectation E[(N/Nb)m] to be uniformly bounded, it is sufficient that the probability
Pr(N/Nb ≥ (1− (1 + θ)λ(N))−1) converges to zero at an exponential rate as N →∞. Notice that

Pr
(

N

Nb
≥ 1

1− (1 + θ)λ(N)

)
= Pr

(
N −Nb −Nλ(N) ≥ θNλ(N)

)

≤ Pr
(
|N −Nb −Nλ(N)| ≥ θNλ(N)

)
.

Theorem 2 in Kamath, Motwani, Palem, and Spirakis (1995) implies:

Pr
(
|N −Nb −Nλ(N)| ≥ θNλ(N)

)
≤ 2 exp

(
−θ2λ(N)2(N − 1/2)

1− λ(N)2

)
.

Because for N ≥ 1, λ(N)2/(1−λ(N)2) is increasing in N (converging to (exp(2)−1)−1 > 0 as N →∞),
the last equation establishes an exponential bound on the tail probability of N/Nb. !

Lemma A.6: (Approximate Bootstrap K Moments)
Suppose that assumptions 3.1 to 3.3 hold. Then,
(i)

E[K2
b,i |Wi = 0] → 2α +

3
2

α2

(1− exp(−1))
,

and (ii),

E[Kb,i Ki|Wi = 0] → (1− exp(−1))
(

α +
3
2
α2

)
+ α2 exp(−1).

Proof: First we prove part (i). Notice that for i, j, l, such that Wi = 0, Wj = Wl = 1

(Rb,j , Rb,l) ⊥⊥ Db,i, Bi(Xj), Bi(Xl).

Notice also that {Rb,j : Wj = 1} are exchangeable with:
∑

Wj=1

Rb,j = N1.

Therefore, applying Lemma A.4(i), for Wj = Wl = 1:

cov(Rb,j , Rb,l) = − V(Rb,j)
(N1 − 1)

= −1− 1/N1

(N1 − 1)
−→ 0.
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As a result,

E[Rb,j Rb,l |Db,i = 1, Bi(Xj) = Bi(Xl) = 1,Wi = 0,Wj = Wl = 1, j *= l]

−
(
E[Rb,j |Db,i = 1, Bi(Xj) = Bi(Xl) = 1,Wi = 0, Wj = Wl = 1, j *= l]

)2
−→ 0.

By Lemma A.4(i),

E[Rb,j |Db,i = 1, Bi(Xj) = Bi(Xl) = 1,Wi = 0,Wj = Wl = 1, j *= l] = 1.

Therefore,

E[Rb,j Rb,l |Db,i = 1, Bi(Xj) = Bi(Xl) = 1,Wi = 0, Wj = Wl = 1, j *= l] −→ 1.

In addition,

E
[
R2

b,j |Db,i = 1, Bi(Xj) = 1,Wj = 1,Wi = 0
]

= N1(1/N1) + N1(N1 − 1)(1/N2
1 ) −→ 2.

Notice that

Pr(Db,i = 1|Wi = 0,Wj = Wl = 1, j *= l, Nb,0) = Pr(Db,i = 1|Wi = 0, Nb,0) =
Nb,0

N0
.

Using Bayes’ Rule:

Pr(Nb,0 = n|Db,i = 1,Wi = 0,Wj = Wl = 1, j *= l) = Pr(Nb,0 = n|Db,i = 1,Wi = 0)

=
Pr(Db,i = 1|Wi = 0, Nb,0 = n) Pr(Nb,0 = n)

Pr(Db,i = 1|Wi = 0)
=

n

N0
Pr(Nb,0 = n)

1− (1− 1/N0)N0
.

Therefore,

N0 Pr(Bi(Xj) = 1|Db,i = 1,Wi = 0,Wj = 1)

= N0

N0∑

n=1

Pr(Bi(Xj) = 1|Db,i = 1, Wi = 0,Wj = 1, Nb,0 = n)

× Pr(Nb,0 = n|Db,i = 1,Wi = 0,Wj = 1)

= N0

N0∑

n=1

1
n

(
n

N0

)
Pr(Nb,0 = n)

1− (1− 1/N0)N0
=

1
1− (1− 1/N0)N0

−→ 1
1− exp(−1)

.

In addition,

N2
0 Pr(Bi(Xj)Bi(Xl)|Db,i = 1,Wi = 0,Wj = Wl = 1, j *= l, Nb,0)

=
3
2

N2
0 (Nb,0 + 8/3)

Nb,0(Nb,0 + 1)(Nb,0 + 2)
p−→ 3

2

(
1

1− exp(−1)

)2

.

Therefore

N0∑

n=1

(
N2

0 Pr(Bi(Xj)Bi(Xl)|Db,i = 1,Wi = 0,Wj = Wl = 1, j *= l, Nb,0)
)2

× Pr(Nb,0 = n|Db,i = 1,Wi = 0,Wj = Wl = 1, j *= l)

=
N0∑

n=1

(
3
2

N2
0 (n + 8/3)

n(n + 1)(n + 2)

)2
n

N0
Pr(Nb,0 = n)

1− (1− 1/N0)N0

≤ 9
4

(
1

1− exp(−1)

) N0∑

n=1

N4
0 (n + 8/3)2

n6
Pr(Nb,0 = n).
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Notice that

N0∑

n=1

N4
0 (n + 8/3)2

n6
Pr(Nb,0 = n) ≤

(
1 +

16
3

+
64
9

) N0∑

n=1

(
N0

n

)4

Pr(Nb,0 = n),

which is bounded away from infinity (as shown in the proof of Lemma A.5). Convergence in probability
of a random variable along with boundedness of its second moment implies convergence of the first
moment (see, e.g., van der Vaart, 1998). As a result,

N2
0 Pr(Bi(Xj)Bi(Xl)|Db,i = 1,Wi = 0,Wj = Wl = 1, j *= l) −→ 3

2

(
1

1− exp(−1)

)2

.

Then, using these preliminary results, we obtain:

E[K2
b,i |Wi = 0] = E




N∑

j=1

N∑

l=1

WjWl Bi(Xj)Bi(Xl)Rb,j Rb,l

∣∣∣ Wi = 0





= E




N∑

j=1

Wj Bi(Xj)R2
b,j

∣∣∣ Wi = 0





+ E




N∑

j=1

∑

l %=j

Wj Wl Bi(Xj)Bi(Xl)Rb,j Rb,l

∣∣∣ Wi = 0





= N1E
[
R2

b,j |Db,i = 1, Bi(Xj) = 1, Wj = 1, Wi = 0
]

×Pr (Bi(Xj) = 1 |Db,i = 1,Wj = 1,Wi = 0) Pr(Db,i = 1 |Wj = 1,Wi = 0)
+ N1(N1 − 1)E [Rb,j Rb,l|Db,i = 1, Bi(Xj) = Bi(Xl) = 1, Wj = Wl = 1, j *= l,Wi = 0]

×Pr (Bi(Xj)Bi(Xl) = 1 |Db,i = 1, Wj = Wl = 1, j *= l,Wi = 0)
×Pr(Db,i = 1 |Wj = Wl = 1, j *= l, Wi = 0)

−→ 2α +
3
2

α2

(1− exp(−1))
.

25



This finishes the proof of part (i). Next, we prove part (ii).

E[KiKb,i|X0,W, Db,i = 1,Wi = 0]

= E




N∑

j=1

Wj1{Mj = i}
N∑

l=1

WlBi(Xl)Rb,l

∣∣∣X0,W, Db,i = 1,Wi = 0





= E




N∑

j=1

N∑

l=1

WjWl1{Mj = i}Bi(Xl)Rb,l

∣∣∣X0,W, Db,i = 1,Wi = 0





= E




N∑

j=1

N∑

l=1

WjWl1{Mj = i}Bi(Xl)
∣∣∣X0,W, Db,i = 1,Wi = 0





= E




N∑

j=1

N∑

l=1

WjWl1{Mj = i}1{Ml = i}Bi(Xl)
∣∣∣X0,W, Db,i = 1,Wi = 0





+ E




N∑

j=1

N∑

l=1

WjWl1{Mj = i}1{Ml *= i}Bi(Xl)
∣∣∣X0,W, Db,i = 1, Wi = 0





= E




N∑

j=1

N∑

l=1

WjWl1{Mj = i}1{Ml = i}
∣∣∣X0,W, Db,i = 1, Wi = 0





+ E




N∑

j=1

N∑

l=1

WjWl1{Mj = i}1{Ml *= i}Bi(Xl)
∣∣∣X0,W, Db,i = 1, Wi = 0





= E
[
K2

i

∣∣∣X0,W, Db,i = 1,Wi = 0
]

+ E




N∑

j=1

∑

l %=j

WjWl1{Mj = i}1{Ml *= i}Bi(Xl)
∣∣∣X0,W, Db,i = 1,Wi = 0



 .

Conditional on X0, Wi = 0, and Db,i = 1, the probability that a treated observation, l, that was not
matched to i in the original sample, is matched to i in a bootstrap sample does not depend on the
covariate values of the other treated observations (or on W). Therefore:

B0
i = E[Bi(Xl)|X0,W, Db,i = 1,Wi = 0,Wj = Wl = 1, Mj = i,Ml *= i]

= E[Bi(Xl)|X0, Db,i = 1,Wi = 0, Wl = 1, Ml *= i].

As a result:

E




N∑

j=1

∑

l %=j

WjWl1{Mj = i}1{Ml *= i}Bi(Xl)
∣∣∣X0,W, Db,i = 1,Wi = 0





= B0
i E




N∑

j=1

∑

l %=j

WjWl1{Mj = i}1{Ml *= i}
∣∣∣X0,W, Db,i = 1,Wi = 0





= B0
i E

[
Ki(N1 −Ki)

∣∣∣X0,W, Db,i = 1,Wi = 0
]

= B0
i E

[
Ki(N1 −Ki)

∣∣∣X0, Wi = 0
]
.

Conditional on X0 and Wi = 0, Ki has a Binomial distribution with parameters (N1, Pi). Therefore:

E[Ki(N1 −Ki) |X0,Wi = 0] = N2
1 Pi −N1Pi −N1(N1 − 1)P 2

i

= N1(N1 − 1)Pi(1− Pi).
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Therefore:

E




N∑

j=1

∑

l %=j

WjWl1{Mj = i}1{Ml *= i}Bi(Xl)
∣∣∣ ι(i), Pi, Db,i = 1,Wi = 0





= E[B0
i | ι(i), Pi, Db,i = 1,Wi = 0]N1(N1 − 1)Pi(1 − Pi).

In addition, the probability that r specified observations do not appear in a bootstrap sample conditional
on that another specified observation appears in the sample is (apply Bayes’ theorem):

(
1−

(
1− 1

N0 − r

)N0
) (

1− r

N0

)N0

1{r ≤ N0 − 1}

1−
(

1− 1
N0

)N0
.

Notice that for a fixed r this probability converges to exp(−r), as N0 → ∞. Notice also that this
probability is bounded by exp(−r)/(1− exp(−1)), which is integrable:

∞∑

r=1

exp(−r)
1− exp(−1)

=
exp(−1)

(1− exp(−1))2
.

As a result, by the dominated convergence theorem for infinite sums:

lim
N0→∞

∞∑

r=1

(
1−

(
1− 1

N0 − r

)N0
) (

1− r

N0

)N0

1{r ≤ N0 − 1}

1−
(

1− 1
N0

)N0

=
∞∑

r=1

exp(−r) =
exp(−1)

1− exp(−1)
.

For k, d ∈ {1, . . . , N0 − 1} and k + d ≤ N0, let ∆d(k) = X0(k+d) −X0(k). In addition, let ∆d(0) = X0(d),
and for k + d = N0 + 1 let ∆d(k) = 1−X0(k). Notice that:

B0
i =

(
1

1− Pi

)

×
{

N0−ι(i)∑

r=1

(
∆1(ι(i)+r)

2
+ 1{r = N0 − ι(i)}

∆N0−ι(i)+1(ι(i))

2

)

(
1−

(
1− 1

N0 − r

)N0
)(

1− r

N0

)N0

1−
(

1− 1
N0

)N0

+
ι(i)−1∑

r=1

(
∆1(ι(i)−1−r)

2
+ 1{r = ι(i)− 1}

∆ι(i)(0)

2

)

(
1−

(
1− 1

N0 − r

)N0
) (

1− r

N0

)N0

1−
(

1− 1
N0

)N0

}
.

In addition, using the results in Lemma A.1 we obtain that, for 1 < ι(i) < N0, and 1 ≤ r ≤ N0 − ι(i),
we have:

E
[
∆1(ι(i)+r)Pi | ι(i), Db,i = 1,Wi = 0

]
=

1
(N0 + 1)(N0 + 2)

,
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E
[
∆N0−ι(i)+1(ι(i))Pi | ι(i), Db,i = 1,Wi = 0

]
=

(N0 − ι(i)) + 3/2
(N0 + 1)(N0 + 2)

.

For 1 < ι(i) < N0, and 1 ≤ r ≤ ι(i)− 1, we have:

E
[
∆1(ι(i)−1−r)Pi | ι(i), Db,i = 1,Wi = 0

]
=

1
(N0 + 1)(N0 + 2)

,

E
[
∆ι(i)(0)Pi | ι(i), Db,i = 1, Wi = 0

]
=

(ι(i)− 1) + 3/2
(N0 + 1)(N0 + 2)

.

Therefore, for 1 < ι(i) < N0:

E




N∑

j=1

∑

l %=j

WjWl1{Mj = i}1{Ml *= i}Bi(Xl)
∣∣∣ ι(i), Db,i = 1,Wi = 0



 =
N1(N1 − 1)

2(N0 + 1)(N0 + 2)

×
{

N0−ι(i)∑

r=1

(
1 + 1{r = N0 − ι(i)}(N0 − ι(i) + 3/2)

)

(
1−

(
1− 1

N0 − r

)N0
) (

1− r

N0

)N0

1−
(

1− 1
N0

)N0

+
ι(i)−1∑

r=1

(
1 + 1{r = ι(i)− 1}(ι(i) + 1/2)

)

(
1−

(
1− 1

N0 − r

)N0
) (

1− r

N0

)N0

1−
(

1− 1
N0

)N0

}
.

For ι(i) = 1 and 1 ≤ r ≤ N0 − 1, we obtain:

E
[
∆1(1+r)Pi | ι(i) = 1, Db,i = 1,Wi = 0

]
=

3
2

1
(N0 + 1)(N0 + 2)

,

E
[
∆N0(1)Pi | ι(i) = 1, Db,i = 1,Wi = 0

]
=

3
2

N0 + 1/3
(N0 + 1)(N0 + 2)

,

E




N∑

j=1

∑

l %=j

WjWl1{Mj = i}1{Ml *= i}Bi(Xl)
∣∣∣ ι(i) = 1, Db,i = 1,Wi = 0



 =
3N1(N1 − 1)

4(N0 + 1)(N0 + 2)

×
N0−1∑

r=1

(
1 + 1{r = N0 − 1}(N0 + 1/3)

)

(
1−

(
1− 1

N0 − r

)N0
)(

1− r

N0

)N0

1−
(

1− 1
N0

)N0
.

with analogous results for the case ι(i) = N0. Let

T (N0, N1, n) = E




N∑

j=1

∑

l %=j

WjWl1{Mj = i}1{Ml *= i}Bi(Xl)
∣∣∣ ι(i) = n,Db,i = 1,Wi = 0



 ,

Then,

T (N0, N1, n) =
N1(N1 − 1)

(N0 + 1)(N0 + 2)

(
RN0(n) + UN0(n)

)
,
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where

RN0(n) =
1
2

{
N0−n∑

r=1

(
1−

(
1− 1

N0 − r

)N0
) (

1− r

N0

)N0

1−
(

1− 1
N0

)N0

+
n−1∑

r=1

(
1−

(
1− 1

N0 − r

)N0
) (

1− r

N0

)N0

1−
(

1− 1
N0

)N0

}
,

UN0(n) =
1
2

{
(N0 − n + 3/2)

(
1−

(
1− 1

n

)N0
) (

1− N0 − n

N0

)N0

1−
(

1− 1
N0

)N0

+ (n − 1 + 3/2)

(
1−

(
1− 1

N0 − n + 1

)N0
) (

1− n− 1
N0

)N0

1−
(

1− 1
N0

)N0

}
,

for 1 < n < N0. For n = 1:

RN0(1) =
3
4

N0−1∑

r=1

(
1−

(
1− 1

N0 − r

)N0
)(

1− r

N0

)N0

1−
(

1− 1
N0

)N0
,

UN0(1) =
3
4
(N0 + 1/3)

(
1− N0 − 1

N0

)N0

1−
(

1− 1
N0

)N0
,

with analogous expressions for n = N0.
Let T = α2 exp(−1)/(1− exp(−1)). Then,

T − T (N0, N1, n) = α2

(
exp(−1)

1− exp(−1)
−RN0(n)− UN0(n)

)

+
(

α2 − N1(N1 − 1)
(N0 + 1)(N0 + 2)

) (
RN0(n) + UN0(n)

)
.

Notice that, for 0 < n < N0,

RN0(n) ≤ 1
1− exp(−1)

∞∑

r=1

(
1− r

N0

)N0

≤ 1
1− exp(−1)

∞∑

r=1

exp(−r)

=
exp(−1)

(1− exp(−1))2
.
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Notice also that, because log λ ≤ λ − 1 for any λ > 0, we have that for all n such that 0 < n < N0,
log(n(1 − n/N0)N0) = log(n) + N0 log(1 − n/N0) ≤ log(n) − n ≤ −1, and therefore n(1 − n/N0)N0 ≤
exp(−1). This implies that the quantities (N0−n+3/2)(1−(N0−n)/N0)N0 and (n+1/2)(1−(n−1)/N0)N0

are bounded by exp(−1) + 3/2. Therefore, for 0 < n < N0:

UN0(n) ≤ exp(−1) + 3/2
1− exp(−1)

.

Similarly, for n ∈ {1, N0}, we obtain

RN0(n) ≤ 3
4

exp(−1)
(1− exp(−1))2

,

and

UN0(n) ≤ 3
4

exp(−1) + 4/3
1− exp(−1)

.

Consequently, RN0(n) and UN0(n) are uniformly bounded by some constants R̄ and Ū for all N0, n ∈ N
(the set of positive integers) with n ≤ N0. Therefore, for all N0, n ∈ N with n ≤ N0

|T − T (N0, N1, n)| ≤ α2

(
exp(−1)

1− exp(−1)
+ R̄ + Ū

)
+

(
α2 +

N1(N1 − 1)
(N0 + 1)(N0 + 2)

)
(R̄ + Ū).

Because every convergent sequence in R is bounded, (N1(N1 − 1))/((N0 + 1)(N0 + 2)) is bounded by
some constant ᾱ2. As a result, there exist some constant D̄ such that |T − T (N0, N1, n)| ≤ D̄.
Notice that for all n such that 0 < n < N0, RN0(n) = R∗N0

(n) + VN0(n), where

R∗N0
(n) =

1
2

{
N0−n∑

r=1

(
1− r

N0

)N0

+
n−1∑

r=1

(
1− r

N0

)N0
}

,

and

VN0(n) =
1
2

{
N0−n∑

r=1

[(
1− 1

N0

)N0

−
(

1− 1
N0 − r

)N0
] (

1− r

N0

)N0

1−
(

1− 1
N0

)N0

+
n−1∑

r=1

[(
1− 1

N0

)N0

−
(

1
N0 − r

)N0
] (

1− r

N0

)N0

1−
(

1− 1
N0

)N0

}
,

Notice that for all n such that 0 < n < N0, 0 ≤ VN0(n) ≤ V̄N0 , where

V̄N0 =
∞∑

r=1

[(
1− 1

N0

)N0

−
(

1− 1
N0 − r

)N0
] (

1− r

N0

)N0

1{r ≤ N0 − 1}

1−
(

1− 1
N0

)N0
,

which does not depend on n. Applying the dominated convergence theorem, it is easy to show that
V̄N0 → 0, as N0 →∞.
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For some δ such that 0 < δ < 1, let Iδ,N0 = {n ∈ N : 1 + N δ
0 < n < N0 −N δ

0 } and Īδ,N0 = {n ∈ N : n ≤
1 + N δ

0 } ∪{ n ∈ N : N0 −N δ
0 ≤ n ≤ N0}.

Notice that

R∗N0
(n) <

1
2

{
N0−n∑

r=1

exp(−r) +
n−1∑

r=1

exp(−r)

}

<
∞∑

r=1

exp(−r) =
exp(−1)

1− exp(−1)
.

For n ∈ Iδ,N0 , N0 − n > N δ
0 and n− 1 > N δ

0 . Therefore,

R∗N0
(n) >

∞∑

r=1

(
1− r

N0

)N0

1{r ≤ N δ
0 },

Let

D̄N0 =
exp(−1)

1− exp(−1)
−

∞∑

r=1

(
1− r

N0

)N0

1{r ≤ N δ
0 }.

It follows that
∣∣∣∣

exp(−1)
1− exp(−1)

−R∗N0
(n)

∣∣∣∣ < D̄N0 .

Notice that D̄N0 does not depend on n. Also, applying the dominated convergence theorem, it is easy
to show that D̄N0 → 0, as N0 →∞.
In addition, for n ∈ IN0,δ, it has to be the case that n ≥ 2 and n ≤ N0 − 1. As a result,

(
(N0 − n) + 3/2

) (
1− N0 − n

N0

)N0

< N0

(
1− N δ

0

N0

)N0

< N0 exp(−N δ
0 ),

and

(
(n− 1) + 3/2

) (
1− n− 1

N0

)N0

< N0

(
1− N δ

0

N0

)N0

< N0 exp(−N δ
0 ).

Therefore, for n ∈ IN0,δ, UN0(n) < ŪN0 , where

ŪN0 =
1

1− exp(−1)
N0 exp(−N δ

0 ).

Notice that ŪN0 → 0, as N0 →∞.
The last set of results imply that for n ∈ Iδ,N0 ,

|T − T (N0, N1, n)| ≤ α2
(
D̄N0 + V̄N0 + ŪN0

)

+
∣∣∣∣α

2 − N1(N1 − 1)
(N0 + 1)(N0 + 2)

∣∣∣∣ (R̄ + Ū).

Let #Iδ,N0 and #Īδ,N0 be the cardinalities of the sets Iδ,N0 and Īδ,N0 respectively. Notice that #Iδ,N0 <
N0, #Iδ,N0/N0 → 1 and #Īδ,N0/N0 → 0.
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∣∣∣∣∣∣
E




N∑

j=1

∑

l %=j

WjWl1{Mj = i}1{Ml *= i}Bi(Xl)
∣∣∣ Db,i = 1,Wi = 0



− T

∣∣∣∣∣∣

=
∞∑

n=1

|T − T (N0, N1, n)| 1{1 ≤ n ≤ N0}/N0

=
∞∑

n=1

|T − T (N0, N1, n)| 1{n ∈ Iδ,N0}/N0

+
∞∑

n=1

|T − T (N0, N1, n)| 1{n ∈ Īδ,N0}/N0.

Using the bounds established above and the fact that #Iδ,N0 < N0, we obtain:

∞∑

n=1

|T − T (N0, N1, n)| 1{n ∈ Iδ,N0}/N0 ≤ α2
(
D̄N0 + V̄N0 + ŪN0

) ∞∑

n=1

1{n ∈ Iδ,N0}/N0

+
∣∣∣∣α

2 − N1(N1 − 1)
(N0 + 1)(N0 + 2)

∣∣∣∣ (R̄ + Ū)
∞∑

n=1

1{n ∈ Iδ,N0}/N0

≤ α2
(
D̄N0 + V̄N0 + ŪN0

)

+
∣∣∣∣α

2 − N1(N1 − 1)
(N0 + 1)(N0 + 2)

∣∣∣∣ (R̄ + Ū) −→ 0.

Notice also that:
∞∑

n=1

|T − T (N0, N1, n)| 1{n ∈ Īδ,N0}/N0 ≤ D̄
1

N0

∞∑

n=1

1{n ∈ Īδ,N0} = D̄
#Īδ,N0

N0
−→ 0.

As a result, we obtain:

E




N∑

j=1

∑

l %=j

WjWl1{Mj = i}1{Ml *= i}Bi(Xl)
∣∣∣ Db,i = 1,Wi = 0



 −→ α2 exp(−1)
1− exp(−1)

.

Now, because

E[K2
i |Db,i = 1,Wi = 0] = E[K2

i |Wi = 0] → α +
3
2

α2,

we obtain

E[KiKb,i |Db,i = 1, Wi = 0] → α +
3
2

α2 + α2 exp(−1)
1− exp(−1)

.

Therefore, because E[KiKb,i |Db,i = 0,Wi = 0] = 0, we obtain

E[KiKb,i |Wi = 0] →
(

α +
3
2

α2 + α2 exp(−1)
1− exp(−1)

)
(1− exp(−1)).

!
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Proof of Lemma 3.2: From previous results:

N1E[V B,I ] =
1
α

(
E[K2

b,i|Wi = 0]− 2 E[Kb,i Ki|Wi = 0] + E[K2
i |Wi = 0]

)

→ 1
α

[
2α +

3
2

α2

(1− exp(−1))
− 2(1− exp(−1))

(
α +

3
2

α2 +
exp(−1)

1− exp(−1)
α2

)
+ α +

3
2

α2

]

= α

(
3

2(1− exp(−1)
− 3(1− exp(−1))− 2 exp(−1) +

3
2

)
+ 2− 2 + 2 exp(−1) + 1

= 1 +
3
2

α
5 exp(−1)− 2 exp(−2)

3(1− exp(−1))
+ 2 exp(−1).

!
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Figure 1. Ratio of Limit Average Bootstrap Variance to Limit Variance
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Table 1: Simulation Results, 10,000 Replications, 100 Bootstrap Draws

Design I Design II Design III
Sample Size N0 = 100, N1 = 100 N0 = 100, N1 = 1000 N0 = 1000, N1 = 100

est. (s.e.) est. (s.e.) est. (s.e.)

Exact Variance 2.480 15.930 1.148
AI Var I 2.449 (0.006) 15.871 (0.033) 1.130 (0.002)
AI Var II 2.476 (0.006) 15.887 (0.033) 1.144 (0.001)
Limit Expected Boots Var I 2.977 14.144 1.860
Boots Var I 2.914 (0.009) 14.008 (0.042) 1.836 (0.004)
Boots Var II 2.614 (0.007) 12.774 (0.034) 1.632 (0.003)

Coverage Rate 90% Confidence Interval
Exact Variance 0.901 (0.003) 0.901 (0.003) 0.901 (0.003)
AI Var I 0.896 (0.003) 0.897 (0.003) 0.900 (0.003)
AI Var II 0.895 (0.003) 0.897 (0.003) 0.897 (0.003)
Boots Var I 0.931 (0.003) 0.870 (0.003) 0.980 (0.003)
Boots Var II 0.903 (0.003) 0.847 (0.003) 0.948 (0.003)

Coverage Rate 95% Confidence Interval
Exact Variance 0.951 (0.002) 0.951 (0.002) 0.952 (0.002)
AI Var I 0.949 (0.002) 0.950 (0.002) 0.950 (0.002)
AI Var II 0.948 (0.002) 0.950 (0.002) 0.947 (0.002)
Boots Var I 0.972 (0.002) 0.934 (0.002) 0.995 (0.002)
Boots Var II 0.953 (0.002) 0.915 (0.002) 0.981 (0.002)
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