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Abstract. Cell differentiation is a complex phenomenon whereby a stem cell 

becomes progressively more specialized and eventually gives rise to a specific cell 

type. Differentiation can be either stochastic or, when appropriate signals are 

present, it can be driven to take a specific route. Induced pluripotency has also 

been recently obtained by overexpressing some genes in a differentiated cell. Here 

we show that a stochastic dynamical model of genetic networks can satisfactorily 

describe all these important features of differentiation, and others. The model is 

based on the emergent properties of generic genetic networks, it does not refer to 

specific control circuits and it can therefore hold for a wide class of lineages. The 

model points to a peculiar role of cellular noise in differentiation, which has never 

been hypothesized so far, and leads to non trivial predictions which could be 

subject to experimental testing. 

Introduction  

Differentiation is a really complex phenomenon, or rather a set of interrelated 

phenomena: in organisms it most often displays a deterministic, signal-driven 

character1, but stochastic differentiation has also been described 2-4. In the following we 

will use the term "deterministic differentiation" to refer to the former case, when 

necesssary, to distinguish the two alternatives.  Differentiation is usually irreversible, 
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proceeding from a less to a more differentiated state, but the reverse has also been 

observed in experiments where pluripotency has been induced by overexpressing some 

genes in differentiated cells5,6.   

Therefore it is not obvious that a single model can describe all these phenomena. 

Some previous models of differentiation are able to describe some of them4,7,8; they 

make use of a continuum description and, in part because of computational limitations, 

are bound to take into account the contribution of only few genes. Here we hypothesize 

that the robust properties of differentiation are rather the outcome of the interaction of 

very many genes, so our model is based on a simplified dynamical model of genetic 

regulatory networks, namely noisy random Boolean networks (NRBNs for short), which 

actually allow simulations of large networks9. NRBNs represent an extension of the 

well-known model of random Boolean networks10-13 (RBNs) that, in spite of their 

approximations, have been able to describe important experimental facts concerning 

gene expression14-16. 

A classical RBN (see Supplementary Fig.1) is a directed graph with N nodes 

(genes), which can assume binary values 0 or 1 (inactive/active); time is discrete, with 

synchronous updating of all the node values. Each node has exactly k input connections 

chosen randomly with uniform probability among the remaining N-1 nodes (prohibiting 

multiple connections). To each node a (randomly chosen) Boolean function is 

associated, which determines its value at time t from the values of its inputs at the 

previous time step. Both the topology and the Boolean function associated to each node 

do not change in time. For reasons described in the legend to Supplementary Fig.1 we 

concentrate our study on so-called critical networks with k=2 and p=1/213, 17-19. 

The network dynamics is discrete and synchronous, so fixed points and cycles are 

the only possible asymptotic states in finite networks. It would be natural to identify the 

attractors of RBNs with cell types, since they correspond to different coherent 
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dynamical states of activation, with the same genome (i.e. topology and Boolean 

functions)11-13. However attractors of RBNs are unstable with respect to noise even at 

low levels. Consider for example a transient flip of a randomly chosen node when the 

system is in a state of one of its attractors: even if the flip lasts for a single time step one 

sometimes observes transitions from that attractor to another one (see Supplementary 

Fig. 2) 

We will therefore investigate the asymptotic dynamics of the network subject to random 

noise, modelled as above, i.e. by the transient flip of a randomly chosen node which 

lasts for a single time step; after that the node follows the rules of the network 

deterministic dynamics. This is indeed the smallest possible random fluctuation 

affecting a Boolean system. It will also be assumed that the noise level is small enough 

to allow the system to relax to an attractor before a new flip occurs1. This hypothesis 

allows us to make use of the knowledge of the attractors of the deterministic system to 

analyze the behaviour of its noisy version, thereby strongly simplifying the description 

of the asymptotic dynamics of the stochastic system. 

Since attractors (this term will always be used here for those of the deterministic 

system) are unstable with respect to noise (which is known to play a role in key cell 

processes20-23), they can no longer be associated to cell types. A possible way out was 

proposed by Ribeiro and Kauffman24 who observed that there exist sets of attractors, 

which they called ergodic sets, which entrap the system in the long time limit, so the 

system continues to jump between attractors which belong to the set. It would then be 

                                                

1 Several simulations have indeed shown that, while the transient from a random initial state to 

an attractor may be long, the transitions between two different attractors almost always require 

a small number of steps. 
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natural to associate cell types to such ergodic sets, but unfortunately it turns out that 

most NRBNs have just one such set (at most 2 of them have been observed in very 

many simulations). This strong limitation on the number of ergodic sets rules out the 

possibility to associate them to cell types.  

A possible solution to this problem was proposed in [ref. 9] and is briefly 

summarized in the next section, where it is also shown that by a proper interpretation it 

can describe in an elegant way the fact that there exist different degrees of 

differentiation, and that it provides a natural way to simulate stochastic differentiation. 

In the following section we show that the same model describes also deterministic 

differentiation, when appropriate signals are provided. In a further section we show that 

it also accounts for induced pluripotency and other related phenomena. Finally, in the 

last section we discuss the biological meaning of a key variable, the implications of the 

model and possible experimental tests. 

Threshold ergodic sets and stochastic differentiation 

Observe that the kind of noise which is taken here into account is fairly intense, as it 

amounts to silencing an expressed gene or to express a gene which would otherwise be 

inactive; therefore it is an event which is much less frequent than, say, typical molecular 

scale fluctuations. Consider now the case where the transition between two attractors 

occurs only when a single specific node is flipped. This may well be an event too rare to 

happen with significant probability in the cell lifetime. Therefore we will introduce a 

threshold, and will consider as acceptable only those transitions that may happen by a 

number of flips above the threshold. Note that here we are not considering multiple flips 

(these would be even rarer) but independent paths that lead from one attractor to 

another. A formal definition of the threshold has been given elsewhere9 and is 

summarized in Supplementary Fig. 3. 
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It is intuitively clear that the threshold could be related to the level of noise in the 

cell. It was indeed shown9 that the threshold scales with the reciprocal of the frequency 

of flips, i.e. the noise level. A more thorough discussion of the biological significance of 

the threshold will be deferred to the final section. 

The important notion is that of the Threshold Ergodic Set (briefly TES) which is 

also formalized in Supplementary Fig. 3. Informally, a TES is the analogous of an 

Ergodic Set when one takes into account only the transitions that have a chance to 

happen larger than the threshold. In this case, a TES is a set of attractors that entrap the 

system in the long time limit, so the system continues to jump between attractors 

belonging to the set.  

Let us now consider what happens by gradually increasing the threshold. At θ=0 

one typically has a unique TES but, by increasing the threshold, it breaks into some 

disjoint TESs. By further increasing the threshold these TESs in turn break into smaller 

ones until, at high enough levels of the threshold, all attractors are also TESs (i.e. they 

cannot be abandoned). The process is shown in Fig. 1 (see also Supplementary Fig. 3). 

It was shown elsewhere9 that the ratio between the total number of TESs and the total 

number of attractors increases as the threshold is increased, and that for each network 

there is a value such that, when θ exceeds that value, all the attractors are TESs. 

We propose to associate cell types to TESs. They represent indeed coherent stable 

ways of functioning of the same genome (i.e. connections and Boolean functions) even 

in the presence of noise. The problem that hampered the straightforward association of 

cell types to ergodic sets is no longer present in this case, since there may be several 

TESs in the same network.  
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The degree of differentiation is supposed to be related to the possibility for the 

cell, in its asymptotic state, to wander in a portion of phase space, which should be 

smaller for a more differentiated cell. In the present framework, a convenient proxy for 

the available portion of phase space is the number of attractors belonging to the TES. 

Therefore, a totipotent cell should be associated to the TES0 (i.e. the one found when 

θ=0), while as the threshold is increased more differentiated forms appear (pluripotent 

or multipotent cells), corresponding to smaller TESs like those shown in Fig. 1.  At high 

enough threshold values all the attractors are TESs, and these should describe the fully 

differentiated cells2. 

In order to describe differentiation, in the present framework it is assumed that it 

implies a change in the threshold, which in turn implies a change in the noise level. 

Differentiation increases if the threshold increases, i.e. the noise level decreases, and 

this latter effect could be related to an improvement in the mechanisms whereby 

fluctuations are kept under control. The association of differentiation to changes in the 

threshold level represents the most striking outcome of this model, and is in principle 

amenable to experimental test, as it will be discussed in the final section. For the time 

being let it suffice to remark that a higher noise level in undifferentiated cells, with 

respect to more differentiated forms, has been actually reported25-27. 

It is clear that the above hypothesis explains in a straightforward way the fact that 

there are different degrees of differentiation, related to different threshold values. But 

note that also stochastic differentiation25,28 can be described by the model. Indeed, the 

fate of a given cell depends on the particular attractor where it is found at the moment 

when the threshold is increased: the new type will be the one described by the TES to 

which that attractor belongs, at the higher threshold value (see Fig. 1).  

                                                

2 A TES with a single attractor will be called a single-TES, while a TES with two or more 
attractors is a multi-TES 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Figure 1 | TESs and stochastic differentiation 

Switch nodes determine the cell fate 

There exist processes, e.g. during the embryogenesis, in which cell differentiation is not 

stochastic but it is driven by specific chemical signals, which activate or silence some 

genes. These signals are thus represented in the model by permanent perturbations of a 

node3, which fix its state to 1 or 0. In order to describe these deterministic 

differentiation processes in our model we couple these permanent perturbations with an 

increase of the threshold (which by itself would lead to the stochastic differentiation 

shown in Fig.1). 

The model will be considered able to describe deterministic (signal-driven) 

differentiation if one can demonstrate the existence of switch genes, whose permanent 

activation or inhibition always leads the system through the same differentiation 

pathway, i.e. nodes that uniquely determine to which TES the system will evolve. 

Switches are precisely defined as follows: starting from a certain TES, if perturbing a 

node from all phases of each attractors of that TES the system goes always in the same 

attractor, then the perturbed node is a switch (in that TES). The existence of switch 

                                                

3 For reasons of simplicity we will consider the fixing of the value of a single node at a time 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nodes has actually been verified to be a widespread property (found in about 1/3 of the 

nets), thereby proving the effectiveness of the model4.  

In Fig. 2 one can see an example of differentiation, from a multi-TES0 to a set of 

single-TESs, which shows a remarkable qualitative similarity with differentiation 

diagrams of real cell lineages, like e.g. hemopoietic cells. 

 

Figure 2 | a case of deterministic differentiation  

Some considerations arise from the experiments we performed: first of all, this 

case represents just one possible diagram obtained from simulations; the system shows 

a very rich and complex landscape of possible behaviours, as in biological 
                                                

4 Note that it is not necessary to prove that switches exist for all the NRBNs, it is indeed 
sufficient to show that they are present in a significant fraction if them, so that natural selection 
can pick up the "good" ones. 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differentiation. Second, the activation order of the switches matters: acting first on 

switch a and then on switch b leads to different fates than acting first on b and then on a 

(not shown here). This is coherent with the fact that in real systems different 

consequences may arise from the action on a gene in different physiological moments. 

Moreover, there exist cases in which a final single-TES can be reached from the same 

multi-TES acting on different switches (as shown by double labels associated to the 

same arrow). Finally there are cases in which a single final type can be reached from 

different pathways (as in the case of the red single-TES, which can be reached either 

from the azure or from the turquoise multi-TES). 

Simulating induced pluripotency  

In recent years considerable attention has been raised by the discovery of induced 

pluripotency, where overexpression of a few transcription factors (from 1 to 4) in 

differentiated cells can make them "come back" to a less differentiated state5,6,29. 

Simulating such a process of dedifferentiation by a decrease of the threshold would be 

straightforward but, since there is no evidence that such a process actually takes place in 

experiments, we checked whether dedifferentiation can be achieved without modifying 

the threshold, by simply fixing the value of a gene to 1 permanently so to simulate its 

overexpression (of course this makes sense on those genes which are not always active). 

This phenomenon can actually be observed in some networks, as shown in Fig. 3. 

This behaviour is not generic, and it is found rarely, but also in biological systems there 

are just a few genes that can give rise to induced pluripotency. Note also from Fig. 3 

that most of the attractors of the TESθ reached in this way are identical (apart from the 

perturbed node) to the original TES0, a situation which can be summarized by saying 

that the two TESs are similar to each other - and this closely parallels what has been 

experimentally observed. Note also that the above description belongs to the set of so-
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called stochastic models of iPSC that seem in accordance with known experimental 

facts30. 

 Figure 3 | Yamanaka-like in silico experiment 

Discussion 

The mathematical model describes the main features of differentiation, namely the 

existence of different degrees of differentiation, of stochastic and deterministic 

differentiation, and of induced pluripotency. Indeed, it is actually able to describe an 

even wider set of phenomena, including the well-known existence of both committed 

and determined cells (Supplementary Fig. 4) and possible transitions between two 

differentiated cell types (Supplementary Fig. 5) as the one that has been recently 

reported between fibroblasts and neurons31.  

Another interesting feature of the model is that the explanation of differentiation 

makes use of the global properties of a generic dynamical system, without resorting to 

detailed hypotheses concerning very specific control circuits. The fact that 

differentiation is linked to sets of attractors of a large network, rather than to a specific 

kind of interaction between few genes, is also worth noticing.  

The most striking result obtained here concerns the importance of the threshold: if 

we permanently modify the expression of one or a few genes without acting on the 
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threshold, the breakup of a TES into smaller disjoint ones is not observed. This 

statement is in principle subject to experimental testing, provided that we define the 

biological meaning of the threshold. As it has been repeatedly stressed, this could be 

related to the level of noise in the cell, as a back-of-the-envelope calculation shows9. 

If the threshold is related to the noise level, and if differentiation requires a change 

of the threshold, then differentiation should be accompanied by a change in the noise 

level. It is important to remark that flips (active/inactive) similar to those adopted here 

have actually been observed32 as well as to make reference to some works which show 

that in stem cells more genes are usually active than in differentiated ones, albeit at a 

lower level25,26. Since this entails a smaller number of copies of the key molecules (say, 

m-RNA) per cell, and since the relative role of fluctuations is higher when the number 

of exemplars is lower, this indicates that noise can indeed be higher in stem cells than in 

differentiated one. It is also particularly interesting to observe that it has recently been 

reported3,26,27 that the state of gene expression levels of (at least some) stem cells can be 

described as slowly itinerating among several quasi-stable states, a description which 

fits that of a TES. 

The deterministic differentiation processes which are observed e.g. in embryo 

growth require that the threshold of a cell can change when needed. It is natural to 

suppose that the threshold itself is under genetic control, so that it can be modified when 

appropriate.  Among the various mechanisms, which may be involved in such control, 

let us mention that i) the folding/unfolding of chromatin can modify the level of noise of 

many genes33 and ii) the production of miRNA can silence genes which are expressed at 

low levels, thereby making expression noise vanish34. These two mechanisms can 

suppress noise around the inactive state of the genes. Other mechanisms can be at work 

to stabilize the active state, for example by producing more copies of m-RNA per unit 
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time35, by reducing the degradation rate of the proteins or by using buffer circuits to 

keep constant nonzero activation values34. 

On the theoretical side, there are several aspects that are worth exploring, 

including those concerning the generality of our results. The general picture of the cell 

as a dynamical system, and the idea that differentiated cells are more constrained in 

their wandering in phase space can be applied also to other models of gene and cell 

dynamics, and the question can be raised concerning the possibility of obtaining similar 

results also with these other gene network models.  

We have modelled here only a single cell, lumping the effect of the other 

neighbouring cells in a "signal" which sets the value of a particular gene; it would be 

interesting to explore along these lines also the role of the interactions among 

communicating cells in differentiation. 

Other research directions include the use of variations of the classical RBN model, 

motivated by increasing knowledge of the actual properties of biological systems (like 

e.g. scale-free networks, modular networks, different updating schemes, three-valued 

models, etc.)  

Let us finally remark that the availability of sophisticated system-level models 

like this can lead to a deeper understanding of the process and can provide impulse to 

the experiments by suggesting testable hypotheses, in particular those concerning the 

importance of controlling the noise level in differentiation. 

Methods Summary 

The simulations concerning RBNs were made using a software developed in house, 

written in C++. Different network sizes were tested, and most of the results refer to 
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nodes with 100 networks (a few smaller networks with 10 and 20 nodes were also 

simulated, as well as some larger ones with 200 nodes). 

Except for the 10-node and 20-node networks, exhaustive testing of the possible 

initial conditions is impossible, so in networks of 100 or more nodes attractors were 

found starting by 10.000 randomly chosen initial conditions. The search was performed 

with an algorithm able to find attractors with periods not larger than 500 time steps (and 

a maximum transient of 1000 steps). It turns out that these search parameters allow one 

to find an attractor for all the initial conditions in about 99% of the random networks.  

The transition graph between different attractors was obtained by perturbing 

(independently) each node of each state of each attractor. For each perturbation the new 

attractor was found, thereby determining the weights of the links of the attractor 

transition graph (see Supplementary Fig. 2)  

The search for TESs was made using a software developed in house, written in 

C++. The algorithm was based on the search for the strongly connected components of 

the attractor transition graph (taking into account the level of the threshold). For each 

strongly connected component it was then checked whether it actually entrapped the 

system, a necessary condition for it to be a TES. 

The results concerning the switches have been obtained as follows, starting from 

critical RBNs with 100 nodes. In order to describe cells with the same genome, i. e. the 

same structure of the RBN, which can evolve to different fates we limited our analysis 

to networks with more than one switch and where there are at least two switches leading 

to different asymptotic states. Starting from TES0 we searched for a switch and, when 

we found one, we fixed its value and grew up the threshold to obtain a TESx>0 

composed by a smaller number of attractors. Then we repeated the procedure starting 

from the newly found TESx>0 to find a TESx>y with an even smaller number of 
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attractors, until we found a single-TES (i.e. a fully differentiated cell). In this way we 

explored just one of the possible paths, only a tree branch, so in order to obtain a 

complete picture of the possible fates we iterated the procedure for all the branches of 

the root (the initial multi-TES0) and all possible sub-branches. Eventually we found all 

the possible system fates, which can be represented e.g. as in Fig. 2. 
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Legends to Figures 

Figure 1 | TESs and stochastic differentiation. As the threshold θ is 

increased (from left to right) one sees that the initial TES0, which comprises in 

this case all the attractors, breaks into a set of smaller disjoint TESs, which 

describe more differentiated cells. As θ is further increased the remaining multi-

TESs break into single-TESs, which describe fully differentiated cells. The 

arrows show some transitions: the fate of a cell described by a multi-TES (e.g. 

the initial one) depends upon the particular attractor where it is found when the 

threshold is increased, and this happens at random. Only some transitions are 

shown. 

Figure 2 | a case of deterministic differentiation: each box represents a TESθ 

while circles represent attractors. Arrows indicate possible paths of 

differentiation; labels on arrows denote both the number of the node that acts as 

a switch and whether it is effective when set to 1 (A) or to 0 (S). The details are 

described in the Methods summary section. 

 

Figure 3 | Yamanaka-like in silico experiment: we take an initial network 

whose TES0 (left most graph) represents the totipotent stem cell. By increasing 

the threshold value we reach a situation where there is a single-TES, which 

represents a fully differentiated state (centre). In this state, we permanently 
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modify the value of a gene fixing it to 1. We have found some cases where this 

permanent perturbation leads the system, without changing the threshold, to a 

multi-TES, as shown above (rightmost graph). This is not in contradiction with 

what has been observed elsewhere, since by fixing the value of a gene we have 

actually modified the network itself. 


