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Sexual dimorphism in immune function is a common pattern in vertebrates and also in a number of
invertebrates. Most often, females are more ‘immunocompetent’ than males. The underlying causes
are explained by either the role of immunosuppressive substances, such as testosterone, or by
fundamental differences in male and female life histories. Here, we investigate some of the main
predictions of the immunocompetence handicap hypothesis (ICHH) in a comparative framework
using mammals. We focus specifically on the prediction that measures of sexual competition across
species explain the observed patterns of variation in sex-specific immunocompetence within species.
Our results are not consistent with the ICHH, but we do find that female mammals tend to have
higher white blood cell counts (WBC), with some further associations between cell counts and
longevity in females. We also document positive covariance between sexual dimorphism in immunity,
as measured by a subset of WBC, and dimorphism in the duration of effective breeding. This is
consistent with the application of ‘Bateman’s principle’ to immunity, with females maximizing fitness
by lengthening lifespan through greater investment in immune defences. Moreover, we present a
meta-analysis of insect immunity, as the lack of testosterone in insects provides a means to investigate
Bateman’s principle for immunity independently of the ICHH.Here, we also find a systematic female
bias in the expression of one of the two components of insect immune function that we investigated
(phenoloxidase). From these analyses, we conclude that the mechanistic explanations of the ICHH
lack empirical support. Instead, fitness-related differences between the sexes are potentially sufficient
to explain many natural patterns in immunocompetence.

Keywords: immunocompetence; handicap; Bateman’s principle; insects; mammals;
comparative analysis

1. INTRODUCTION
Sex differences in mortality and immunocompetence
are well documented in humans. Women in most
societies not only have longer lifespans, they also are
more resilient against infectious and some non-
infectious diseases such as cancer (Boyle & Ferlay
2004; WHO 2008, http://www.who.int/healthinfo/
morttables/en/index.html). This, however, comes at
the price of women being more susceptible to
autoimmune diseases (Whitacre 2001). These effects
are commonly attributed to sexual differences in
endocrinology.

The phenomenon of higher female immunocompe-
tence is not restricted to humans, but has been found in
many vertebrates (Folstad & Karter 1992). In their
landmark paper, Folstad & Karter developed the idea
of hormones driving sexual dimorphism in vertebrates
and applied this to Hamilton & Zuk’s (1982) idea that
sexually selected ornament traits are dependent on

‘health and vigour’ and therefore provide honest signals
of genetic resistance.

Folstad & Karter’s (1992) ‘immunocompetence
handicap hypothesis’ (ICHH) assumes that testoster-
one suppresses immune function. In a nutshell, only
males that are highly immunocompetent can handle
the high testosterone titres that are needed to fully
express their ornaments. This would result in a strong
correlation between ornaments and immunocompe-
tence (as a proxy for good genes) and hence male
ornaments would be honest traits. This elegant concept
provides an explanation for how parasite-mediated
sexual selection sensu Hamilton & Zuk (1982)
could work.

The ICHH hinges on a few important assumptions,
most critically the assumption that testosterone is
immunosuppressive (but see Wedekind & Folstad
1994 for a variant on this assumption). This assump-
tion is debatable. While a great number of studies show
a correlation between immunity and testosterone levels
(Muehlenbein & Briebiscas 2005), the experimental
evidence is scant (but see Yao et al. 2003). Moreover,
a recent meta-analysis investigating the effects of
testosterone on behaviour and immunity did not find
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consistent support for the assumption that testosterone
suppresses immunity (Roberts et al. 2004). Lastly,
many species of insect display female-biased sexual
dimorphism in immunity (e.g. Kurtz et al. 2000; Joop
et al. 2006), yet insects are devoid of sex-specific
hormones. Given that many of these species also show a
positive correlation between ornament traits and
immunity (e.g. Ryder & Siva-Jothy 2000), this calls
into question the necessity of invoking an ‘immuno-
competence handicap’ for the expression of ornaments.

Consistent with the idea of higher female immuno-
competence, many vertebrates (Poulin 1996; Zuk &
McKean 1996; Moore & Wilson 2002) and some
invertebrates (Sheridan et al. 2000) show higher
incidence of parasitism in males than in females.
However, immunocompetence is only one factor
contributing to infection rates. Exposure to parasites
due to differences in mating behaviour or foraging will
also contribute to sexually dimorphic patterns of
parasite infection (Skorping & Jensen 2004; Nunn &
Altizer 2006). In general, male and female behaviour
and life histories differ significantly in many species, and
this is likely to be reflected in physiological traits such as
immune function (Zuk & Stoehr 2002). Assuming that
(i) females invest more into reproduction than males
(Williams 1966) and (ii) males maximize fitness via
mating rate and females via longevity (Bateman 1948),
this would select for higher investment in immune
function in females (Rolff 2002).

Here, we investigate specific predictions of the
ICHH (Folstad & Karter 1992) and ‘Bateman’s
principle for immunity’ (Rolff 2002) using a compara-
tive approach. We developed three refined predictions
(see below) from the ICHH and Bateman’s principle
for immunity in an attempt to discriminate between the
hypotheses within a single study (Lipton 2005).
Finally, we conducted a meta-analysis of patterns of
immunity in insects, which lack testosterone and thus
serve as a useful comparison to the mammal analyses.

2. TESTING THE ALTERNATIVES
Hamilton & Zuk (1982) predicted a positive corre-
lation between ornaments and parasite resistance. The
ICHH suggests a mechanism to ensure that such
ornaments are honest signals, inasmuch as it focuses on
the pleiotropic function of testosterone (or potentially
other modulating molecules). The ICHH also predicts
sexual dimorphism in immunity, but, as we will see, this
prediction is not unique to the ICHH. While
stimulating a great amount of evolutionary research,
the main aim of the ICHH was to ‘provide a proximate
model’ (Folstad & Karter 1992, p. 616).

By contrast, investigating the role that sex-specific
life histories play in shaping immunocompetence is
more of an ultimate question; hence, the predictions by
the ICHH and hypotheses based on sex-specific life
histories are not mutually exclusive. The notion that
life-history differences shape sexual dimorphism in
immunity has at least two specific predictions (Rolff
2002). (i) Dimorphism in immunity should covary with
the extent of dimorphism in reproductive behaviour
and, given general differences between the sexes in
the factors that influence lifetime reproductive success

(Bateman 1948), should tend to be higher in females
than males. For example, if males maximize their
fitness early in adult life but females exhibit a strong
correlation between fitness and longevity, this should
select for greater investment in immunity by females
than males. (ii) Males and females should differ in their
quantitative genetic architecture for fitness and
immune traits (partly investigated in Rolff et al. 2005).

Here, we investigated sexual dimorphism in white
blood cell counts (WBC) and whether this dimorphism
covaries negatively with sexual dimorphism in body
mass across mammals, as expected if increased male-
male competition leads to a reduction in male cell
counts relative to female cell counts. Throughout,
we assume that the number of circulating WBCs
represents a reasonable measure of investment in
immunity (Nunn et al. 2000, 2003; Nunn 2002;
Semple et al. 2002; Anderson et al. 2004). We also
assume that the extent of sexual size dimorphism in
mammals reflects the strength of sexual selection
(Andersson 1994) and is therefore used as a correlate
for sexual selection.

Under the ICHH, we expect that measures of sexual
selection should correlate with variation in cell counts
calculated within a species. We argue that if
(i) testosterone is immunosuppressive (but see discus-
sion) and (ii) involved in the expression of sexually
selected traits andmale mating behaviour, that males of
species with stronger sexual selection should not only
exhibit higher average testosterone titres but also higher
variation in testosterone titres, and thus variation in cell
counts. This constitutes an indirect test of the
assumption that testosterone is involved as a mediator
of both immune function and the expression of
ornament traits. We would like to highlight that this
indirect test is based on one core assumption. We
assume that not all additive genetic variance is
removed, but partly captured by condition dependency
of the traits under investigation (Rowe & Houle 1996).

If males and females invest differentially in immune
system parameters based on Bateman’s principle, we
predict that mammalian species with greater longevity
will have higher numbers of circulating WBCs. We
further predict that sex differences in life expectancy
and the duration of breeding covary positively with sex
differences inWBC counts: species in which males have
a shorter reproductive period than females should show
lower cell counts in males than in females.

In our simultaneous approach we used a compara-
tive mammal dataset to investigate four main predic-
tions. (i) The intensity of sexual selection positively
covaries with female-biased sexual dimorphism in
immunity. This investigates the ICHH and more
derived hypotheses on resource trade-offs. (ii) Variation
in immunity increases with female-biased sexual
dimorphism in immunity. This provides an indirect
examination of the role of testosterone. (iii) Female-
biased sexual dimorphism in longevity positively
correlates with female-biased sexual dimorphism in
immunity (a prediction from Rolff 2002). (iv) Female-
biased sexual dimorphism in the duration of time that
individuals are likely to breed successfully (the duration
of effective breeding, or DEB) positively correlates with
female-biased sexual dimorphism in immunity.
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3. MATERIAL AND METHODS
(a) Mammalian comparative data and analyses

We obtained data on WBC from the International Species
Information System (2002). We focused on five major types
of circulating white blood cells: lymphocytes; neutrophils;

monocytes; eosinophils; and basophils. These counts there-
fore represent key cells involved in adaptive immunity
(lymphocytes) and innate immunity (neutrophils and mono-
cytes), and also cells involved in fighting macroparasites

(eosinophils) and the production of pharmacologically active
substances (basophils). While only a proxy for immunity
WBC are routinely used to assess the immunocompetence of

immune-deficient patients (e.g. Houwen 2001).
We obtained data on sex differences in life expectancy and

DEB from Clutton-Brock & Isvaran (2007) and data on
longevity from the Pantheria database ( Jones et al. submitted).

Data on body mass and body mass dimorphism were the same
as used in Lindenfors et al. (2007) for all species except for
Tursiops truncatus and Equus caballus (where data came from
Dearolf et al. 2000 and Ruckstuhl & Neuhaus 2002,

respectively). Life expectancy reflects age expected upon
reaching adulthood in wild populations (Clutton-Brock &
Isvaran 2007), while longevity represents maximum-recorded
lifespan. In all cases, measures of dimorphism refer to male

values divided by female values. All continuous characters were
log-transformed prior to the analyses.

Analyses were conducted using species values and after

controlling for phylogenetic relationships among mammalian
species (Harvey & Pagel 1991; Nunn & Barton 2001). To
control for phylogeny, we used the method of independent
contrasts, as calculated in the PDAP module (Midford et al.
2005) of MESQUITE (Maddison &Maddison 2007). Contrasts
were calculated based on a recent composite estimate of
mammalian phylogeny (Bininda-Emonds et al. 2007). We
tested the assumptions of independent contrasts and found

that using equal branch lengths best met the assumptions for
tests across all mammals and for analyses of dimorphism in
DEB, while log-transformed branch lengths best met the
assumptions for analyses of dimorphism in life expectancy.

All of the hypotheses we investigated predicted either
positive or negative associations.We used directed tests rather
than one-tailed tests, if not specified otherwise, as these
enable detection of patterns that are opposite to predictions

while retaining much of the statistical power of one-tailed
tests (Rice & Gaines 1994). We set g/a to 0.8, giving values of
gZ0.04 and dZ0.01. In analyses of variation across age and

sex classes and for tests involving body mass, we used two-
tailed tests, as no clear predictions were possible.

(b) Insect meta-analyses

We obtained data on sex differences in immunocompetence
in insects from the literature. Certain criteria had to be met in
selecting the studies for data collection to allow calculation of
statistics (Cohen’s d ) for the meta-analysis. First, the mean

values for male and female immune response had to be stated.
Second, standard errors or standard deviations had to be
included in the text or in figures. Third, separate sample sizes

of males and females had to be accessible.
Data were collected using references from the literature

and Google Scholar (sets of search terms as follows:
sexual dimorphism immunity insect; sex difference immunity

insect; gender difference immunity; haemocyte immunity insect;
haemocyte sex difference, phenoloxidase immunity; pheno-
loxidase sex difference). After selecting all of the articles
that measured male and female immunocompetence, studies

that did not fit the criteria were omitted (see electronic
supplementary material).

Following this process, a total of 43 studies were included in
the meta-analysis. We intended to carry out separate analyses
of sexual dimorphism in immune function for each immune
trait. However, the only traits for which there were sufficient
sample sizes to do this were phenoloxidase activity (11 species,
highly clustered in very few families) and haemocyte counts
(11 species). Phenoloxidase activity is part of the humoral
immune response in insects, and has been identified as a key
component of innate immunity against a range of pathogens
(Cerenius & Söderhall 2004; Eleftherianos et al. 2007). The
phenoloxidase enzyme is activated following pathogen recog-
nition by the insect, and the result is a cascade of
immunological defence mechanisms. These mechanisms
serve to physically shield the host body from invading micro-
organisms and damaged self-tissue, and to release compounds
to fight infection (Cerenius & Söderhall 2004). Haemocytes
are also crucial components of innate immunity and are
important measures of cellular immune responses. A higher
number of circulating haemocytes has been used to indicate a
superior immune response (Kraaijeveld et al. 2001). Haemo-
cytes perform a number of roles in insect immune defences;
specifically they aggregate to encapsulate larger foreign
material, they demonstrate nodule formation in response to
large numbers of pathogens and they clear small microbes via
phagocytosis (Lavine & Strand 2002).

As most of the data were clustered in a limited number of
taxonomic groups (crickets and damselflies), we did not carry
out a formal comparative analysis. Instead, we conducted a
meta-analysis, where each data point for the meta-analysis
represented a comparison of the male and female immune
response for a single immune trait. The effect size of each
measure of sexual dimorphism in immune function was
calculated using the sample sizes, means and standard errors
or standard deviations stated in the original data (Cohen
1988). An effect size of 0 indicated no sex difference in
immunocompetence, a positive value indicated that females
exhibited a superior immune response, and a negative value
suggested a higher level of immune function in males. Funnel
plots were used to investigate the effects of selective reporting
of significant results (Palmer 2000).

4. RESULT I: COMPARATIVE ANALYSES
IN MAMMALS
(a) Comparative analyses
(i) Background
Before testing the specific predictions outlined above,
we examined variation in WBC in all mammals
combined and in the three best-represented groups of
mammals in the database (carnivores, primates and
artiodactyls). Data were identified as being from adults
or immatures. We found significant differences in
cell counts between adult and immature animals for
all cell types except for basophils, either at the level of
all mammals or within one of these three groups. The
strongest results were obtained for lymphocytes, where
immatures had higher levels than adults for females
(t186ZK12.80; p!0.001, two-tailed) and males
(t186ZK12.25; p!0.0001, two-tailed) (figure 1).

Based on these results, we restricted all subsequent
tests to values of cell counts taken from adults. We
found that cell counts were significantly higher in
females than in males for two of the five white blood cell
types that we investigated: eosinophils (t193Z2.154,
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pZ0.032), and lymphocytes (t193Z4.196, p!0.001,
all tests two-tailed, see figure 1). In addition, sex
differences in monocyte counts approached signi-
ficance (t193Z1.909, pZ0.058). These results held in
the primates. Among the artiodactyls, we found sex
differences for eosinophils and lymphocytes. In carni-
vores, however, only one cell type produced a
significant difference between the sexes, and it was
opposite to the pattern found in the other analyses:
neutrophil counts were higher in males than in females
(t40ZK3.251, pZ0.002, two-tailed).

We also investigated whether body mass covaries
with WBC using independent contrasts. Across
mammals and in both sexes, the number of neutrophils
(t135Z1.877, pZ0.063 and t135Z3.118, p!0.002 for
females and males, respectively) and monocytes (t135Z
2.560, pZ0.012 and t135Z3.556, p!0.001 for females
and males, respectively) increased with body mass in
adults, while the number of lymphocytes instead
decreased (t135ZK2.317, pZ0.022 and t135Z1.992,
pZ0.048 for females and males, respectively, all tests
two-tailed). Similarly, in analyses of life-history traits,
we found that body mass covaried with longevity across
mammals (female body mass bZ0.147, t127Z7.476,
p!0.001; male body mass bZ0.139, t127Z7.478,
p!0.001) and with measures of body mass dimorph-
ism in both males (bZ0.041, t135Z4.649, p!0.001)
and females (bZ0.024, t135Z2.411, p!0.001). Based
on these findings, we included body mass as a covariate
in most tests reported below.

(ii) Sexual selection and immunity
We first investigated a general prediction of immune
system investment in relation to sexual selection: sexual
dimorphism in body mass should covary negatively
with sexual dimorphism in immune cell counts. We
found no statistical support for this prediction using
independent contrasts or in analyses of species values
(table 1; figure 2). We also ran these tests controlling for
body mass in a multiple regression, and this similarly
produced no significant results.

We tested the ICHH using comparative methods.
First, we investigated whether body mass dimorphism
covaries positively with variation in WBC counts among
adult males, as would be expected if sexual selection

results in greater variation in immune system parameters
within the sex that typically experiences the most intra-
sexual competition. Variation in WBC was measured as
the coefficient of variation (CV). However, no signi-
ficant results were found in examination of each of the
five white blood cell types (table 2). In a second
prediction of the ICHH, we investigated whether sexual
dimorphism in immune system cell variation covaries
with body mass dimorphism, again using the CV. We
found no support for this prediction (table 2).

Under the first of two predictions for Bateman’s
principle, we tested for an association between longevity
and immune system parameters while also controlling
for the effects of body mass. In phylogenetic tests, we
found that evolutionary increases in longevity in females
were correlated with increases in the number of mono-
cytes (bZ0.069, t126Z2.328, pZ0.013) and eosinophils
(bZ0.136, t126Z2.794, pZ0.004), but that the same
did not apply to males (monocytes: bZ0.026, t126Z
0.751, pZ0.28; eosinophils: bZ0.016, t126Z0.382,
pZ0.44). All other results were not significant. In non-
phylogenetic tests that controlled for body mass,
however, longevity was a significant (positive) predictor
of lymphocytes (females: bZ0.204, t148Z3.571,
p!0.001; males: bZ0.189, t147Z3.528, p!0.001),
monocytes (females: bZ0.147, t148Z4.842, p!0.001;
males: bZ0.152, t147Z4.852, p!0.001) and neutro-
phils (females: bZ0.164, t148Z2.285, pZ0.015; males:
bZ0.184, t147Z2.623, pZ0.006, directed tests in all
cases). Thus, we found some support for the first
prediction of Bateman’s principle.

Table 1. Dimorphism in body mass and dimorphism in
immune cell counts across mammals. (Note: t-statistics are
given with sign indicating whether slopes were positive or
negative, and p-values are from directed tests. Results are
based on independent contrasts analyses (nZ136 indepen-
dent contrasts))

cell type t-statistic p-value

neutrophils 0.833 0.99
monocytes K0.022 0.61
lymphocytes 0.467 0.85
eosinophils K0.026 0.61
basophils 0.470 0.85
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Figure 2. There is no significant relationship between
dimorphism in body mass and dimorphism in lymphocyte
counts in mammals.
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Figure 1. Juveniles (diamonds) have significantly more
lymphocytes than adults (squares) in mammals. Whiskers
indicate standard error.
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It is possible that our measures of longevity are too
indirect for testing the hypothesis, as the critical issue
concerns the DEB. In addition, it is the differences
between the sexes in life-history traits that are relevant,
rather than absolute estimates, and we know from
previous work that other factors can influence overall
numbers of white blood cells (Nunn et al. 2000, 2003;
Nunn 2002; Semple et al. 2002; Anderson et al. 2004).

In a second set of tests, we therefore investigated
how sex differences in the DEB and adult longevity
(Clutton-Brock & Isvaran 2007) covary with sex
differences in adult WBC. In non-phylogenetic tests
involving the DEB and female body mass, we found
that dimorphism in basophil and lymphocyte counts
covaries positively with dimorphism in the DEB
(table 3). These effects remained statistically significant
in phylogenetic tests that used independent contrasts

(table 3; figure 3). Results were similar in tests
involving sexual dimorphism in life expectancy. In
non-phylogenetic tests, dimorphism in immune cells
was significantly associated with dimorphism in life
expectancy for three types of leucocytes: basophils;
lymphocytes; and eosinophils (table 4). Similar
results were obtained when using independent con-
trasts (table 4), although results for basophils and
eosinophils became marginally non-significant (p!0.07
in both cases).

5. RESULT II: META-ANALYSIS IN INSECTS
The mean effect size for phenoloxidase is 0.187. All but
one of the studies showed a female bias in PO activity
(see figure 4). For haemocytes, the mean effect size is
0.0136, suggesting a weak sexual dimorphism in
haemocyte counts in the direction of female superiority
(figure 4). The funnel plots did not provide any
evidence of selective reporting, as there are no apparent
gaps in the data (Palmer 2000).

6. DISCUSSION
Here, using a comparative approach, we tested critical
predictions of the ICHH and Bateman’s principle for
immunity. Overall, the analyses failed to support
predictions from the ICHH. Instead, we found support
for sexual dimorphism driven by life-history differences
(i.e. Bateman’s principle applied to immunity, Rolff
2002). In mammals, sex differences in WBCs were not
associated with sexual dimorphism in body mass,
although adult females tended to show higher cell
counts than adult males. The insect dataset provided
an inconclusive message, with a consistent sex
difference in immunity in one out of two traits.

Roberts et al. (2004) provided a meta-analysis of the
ICHH using studies that experimentally manipulated
testosterone titres. They found an effect of testosterone
application on immune function, but this effect failed
to reach significance when controlling for multiple
studies of the same species. The sample size in the
meta-analysis by Roberts et al. (2004) was limited (36
species across mammals, reptiles and birds) and they

Table 3. Dimorphism in duration of effective breeding. (Note:
body mass was significantly associated with dimorphism in
effective breeding duration in non-phylogenetic tests
(t7ZK3.20, pZ0.015, two-tailed) and in tests based on
independent contrasts (t7ZK3.74, pZ0.007, two-tailed).
Thus, analyses were conducted with a statistical model that
included log female body mass and dimorphism in breeding
duration as covariates. The t-statistics are given with sign
indicating whether slopes were positive or negative, and p-
values are based on directed tests (predicting a positive
association between m : f dimorphism in effective breeding
duration and m : f dimorphism in each of the cell
types). Analyses based on nine species (eight independent
contrasts).)

non-phylogenetic
test

independent
contrasts

dimorphism in: t-statistic p-value t-statistic p-value

neutrophils 0.11 0.58 K0.14 0.69
monocytes K2.38 0.14 K2.60 0.10
lymphocytes 3.14 0.013 2.77 0.02
eosinophils 0.49 0.40 0.75 0.30
basophils 2.56 0.027 3.59 0.007

Table 2. Comparative tests of the ICHH. (Notes: table
presents t-statistics from analyses of independent contrasts,
with sign of the t-statistic indicating the slope of the
relationship from linear regression forced through the origin.
None of the analyses produced statistically significant results
(nZ136 independent contrasts). The leftmost two columns
depict the relationship between body mass dimorphism and
leucocyte CV in males, while the rightmost two columns
depict the relationship between body mass dimorphism and
dimorphism in leucocyte CV.)

leucocyte coefficient of
variation (CV)

sexual dimorphism in
leucocyte CV

t-statistic p-value t-statistic p-value

neutrophils K2.050 0.11 0.085 0.58
monocytes 0.001 0.62 K0.074 0.66
lymphocytes K1.373 0.43 K0.692 0.94
eosinophils 0.244 0.50 K0.189 0.72
basophils 0.746 0.29 0.483 0.39
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Figure 3. Sex differences in breeding duration and lympho-
cyte counts. Sex differences in DEB covary positively with sex
differences in lymphocyte counts after controlling for body
mass effects. The x-axis represents residuals from the
regression of the DEB ratio on body mass.
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combined a number of different ways to assess
immunocompetence: white blood cells counts,
measurement of PHA (a debated in vitro assay applied
in vivo in the cited studies, see Siva-Jothy & Ryder
2001) and antibody titres.

Here, we took this analysis a step further by using a
comparative approach and refining the predictions.
This allowed us to use a larger sample size and hence
should provide greater statistical power. We assumed
that testosterone has a pleiotropic effect on immune
function, the expression of sexually selected traits and
male mating behaviour, and that the strength of sexual
selection should result from higher average testosterone
titres and should also result in higher variation in
testosterone titres. If the latter holds true, then we
expected to find a positive covariance between sexual
dimorphism in size (as a measure for strength of sexual
selection) and variation in WBC. However, we did not
find any support for this prediction, despite having high
statistical power to detect an effect (powerZ0.95 in a
post hoc two-tailed test with medium effect size, nZ136
and aZ0.05, using the program G*POWER 3, Faul et al.
2007). One possible explanation is that the presumed
immunosuppressive effect of testosterone is not present
or sufficiently strong for the ICHH to work. Studies
specifically testing the effect of defined testosterone
applications on subsets of white blood cells, such as the
ones used in our comparative study, are limited. Yao
et al. (2003) measured the response in WBCs for the
five classes of leucocytes used here against three
different concentrations of testosterone in rats. Only
monocytes showed a significant decrease with increas-
ing testosterone concentrations. The message with
lymphocytes was mixed, but the proliferation of
lymphocytes seems to be slightly hampered when
high doses of testosterone were administered.

The focus on testosterone, or any other modulating
substance, still leaves the question of ‘what is driving
the observed differences in immunocompetence?’.
Is the advent of testosterone imposing evolutionary
constraints, which prevent males from exhibiting

stronger immunocompetence? As testosterone is
probably as old as the vertebrates, it is surprising that
selection has not modified the pleiotropic effects.

Longevity has long been speculated to be a driver
of the evolution of the vertebrates’ acquired immune
system in the immunological literature. However,
evidence to back this assertion remains scant (see
Hedrick 2004). Only a handful of theoretical studies
(e.g. Miller et al. 2007) support the notion that
longevity selects for immunity. Here we investigated
the intuitive prediction that longevity correlates
positively with investment in immune function, and
found some support for this prediction, yet longevity
itself might be a poor predictor of fitness. One
explanation for this finding is that selection is weaker

Table 4. Dimorphism in life expectancy. (Notes: body mass
was not significantly associated with dimorphism in life
expectancy in non-phylogenetic tests (t12ZK1.27, pZ0.23,
two-tailed) and in tests based on independent contrasts
(t12ZK0.94, pZ0.36, two-tailed). Thus, bivariate results are
presented in the table, with dimorphism in life expectancy as
the independent variable. The t-statistics are given with sign
indicating whether slopes were positive or negative, and
p-values are based on directed tests (predicting a positive
association between m : f dimorphism in life expectancy and
m : f dimorphism in each of the cell types). Analyses based on
14 species (13 independent contrasts))

non-phylogenetic
test

independent
contrasts

dimorphism in: t-statistic p-value t-statistic p-value

neutrophils 0.47 0.40 0.17 0.54
monocytes 0.29 0.49 K0.10 0.67
lymphocytes 2.00 0.043 2.00 0.043
eosinophils 2.14 0.033 1.90 0.051
basophils 2.45 0.019 1.73 0.068
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Figure 4. (a) Effect size of male and female phenoloxidase
activity as a function of sample size. The solid line indicates
zero effect size, i.e. no sexual dimorphism in immune function.
Data points above this line represent studies in which females
were found to have higher phenoloxidase activity. The dashed
line denotes the mean effect size, which was 0.187. (b) Effect of
male and female haemocyte counts as a function of sample
size. The solid and dashed lines represent zero and mean effect
size, respectively. The mean effect size was 0.013. The data
points above the zero line indicate higher female haemocyte
counts; those below the line suggest higher counts in males.
The mean effect size is slightly above the zero line, suggesting a
very weak sexual dimorphism in haemocyte counts in the
direction of higher values in females.
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after the termination of reproduction (Kirkwood
2005). We therefore examined the DEB (Clutton-
Brock & Isvaran 2007), which revealed that the extent
of sexual dimorphism in lymphocytes and basophils
covaries positively with the dimorphism in the DEB.
Some analyses of dimorphism in expected longevity
also produced significant effects. These findings are
consistent with the predictions made by Rolff (2002):
sex differences in life histories select for sex differences
in immunity.

We acknowledge that it might be possible to derive a
prediction from the ICHH that males should be shorter
lived than females owing to their lower immunocom-
petence. If accepted at face value, it would be
impossible to distinguish between the different
hypotheses. We would like to argue from first
principles, however, that the prediction derived from
‘Bateman’s principle’ is more parsimonious and
theoretically sound. Williams (1966) stated that
females show greater sacrifice for reproduction per
unit offspring. If this were true, it predicts that females
need to spend on average more time to get the same
number of offspring than males. In other words, owing
to their comparatively low costs, males can have more
offspring in a shorter period of time. Moreover, the
limited experimental support for the ICHH (Roberts
et al. 2004) limits the value of deriving another post hoc
prediction. On theoretical grounds, a posteriori
hypotheses are weaker (Lipton 2005).

It is important to point out that we interpret the
findings involving WBCs cautiously for three reasons.
First, high-quality data on sex differences in the DEB
(Clutton-Brock & Isvaran 2007) were available for only
a small subset of mammalian species. Second, we
assumed that WBC counts are a good proxy for
investment in immune function. The relevance
of peripheral cell counts as a measure of immunity is
supported by the medical practice of using WBC to
investigate the health status and immunocompetence
of individual patients. One of the white blood cell types
for which we found an effect involved lymphocytes.
While they represent approximately 31.8 per cent of the
leucocytes in the mammals in our dataset, they are part
of the adaptive immune system and hence subject to
fast proliferation. Lastly, we assumed that cell counts in
captive animals are reflective of variation in the wild.
We acknowledge that conditions of captivity might
reduce variation in cell counts, including through
reduced exposure to infectious agents. Moreover,
because veterinarians select healthy animals for
inclusion in the ISIS dataset, variation in cell counts
could be further reduced.

We note that Moore & Wilson (2002) reported
positive covariation between sexual size dimorphism in
mammals and dimorphism in parasitism in compara-
tive analyses. Males in species with larger male biased
size dimorphism exhibited higher parasite prevalence.
Our results are not consistent with the findings by
Moore & Wilson (2002), as we did not find a negative
correlation between size dimorphism and dimorphism
in WBC counts. This might be explained by the fact
that parasitism only partially reflects immuno-
competence (see Skorping & Jensen 2004).

Even though insects are popular subjects in studies
of ecological immunology (Rolff & Siva-Jothy 2003;
Schmid-Hempel 2005), the available data for the study
envisaged here were surprisingly limited. We can
conclude that we find a consistent sex difference only
in phenoloxidase activity, but not in haemocytes.
A great variety of different immune responses exist in
insects that have not been discussed here (Siva-Jothy
et al. 2005). Taking the lack of sexual dimorphism in
haemocyte counts at face value, we have three possible
explanations: (i) there is no sex effect, (ii) the sample
size is insufficient (even though there is no indication of
publication bias in the funnel plots), and (iii) the ideas
about life histories shaping the investment in immune
function are correct, but we presently lack sufficient
data from the wild to study this. At the moment, we are
not in the position to make an informed decision, but
the variety in life histories in insects might be higher
than in mammals and thus could offer a means for more
convincing tests of the role of life-history traits on
immune defences. Task partitioning in social insects is
one example where the correlation between task-
specific measures of longevity and immunity could be
investigated (e.g. Gerloff et al. 2003; Baer et al. 2005).

7. CONCLUSIONS
Overall we did not find support for the ICHH using a
comparative approach, but we did find support for the
idea that sex-specific life histories could select for
investment in immune function. Despite the highly
active research in ‘ecological immunology’ (Sheldon &
Verhulst 1996), we are not yet in a position to fully
explore the role of life history on immune defences. In
addition, remarkably little data support the intuitive
belief that investment in immune function is beneficial
for long-lived species. This question is not only
important for understanding sex differences in immu-
nity, but potentially also for understanding the
evolution of the acquired immune system in vertebrates
(Hedrick 2004; Cooper & Alder 2006; Rolff 2007). It
would be desirable to have data on insects, or any other
groups that lack sex-specific hormones, to evaluate the
relation between DEB and immune function. More-
over, insects would provide useful study organisms to
unravel the longevity/immunity nexus using experi-
mental evolution approaches.
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