OntoCAT — a simpler way to access ontology resources

Tomasz Adamusiak, Tony Burdett, K Joeri van der Velde, Niran Abeygunawardena, Despoina Antonakaki, Helen Parkinson, Morris A. Swertz

European Bioinformatics Institute, Cambridge, UK

Genomics Coordination Center, University Medical Center & University of Groningen, NL

Why yet another framework?

- Simple core of common ontology services
- Community platform for sharing ontology tools and applications
- Uniform interface to query local ontologies in OWL or OBO and public ontology repositories: BioPortal and OLS

	OLS	BioPortal	Swoogle	OntoCAT
Web services	SOAP	REST	REST	REST
Java API	Yes			Yes
Complexity (C)	16	31	19	13
Richness (R)	170	1363	1403	≥ 1533

Features

- Designed for ontology-driven applications
- Open source released under LGPLv3 license
- Cached results are returned much quicker
- Queries can be run in parallel to speed up searches even more

log R/C	1.0	1.6	1.9	2.1+	
OWL support		Yes	Yes	Yes	
OBO support	Yes	Yes		Yes	
Local ontologies				Yes	
Open source	Apache License	Apache License		LGPL v.3	
Comparison of available features between existing ontology resources					

Comparison of available features between existing ontology resources

Common workflow to integrate ontology resources

	Ontology		
getOntologies()	lists all ontologies available through a service		
getOntology()	returns an Ontology object		
	Term		
searchAll()	lists OntologyTerm objects matching keywords		
searchOntology()	searches a single ontology		
getTerm()	returns an OntologyTerm object		
getAnnotations()	returns all additional annotations on a term		
getSynonyms()	lists synonyms of a term (if available)		
getDefinitions()	lists definitions of a term (if available)		
	Hierarchy		
getRootTerms()	lists all root terms in an ontology		
getTermPath()	returns first path to ontology root		
getChildren()	returns immediate children of a term		
getParents()	returns immediate parents of a term		
getRelations()	lists term relations, e.g. partOf, derivesFrom		

OntoCAT's common OntologyService interface implemented for local ontologies in OWL and OBO as well as for public ontology resources: BioPortal and OLS // Query all ontology resources in one uniform call
List<OntologyTerm> result = os.
searchAll("thymus")

Code example

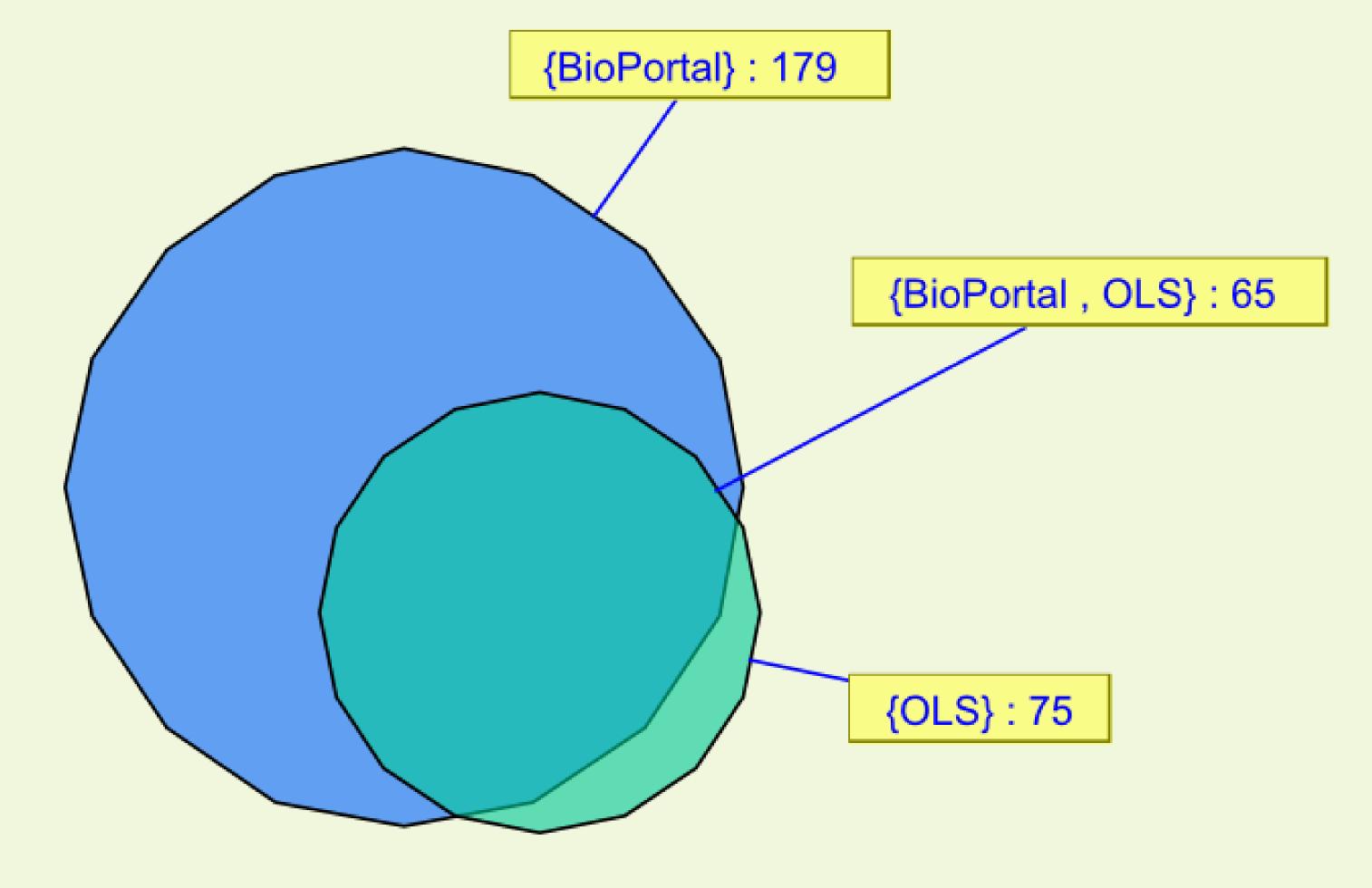
to find optimal matches between text values and ontology terms

Three modes of operation:
find optimal mappings
provide mappings suggestions
detect erroneous mappings

A wider problem – such mappings are found in everything we do

Ontology-driven applications

Asynchronous requests to individual service implementations


Custom

extension

(SPARQL...)

OLS

Content overlap between NCBO BioPortal and EBI Ontology Lookup Service illustrating the need to connect to both repositories [created in VennMaster]

- Zooma (zooma.sf.net)
- Experimental Factor Ontology (www.ebi.ac.uk/efo)
- eXtensible Phenotype and Genotype platform (www.xgap.org)
- MOLGENIS biosoftware platform (www.molgenis.org)

Acknowledgements

The authors would like to thank Eamonn Maguire for designing the OntoCAT logo. This work was supported by the GEN2PHEN, SLING, NWO/Rubicon, BioAssist/Biobanking, and BioRange grants. Special thanks go to NCBO BioPortal and EBI OLS support teams.

For further information

Please contact tomasz@ebi.ac.uk. Software available at ontocat.sf.net. A link to an online, PDF-version of this poster is available from www.ebi.ac.uk/~tomasz/pub/ismb2010.pdf

