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Mathematical chromatography deciphers the
molecular fingerprints of dissolved organic
matter†

Urban J. Wünsch *‡a and Jeffrey A. Hawkes b

High-resolution mass spectrometry (HRMS) elucidates the molecular composition of dissolved organic

matter (DOM) through the unequivocal assignment of molecular formulas. When HRMS is used as a

detector coupled to high performance liquid chromatography (HPLC), the molecular fingerprints of DOM

are further augmented. However, the identification of eluting compounds remains impossible when DOM

chromatograms consist of unresolved humps. Here, we utilized the concept of mathematical chromato-

graphy to achieve information reduction and feature extraction. Parallel Factor Analysis (PARAFAC) was

applied to a dataset describing the reverse-phase separation of DOM in headwater streams located in

southeast Sweden. A dataset consisting of 1355 molecular formulas and 7178 mass spectra was reduced

to five components that described 96.89% of the data. Each component summarized the distinct chro-

matographic elution of molecular formulas with different polarity. Component scores represented the

abundance of the identified HPLC features in each sample. Using this chemometric approach allowed the

identification of common patterns in HPLC–HRMS datasets by reducing thousands of mass spectra to

only a few statistical components. Unlike in principal component analysis (PCA), components closely fol-

lowed the analytical principles of HPLC–HRMS and therefore represented more realistic pools of DOM.

This approach provides a wealth of new opportunities for unravelling the composition of complex mix-

tures in natural and engineered systems.

Introduction

Dissolved Organic Matter (DOM) is a ubiquitous, reactive pool
of organic compounds that ultimately originates from terres-
trial or aquatic plant matter.1,2 Prior to its remineralization,
DOM is subjected to continuous reactions over timescales of
days to millennia.3 This reaction cascade creates an extremely
diverse mixture of dilute compounds. Determining the compo-
sition of DOM at any given time presents a significant
challenge.4,5 Among the array of analytical techniques used to
fingerprint DOM, high-resolution mass spectrometry (HRMS)
is generally considered to be the most advanced with regard to
specificity and molecular insight.6,7

In direct infusion mode, hundreds of mass spectral transi-
ents are collected and averaged, routinely generating more
than 106 data points consisting of 103 to 104 molecular for-
mulas. Since each molecular formula represents an unknown
number of structural isomers, the true complexity far exceeds
the observed size of the dataset.8,9 This complexity presents a
significant barrier in the interpretation of molecular formula
fingerprints, as it is unclear to what extent a formula rep-
resents a single compound or different isomers. High perform-
ance liquid chromatography (HPLC) fractionation offers a
promising alternative to direct infusion HRMS since it phys-
ically separates DOM prior to detection. After fractionation,
the complexity of each obtained mass spectrum decreases and
the interpretation may be simplified, although the smearing of
isomeric mixtures throughout the elution demonstrates that
the mass spectral peaks are not isomerically pure.10–13 While
manual fraction collection is labour-intensive, the online coup-
ling of HPLC and HRMS fully automates the measurement
procedures.14,15

Compared to direct infusion HRMS, the formulaic complex-
ity of HPLC–HRMS datasets increases by orders of magnitude.
For each environmental sample, hundreds of different mass
spectra are collected, increasing the total number of assigned
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formulas.14,16,17 This additional information aids the charac-
terization of DOM, but simultaneously complicates the extrac-
tion of meaningful information. HPLC–HRMS peaks have
lower signal-to-noise ratios than the traditional direct infusion
method as limited signal averaging occurs. Since chromato-
grams of DOM represent unresolved humps, the abundance of
single analytes cannot easily be deduced.13,18 Instead, complex
mass spectra in broadly eluting fractions must be analysed.
However, the visual analysis of raw data is overburdened by
the large number of spectra, and statistical analyses capable of
extracting information from direct infusion datasets (such as
principal component analysis) require unfolding of the multi-
dimensional data. These analyses are typically conducted in
statistical programming environments such as R or MATLAB
using built-in functions and user-built scripts. As of the publi-
cation of this article, community-driven software only covers
molecular formula assignment and basic exploration of var-
iance for direct-infusion data.19,20 To fully exploit the potential
of HPLC–HRMS, such tools could be expanded upon to
include data analysis routines that isolate systematic variation
from HPLC–HRMS datasets.

Contrary to direct infusion, HPLC–HRMS analyses generate
three-dimensional datasets that can benefit from tensor rank
decompositions through models such as parallel factor ana-
lysis (PARAFAC).21,22 These models decompose the raw data
into a set of terms that, when multiplied together and
summed up, describe the systematic variability in the dataset.
PARAFAC has been widely applied in DOM research to dis-
tinguish between different fluorescence spectra by fitting a set
of excitation and emission spectra to fluorescence landscapes.
In fluorescence applications, PARAFAC is often able to account
for more than 99% of the raw data and is thus able to reduce
hundreds of fluorescence matrices to typically less than six
components.23 Besides information on fluorescence spectra,
the component abundances are commonly used to distinguish
water masses or elucidate the biogeochemistry of DOM.24,25

The PARAFAC model assumes rigidly aligned data and
linear detector responses and is capable of distinguishing
between highly similar analyte spectra. PARAFAC thus natu-
rally follows the analytical principles of HPLC–HRMS and can
extract chemically meaningful information under ideal con-
ditions. Consequently, Bro et al. (2010) have coined the phrase
“mathematical chromatography” for data analysis approaches
that isolate analyte information from complex spectra.26 In
addition to spectral decomposition, such approaches also
allow rigorous testing of data quality. While difficult to notice
in raw data, artefacts caused by retention time shifts, or matrix
effects in the ion source may be spotted more easily during
PARAFAC modelling.27 Despite this, visual analyses of in silico
fractions, determination of bulk dissimilarities prior to cluster-
ing, and principal component analysis of unfolded datasets
are the dominant data reduction strategies to date.14–16,28,29

The aim of our study was to achieve information reduction
and feature extraction in HPLC–HRMS by three-way analysis.
PARAFAC was applied to a previously published reverse-phase
separation dataset describing the DOM composition of head-

water streams in southeast Sweden.28 Once the validity of the
identified statistical model was confirmed, the goal was to
chemically evaluate the isolated features and relate shifts in
their abundance to geochemical parameters.

Materials and procedures
Sample collection and preparation

Samples were collected and processed as described pre-
viously.28 Briefly, 74 randomly selected forested headwater
streams in southeast Sweden were sampled in autumn 2016.
All samples were stored unfiltered in the dark at 4 °C for
approximately five months after sampling. The long-term
storage of samples likely affected the sample composition,
removing more labile and chemically reactive compounds and
leaving the more stable DOM in solution. On the day of
measurements, specific volumes of samples were transferred
to 2 mL Eppendorf vials so that 11.25 µg dissolved organic
carbon (DOC) was present in each sample vial, while 2 mL of
blanks were transferred. The water in samples and blanks was
subsequently removed by vacuum evaporation at 45 °C, after
which samples were reconstituted in 150 µL 1% (v/v) formic
acid to a final concentration of 75 mg L−1 DOC.

Reverse-phase liquid chromatography

Reverse-phase chromatography separations were performed on
an Agilent 1100 series instrument with an Agilent PLRP-S
series column (150 × 1 mm, 3 µm bed size, 100 Å pore size).
Solvent A (0.1% formic acid, 0.05% ammonia, and 5% aceto-
nitrile) was pumped at a flow rate of 100 µL min−1 and 80 µL
of sample were injected for each sample. The elution of DOM
was achieved through a step-wise increase in concentration of
solvent B (100% acetonitrile) from zero initially, followed by
20%, and ending in >45% solvent B (Fig. S1†). This step-wise
elution leads to three broad humps of elution: poorly retained
compounds, compounds eluted with 20% acetonitrile, and
compounds eluted with 45% acetonitrile. This strategy
increases signal to noise ratio compared with a gradual gradi-
ent elution. Note that there is a large time delay between
solvent composition change and elution, due to dead volume.

Mass spectrometry detection was carried out with an
Orbitrap LTQ-Velos-Pro (Thermo Scientific, Germany) with
electrospray ionization (ESI, negative mode) as ion source.
Transient ions were collected in the range of m/z 150–1000 at
an instrumental resolving power set to 105. An external cali-
bration with the manufacturer’s calibration mixture was fol-
lowed by an internal calibration using six ubiquitous ions in
the range of m/z 251–493. Further details on the chromato-
graphic method and mass spectrometric detection are given
elsewhere.14,28

Data processing

Vendor software was used to produce centroided m/z data for
each transient, and transients were filtered for noise after con-
sidering peaks with mass defect 0.6–0.8 as noise and removing
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all peaks with intensity lower than the mean + three standard
deviations of these peak intensities. Molecular formulas were
assigned within the range C4–40, H4–80, O1–40, N0–1, S0–1 in the
mass range m/z 170–700 using the closest formula in the
theoretical list for assignment. Additionally, assignments were
constricted to O/C 0–1, H/C 0.3–2, a double bond equivalent
minus oxygen less than or equal to 10, and a mass defect of
−0.1 to 0.3 (decimal after the nominal mass). Formulas
detected in process blanks were excluded from further ana-
lysis. Formulas were also removed from consideration in
samples if the intensity did not exceed the noise + ten stan-
dard deviations in at least ten sequential transients at some
point in the elution. This molecular formula assignment and
data treatment yielded 2052 unique molecular formulas.
Several sequential intensities (typically 3–4) were summed to a
chromatographic resolution of 0.1 min to favour analyte
signals over instrument noise and to reduce computational
requirements.

To yield a more quantitative dataset in subsequent analyses,
the DOC normalization was reversed by accounting for the
sample-specific volume that yielded the constant amount of
carbon dissolved for chromatographic analysis. For statistical
modelling, the retention time window of 5.0–22.9 min was
selected, yielding a preliminary dataset size of 74 samples ×
2052 molecular formulas × 180 retention times (Fig. 1). All
mass spectra were divided by a factor of 4.92 × 107 to avoid
machine precision errors during statistical modelling.

The median detection rate for formulas across all samples
and retention times was 31.2%. Since excessive missing
numbers can obstruct meaningful statistical modelling, for-
mulas that were detected in less than 10% of measurements

(including samples and retention times) were excluded from
further analysis (N = 661). An additional 36 molecular for-
mulas were removed from the dataset due to noticeably
unique chromatograms (Fig. S2†). As can be seen in Fig. S2,†
these formulas often constituted genuine analytes with narrow
chromatograms. However, as the goal was to analyse the domi-
nating patterns, these unique features were excluded. Overall,
outliers accounted for a total of 2.3% of the dataset (between
1.6 and 4% for different samples). Combined with the removal
of the 661 scarcely observed formulas, this led to the exclusion
of 697 molecular formulas. The remaining 1355 formulas rep-
resented 96.4 ± 0.4% of the total signal observed for samples
and 95.0 ± 3.1% of the total signal observed at different reten-
tion times (Fig. S3†).

Chromatographic sections with missing observations of at
least 2 min (20 observations or more) were set to zero while
leaving a gap of missing numbers of 0.7 min to each end of
the section. This aimed to reduce the amount of missing
observations by assuming that non-detects represent the true
absence of an ion. Every 2nd retention time (after t = 7 min)
was excluded, which reduced the chromatographic resolution
to 0.2 min between t = 7.0 and 22.9 min. Since DOM chromato-
grams are relatively broad, it was assumed that this step would
not lead to a systematic loss of information but would only
reduce computational expenses. Furthermore, all data above
retention times of 22.2 min was excluded since chromato-
grams often showed high, somewhat random variation. The
final modelled dataset size was therefore 74 × 1355 × 97
(samples × formulas × retention times). Fig. S4† visualizes the
quantitative impact of each of the data processing steps
detailed above.

Fig. 1 Summary of the polarity-dependant molecular composition of DOM in 74 headwater streams. (A) Chromatogram of assigned molecular
formula in all samples. The grey dashed line represents the gradient of Acetonitrile (ACN), F1–F4 represent the fractions summarized in C–F. (B) van
Krevelen diagram of assigned molecular formulas. The continuous coloured line in the centre represents the running weighted average molecular
composition at different retention times. (C–F) Intensities of molecular formulas in fractions F1–F4 across all samples. Data in C–F were sorted by
intensity (increasing) and low-intensity formulas may thus not be visible.
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Chemometric analysis

In traditional chromatography, peaks mostly consist of single
analytes and indicate the abundance of a chemical species. In
the case of DOM, chromatograms are broad and unresolved
since many chemical species with highly similar composition
elute simultaneously at any given time. Here, the aim was to
isolate groups of molecular formulas with indistinguishable
chromatographic elution profiles using PARAFAC. Under these
conditions, PARAFAC does not isolate single analyte peaks, but
rather isolates groups of analytes and isomers. In the follow-
ing, we use the term chromatographic feature to mean a non-
resolved peak, and reserve the word peak for true analyte
peaks (which are rare in DOM) or resolved mass spectrometry
peaks, which usually contain information from numerous
isomers with the same formula.9,13 The use of the term elution
profile or chromatographic feature of components or formulas
does not imply single analyte peaks, but always refers to
complex mixtures unless specifically stated otherwise.

All data processing and modelling was carried out using
PLS_Toolbox (v8.61, Eigenvector Research Inc.) in MATLAB
(v9.7, MathWorks Inc.). HPLC–HRMS signals were decom-
posed with the PARAFAC model into a set of trilinear terms
and residuals as follows:22

xijk ¼
XF

f¼1

aif bjf ckf þ eijk

i ¼ 1; . . . I; j ¼ 1; . . . J; k ¼ 1; . . .K

ð1Þ

xijk represents the jth molecular formula in the ith sample at
the kth retention time that is described with the proportional
abundance a of the fth component (also referred to as
“scores”), its formula loadings b and retention time loadings c.
The term eijk represents the unexplained residual variability of
the ith sample, the jth molecular formula and the kth retention
time. PARAFAC models were fit using the alternating least
squares (ALS) algorithm starting with random orthogonalized
numbers. ALS repeatedly assumes two of the three model para-
meters (e.g. a and b) as known and estimates the third (e.g. c).
In the next iteration, a different parameter is estimated by
assuming two other parameters as known. Once the model fit
between iterations does not improve beyond a set threshold
(here: 10−12), the model is assumed to have converged.
PARAFAC models were fit by constraining the terms a, b, and c
to nonnegative values. Each model was initialized 50 times
with orthogonalized random numbers and only the least
squares solution was further inspected. In combination with
the small convergence criterion, picking the best out of 50
solutions minimized the likelihood that the identified solution
was a local minimum instead of the global solution.

Models with two to nine components were considered;
each model’s core consistency and percentage of explained
variance was used as screening criteria to diagnose the likeli-
hood of overfitting and to assess improvement in model fit
with increasing component number.30 Subsequently, the
appropriateness of component elution profiles, randomness

of model residuals, and split-half validation was used to
further evaluate the robustness and validity of potential
models:22 A model is considered appropriate if it can be
obtained when only part of the dataset is given, its residuals
are mostly random, and elution profiles resemble plausible
chromatographic features.

As an alternative to PARAFAC, nonnegative matrix factoriz-
ation (multivariate curve resolution, MCR) models were fit to
individual sample chromatograms. MCR decomposes chroma-
togram x into f components, each with an elution profile c and
corresponding mass spectrum s as follows:31

xkj ¼
XF

f¼1

ckf sjf þ ejk

j ¼ 1; . . . J; k ¼ 1; . . .K

ð2Þ

In eqn (2), xkj represents the jth molecular formula at the kth

retention time. The part of xkj that the bilinear MCR model
does not explain is expressed in the error term ejk. MCR
models were fit using the ALS algorithm in PLS_Toolbox with
a convergence criterion of 10−6 (as explained above) and using
five nonnegative components for all 74 samples. Each model
was initialized with the five most dissimilar mass spectra
(based on Euclidean distances of normalized spectra) at
different retention times.

Results

Reverse-phase chromatograms of the 74 headwater stream
samples showed three major, unresolved features at approxi-
mately 5.5–9 min, 9–19 min, and 19–22.5 min (Fig. 1A), due to
the step-wise increase of acetonitrile in the mobile phase.
Within the chromatogram, a decrease in polarity (water :
octanol partitioning coefficient) from early to late elution was
observed (Fig. 1B). The weighted average molecular compo-
sition shifted steadily from O/C 0.70 and H/C 1.00 at 5 min to
O/C 0.36 and H/C 1.23 at 22.9 min (Fig. 1B, coloured line).
These observations were supported by the formula compo-
sition in four arbitrarily defined in silico fractions (Fig. 1C–F).

Exploratory phase and model validation

The three broad elution humps hinder the distinction of co-
eluting chromatographic features by in silico fractionation.
Instead, we aimed to isolate features in the HPLC chromato-
grams using the three-way PARAFAC model. Two to nine
PARAFAC components explained 89.4–97.7% of the data and
the corresponding models had a steadily decreasing core con-
sistency between 99% (two components) and 3% (nine com-
ponents, Fig. S5†). All models covered the elution observed in
Fig. 1 and always contained components with multiple broad
elution features at different retention times. With an increas-
ing number of components, some features separated into
different components, while others remained unresolvable
(Fig. S6†). Starting at seven components, multiple components
with highly correlated retention time loadings were observed.
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As this indicates overfitting, only up to six components were
considered.

From a viewpoint of chromatographic separation and func-
tional grouping of molecular formulas, it was unclear which
model was appropriate. Split-half validations were carried out
with four- to six-component models since these models
showed good feature distinction and little evidence of overfit-
ting. The split-half validation was successful for the four- and
five-, but not the six-component model (Fig. S7†). This was
likely due to the high degree of correlation between some of
the features in the six-component model. Ultimately, the five-
component model was therefore chosen to approximate the
HPLC–HRMS dataset.

The five-component model explained 96.89% of the dataset
and had a core consistency of 56.9%. All samples had similar
levels of residuals, i.e. no outlier samples could be identified.
In general, the linear combination of components reproduced
the chromatographic elution profiles and mass spectra well
(Fig. 2 depicts some examples). However, residuals increased
sharply with decreasing signal strength. This meant that the
model could not reproduce less abundant signals as well as
the dominant ones (Fig. S8†).

For a dataset with over 9 × 106 elements, a detailed residual
analysis is challenging. Initially, data and modelled data were
compared for many randomly selected molecular formula
chromatograms (Fig. S9† shows some examples). This resulted
in the identification of several issues. First, false positive abun-
dances were identified by counting the cases in which
PARAFAC estimated a non-zero chromatogram, but the data

only contained zeros or missing observations (Fig. 3A). This
seemingly false estimation was observed for 7.7% of all
formula chromatograms, but only amounted to 0.12% of the
data intensity (Table 1). Formulas with this type of modelling
error were generally estimated to have a low signal and were
found to have properties of typical low-abundance DOM
(Fig. S10A and F†).

Fig. 3 Examples of model errors. (A) Undetected formulas are esti-
mated by PARAFAC with non-zero chromatograms. This accounted for
3.9% of the model error; 7.7% of chromatograms showed such residuals.
(B) PARAFAC overestimates the ion in question. Together, under- and
overestimation accounted for 7.1% of the modelling error and were
observed in 7.3% of all chromatograms. (C) Randomly noisy signals
cause large residual variance. Such residuals were observed in 24% of
chromatograms and the residuals accounted for 25.7% of the modelling
error.

Table 1 Classification and quantification of modelling error. With the
96.89% of data explained by the five-component PARAFAC model, the
five categories of residuals add to 100%. A detailed description of the
classification is given in the section “Materials and procedures”

Group
%
chromatograms

%
data

% modelling
error

Underestimated 2.5 0.12 3.9
Overestimated 4.8 0.10 3.2
False positive 7.7 0.12 3.9
Random 23.9 0.8 25.7
Other/uncategorized 61.0 2.0 63.3

Fig. 2 Comparison of measured and modelled data (sample location
Lat/Lon: 57.133471°N/15.533230°W). (A) Measured vs. modelled chroma-
togram (sum of all formulas). Coloured lines refer to the intensities of
five PARAFAC components. (B–D): Measured vs. modelled molecular
formulas in three different mass-to-charge ranges (identical intensity
scale). The coloured lines in (A) and bars in (B) indicate the contribution
of each component to the total modelled signal.
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Secondly, systematic over- and underestimations were
observed. We counted overestimations as chromatograms in
which more than 80% of residuals were negative (Fig. 3B). We
acknowledge that the first error set ‘false positive abundances’
may be a subset of ‘overestimations’, where the signal is below
the detection limit. Conversely, underestimations were
counted as chromatograms in which more than 80% of
residuals were positive. Underestimated chromatograms pri-
marily occurred for formulas with m/z <300 (Fig. S10B and G†),
and H/C < 1.4, O/C < 0.7, whereas formulas with narrow fea-
tures at the edges of the chromatograms were often overesti-
mated. Therefore, overestimations almost exclusively occurred
for formulas with H/C 1.3–1.7 and O/C 0.2–0.35, or H/C 0.6–1.2
and O/C 0.7–0.85 (Fig. S10C and H†). Combined, 7.33% of all
formula chromatograms were either over- or underestimated
and the corresponding residuals accounted for 7.2% of the
modelling error (Table 1).

Lastly, we observed random residuals in many cases
(Fig. 3C). Residuals were classified as random when they did
not fall into any other category, their absolute median was
<0.001, and the number of positive and negative residuals
each accounted for between 40 and 60% of the raw chromato-
grams (not counting zeros or missing observations). Since
detector noise occurred presumably randomly, PARAFAC mod-
elled smooth chromatograms and the random noise was left
unexplained. This type of model residual amounted to 0.8% of
the overall data, 25.7% of the modelling error, and was
observed in 23.9% of chromatograms (Table 1). Moreover,
random residuals were found for formulas across almost the
entirety of the covered compositional space (Fig. S10D and I†).

The model error stemming from random noise, false esti-
mations, and over- and underestimations accounted for 1.4%
of the data. Together with the 96.9% of data explained by the
five-component PARAFAC model, 98% of the data was
accounted for. The remaining two percent of unmodelled data
likely belonged to one of the categories above but the model
residuals could not be easily classified with the selected
criteria.

Component properties

The loadings of the validated five-component model are
shown in Fig. 4. Most components had strongly overlapping
chromatographic profiles with retention time maxima at 5.7,
11, 12.2, 20.6, and 21.6 minutes. Each component will hence-
forth be referred to by these maxima (e.g. C5.7). Note that—in
contrast to in silico fractionation14,15,28—PARAFAC dis-
tinguishes between signals arising from overlapping features
and separates their contributions into components. Three of
the five components (C11, C12.2 and C21.6) had skewed, but
almost unimodal elution profiles, while C5.7, and C20.6 showed
multiple chromatographic features (Fig. 4 top row). All five
components were broad, and by definition contained a single
mass spectrum with varying abundance over the retention.
This demonstrates the high isomeric diversity of these natural
mixtures, but suggests that different isomers behave similarly
across geographical gradients.

Each component covered a different compositional space in
the van Krevelen diagram (Fig. 4, bottom panel). The
weighted-average (wa) polarity decreased with increasing reten-
tion time maximum from O/Cwa and H/Cwa 0.72 and 0.97 for

Fig. 4 Loadings of the PARAFAC model describing the reverse-phase HPLC–HRMS data. Top row: Retention time loadings (black line). The aceto-
nitrile gradient is provided for reference (grey line). Middle row: Molecular formula loadings as mass-to-charge-ratio distribution. Bottom row:
Molecular formula loadings visualized in the van Krevelen space. Molecular formulas were ranked by their loading prior to visualization.
Components are ordered left-to-right by increasing retention time maximum.
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C5.7 to 0.34 and 1.30 for C21.6. No direct connection between
polarity and mass-to-charge ratio (m/z) or double bond equi-
valent (DBE) was apparent (Table 2). However, mass spectra of

components eluting at similar retention times were generally
most similar (Fig. S11†). The chemodiversity (number of mole-
cular formulas with loadings larger than zero) differed only
slightly between the five components (Table 2). From the mole-
cular perspective, the dominant molecular formulas were
usually present in several components (Fig. S12†), highlighting
the isomeric diversity hidden behind each formula,13,32 and
revealing for the first time that isomers can be grouped by
behaviour across environments.

The scores of components reflect the abundance of the five
different chromatographic features per sample. Connections
between changes in the abundance of each feature and biogeo-
chemical parameters were explored with a covariance analysis
(Fig. 5A). All components correlated positively with total
organic carbon and metals such as Pb, As, Al, V, and Fe (except
for Fe and C21.6). On the other hand, inverse correlations were
observed with pH, SO4, and Ca abundances. A second analysis
was carried out with relative component scores (score divided
by the sum of scores in a sample), where the score of each
component corresponds to its contribution to the overall
sample composition (Fig. 5B). The covariance of components
C5.7 and C11 with TOC, Pb, As, and Fe remained largely
unchanged, but were weaker. In contrast, C14.2, C20.6, and C21.6

showed a tendency to correlate inversely with previously
directly correlated variables (and vice versa).

Discussion

The decomposition of multivariate datasets with PARAFAC
occurs under the assumption that the analysed dataset is low-
rank trilinear.22,33 First, this implies that the HPLC–HRMS
data can be described with a reasonable number of com-
ponents. Additionally, the mass spectrum and chromatogram
of an individual analyte should only vary in concentration. In
complex mixtures, this requirement expands to groups of
environmentally or analytically indistinguishable analytes.
Lastly, the total intensity of a signal – except for random detec-
tor noise – should equal the sum of all its constituents. The
compounds that constitute a molecular formula are expected
to ionize with a near constant efficiency, irrespective of the
samples they occur in or retention time at which they elute. In
the following section, we first evaluate whether these key
assumptions were met before further discussing the modelling
outcome.

Validity of the PARAFAC model

Under ideal conditions, electrospray-ionization HRMS
responds linearly to changing analyte concentrations and a
chromatographic separation occurs in a reproducible
fashion.34 However, during the analysis of complex samples
such as those containing DOM, numerous factors can intro-
duce artefacts and prohibit ideal conditions for analysis.35

Compared to direct infusion measurements, matrix effects
may play a more important role in HPLC–HRMS analyses. As
analytes may coelute with interfering species, ionization

Table 2 Properties of PARAFAC components. m/z: mass-to-charge
ratio, O/C: oxygen-to-carbon ratio, H/C: hydrogen-to-carbon ratio,
DBE: double bond equivalent. wa: weighted average (weight = com-
ponent loadings), %var: component contribution to model (does not
add to 100 since PARAFAC components are not orthogonal). Ci:
Chemodiversity (number of formulas with loading >0)

Comp. m/zwa H/Cwa O/Cwa DBEwa %var. Ci

C5.7 373.3 1.0 0.7 9.0 3.6 789
C11 366.5 1.1 0.6 8.4 23.4 759
C12.2 349.5 1.2 0.5 7.6 41.1 776
C20.6 378.0 1.3 0.4 8.1 34.2 794
C21.6 386.4 1.3 0.3 8.2 22.4 803

Fig. 5 Correlation matrix showing covariance between PARAFAC com-
ponents and environmental variables. (A) Proportional abundances
(“scores”) of PARAFAC components. (B) Relative PARAFAC scores (score
divided by sum of scores in each sample). Non-significant correlations
(α = 0.05) are excluded. The average polarity of molecular formulas
summarized in the PARAFAC components increases from right to left
(indicated by arrow). The visualized correlation coefficient is Spearman’s
ρ. MAT: Mean annual temperature; TOC: Total organic carbon.
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efficiencies may change over the course of an LC separation.
Such matrix effects can introduce non-linearity, increase noise,
or lead to the complete loss of an analyte via ionization sup-
pression.36 Because samples were not desalted prior to ana-
lysis in our study, complexing metals that retain on the
column with DOM (like iron and copper) could also interfere
with the ESI spray in a non-consistent manner throughout the
chromatogram.37,38 The variation in solvent composition and
pH is also likely to affect desolvation and ionisation of car-
boxylic acids.39–42 Furthermore, large organic polymers (prob-
ably derived from lignin) are not detected by ESI-MS, and may
further interfere with desolvation or ionisation.29

Chromatographic misalignments can also prevent a sys-
tematic description of HPLC–HRMS data with PARAFAC.21

When the same chemical species in two samples elutes at
different retention times, a single PARAFAC component
cannot account for the abundance of the analyte. Changes in
analyte retention may be due to the imperfect replication of
the elution program between two injections, changes in the
stationary phase properties over multiple injections, or small
changes in the temperature conditions. During statistical mod-
elling, misalignments may contribute to the modelling error
in mild cases. In more severe cases, the model may describe
the misalignments directly by fitting components with highly
similar mass spectra and slightly shifted elution profiles. The
loadings of the five-component PARAFAC model suggest that
the model was not directly impacted by chromatographic misa-
lignments since all components described visibly different
elution phenomena. However, some mild cases of misaligned
chromatograms may have contributed to the model residuals
discussed below.

A relatively large degree of noise in the detection of individ-
ual ions suggests that the stability of the ESI was low at times.
In the case of abundant ions, PARAFAC was able to distinguish
random noise from the systematic underlying variation of ana-
lytes (Fig. 3C). In our residual analysis (Fig. 3 and Table 1),
purely random residuals accounted for the largest identifiable
proportion of unexplained variance, and random modelling
error occurred in almost all molecular fractions of DOM. This
indicates that random noise is an important source of impreci-
sion in HPLC–HRMS analyses. Linear models such as
PARAFAC thus help to isolate the systematic variation in noisy
HPLC–HRMS chromatograms.

The estimation of less abundant analytes with PARAFAC
was more challenging. In approximately 7.7% of all formula
chromatograms, the model estimated the ion in question to be
present while not a single detection was recorded (Fig. 3A).
These ions may have either been present but not detected by
the instrument, or absent and falsely estimated by PARAFAC.
These explanations point towards matrix effects in the ion
source or modelling with too few components, respectively. At
present, it is difficult to assess which of the two explanations
accounts for seemingly false-positive PARAFAC estimations.

In this context, it should be noted that formula chromato-
grams containing zeros do not indicate a true absence of an
ion, but only failure of the signal to exceed the signal-to-noise

threshold. In agreement with this, the group of formulas that
were categorized to be false-positive present often had pro-
perties typically observed for low-abundance DOM (e.g. occur-
rence at the edges of the mass spectrum, Fig. S10A and F†). A
lower signal-to-noise cut-off would allow better insight into the
less abundant ions but would also significantly increase
dataset size and computational expense.43 Here, we opted
against adjusting the data processing routine as the issue
accounted for a relatively small proportion of the modelling
error.

As noted above, interfering species can adversely affect the
linear detector-response in HPLC–HRMS. Estimating the
impact of non-linearity has been difficult due to the complex
nature of DOM mass spectra. In this context, PARAFAC offers a
unique opportunity for a more quantitative assessment. Since
PARAFAC describes the data with a linear combination of rigid
mass spectra and chromatograms, non-linearity cannot be
accommodated (Fig. 3B).44 Non-linearity due to matrix effects
can be identified as systematic deviations of the data from the
established model.

Here, we observed that approximately 2.5% of chromato-
grams were systematically underestimated while 4.8% were
overestimated. However, both types of modelling error only
accounted for 0.22% of the data or 7.2% of the modelling
error (Table 1). This demonstrates that non-linear signals are
in fact encountered in HPLC–HRMS, but only a small pro-
portion of the data seems affected. It was noteworthy that over-
and underestimations were compositionally more selective
than other types of modelling errors. Overestimated formulas
mostly either eluted as a sharp feature at the beginning or end
of each run (Fig. S10C†). Difficulty of accounting for the behav-
iour these relatively narrow and sharp features may in part be
due to retention time misalignments (as discussed above).27 In
contrast, underestimated formulas had distinctly low m/z
values (<300). This suggests that matrix effects leading to
underestimations are especially important for ions with low
m/z.

While the identification of rare or uniquely behaving for-
mulas was not the primary goal of this study, the detailed ana-
lysis of model residuals may in future also be used for the
purpose of studying emerging contaminants or metabolomic
targets. There is an increasing interest in such compounds
that exist as part of DOM.45 Since the relevant molecular for-
mulas are known, our approach could be modified to target
specific formulas and isomers. A PARAFAC model would
describe their dynamics well if these specific compounds
behave like the remainder of DOM. In contrast, a detailed ana-
lysis of model residuals may reveal meaningful information if
the behaviour of targeted compounds differs significantly
from the complex, broadly eluting background.

Overall, the five-component PARAFAC model (Fig. 4) cap-
tured the patterns in much of the modelled dataset, (Fig. 2
and S9†) and was found to represent random halves as well as
the overall dataset (Fig. S7†). A linear combination of five com-
ponents explained almost 97% of the data. This represents a
significant reduction of complexity, and – since additional fea-
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tures were isolated from a broadly overlapping bulk chromato-
gram – also a step towards enhanced information-recovery in
HPLC–HRMS analysis of complex mixtures.

Alternatives to PARAFAC

In cases where HPLC–HRMS datasets do not follow the
assumptions behind the PARAFAC model, alternative
approaches to data reduction and feature isolation may be
more appropriate. A particularly popular approach is nonnega-
tive matrix factorization (also referred to as multivariate curve
resolution, MCR).31 MCR is a bilinear model that can produce
results that compare well to PARAFAC solutions.46 Alternative,
more constrained approaches, such as principal component
analysis (PCA) have been widely applied to mass spectra of
DOM to relate changes in DOM composition to environmental
processes.28,47–49

Here, we observed a good agreement between MCR models
describing individual samples and the global PARAFAC model
(Fig. S13†). MCR might be particularly valuable when HPLC–
HRMS datasets consist of too few samples for conventional
PARAFAC. Models can be fit to each individual sample, as
MCR does not require three-dimensional data. This allows the
identification of elution patters in individual samples (as seen
in Fig. S13†).50 Conversely, when its assumptions are upheld,
the application of PARAFAC is simpler when three-way data are
analysed. Unsurprisingly, three-way PARAFAC is less suscep-
tible to random detector noise than sample-by-sample bilinear
MCR (Fig. S13†). For an excellent discussion of sources of
model error in MCR and a detailed tutorial review, we refer the
reader to Tauler and Maeder (2009) and de Juan et al.
(2014).31,51

In cases where neither PARAFAC nor MCR deliver satisfying
results, PCA may be an alternative. PCA is a bilinear model
and thus requires unfolding of HPLC–HRMS data or sample-
by-sample modelling. PCA primarily explores deviation from
an average composition, which requires mean-centring and
scaling.52 Thus, component loadings differ from the initial raw
data, which can be a hurdle when users are more accustomed
to typical mass spectra. Moreover, PCA components are orthog-
onal and may thus have loadings that do not necessarily follow
the natural structure of the underlying data.53 Many HRMS
studies of DOM have employed some type of data reduction
method that involves calculating pairwise sample distances
followed by multidimensional scaling into principle coordi-
nates. These methods usually require peak intensities to be
scaled to a normalised total value and also force trends into
orthogonal components, which may not be realistic in environ-
mental data. In contrast, MCR and PARAFAC can account for
the high similarity between measured phenomena, follow the
relevant analytical principles, and do not require much pre-
processing.22,31

One disadvantage of all above-mentioned approaches is
that they focus on describing the chromatographic elution of
analytes. In contrast, most applications of HPLC–HRMS
intend to relate the composition of complex samples to
environmental processes. Such environmental processes may

coincide with the modelled polarity, but it is possible that the
formulas in an identified polarity fraction (“component”) are
controlled by entirely different environmental processes. Thus,
relating the sample composition (as identified by PARAFAC) to
environmental processes may not lead to satisfying results.
Regression methods, such as N-way partial least squares
(N-PLS) may help to identify the chemical fractions that are
controlled by certain environmental processes.54 PLS-based
methods are already common tools in disciplines such as
metabolomics,55 but have not been employed in HPLC–HRMS
analysis of DOM to our knowledge.

Polarity distribution of DOM across Swedish headwater
streams

Each of the five PARAFAC components provided insights on
the abundance and chemical complexity of different molecular
fractions. In HPLC–HRMS, chromatographic separation is the
main source of variation. Therefore, each PARAFAC component
groups molecular formulas that co-eluted as a response to the
increasing acetonitrile concentration in the mobile phase.

A HPLC separation of DOM prior to mass spectrometric
analysis has been utilized as a method to decrease isomeric
complexity in many studies.10,12,14–16,28,32 As chromatograms
routinely consist of broad humps, a separation of DOM into its
analytes remains unachieved. In this regard, chemometric
approaches such as PARAFAC serve to maximise feature dis-
tinction by utilizing the collected spectral information to
identify patterns. Despite these improvements, the com-
ponents in our study did not represent individual compounds
but rather groups of compounds with identical chromato-
graphic elution. To further improve the physical separation of
DOM compounds, multidimensional chromatography is
necessary. Sequential dimensions of chromatography offer
superior separation and improve the identification of mole-
cular species.12,17 In cases where single analyte peaks are
obtainable, a statistical decomposition would no longer be
required since pure analyte spectra are already extracted.
However, under the scenario of co-elution in multi-dimen-
sional chromatography, multi-way modelling would still
provide an advantageous information-reduction and -extrac-
tion strategy.

By comparing the loadings of each of the five PARAFAC
components, an estimate of contribution from distinguishable
groups of isomers from within the complexity of each mole-
cular formula can be obtained (Fig. 2). The three examples
shown in Fig. 2 demonstrate that some molecular formulas
were described by one or two components, but others were
split more evenly between the majority of the six components.
Higher mass formulas tend to be more hydrophobic and were
less often detected in the first component (C5.7). The highest
abundance ions were more often detected above the noise
level and needed more components to be described. For these
reasons, there was a slight tendency for higher mass ions to
require less components, and higher abundance ions to
require more components to be described by the model
(Fig. S12†). Even after the application of PARAFAC, isomers
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were not fully resolved. Each PARAFAC component had rela-
tively broad elution profiles, most likely caused by a range of
isomers with highly similar polarity and behaviour.

The composition of DOM across 74 headwater streams in
southeast Sweden showed that the five organic matter fractions
mainly tracked the abundance of total organic carbon itself,
but also many metals (Pb, V, As, Al, and Fe). Conversely, pH
and sulphate weakly correlated with decreasing amounts of
organic matter. While the strong positive correlation between
total organic carbon and all its polarity fractions is expected,
the relative contribution of different fractions responded
differently. Overall, the weak correlations between relative
scores and biogeochemical variables indicated that the compo-
sition of DOM did not vary drastically between the 74 streams,
as noted previously.28 Only the two most polar fractions
tended to show increasing importance with total organic
carbon, and inversely correlated with changes in pH, sulphate,
and calcium. The strongest relationship of a component’s rela-
tive score with a measured geochemical parameter was the
most acidic and hydrophilic component, C5.7 with iron, which
is likely to have a close relationship with carboxylic acid rich
DOM in solution.

As noted above, a PARAFAC analysis of HPLC–HRMS data
itself does not necessarily identify fractions with common
environmental reactivity. The disconnect between HPLC-based
polarity fractions and environmental reactivity may explain the
weak correlations observed in Fig. 5 (bottom). In its current
form HPLC–HRMS is a valuable tool to extract more molecular
features from complex samples. To identify which of the (par-
tially) separated isomers are tied to environmental processes,
multiway regression models may ultimately be more promis-
ing. However, such approaches have not yet been explored for
DOM-type HPLC–HRMS datasets. In the present study, the low
degree of compositional variation would present a significant
challenge to regression models, since many formulas and
isomers were correlated in their abundance.

It was previously found in this sample set that there was a
relationship between higher molecular mass compounds and
mean annual temperature using principle coordinate analysis
(PCoA).28 No similar trend was found here using PARAFAC
component scores. The underlying assumptions of PARAFAC
and PCoA are fundamentally different, making a direct com-
parison difficult. However, since PARAFAC more closely follows
the analytical principles of HPLC–HRMS, trends found
between PARAFAC scores and geochemical parameters are
likely more robust than those found with PCoA.

During sample preparation, DOC was adjusted with the
goal of injecting a constant amount of carbon into the HPLC–
HRMS system. This common practice in DOM mass spec-
trometry aims to fill the detector trap (ion cyclotron resonance
or Orbitrap) with a consistent number of ions, typically 106, for
consistent mass accuracy and space-charge effects.56–58

Additionally, while the dynamic range of peak intensities
within DOM is enormous (spanning several orders of
magnitude43,59), the dynamic range of detectors is usually only
on the order of thousands. This means that sample concen-

trations, which spanned an order of magnitude in this sample
set, need to be normalised in order to observe a fair represen-
tation of ions. Because the scores obtained by PARAFAC are
theoretically quantitative, we scaled the results back to
environmental levels by multiplying them by the factor used to
concentrate the samples.

The resulting relationship between PARAFAC component
scores and bulk DOC concentrations was quite well explained
by a linear regression (sum of scores vs. DOC: R2 = 0.79, p <
0.001). However, the ratio of sum of scores to DOC decreased
with increasing DOC, indicating that an increasing proportion
of DOC at high concentrations was not ionisable and thus not
contributing to PARAFAC components (Fig. S14†). This corres-
ponds well with recent evidence of a coloured, high molecular
weight pool of DOM in terrestrial samples that does not ionise
by ESI.29 This pool of ESI-invisible, coloured pool of DOM is
gradually removed when DOC decreases across the aquatic
environment.60,61 For terrestrial DOM containing coloured,
ESI-invisible material, using DOC concentration to ensure
equal conditions in the detector trap may result in under-
filling of detector cells if automatic gain control is not avail-
able. Furthermore, the post hoc correlation of optically active
DOM with electrospray ionisable DOM may give misleading
results as the various pools do not necessarily overlap.62,63

Recent advances in multivariate data fusion provide the flex-
ible mathematical framework necessary to jointly analyse the
composition of DOM with different analytical tools.53

However, further work is required to determine the extent to
which DOM samples are ionised by techniques such as ESI, as
well as the extent to which DOM absorbs and fluoresces light,
in order to properly investigate the overlap and molecular
nature of these pools.

Our results indicate that the sum of modelled ions gener-
ally followed ionisable DOC concentrations. This was despite
the fact that not all assigned ions were modelled and that the
true quantity of non-ionisable species was unknown. The good
agreement between DOC and PARAFAC scores demonstrates
that HPLC–HRMS measurements provide compositional
insight that also relates to the abundance of ionisable DOC in
general.

Conclusion and future perspectives

A HPLC–HRMS dataset describing the polarity distribution of
DOM in 74 headwater streams in southeast Sweden was ana-
lysed with a multiway chemometric approach. Despite con-
siderable molecular diversity, only five PARAFAC components
described 96.89% of the dataset. The remaining variability was
due to a combination of matrix effects and measurement
noise. The statistical components isolated almost all ionisable
DOM into groups of isomers within molecular formulas that
co-eluted due to their highly similar polarity and co-varied
across the landscape in predictable patterns. It is quite
remarkable that only five components described almost all
data. The abundance of all components increased with total
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organic carbon and decreased with pH. On the other hand,
the relative contribution of low oxygen, saturated DOM
increased at lower pH and decreased for streams containing
higher total organic carbon and iron.

Overall, the integration of a chemometric approach greatly
simplified the analysis of HPLC–HRMS data. 7178 mass
spectra and 1355 formulas were reduced to a linear combi-
nation of only five components. Each of these components
summarized the information of all three measurement modes
(sample, formula, elution). Whereas in silico fractionation inte-
grates coeluting groups of molecular formulas, PARAFAC uti-
lized the spectral information to distinguish between them
and identified their contribution regardless of co-elution.
Future applications of HPLC–HRMS of complex samples may
improve based on PARAFAC decompositions. For example,
elution profiles may be optimized based on the elution profiles
of statistical components, rather than the more complex raw
mass spectra.

While the incorporation of a supervised chemometric model
such as PARAFAC introduces an additional data analysis step, it
provides superior information recovery and maximises the
potential of HPLC–HRMS analyses. Since PARAFAC follows key
analytical principles, its components are as interpretable as raw
data. The insight provided by the statistical model can be
related to the processes affecting DOM by relating component
scores to other geochemical and environmental information.

Data availability

All HPLC–HRMS data, geochemical sample parameters, and
model scores and loadings are available on Dryad (https://doi.
org/10.5061/dryad.nk98sf7pp) as comma-separated files. The
Dryad data submission does not include MATLAB scripts, but
contains the intermediate data products with which all results
can be recreated platform-independently. Please refer to the
usage notes of the Dryad data submission for further details.
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