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The demand for sensors in hostile environments, such as power plant environments,

aerospace environments, oil and gas extraction, and high-temperature metallurgy

environments, has risen over the past decades in a continuous attempt to increase process

control, improve energy and process efficiency in production, reduce operational and

maintenance costs, increase safety, and perform condition-based maintenance in equipment

and structures operating in high-temperature harsh-environment conditions. The increased

reliability, improved performance, and development of new sensors and networks with a

multitude of components, especially wireless networks, are the target for operation in harsh

environments. Gas sensors, in particular H2 sensors, operating above 200◦C are required in

the instrumentation, process control and general safety of a number of industries including

coal, natural gas, and nuclear power generation facilities, the aerospace and automotive

industries, metallurgical production and defense-related applications.

The surface acoustic wave (SAW) platform is a particularly promising option for

high-temperature, harsh-environment gas sensing applications since the platform exhibits

advantages, such as battery-free and wireless operation, small size, possibility for scale

production using well-developed technologies from the semiconductor industry, and low cost

of installation and operation.



In this work, one-port SAW resonators (SAWRs) operating along five different

orientations on a commercially available langasite (LGS) wafer employing Pt-Al2O3

electrodes and reflectors were designed, fabricated, and used as high-temperature H2

sensors. Two of the selected orientations were predicted and confirmed to have

temperature-compensated operation above 150◦C. A gas sensor test setup was developed,

capable of gas cycling between N2, O2 and N2/H2 mixtures under extended high-temperature

periods (up to 650◦C for over 20 hours). Thin film Pt-Al2O3 was used as the electrode

material for the transducers and reflectors capable of high-temperature operation, and also

as H2 sensing film. In addition, yttria-stabilized zirconia (YSZ) thin films with Pt decoration

were tested as sensing films aimed to enhance the SAWR sensor response to H2. The SAW

devices were monitored in excess of 1700 hours in real-time during gas cycling sequences up to

600◦C, leading to the following findings: i) the Pt-Al2O3 electrodes performed better for H2

sensing than the Pt-decorated YSZ sensing film, showing as much as 50% higher frequency

variation response in the 200◦C to 400◦C range; ii) different crystallographic orientations

operating on the same LGS wafer experienced different responses to H2 exposures up to

500◦C; iii) the surface oxidation state of the SAWR sensors was shown to have an important

impact on subsequent H2 exposure responses. In addition, a sensor system employing two

LGS SAWRs, aligned along two different orientations, has been developed to simultaneously

determine H2 presence and temperature. Finally, wireless interrogation of a SAWR sensor

was successful within the gas cycling test fixture, and successful wireless H2 detection was

achieved above 400◦C.
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CHAPTER 1

INTRODUCTION

The demand for wireless sensing in hostile environments where temperatures may rise

above 200◦C and where a variety of volatile and toxic gases may be present has risen over the

past decades as the increased reliability of wireless networks with a multitude of components

can improve the energy and process efficiency, reduce operational costs and increase general

safety of a variety of industries involved in harsh environment day-to-day operations [1]–[7].

Industries standing to benefit from high-temperature and harsh environment sensors include

power generation industries such as fossil-fuel based power and nuclear based energy [8]–[10],

the aerospace and automotive industries [11]–[13], the metallurgy industry [14]–[16], and

industries focusing on instrumentation for defense applications [1], [17], [18]. In particular,

there is a growing interest in reliable gas sensors capable of operating at high temperature

and harsh environment operation that will be able to provide constant monitoring of

equipment, minimize adverse environmental effects, increase general operational safety, and

decrease overall costs at temperatures above 200◦C. A number of sensor technologies have

shown promise to deliver reliable sensing to harsh environment applications, including

resistive-based technologies, piezoelectric acoustic sensors, optical sensors, metal oxide

sensors, and SiC-based field-effect devices [13], [19]–[24].

The Surface Acoustic Wave (SAW) platform can function as sensing elements to address

a variety of measurands of interest, including temperature [25], [26], pressure [26], [27],

strain [28] and gas sensors [29]–[31]. Additionally, with the proper choice of substrate and

electrodes, the SAW platform can be extended to high-temperature and harsh-environment

operation [1], [4], [5], [32]. SAW devices present attractive characteristics, such as capability

of mass production, low cost, small size, and wireless and battery-free operation [33], [34].

These features coupled with the aforementioned capability of operating at high-temperature

make this technology particularly attractive as a harsh environment gas sensor platform.
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This thesis describes the operation of high-temperature SAW resonators (SAWRs) in

the very high frequency (VHF) range as hydrogen gas sensors at temperatures up to

600◦C. The scope of the work encompasses the following: the design and fabrication of

the harsh environment SAWRs to be used as gas sensing elements; the implementation

of a high-temperature test system capable of interrogating multiple SAWR sensors and

thermocouples under flow of different gas species; the characterization of the fabricated

SAWR platform in the temperature range of 20◦C to 850◦C operating in air; the

characterization of the SAWR sensor platform in N2, O2 and H2/N2 mixtures up to 600◦C;

developing a multi-sensor system capable of extracting gas and temperature data; and the

verification of wireless interrogation of the SAWR platform as a gas sensor.

1.1 High-temperature Harsh-environment Sensor Overview and Motivation for

High-temperature Gas Sensors

Sensors are an integral part of modern systems, present in quotidian civilian equipment

and activities, industrial processes, and military defense applications. In particular,

the advent of interconnected networks of sensors, actuators, and data processing centers

collectively referred to as the Internet of Things (IoT) has radically increased the demand

for sensors [35]–[38]. As can be observed Figure 1.1, the global number of deployed sensors

has shown a steady increase, totalling more than 14 billion as of 2017 [39]. It is estimated

that the combined market value of the IoT will grow from $157 billion in 2017 to more than

$650 billion in 2021, and more than 75 billion sensors deployed by 2025 [39].

This increasing demand for sensor elements and integrated networks is also being

observed for harsh-environment applications, in particular for power generation, the

automotive, aerospace, and metallurgy industries, and defense applications [1], [3], [6],

[28], [40]. Sensor platforms, packaging and interrogation technologies that are adequate

for room-temperature sensing are normally incapable of withstanding the common extended

excursions to high temperature, temperature shock, and erosive and corrosive conditions
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Figure 1.1. Number of sensor deployed globally [39]

seen in many high-temperature, harsh-environment applications [5], [32]. For this reason,

application-specific technologies and sensor packages are often employed.

Current high-temperature harsh environment sensor technologies include: resistive-based

technologies such as thermocouples and thermistors, piezoelectric acoustic sensors such as

bulk acoustic wave (BAW) and SAW devices, optical sensors such as optical fiber sensors,

metal oxide sensors such as Taguchi gas sensors, and field-effect devices such as SiC schottky

diode and SiC MOSFET sensors. Examples of harsh-environment sensor applications are

shown in Table 1.1.

As can be seen from Table 1.1, all of the mentioned sensor platforms have been

demonstrated to be functional as harsh environment gas sensors. There is an interest within

industry, and by consequence within the scientific community, to develop reliable, precise and

cost-efficient gas sensors for high-temperature applications [9], [24]. The power generation,

automotive, aerospace, and metallurgy industries as well as defense applications have interest

in sensor systems capable of detecting a variety of gases at high-temperature, as shown in

Table 1.2. The power generation industry, specifically the coal industry, aims to address the
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Table 1.1. Harsh environment sensor applications

Sensor Platform Applications
Resistive Temperature [41], Strain [28],

Gas [19]
Piezoelectric Acoustic Wave Temperature [1], Strain [28],

Gas [20], [21], Pressure [42]
Optical Strain, Temperature, Gas,

Pressure, Displacement [13], [22]
Metal Oxide Gas [23]

Field-Effect Devices Temperature, Pressure [43]
Acceleration [44], Gas [24]

increasing demand to generate cleaner energy through an advanced technique for electricity

generation known as the integrated gasification combined cycle (IGCC). The first step in

the IGCC is the production of synthetic gas (syngas), which entails using steam reforming

of hydrocarbons (HC) to produce the syngas, which is a mixture of H2, CO, H2O and CO2.

The optimal production of syngas requires in-situ monitoring of gas composition up to 800◦C

[8]. The automotive and aerospace industries need gas sensors capable of exposures beyond

800◦C to detect a variety of gases in exhaust systems, where it is desired to monitor the

concentrations of O2, H2, HCs, CO, and NOX [45]. For metallurgical applications, it is often

desired to monitor environment gas composition in processes in particular H2, O2, CO, CO2

and NOX gases [9], [11]. Regarding the aerospace and defense industries, high-temperature

gas sensors are required in propulsion systems, where it is critical to monitor the chemical

Table 1.2. High temperature gas sensing needs

Application Measurands of Interest
Power Generation H2, CO, H2O and CO2

Automotive and Aerospace O2, H2, HCs, CO, and NOX

Metallurgical H2, O2, CO, CO2 and NOX

Defense O2, H2, HCs, CO, and NOX
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composition of the environment for the correct high octane propulsion, combustion and

efficiency of jet engines and missile systems alike [18].

From the information summarized in Table 1.2, it is clear that the detection of H2 is useful

in a variety of applications. Hydrogen’s ubiquitous presence in many industrial processes

has steadily increased the demand for reliable sensors. In addition, hydrogen-based energy

generation has been recently considered to address clean energy generation profiting from the

development of efficient hydrogen production. This application has been an important drive

for improved sensor technologies to monitor molecular hydrogen [46]. Due to the hydrogen

explosive hazard at concentrations above 4% (lower level explosive limit, LEL) coupled with

its odorless and colorless nature there is a special need for sensors capable of detecting

hydrogen in gaseous form and thus address the safety concerns [47]–[49].

The demand for high-temperature and harsh-environment hydrogen sensors also comes

from the need to address process efficiency [9], [11], [45], [50]. In the automotive and

aerospace industry, the increasing need for optimum energy conversion efficiency to limit

the generation of hydrocarbon production (important greenhouse emission) requires precise

sensors in the exhaust system and even in the engine manifold [45]. These stringent

requirements are due to the increasing demand to adopt more intricate combustion

mechanisms and systems, where reducing gases including H2 can be used after a period

of oxygen-rich operation to aid in the capture of NOX gases which may act as indirect

greenhouse gases [11], [50]. The increasingly efficient production and storage of hydrogen also

encourages hydrogen use within nuclear power plants, where hydrogen can be present within

the nuclear reactor close to temperatures can go beyond 700◦C and where non-intrusive,

high temperature and harsh environment sensors will be necessary for safety and for process

control [51]. Monitoring the presence of hydrogen in industrial processes in the metallurgical

industry is important, since the presence of hydrogen is known to affect the tensile strength of

materials resulting in embrittlement through a process commonly known as high temperature
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hydrogen attack (HTHA). In fact, the tensile strength of the 4140 steel alloy can be reduced

up to 67% through this process [11], [16], [52].

The previously listed applications show the importance of having reliable sensors for

the detection of gas species, in particular H2, in harsh-environments with rapidly changing

ambient temperatures. This need for high temperature hydrogen sensing has been addressed

by different technologies that will be described in the next section. The SAW platform is

a promising alternative for high-temperature operation as hydrogen sensors, considering the

proven device stability [1] and the potential for wireless and battery-free operation. Previous

work has confirmed that SAW devices employing high-temperature resilient materials are

capable of functioning as hydrogen sensors [20]. In this work, SAWRs aligned along multiple

orientations of a commercially available langasite (LGS) wafer are explored to detect H2

and temperature simultaneously. Both Pt-decorated yttria-stabilized zirconia (YSZ) and

Pt-Al2O3 composite films were used as H2 sensing layers. More details regarding this

multi-sensor system will be provided in Section 1.6.

1.2 Current High-temperature Hydrogen Sensing Technology

A few sensor technologies have been shown to be appropriate for high-temperature,

harsh-environment gas sensing, and in particular for molecular hydrogen. These technologies

include electrochemical sensors, catalytic sensors, semiconductor metal oxide sensors,

field-effect devices on SiC, optical sensors and acoustic sensors [20], [32], [53]–[56]. This

section gives an overview of these technologies. Acoustic sensors are described in more detail

in the following section.

1.2.1 Electrochemical Sensors

Electrochemical sensors consist of two electrodes placed at the ends of a chemically

sensitive solid electrolyte. The reaction of the electrolyte with with H2 gives rise to changes

in the potential between two electrodes, which is used as the sensor output [48], [53]. Solid
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electrolyte oxide materials SrCeO3- and CaZrO3- were operated as hydrogen sensors at 700◦C

in [57]. Electrochemical sensors have fast response time (typically between 30 to 50 seconds

for full scale response) and have a sensing range between 100 to 1000 ppm of hydrogen. For

sensor recovery, oxygen must be supplied to these sensors. Typical prices for commercial

sensing points can be higher than $1,000 [53]. Limitations of the electrochemical sensor

platform include stability and selectivity, as well as precise control or knowledge of the

temperature for response characterization.

1.2.2 Catalytic Sensors

Catalytic sensors consist of platinum wires embedded in a ceramic bead. The wires are

then connected in a a Wheatstone bridge configuration [48]. One of the ceramic beads is

passivated to avoid interaction with gases, while the other bead is typically coated with

a catalyst to promote the interaction with H2. The reaction with H2 will increase the

temperature of the coated bead, thereby decreasing the conductivity of the leg of the

Wheatstone bridge [48], [53]. Temperature operation ranges can vary from 450◦C-550◦C

[48], [53] up to 1000◦C [53]. The hydrogen concentration range for which catalytic sensors

are used is between 1 to 5 percent, with response times averaging between 10 to 30 seconds.

The cost of the technology can range between typical values of $500 for sensing points and

up to $1200 for fully operational control units [53]. Limitations of catalytic sensors include

precise control or knowledge of the temperature for maximizing gas sensitivity and selectivity.

1.2.3 Semiconductor Metal Oxide Sensors

Semiconductor metal oxide sensors consists of a metal oxide sensing element such SnO2,

ZnO or WO3 placed between two electrodes. Changes in the conductivity of the syste due to

H2, which can be catalyzed by means of Pt or Pd, can be used to determine H2 concentration

[54], [55], [58]. This technology is the most popular and well-developed technology for

operation as gas sensors [53]. The maximum sensitivity to gas detection for these devices

is actually achieved typically in the temperature range between 250◦C and 600◦C, making
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these sensors ideal for operation in this temperature range. Semiconductor metal oxide

sensors also present very response times (less than 10 seconds) in the H2 concentration range

between 0-1000 ppm. Typical costs for high-temperature sensing elements ranges between

$300-500 with a functional driving circuit [53]. Limitations of semiconductor metal oxide

sensors include consumption of high amounts of power and precise knowledge of the ambient

temperature to optimize sensor response to H2 [53].

1.2.4 Field-Effect Sensors

SiC has shown much promise as a resilient semiconducting material capable of continued

operation as a semiconductor at high temperatures courtesy of its wide bandgap (up to 7eV)

[44]. Stable oxides are able to be grown on the SiC substrate, including SiO2 and Ga2O3,

which, in conjunction with a high-temperature electrode such as Pt or Au, allows for the

operation of field-effect devices such as Metal-Oxide-Semiconductor Field-Effect Transistors

(MOSFETs) and schottky diodes at high-temperature. These types of devices have been

shown to be capable of Hydrogen detection above 300◦C [8], [24], [59]. Hydrogen in the

ranges from 50 to 1000 ppm may be detected with field-effect sensors [53]. Much work has

been done to advance the technology of SiC sensors due to the promise of mass production

of low cost sensors due to the well-established semiconductor industry product development

technologies. This demand for increased development and test of SiC sensors can be seen by

the body of knowledge dedicated solely to sensors utilizing this material in [60].

1.2.5 Optical Sensors

Optical sensors capable of operation at high-temperature are possible with materials

such as sapphire and fused silica as the optical fiber [6], [61]. Optical fiber configurations

that function sensor elements include interferometric-based configurations, intensity-based

configurations and grating-based configurations [56]. Hydrogen detection may be achieved

through noble metal (normally Pd) as the chemically sensitive component, where the

dissociation of H2 through the Pd catalyst mechanism described previously for other types
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of sensors causes measurable changes in the real and imaginary parts of the refractive index

or detection of changes in surface plasmon resonance [56], [61], [62]. Optical sensors present

advantages over other sensor technologies including the possibility of interrogating multiple

locations with a single optical box (the optical fiber may run through large areas), operation

in the absence of O2 and largely insensitive to environment noise [53], [62]. However, optical

sensors exhibit nonlinear interaction with H2 across the 0% to 5% concentration range, and

the response time of optical sensors is typically higher than one minute [62].

1.3 Acoustic Wave Sensors

The acoustic wave platform has been known to be effective as a sensor platform for some

time [30], [32], [34], [63]–[66]. The attractiveness of the acoustic wave sensing platform lies

in its relative simplicity, low cost of fabrication and operation, and small size [30], [34].

Piezoelectric materials are widely used as the means of exciting acoustic waves in materials

due to the fact that mechanical energy is coupled to electrical energy in these types of devices.

This section describes the principles of acoustic wave propagation and piezoelectricity, and

discusses some types of acoustic wave devices used for sensing applications.

1.3.1 Acoustic Wave Propagation and Piezoelectricity

Acoustic waves in solids exist because the solid behaves as an elastic medium which can

be modeled by distributed mass-spring elements [67]. Treating the medium as a continuum,

the particle displacement u = u1x1 + u2x2 + u3x3 is defined as the displacement of any

particle from its equilibrium position with component particle displacements in the x, y,

and z (defined as x1, x2, x3) given by u1, u2 and u3, respectively. Contributions from rigid

translations and rotations are eliminated by defining the strain as [67]:

Sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, (1.1)

where i, j = 1, 2, 3 (strain is dimensionless). Figure 1.2 illustrates the definition of internal

stresses for an elemental volume, where the stress being applied in the xi direction on the
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face oriented along the xj direction is defined as Tij (T1j components are shown in the figure),

giving nine components of the stress matrix, the same number of components present in the

strain matrix. The stress may be related to the stain in the material by assuming a linear

relationship between stress and strain (Hooke’s Law). This approximation has been validated

for small values of strain (values of 10−5 or less support the approximation) [67], which is

appropriate for acoustic wave devices. The elastic constitutive equation, then, relating stress

and strain can be written using Einstein notation (summation over repeated indices) using

the stiffness coefficient tensor c as [63], [67]:

T ij = cijklSkl. (1.2)

Figure 1.2. Stress components on an elemental volume of an elastic medium acting on the
x1 face.
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The previously described displacement vector u is a first-rank tensor (requiring one basis

vector to identify its components), T and S are second-rank tensors (requiring two basis

vectors to identify each component), and c is a fourth-rank tensor (requiring four basis

vectors to identify each of its components) [67]. To simplify notation, the quantities may be

expressed in terms of the boldface letters, thereby simplifying Equations 1.1 and 1.2 to the

following:

S = ∇su, (1.3)

T = c:S, (1.4)

where the ∇s operator can be defined from Equation 1.1 as ∇s = 1/2(∇u + ∇̃u), where

∇̃u denotes transpose matrix, and the double dot notation is defined as in Equation 1.2

(where summation over repeated indices is assumed) [67]. Application of Newton’s Law to

the elemental volume gives the general translational equation for motion in a lossless acoustic

medium:

∇ ·T = ρ
∂v
∂t
− F, (1.5)

where v = ∂u/∂t is the particle velocity and F is the body force field. The wave equation

for v may be constructed by combining Equations 1.3, 1.4, and 1.5 and differentiating with

respect to t to give the following [67]:

∇ · c:∇sv = ρ
∂2v
∂t2
− ∂F

∂t
, (1.6)

Materials exhibiting the piezoelectric effect are used to excite and detect mechanical

acoustic waves through the use of electric fields. This is due to the fact that in piezoelectric

materials, the presence of an electric fields produces strain in the material and, inversely, the

strained material produces an effective electric field. This phenomenon can be accounted

for quantitatively by means of the piezoelectric stress tensor e (third-rank tensor) and the

permittivity tensor εS, modifying the strain/stress relation from 1.2 and coupling to the

electric displacement by:

T = −e · E + cE:S, (1.7)
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D = εS · E + e:S (1.8)

Solutions to Equation 1.6 for anisotropic piezoelectric materials subject to the boundary

conditions imposed by device design will result in the modes of propagation. Three plane

wave solutions will exist, with particle polarization orthogonal to each other.

Assuming that no torque will be present, the stress matrix will be symmetric (Tij = Tji),

which is also the case for the strain matrix from Equation 1.1. This allows for the definition

of reduced notation, transforming the number of effective entries of both the stress and strain

matrices from 9 to 6, as defined in Table 1.3 [67].

Table 1.3. Reduced notation

Regular indexing ij Reduced Notation I
11 1
22 2
33 3

23 and 32 4
13 and 31 5
12 and 21 6

Using this abbreviated notation, Equations 1.7 and 1.8 may be rewritten as [67]:

TJ = −eJiEj + cEJISI , (1.9)

D = εSijEj + eiISI (1.10)

Without loss of generality, a reference coordinate system is adopted where the

propagation direction is selected to be purely in the x1-direction. For plane waves in the

bulk of materials (unbounded medium), the partial derivatives with respect to x2 and x3

are thereby eliminated. This reference coordinate system can be accomplished for any

crystallographic orientation by linear transformations given by three Euler angles: {Φ, Θ,

and Ψ} [68], [69]. An illustration demonstrating the operation of each of these angles starting

from the major crystallographic axis described by coordinate systemX1, X2, andX3 is shown

in Figure 1.3, where the cascade of the transformations leads to the final coordinate system
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x
′′′
1 , x

′′′
2 , and x

′′′
3 , by means of rotating the axes around the x3-axis, x

′
1-axis, and x

′′′
3 by the

three Euler angles, respectively. The material constants from Equations 1.9 and 1.10 can be

transformed by linear transformations for each angle. Solutions for waves propagating in the

x-direction will have uncoupled (pure modes) or coupled (quasi- modes) solutions for particle

displacements in each of the three coordinates, where polarization in the x1-direction will be

longitudinal waves, while particle displacement polarization in the x2- and x3-directions are

shear waves.

Figure 1.3. Demonstration of crystallographic rotation through use of Euler Angles {Φ, Θ,
and Ψ}

1.3.2 Acoustic Wave Devices for Gas Sensing Applications

Bulk acoustic wave (BAW), SAW and acoustic plate mode (APM) devices have been

shown to be capable of operating as gas sensors [30], [63], [64], [70]. BAW devices

include thickness-shear-mode (TSM), lateral-field-excited (LFE) resonators and thin film

bulk acoustic resonators (FBAR); SAW devices include Rayleigh SAW delay lines and

resonators and shear-horizontal SAW (SH-SAW) delay lines and resonators; APM devices

include shear-horizontal acoustic plate mode (SH-APM) devices, Lamb-wave acoustic plate

mode devices (sometimes referred to as Flexural Plate Wave (FPW) devices), and Love Wave

devices [30], [63], [64], [71]. The detection mechanisms can be expressed through perturbation
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theory, by noting that small changes in temperature (T), mechanical loading (m), mechanical

(c), piezoelectric (e) and dielectric (ε) constants and electrical boundary conditions (amongst

other factors) will affect the acoustic wave velocity v, acoustic attenuation α, or propagation

path L. This is expressed for acoustic wave velocity v by Equation 1.11 [72]:

∆v

v0

=
1

v0

(
∂v

∂T
∆T +

∂v

∂m
∆m+

∂v

∂c
∆c+

∂v

∂e
∆e+

∂v

∂ε
∆ε+

∂v

∂σ
∆σ + . . .

)
(1.11)

A brief description of some of acoustic wave devices used as sensor platforms is presented,

while a more detailed description of SAW devices is given in the following section.

1.3.2.1 TSM and LFE Resonators

TSM resonators, also known as quartz crystal microbalances (QCMs), consist of thin

(thickness hs) AT-cut quartz wafers (for x-propagating waves introduced in Section 1.3.1,

the Euler angles for AT-cut quartz are {0◦, 35.25◦, -90◦}) with electrodes on both sides of

the wafer, as shown in Figure 1.4 [63], [73]. Along this orientation, only one of the BAW

modes is piezoelectrically active. An alternative excitation scheme is possible where the two

electrodes are placed on top of the substrate separated by an electrode gap. This scheme

is referred to as Lateral Field Excitation (LFE) and is capable of exciting other modes in

AT-cut quartz in addition to the pure shear bulk mode that the TSM resonator excites [74].

The generated shear wave reflects from the opposing side of the crystal and resonance is

achieved for frequencies given by fn = (2nπ)v/(2hs) for n = 1, 3, 5 . . . [63], [75]. TSM and

LFE resonators have been shown to be capable of detecting liquid properties in solutions

(aqueous environments) effectively, TSM resonators which only excite pure shear modes and

therefore do not leak energy into the liquid [74], [76], and these sensors have also been

shown to be capable of functioning as sensors for vapor applications [30], [34], [77], [78].

The principal limitation with regards to high-temperature operation for the TSM and LFE

devices, their performance is limited by the α − β transition exhibited by quartz at 573◦C,

where the β-quartz structure exhibits no piezoelectric effect [79].
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Figure 1.4. TSM resonator structure.

1.3.2.2 APM Devices

APM devices excite acoustic modes along a thin plate for which boundary conditions on

both sides of the plate maintain the wave along the desired direction of propagation [71].

The excitation and detection of APM waves may be achieved through the use of planar

interdigitated structures which have the advantage of being one-sided structures and can

therefore be deposited using photolithographic processes [30], [34], [64], [71].

SH-APM devices, much like the TSM and LFE devices previously discussed, use thin

layers of single-crystal piezoelectric plates (quartz or Lithium Niobate are material options)

to propagate their shear waves oriented parallel to the plate surface boundaries [71]. This

propagation mode is illustrated in Figure 1.5a. The advantage of SH-APM devices is that the

sensitive area is on both sides of the device, and the shear nature of the particle displacement

at the surface does not allow for energy leakage into liquids. Due to this SH-APM devices

can also be operated in aqueous environments, much as the TSM resonator mode, as well as

the capability of gaseous species detection [63], [64].

Lamb wave devices excite waves which have APM particle displacements in the saggital

plane (shear-vertical (SV) and longitudinal (P) directions), as shown in Figure 1.5b. [63],
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Figure 1.5. APM device structure and particle displacement: a) SH-APM device; b) Lamb
wave Device.

[71]. Due to the particle displacement on both sides of the plate, these devices have been

used in differential pressure measurements where differences in partial pressure on both sides

of the plate may be detected, which make these types of devices particularly attractive for

gas sensing applications [63]. Much work has also been dedicated to developing packaging

enabling this type of sensor for liquid phase sensing applications [64].
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1.4 SAW Sensors

SAW devices are based on waves guided at the surface of the material and can be of the

Rayleigh type (particle polarization in the sagittal plane), shear type (particle polarization

in the direction normal to the sagittal plane) or of the general type (all three particle

polarization components are present) [71], [80]. For x-propagation and a crystal plane normal

oriented along the z-axis, assuming that particle displacement on the sagittal plane (y-axis)

is zero, the particle displacement can be described by means of Equation 1.12 (assuming the

ejωt time variation),

u(x, y, z) = (ux(z)ejφ1x̂ + uz(z)ejφ3 ẑ)eγx, (1.12)

where the ux(z) and uz(z) represent the particle displacement field amplitudes. These

particle polarizations generate elliptical particle displacements which decay with depth

rapidly (typically around 90% of the wave energy is within one wavelength of the penetration

into the substrate), as shown in Figure 1.6.

Figure 1.6. Rayleigh waves present in SAW devices.

In the context of SAW sensors, three device configurations are the most popular [28],

[30], [34], [63], [66]: the SAW delay line, the two-port SAWR and the one-port SAWR, all

of which are schematically shown in Figure 1.7. SAWs can be excited by means of planar

electrode structures known as interdigitated transducers (IDTs). For a delay line, the delay

or the phase between input and output reflect changes in velocity v or in propagation length
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L. Changes in the sensing path through the chemical interaction with the environment will

perturb the SAW velocity through a variety of mechanisms: mass loading, electroacoustic

interactions and changes in material constants of the film or substrate [63], [72]. In the

case of the resonators, IDTs are placed within a resonating cavity formed by either short

circuit or open circuit electrodes referred to as reflectors [71], [80], [81]. By designing the

reflectors and IDTs with periodicity λ/2, resonance will be achieved at the desired frequency

considering the SAW velocity along that particular substrate orientation. Sensing films

may be placed over the resonating region, the IDT region or over the entire structure for

gas sensing purposes, depending on the conductivity of the film (very conductive films will

short the IDT structures and reflectors and can therefore not be deposited over the entire

structure). Operation characteristics of one-port resonators are further discussed next, since

this was the device fabricated and explored in this this work for high-temperature gas sensing

experiments.
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Figure 1.7. Popular SAW sensor configurations: a) SAW delay line; b) Two-port SAW
resonator with short circuit (SC) reflectors; c) One-port SAW resonator with open circuit

(OC) reflectors.
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1.4.1 One-port SAWRs

The structure of a one-port SAW resonator (SAWR) is shown in Figure 1.8 with important

features noted. The IDTs should be spaced appropriately to constructively interfere and

generate SAW waves close to a frequency determined by the periodicity 2p of the reflector

electrodes. The frequency where this periodicity maximizes the reflected wave is given by

f = vSAW/2pR, where vSAW is the phase velocity of the SAW and pR is the periodicity of

the reflectors [80]. The periodicity of the IDT fingers pT is usually very similar to pR. The

reflector gratings are spaced such that the center of reflection of the reflecting structures

will meet the Bragg condition for resonance, where the standing wave pattern generated

within the resonant cavity will constructively interfere. The equivalent distance for the

cavity is labeled as LE [80]. The spacing between the reflectors and the IDT structure

DR1 and DR2 are adjusted by positioning the IDTs for the strongest energy trapping within

the resonating structure. The optimal location will depend on the center of reflection for

the individual electrode structures, which is not necessarily the center of the electrode and

may be located anywhere within the electrode structure depending on the selected crystal

orientation (natural single phase unidirectional transducer (NSPUDT) effect) [81]–[83]. This

NSPUDT effect is due to differences in the phase of the reflection coefficient Γ1 (reflection

coefficient of a wave incoming from free surface to the electrode-covered region) and Γ2

(reflection coefficient of a wave leaving the electrode-covered region and transitioning to

propagation on free surface) as shown in Figure 1.9. This difference in phase results in

an effective reflection coefficient ΓTotal whose equivalent center of reflection location may be

somewhere not corresponding to the geometric center of the electrode. The acoustic aperture

W controls the active overlap of the IDTs and therefore the active area of generation and

propagation of the SAW [80], [81].
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Figure 1.8. Topology of a one-port SAWR with OC reflector gratings.

Figure 1.9. Example of reflection coefficient for an electrode with a center of reflection not
at the geometric center of the electrode.
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Figure 1.10 shows the SAW propagation along an orientation where power flow angle

(PFA) is not equal to zero, a phenomenon which can take place for acoustic wave propagation

in anisotropic crystals [67]. The SAW propagates along the crystallographic orientation

determined by the placement of the exciting IDTs with phase velocity vSAW . However, the

power flow direction (group velocity direction of a wave packet around a certain frequency)

is in another direction. IDTs and reflectors must be adjusted to account for this effect for

orientations propagating SAWs with PFA 6= 0◦ [67], [71], [81].

Figure 1.10. Power flow angle in SAW devices.

The temperature dependence of SAWRs is determined by the temperature coefficient of

delay (TCD), which is defined as in Equation [81].

TCD =
1

τ

∂τ

∂T
= TCL− TCV, (1.13)

where TCL = 1
L
∂L/∂T and TCV = 1

v
∂v/∂T are the temperature coefficients of length

and velocity, respectively [81]. The TCD is related to the temperature coefficient of frequency

by TCD = −TCF . The TCD is determined by crystallographic orientation and is calculated

around a temperature. TCD relates the change in delay (or frequency for TCF) per change in
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temperature due to the thermal expansion of the material and the temperature dependence of

the rotated acoustic wave material constants at a particular temperature [81]. The one-port

SAWR frequency dependence vs. temperature over a temperature range can be modelled by

a second degree polynomial [84], [85].

1.5 High-temperature Operation of SAWR Sensors

The challenges facing high-temperature operation of SAWRs as gas sensors can be related

to three factors: 1) the piezoelectric substrate, 2) the electrodes used as IDTs to excite the

SAW and to act as reflector structures, and 3) the choice of sensing film [1]. In addition,

mounting and packaging considerations are important, but not as critical as for strain sensing

applications [28]. This section discusses the technological advances and challenges associated

with the previously mentioned factors.

1.5.1 High-temperature Piezoelectric Substrates

Piezoelectric materials to be operated at high-temperature should maintain their

piezoelectric qualities without undergoing major phase changes, as is the case with Quartz

which changes phase around 573◦C and becomes non-piezoelectric [79]. Many commonly

used piezoelectric materials such as Quartz and LiNbO3 are limited in the context of

high-temperature operation typically to temperatures below 500◦C [5]. A number of

High-temperature piezoelectric substrates have been identified for operation with SAWR

sensors [1], [4], [5], [86], [87]. Some materials for high-temperature applications include

AlN and GaN, both of which have applications in the microelectronics industry, as well as

the langasite family crystals. These langasite crystals are have a trigonal crystal system

and are well-suited for high temperature applications. Common examples of these crystals

include LGS, (La3Ga5SiO14),LGT (La3Ga5.5Ta0.5O14), and LGN (La3Ga5.5Nb0.5O14), as well

as some modifications of these crystals using Al [5]. Other types of materials using Ca or

Sr instead of La exist such as CNGS (Ca3NbGa3Si2O14), CTGS (Ca3TaGa3Si2O14), STGS
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(Sr3TaGa3Si2O14) and SNGS (Sr3NbGa3Si2O14) [5]. LGS in particular has been studied

extensively with regards to its use as substrate for high-temperature sensors. LGS exhibits no

phase transitions up to its melting point of 1470◦C [1], [4], [5], and high quality crystals may

be fabricated through Czochralski crystal growth methods [88]. LGS wafers are currently

commercially offered by MetaLaser Inc., Roditi International Corporation, MSE Supplies,

Shanghai SICCAS High Technology Corporation and Fomos-Materials.

1.5.2 High-temperature Electrodes

Previous work at the University of Maine has addressed the deposition of thin film metals

and metal composites to reliably perform as IDTs and reflectors for SAW devices at high

temperature [1], [89]–[91]. The conductivity characteristics of a variety of Pt-alloy films

including Pt-Ti, Pt-Co, Pt-Ni, Pt-Cr, Pt-Rh, Pt-Ta, Pt-Al and Pt-Al2O3 films on LGS and

other substrates [91]. These results have shown that Pt-Al2O3 alloys retain conductivity

when exposed to temperatures up to 1100◦C, which many of the other composite alloys are

not capable of achieving [91]. The stability and continued high-temperature operation of

the SAWR sensors does not uniquely depend on the materials retaining their conductivity,

however. The presence of agglomeration, hillocks, and whiskers, shown in Figure 1.11

[92], have all been identified as factors that may affect the continued stable operation of

high-temperature SAW devices [1], [84], [89], [90], [93].

24



Figure 1.11. High-temperature electrode problems: a) Agglomeration; b) Hillock
Formation; c) Whisker formation [92].
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1.5.3 High-temperature Sensing Film

For a sensitive film overlay, materials capable of withstanding the high-temperature

exposure are necessary, as well as materials that are capable of interacting with the desired

measurand at high-temperatures. SAW devices on LGS employing Pt electrodes with a WO3

sensing film have been developed for detection of C2H4, and Pd has been used as both the

electrode and active sensing film in a bare-device configuration for the detection of H2 above

200◦C [94]. ZnO sensing films have been used on delay line sensors on LGS for detection of

O2 [21], [95], [96] up to 650◦C.

1.6 Framework for Temperature and Gas Mutli-Sensor System

As mentioned in Section 1.4.1, the SAWR sensor frequency vs. temperature dependence

can be approximated by means of a second degree polynomial (parabolic fitting) and

varies with SAW orientation. For the purposes of the analysis in this work, it will be

assumed that the presence of the gas measurand of interest may be modelled by a binary

variable, and that the presence of this gas will produce a change in frequency that may be

temperature-dependent. The frequency of a SAWR sensor oriented along orientation Ψ can

therefore be approximated as follows:

fΨ ≈ RN2
Ψ (T ) + SΨ(T )×G, (1.14)

where RN2
Ψ (T ) is the temperature dependence of the frequency assuming a N2 baseline,

and SΨ(T )×G is a frequency shift due to the introduction of the gas measurand of interest

(in the context of this thesis the measurand will be a mixture of 4%H2 in balance N2) into

the system with respect to the N2 baseline. RN2
Ψ (T ) is assumed to be only a function of

temperature T , and SΨ(T ) × G is assumed to be both a function of temperature T and of

the binary variable G denoting presence of H2 (G = 1) or the absence of H2 (G = 0). RN2
Ψ (T )

may be assumed to be parabolic fitting of experimental data and can be represented by:

RN2
Ψ (T ) = AΨ(T − T0Ψ)2 +BΨ, (1.15)
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where AΨ is an orientation-dependent parameter modulating the openness of the parabola

used for the fit, T0Ψ is the temperature of temperature-compensated operation, and BΨ is a

correction term to match the resulting parabola to the experimental data.

Considering G = 0, the frequency difference between two sensors oriented along Ψ1 and

Ψ2 will be given by:

∆f = fΨ1 − fΨ2 = (AΨ1 − AΨ2)T 2 − (2AΨ1T0Ψ1 + 2AΨ2T0Ψ2)T + C, (1.16)

where C = AΨ1T
2
0Ψ1−AΨ2T

2
0Ψ2 + (BΨ1−BΨ2). Equation 1.16 reveals that this frequency

difference can be used to calculate temperature linearly assuming that (AΨ1−AΨ2) is close to

zero. For G = 1, the same result holds, but with the addition of the temperature dependent

SΨ terms:

∆f = fΨ1−fΨ2 = (AΨ1−AΨ2)T 2−(2AΨ1T0Ψ1+2AΨ2T0Ψ2)T+C+(SΨ1(T )−SΨ2(T )). (1.17)

Equations 1.16 and 1.17 show that it is possible to make two calibration curves with

temperature, one for G = 1 and one for G = 0. Then, an estimate of the temperature

obtained from the frequency reading of either sensor can be used to determine whether

G = 1 or G = 0 is more likely.

It was the scope of this work to test the feasibility of the framework provided for the

binary exposure to gas species and a temperature dependent frequency modifier due to gas

exposure (SΨ). However, for a gas frequency modifier that is both a function of temperature

and gas concentration, the framework may be altered by including the continuous variable

g denoting the concentration of the gas measurand of interest:

∆f = fΨ1− fΨ2 = (AΨ1−AΨ2)T 2− (2AΨ1T0Ψ1 + 2AΨ2T0Ψ2)T +C + (SΨ1(T, g)−SΨ2(T, g)).

(1.18)

In Equation 1.18, the frequency modifiers are SΨ1 and SΨ2 are now both a function of

temperature and gas concentration. The feasibility of a sensor system with this kind of

operation would involve the characterization of the frequency modifiers as both a function
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of temperature and gas concentration, creating a three-dimensional surface for SΨi as both

a function of temperature T and gas concentration g.

1.7 Goals and Scope

As has been noted in Section 1.1, high-temperature gas sensors are required in a number of

applications and can be expected to operate in harsh-environments with rapidly fluctuating

temperatures and gas compositions. The reliability of sensor systems employed for these

applications will depend on the sensor system ability of differentiating between temperature

and gas-related effects. The goal of this thesis was to investigate the use of high-temperature

LGS SAWR sensors to simultaneously detect gas and temeprature at operating temperatures

up to 600◦C as detailed in Section 1.6. As case-study, this work used high purity N2, 4.7

grade O2, and a 4%H2/96%N2 gas mixture.

The scope of this thesis focused on addressing the following objectives in order to probe

the feasibility of the two-sensor system mathematically formulated in Section 1.6:

• developing SAWR sensors operating along different crystallographic orientations on

the commercially available LGS wafer to vary temperature dependence;

• implementing a high-temperature gas testing system capable of extended periods of

gas cycling at temperatures up to 650◦C;

• testing the use of yttria-stabilized zirconia (YSZ) and Pt-Al2O3 thin films as sensitive

elements to vary the gas responsiveness of sensor elements with respect to devices not

employing the YSZ film under laboratory condition exposures to 4%H2 mixtures in N2

balance; and

• integrate the obtained results to analyze the feasibility of a two-SAWR sensor system.

It was not within the scope of this work to investigate the selectivity of the developed

sensors to other reducing gases, such as CH4 or hydrocarbon gases.
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1.8 Organization

To address the objectives and report on the findings listed in Section 1.7, this thesis is

organized into the following chapters after this introduction:

• The second chapter details the design and fabrication and temperature characterization

of SAWRs to be used as the sensors. The selection of five SAW crystallographic

orientations on the commercial LGS wafer, two of which were predicted to have

temperature-compensated operation (TCD = 0) above 150◦C, is presented. The

development of high-temperature materials for sensing films and electrode operation,

including yttria-stabilitzed zirconia (YSZ) and Pt-Al2O3 is described. The fabrication

of one-port SAWR sensors at the University of Maine cleanroom facilities is discussed.

• The third chapter presents the development and implementation of a high-temperature

gas testing system capable of characterizing the fabricated SAWR sensor gas response

up to 650◦C. In this chapter, the sensor setups used to acquire experimental results

are also detailed.

• The fourth chapter presents the experimental findings for SAWR sensor operation as

gas sensors. Temperature characterization of the selected LGS orientations is detailed.

Stability of two Pt-Al2O3 thin film compositions with respect to temperature cycling

up to 850◦C for over 300 hours is also presented. Gas cycling results for five LGS

orientations up to 600◦C obtained using the high-temperature gas testing system are

also detailed. The feasibility of using a two-sensor system to predict temperature and

gas data is presented. Wireless measurements of a SAWR sensor under gas cycling

environment up to 478◦C are given.

• The fifth and final chapter gives a summary of the work and suggested future work.
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CHAPTER 2

DETERMINATION OF ORIENTATIONS ON THE COMMERCIAL LGS

WAFER AND DEVELOPMENT OF THIN FILM MATERIALS FOR

HIGH-TEMPERATURE SAW GAS SENSING OPERATION

This chapter details the investigation of SAW orientations for high-temperature gas

sensing applications, as well as the development of sensing films and electrodes for

high-temperature SAWRs to perform as hydrogen gas sensors. A search for sufficiently

strong electromechanically coupled and possibly temperature-compensated orientations was

carried out on a commercially available LGS described by Euler angles {0◦, 138.5◦, 26.7◦}.

As a result from this search, five orientations were selected and a photolithographic mask was

generated for the fabrication of LGS one-port resonators. The development of thin-films for

high-temperature sensing and transduction for the SAWR sensors based on Yttria-Stabilized

Zirconia (YSZ) and Pt-Al2O3 is also discussed in this chapter.

2.1 Commercially Available LGS Wafer Analysis for SAW Operation at High

Temperature

This section details the calculation of SAW properties on the commercially available LGS

plane characterized by Euler Angles {0◦, 138.5◦, 26.7◦}. The calculations aimed at extracting

relevant SAW properties for device design including the electromechanical coupling coefficient

(K2), the power flow angle (PFA), the temperature coefficient of delay (TCD), and the SAW

velocity. The calculations were carried out using matrix method calculations as discussed in

[87], [97]. The extraction of the K2 and TCD parameters allowed for the selection of five

orientations of interest for the purpose of device operation as high-temperature gas sensors.

The layout of a photolithographic mask for one-port resonator fabrication is also presented.
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2.1.1 Selection of LGS Orientations

Calculations were carried out on the commercially available LGS wafer plane, given

by Euler angles by {0◦, 138◦, 26.7◦}. Calculations using constants from Nicolay and

Aubert were performed [98]–[100] in conjunction with Matlab scripts from Dr. Mauricio

Pereira da Cunha developed as indicated in [87], [97]. The materials constants at 20◦C

(stiffness coefficients c, piezoelectric constants e, and permittivity constants εr, density ρ

and temperature coefficients of expansion α) and the corresponding first and second order

temperature coefficients of stiffness [99] are shown in Table 2.1. The first and second order

temperature coefficients allow for the interpolation of experimental data to a second order

fitting for all the material constants, thereby allowing extrapolation of the room temperature

constants to 800◦C with a high degree of accuracy [99].

Table 2.1. LGS constants used for SAW calculations [99]

Constant Value at 20◦C
First Order
Coefficient
(ppm/◦C)

Second Order
Coefficient
(ppb/◦C2)

c11 18.89×1010 N/m2 -65 -39
c13 10.15×1010 N/m2 -84 -86
c14 1.442×1010 N/m2 -304 88
c33 26.83×1010 N/m2 -105 -55
c44 5.33× 1010 N/m2 -63 -80
c66 4.237×1010 N/m2 -29 -23
e11 −0.4371 C/m2 469.8 -428.5
e14 0.1039 C/m2 -713.8 1594
εr11 19.05 134.5 118
εr33 51.81 -787.0 658.6
ρ 5764 kg/m3 — —
α11 — 5.2 6.7
α33 — 3.72 1.1

The initial parameters of interest were K2 and TCD, and so these parameters were

calculated for the selected LGS plane as a function of the last Euler angle Ψ. The results for

K2 and TCD at 200◦C, 300◦C, and 400◦C are shown in Figures 2.1 and 2.2, respectively. The
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minimum acceptable K2 for SAWR fabrication was taken to be 0.1%. In addition, the search

targeted the identification of temperature-compensated orientations at temperatures above

100◦C. Figure 2.1 shows thatK2 is not very sensitive to temperature variations in the selected

temperature range. The orientations selected for fabrication are highlighted in Figures 2.1

and 2.2 by the vertical dashed lines. The selected orientations along Ψ = 14.7◦ and 77.7◦

have 0.15% and with temperature compensation around 200◦C and 300◦C, respectively.

Orientations with Ψ = 26.7◦, 20.7◦ and 32.7◦ were also chosen since around these orientations

the highest K2 is observed and previous University of Maine fabrications along Ψ = 26.7◦

and 32.7◦ have shown good results for high-temperature SAWRs [1], [20], [28], [84]. All of the

orientations were selected to be integer number of degrees away from the one-port resonator

oriented along Ψ = 26.7◦ which defines the commercially available wafer.
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Figure 2.1. K2 at 200◦C, 300◦C, and 400◦C for the commercial LGS wafer. Dotted-dashed
curve: 200◦C; Dotted curve: 300◦C; Solid curve: 400◦C.

Figure 2.2. TCD at 200◦C, 300◦C, and 400◦C for the commercial LGS wafer.
Dotted-dashed curve: 200◦C; Dotted curve: 300◦C; Solid curve: 400◦C.
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2.1.2 Photolithographic Mask Layout

A photolithographic mask was generated for the fabrication of one-port SAWRs with

open circuit reflectors oriented along the crystallographic orientations previously mentioned.

Open-circuit reflectors were chosen because it has been shown that the short-circuit grating

on LGS with Pt-based structures leaks energy onto the connecting busbar, while the

open-circuit grating is able to concentrate the energy within the grating [101]. Figure 2.3

shows the layout of the mask generated using AutoDesk’s AutoCAD software. The phase

velocity vp and the power flow angle PFA were calculated for each orientation at room

temperature and the IDT electrode thickness determined using a 1:1 mark to space ratio

(duty cycle of 50%) for an operational frequency f0 around 195MHz. The periodicity of

electrodes in the IDT regions p was equal to λ/2, where lambda is given by λ = vp/f0. LGS

exhibits the NSPUDT effect discussed in section 1.4.1 [81]–[83]. The precise determination

of the spacings between the IDTs and the reflector electrodes can be determined through

calculations of the reflection coefficients Γ1 and Γ2 in Figure 1.9 to obtain the center of

reflection. However, precise calculation of these parameters requires a finite element analysis

of the reflecting structure that takes mass loading into account (especially if the reflecting

structures are based of a heavy electrodes such as Pt). Since proper FEM/BEM calculation

tools and electrode characterization data were not available at the time of design, three

different poisitionings of the IDT with respect to the resonant cavity of three SAWRs were

laid out for the orientations Ψ = 14.7◦, 20.7◦, 32.7◦ and 77.7◦. The three IDT positionings

were denoted S, RC and LC, and are illustrated in Figure 2.4. For devices S (synchronous),

the geometric center of the first reflector on either side of the IDTs was placed a distance λ/4

away from the last IDT electrode. For RC devices (right-compensated), the IDT structure

was moved a distance of λ/8 to the right such that the space between the last IDT electrode on

the right side and the first reflector was a distance of λ/8. For LC devices (left-compensated),

the same applies, but the IDT structure was moved to the left. This three IDT positioning

schemes were not done for devices oriented along Ψ = 26.7◦ because the device template
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had previously accounted for the NSPUDT effect and was determined that synchronous

positioning was optimal for this orientation. The design details for the each orientation on

the mask can be found in Table 2.2.

Figure 2.3. AutoCAD layout of photolithographic mask.

Table 2.2. Summary of Device Parameters

Ψ (◦)

Predicted
Compensated
Temperature
(◦C)

K2

(%)
λ
(µm)

PFA
(◦)

W
(λ)

IDT
Pairs

Reflectors on
each side

14.7 200 0.15 13.4 26 61 120 411
20.7 NA 0.37 13.9 12 51 80 411
26.7 20 0.27 14 0 51 80 411
32.7 NA 0.23 14 -3 51 80 411
77.7 300 0.15 13.1 -16 61 120 411
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Figure 2.4. Device layout for compensation of NSPUDT effects: a) Synchronous S devices;
b) Right Compensated RC devices; c) Left Compensated LC devices.
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2.2 High Temperature Thin Film Materials

Two thin film materials were explored in this work with the purpose of developing SAWR

high-temperature hydrogen gas sensors. Yttria-Stabilized Zirconia (YSZ) was explored

as the sensing layer to be decorated with Pt particles functioning as catalysts for the

interaction with H2, and Platinum Alumina (Pt-Al2O3) was explored as a double-purpose

sensing layer and electrode material for the IDTs and reflectors. Design and Fabrication

details for each of these materials is presented in this section. The deposition of these

high-temperature materials was done using the RF magnetron sputtering and electron-beam

(e-beam) evaporation deposition chamber described in [102].

2.2.1 Yttria-Stabilized Zirconia (YSZ)

YSZ is a metal-oxide material consisting of ZrO2 base stabilized using a quantity of

yttria (Y2O3) [103]. The use of yttria has been shown to stabilize the cubic phase of the

epitaxially grown of thin films of ZrO2 [103]. YSZ has been identified as a material capable

of acting as a sensing layer for gas sensing applications in the domain of optical sensing at

high-temperatures [104]. YSZ has previously been shown to operate reliably at 500◦C and

detectable changes in surface properties such as conductivity and plasmon resonance have

been documented and indicate that electrochemical gas sensing of O2 and H2 is possible

at high-temperature using YSZ thin films [104], [105]. Particles of Au and Ag have been

embedded in the YSZ to act as catalysts in both reducing and oxidizing environments to

promote the selectivity and surface response of the YSZ film in the context of optical sensors

[106]–[108]. In this work, YSZ thin films with Pt decoration to act as catalyst for H2

dissociation into the YSZ material were developed and outfitted for use in conjunction with

the one-port SAWRs previously described.

YSZ films were deposited using RF magnetron sputtering. An 8% Y2O3-92%ZrO2 YSZ

alloy target was used as the deposition source in a pressure of 3 mTorr of 5%O2/95%Ar gas

mixture. The deposition of YSZ directly on top of LGS substrate for substrate temperatures
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of room-temperature (25◦C) and 600◦C was conducted. SEM images of the YSZ thin films

25 nm thick deposited at substrate temperatures of 600◦C and 25◦C are shown in Figure

2.5a and 2.5b, respectively, after the samples were cycled in a furnace between 750◦C and

25◦C with one-hour soaking periods in air. It was found in this work that the YSZ thin

film deposited at high-temperature (Figure 2.5a) showed no signs of stress-induced hillocks,

while the thin-film deposited at room-temperature (Figure 2.5) showed small formations

of approximately 50 nm in diameter and hillocks approximately 500 nm in diameter. The

hillock formation is undesirable for the propagation of SAWs as it can lead to increased

diffraction and scattering, as well as lead to inconsistent and drifting sensor responses. For

this reason, YSZ thin films for SAWRs were grown at a substrate temperature above 600◦C.

The Pt particles to serve as catalyst for H2 adsorption and dissociation into the YSZ thin

film were created through the e-beam evaporation of a Pt flux for an equivalent film thickness

between 0.5-3 nm.

Figure 2.5. SEM images of 25 nm YSZ thin films on LGS deposited at different substrate
temperatures after high-temperature cycling between 25◦C and 750◦C: a) 850◦C; b)

room-temperature.

2.2.2 Pt-Al2O3

To excite the SAW on LGS, the composite of Pt-Al2O3 was selected as material for

the IDTs and reflector electrodes due to its resilience to high-temperature exposures and
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acceptable conductivity after extended high-temperature excursions [1], [89], [109]. This

material can also function as the sensing film SAWR gas sensor, thereby fulfilling the purpose

of both transducer and sensing film.

Two Pt-Al2O3 film structures were investigated in this work and are depicted in Figure

2.6. Film 1 from Figure 2.6a was fabricated through deposition of a 10 nm layer of Zr in

oxidizing pressure (becoming ZrO2 in the process) functioning as an adhesion layer, followed

by the deposition of 170 nm 82%Pt-18%Al2O3 atomic percent composite film. Film 2 from

Figure 2.6b was fabricated by depositing the same ZrO2 adhesion layer, followed by a 10 nm

pure Pt layer, a 10 nm graded transition from pure Pt to the 82%Pt-18%Al2O3 composition,

after which 150 nm of the composite was deposited. The purpose of Film 2 (graded film) was

to alleviate stress hillocks that had previously been observed in high-temperature Pt-Al2O3

films (see Section 1.5.2) through the graded layers, which should function as buffer or

matching layers due to the different thermo-coefficients of expansion between LGS and the

Pt-Al2O3 electrode layer. The depositions for the electrodes were done by e-beam evaporation

of Zr, Pt and Al targets in oxygen partial pressure of 10−5 Torr.

Figure 2.6. Schematic of film composition for Pt-Al2O3 thin films: a) Film 1; b) Film 2.

2.3 SAWR Sensor Fabrication

One-port SAWRs were fabricated with Pt-Al2O3 electrodes and reflectors of both Film

1 and Film 2 (following the nomenclature from Section 2.2.2). LGS wafers obtained from
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Fomos-Materials (4′′ in diameter) were diced into sections of approximately 30mm× 30mm,

Photolithography was conducted on the diced sections of the wafers to transfer SAWR IDT

and reflector pattern. Deposition of Pt-Al2O3 as described previously was conducted. In

order to deposit films evenly for all of the selected orientations, the wafer holder was rotated

360◦every 22 seconds for the entire duration of the e-beam evaporation deposition, which

normally lasted about an hour for an entire deposition. Lift-off was then used to reveal

the desired patterns on the wafer. SAWR sensors which use the Pt-Al2O3 itself as the gas

sensing layer will be referred to from now on in this thesis as Bare sensors. The wafer was

cleaned using a procedure of acetone, iso-propanol, methanol and DI water rinsing followed

by drying with a N2 stream, and then placed in an alumina crucible and annealed in air at

800◦C for four hours before being probed on wafer. Figure 2.7 shows a photograph of a typical

fabricated wafer with an indent SEM image of the resulting IDT electrodes employing Film

1 after the cleaning procedure but before the annealing process. It can be seen from Figure

2.7 that the fabricated electrodes are thinner than the nominal value away from the electrode

center due to photoresist shadowing during the rotation of the wafer holder. Overall, only

about 40% of the electrode width has the nominal thickness described previously due to the

rotation during deposition.

Figure 2.7. Fabricated wafer section with Bare sensors.
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For the fabrication of devices employing a Pt-decorated YSZ sensing thin film, a 15 nm

layer of YSZ was deposited on top of the entire wafer section. Deposition of the YSZ film

over the entire wafer was necessary since at 600◦C substrate temperature the photoresist

patterning would be destroyed. The YSZ overlay over the entire wafer with SAWRs on it

was then decorated with 1 nm of Pt as catalyst as previously described in Section 2.2.1.

These devices will be referred to from here on as YSZ-layered sensors. After the deposition,

the devices were cleaned and annealed as described in the previous paragraph. At the

bondpad locations, photolithography was used to deposit an adhesion layer of 50 nm of Zr

followed by 50 nm of pure Pt over the Pt-decorated YSZ thin film directly above the device

bond pads, and Pt paste was subsequently applied using an emulsion screen. This allowed

for the interrogation of the SAWR sensors through capacitive coupling [110], as shown in

Figure 2.8, since the YSZ performs electrically as an insulating layer. Additionally, some

devices were fabricated with a 50 nm layer of YSZ deposited at room-temperature prior to

the findings of the high-temperature substrate deposition strategy. Photoresist was applied

over the bond-pads and removed after the deposition to reveal only the bondpads while the

50 nm layer of Pt-decorated YSZ remained over the remainder of the SAWR sensor. These

devices will be referred to from here on as 50nmYSZ sensors.

Figure 2.8. Capacitive coupling for interrogation of YSZ-layered SAWR sensors.
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CHAPTER 3

HIGH TEMPERATURE GAS SENSOR TESTING SYSTEM

DEVELOPMENT AND IMPLEMENTATION

This chapter addresses the design and implementation of a gas testing system for

monitoring the resonant frequency of SAWR gas sensors in real-time during gas cycling

at temperatures up to 600◦C. In addition, the SAWR setups used for both gas testing using

the high-temperature gas testing system are detailed. A temperature characterization system

allowing the continued temperature cycling up to 850◦C of devices while being monitored in

real-time is also presented. The test setup for a wireless measurements of a SAWR inside

the gas testing system is described.

3.1 High-temperature Gas Sensor Testing System

In order to test SAWR sensor response to high-temperature exposures to H2, a gas testing

system capable of excursions to temperatures above 200◦C was developed. The schematic for

the system is shown in Figure 3.1. The system developed was capable of interrogating a total

of four SAW gas sensors in two chambers of a stainless steel box, with a thermocouple in

each chamber. A PC controlled the interrogation module (data acquisition from the SAWR

gas sensors and thermocouples) and the gas delivery system. This section will describe the

details of the stainless steel box and the mounting of SAWRs within it,as well as the gas

delivery and interrogation modules of the system.

3.1.1 SAW Sensor and thermocouple mounting within stainless steel box for

High-temperature gas cycling operation

A stainless steel box with two chambers for the allocation of two SAW sensors and one

thermocouple per chamber was designed under this project, and fabricated at the University

of Maine’s Advanced Manufacturing Center (AMC). The purpose of this box was to house

the SAW gas sensors a small volume and stable gas testing chambers, also capable of
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Figure 3.1. High-temperature gas testing system schematic.

withstanding temperatures up to 700◦C. A total of three identical boxes were fabricated,

and Figure 3.2 shows a photograph of one of them. Each box had a total side length of

3”, and each chamber had dimensions of 2.25” × 0.95” × 0.5”. A total of ten 1/8” NPT

threaded holes, five per chamber, allowed for the interrogation of two SAW gas sensors

through high-temperature Inconel Coaxial cables and one thermocouple (TC) per chamber,

as well as two apertures for gas flow (inlet and outlet) as shown in Figure 3.2c.

Figure 3.3 shows the the introduction in each chamber of two high-temperature Inconel

coaxial cables acquired from Thermocoax, one KMQIN-125E-24 Omega K-type Inconel

thermocouple (TC). The SAWRs were held inside the chamber by 4mil Pt wire, and 1

mil Pt wire was used to provide electrical connections between the high-temperature coaxial

cables and the SAWRs. The Pt wires were all welded using a Unitek resistance welder. The

TCs on each chamber were mounted on top of a piece of LGS to mimic the temperature seen

by the SAWRs.
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Figure 3.2. High-temperature stainless steel box: (a) chamber top view; (b) cap top view;
(c) chamber side view; (d) cap screwed onto chamber.

Figure 3.3. SAWRs and TC mounted in stainless steel gas testing chamber.

3.1.2 Gas Delivery System

The gas delivery system was designed to deliver constant flow of N2, O2 and a mixture

of H2 in N2 balance, and the interrogation module was designed to monitor the shift in the

SAWR sensor resonant frequency shifts due to the introduction of H2 into the system. The

system was also designed to deliver O2 to study the effects of oxidation prior to and after

reductions in the H2 environment. The gases delivered were 99.999% purity N2 (referred
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to from now on as N2) provided through the lab N2 outlets from the Microwave Acoustics

Laboratory (MAL) located in the Engineering Science and Research Building (ESRB) room

295, 4.7 grade (99.997% purity) O2 provided by the University of Maine Central Supply in

K-type (5ft tall) cylinders (referred to from now on as O2), and specialty N2/H2 mixtures

obtained from the University of Maine Central Supply with ratios of 96%/4% (referred to

from now on as 4%H2) or 98%/2% (referred to from now on as 2%H2). Gases were delivered

to the test box chambers at a flow rate of either 100sccm or 950sccm. For this purpose, three

major iterations of the gas delivery system were implemented.

The schematic for gas delivery system A is shown in Figure 3.4. This gas delivery system

was capable of delivering N2 and O2 to both Chamber 1 and Chamber 2, and was able

to deliver the 4%H2 mixture to Chamber 2 but isolated the delivery of 4%H2 from being

delivered to Chamber 1. It used two three-way valves and one isolation valve to select

which gas would be delivered to mass-flow controller 1 (MFC1) and mass-flow controller

2 (MFC2). Therefore, this setup had a control group of sensors (in Chamber 1), which

were never exposed to 4%H2, and a group of sensors that were exposed to the reducing

environment in 4%H2 (in Chamber 2). In this regard, this setup is similar to the one used

in [20].

The schematic for Gas Delivery System B is shown in Figure 3.5. This gas delivery system

was capable of delivering three gases, N2, O2, and 4%H2, independently at any moment to

either Chamber 1 and Chamber 2. This was done through the addition of a three-way

valve in the place of the isolation valve from Gas Delivery System A. System B retained the

capability of exposing only one chamber to 4%H2, but allowed for the flexibility of choosing

the chamber which would be exposed to 4%H2 in software and also allowed for the exposure

of both chambers to 4%H2 simultaneously.

The schematic for Gas Delivery System C is shown in Figure 3.6. This gas delivery

system was capable of delivering all four gases, N2, O2, 4%H2 and 2%H2 independently at

any moment to either Chamber 1 and Chamber 2, while retaining all the advantages of
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Figure 3.4. Gas Delivery System A.

Figure 3.5. Gas Delivery System B.

System B. This was done through the addition of one more three-way valve and two tee

connections.

The physical implementation of the valve and MFC setup along with the control interface

block are shown in Figure 3.7 for Gas Delivery System C. Advanced Pressure Technology

(AP Tech) three-way valves and two Tylan 2900 series MFCs were used, while a control box

outfitted with a Measurement Computing USB-2408 data acquisition module and an 8-relay

module employing SRD-05VDC-SL-C relays for the control of the valves was implemented.
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Figure 3.6. Gas Delivery System C.

Figure 3.7. Physical implementation of the gas delivery system: a) valves and MFC
hardware (C1 and C2 denote Chamber 1 and Chamber 2 respectively); b) Control interface

connected to PC.

3.1.3 Interrogation Module

The SAWR Sensor and TC interrogation module allowed for the series interrogation of up

to four SAW sensors and three TCs. An RF multiplexer box (shown in Figure 3.8), containing

Mini-Circuits 4-way RF switch ZSWA-4-30DR operated by NI USB 6501 module was used

with a single Agilent Technologies E5071C Vector Network Analyzer (VNA) to interrogate

the SAWR sensors. The K-type TCs were interrogated by means of three NI USB TC-01

modules. The physical implementation of the entire system is shown in Figure 3.9, with the
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stainless-steel box mounted inside a Thermolyne Furnace 6000. The VNA settings such as IF

bandwidth, number of points and frequency sweep span, as well as how often the sensors were

interrogated before and after gas transitions and during periods of steady gas flow, varied

according to the test and will therefore be specified when addressing the measurements for

a particular test in Chapter 4. The SAWR sensors were always interrogated in series. The

TC associated with the SAWR in question would be interrogated immediately before and

after recording the frequency response, thereby associating a particular temperature with

each frequency sweep by taking the average of these two temperatures (under steady state

conditions, the difference between the anterior and posterior temperature readings was less

than 0.25◦C even at temperatures up to 500◦C). The SAWR sensors were interrogated as

fast as possible for 5-10 minute periods before and after gas transitions. For example, if the

a frequency sweep for a single SAWR sensor took 15 seconds to complete, the interrogation

of four SAWR sensors would take one minute. During periods of steady gas flow, the SAWR

sensors were usually interrogated once every five minutes. Details on the software developed

in LabVIEW for the control of the gas delivery system and interrogation modules is given

in Appendix A.

Figure 3.8. RF multiplexer box.
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Figure 3.9. Physical implementation of entire high-temperature gas testing system: a)
Hardware physical setup in MAL 295; b) Stainless steel box inside Thermolyne 6000

Furnace.
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3.2 High-temperature SAW Gas Sensor Setups

The general device layout schematic for the tests that are discussed in Chapter 4 is shown

in Figure 3.10. A total of 8 different setups using the device layout schematic from Figure

3.10 were mounted and tested. All devices mounted had previously been annealed at 800◦C

for four hours after fabrication [28], [84], [93]. The device layouts are detailed in Table 3.1

with the corresponding gas delivery system used for that particular setup, where the device

description follows the following formula: the type of film employed (Film 1 or Film 2); the

use of 15 nm YSZ sensing film (YSZ) or no YSZ sensing film (Bare); whether the device had

previously been temperature-cycled in an alumina crucible using four rounds of Profile 1 in

Figure 3.14 from Section 3.3 (cycled) or if they were not cycled using Profile 1 (non-cycled);

and the SAWR orientation (for example, 26.7◦). Table 3.1 will be referenced in Chapter

4 when addressing the gas cycling results. The exposure profile (the order, duration and

number of times each gas was delivered) varied with the tests performed using each setup.

This information will be given when describing the results, and the gas exposure profile will

always be given in the same plot when addressing the results.

Figure 3.10. Device layout schematic for high-temperature gas testing.
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Table 3.1. Summary of setups mounted and tested for high-temperature gas cycling.

Setup Device 1 Device 2 Device 3 Device 4 Delivery
System

A1
Film 1 Bare
non-cycled
26.7◦

Film 1 Bare
non-cycled
26.7◦

Film 1 Bare
non-cycled
26.7◦

Film 1 Bare
non-cycled
26.7◦

A

A2
Film 1 YSZ
non-cycled
14.7◦

Film 1 Bare
non-cycled
14.7◦

Film 1 YSZ
non-cycled
14.7◦

Film 1 Bare
non-cycled
14.7◦

A

A3
Film 2 Bare
non-cycled
77.7◦

Film 2 Bare
non-cycled
14.7◦

Film 2 Bare
non-cycled
26.7◦

Film 2 Bare
non-cycled
32.7◦

B

A4
Film 2 YSZ
non-cycled
14.7◦

Film 2 Bare
non-cycled
14.7◦

Film 2 YSZ
non-cycled
26.7◦

Film 2 Bare
non-cycled
26.7◦

B

A5 Film 2 Bare
cycled 14.7◦

Film 2 Bare
cycled 14.7◦

Film 1 Bare
cycled 14.7◦

Film 1 Bare
cycled 14.7◦ C

A6
Film 1 Bare
non-cycled
20.7◦

Film 1 Bare
non-cycled
77.7◦

Film 1 Bare
non-cycled
20.7◦

Film 1 Bare
non-cycled
26.7◦

C

A7 Film 1 Bare
cycled 26.7◦

Film 1 Bare
cycled 77.7◦

Film 1 Bare
cycled 26.7◦

Film 1 Bare
cycled 77.7◦ C

Test Setup A1 and A2 used Gas Delivery System A, and therefore had a control group

of sensors in Chamber 1 that were not exposed to reducing environments at all. Setup A1

was used to verify the functionality of the test setup system. Setup A2 was used to compare

the SAWR gas sensor performance of bare devices and YSZ-layered devices (YSZ in Table

3.1). Setups A3 and A4 used Gas Delivery System B and were able to expose all four devices

to 4%H2 simultaneously. Setup A3 was used to compare the response of four different LGS

orientations to 4%H2 exposures. Setup A4 was used to confirm the results obtained using

Setup A2 comparing the performance of YSZ-layered devices vs. Bare devices, and also to

assess Bare and YSZ-layered devices oriented both at Ψ = 14.7◦ and Ψ = 26.7◦. Setups

A5-A7 used Gas Delivery System C. Setup A5 was used to compare SAWR gas sensor

performance of devices employing Film 1 electrodes vs. Film 2 electrodes to 4%H2 and
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2%H2 exposures. Setup A7 was used to gain information about the performance of SAWR

gas sensors oriented along Ψ = 20.7◦ and also to further confirm results observed for devices

oriented along Ψ = 77.7◦ and Ψ = 26.7◦. Finally, Setup A7 was used to characterize SAW

gas sensors oriented along Ψ = 77.7◦ and Ψ = 26.7◦ up to 500◦C and to assess the possibility

of using these two orientations as the components of the multi-sensor system described in

Section 1.6.

3.2.1 Temperature Uniformity within a Chamber

It should be noted from Figure 3.3 and 3.10 that there is a difference in location between

the location of the TC inside the chamber and the location of the SAWR gas sensor closes to

the gas inlet. A test was conducted with two TCs, one at the location of the SAWRs closest

to the gas inlet (TC1) and one located where the TC would normally be located during a test

(TC2), as shown in Figure 3.11. Gas cycling was then conducted to examine the differences

in detected temperature. The test was conducted at 260◦C, 360◦C, 460◦C and 560◦C using

flow rates of 950sccm for the gases cycled which was the highest flow rate used during SAWR

gas sensor tests and therefore the one that could affect the temperature variation within the

chamber the most. The results are shown in Figure 3.12. There is a temperature dependent

gradient between the location of TC1 and TC2, with the temperature of TC1 (location of

the sensors during SAW sensor testing) being higher than the recorded temperature of TC2

(location of the TC during SAW sensor testing). This gradient was on average 1.6◦C, 1.8◦C,

1.9◦C and 3.2 ◦C at the temperatures tested and mentioned above, respectively.
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Figure 3.11. TC test in gas chamber.

Figure 3.12. TC test results for gas cycling at 260◦C, 360◦C, 460◦C, and 560◦C.
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For temperatures of 260◦C and 360◦C, gas transitions did not cause fluctuations in the

temperature recorded by either TC greater than 0.8◦C. For 460◦C, transitions from N2 to O2

produced temperature fluctuations of less than 1.2◦C in TC1 and less than 0.8◦C in TC2,

and transitions from N2 to 4%H2 produced less than 0.5◦C fluctuations in both TC1 and

TC2. At 560◦C, the first transition from N2 to O2 produced a temperature fluctuation of 6◦C

in TC1 and approximately 1◦C fluctuation for TC2, as can be seen in Figure 3.12. Further

transitions from N2 to O2 produced fluctuation less than 2◦C in TC1 and less than 1◦C in

TC2. Finally, temperature fluctuations due to transitions from N2 to 4%H2 were less than

1◦C for both TCs at 560◦C. These results showed that temperature variations recorded by

TC1 (closest to gas input) are larger than temperature variations recorded by TC2 (closest to

gas outlet), but the difference in temperature variations detected at all temperatures tested

between N2 flow and 4%H2 flow are less than 1◦C.

3.3 SAWR Sensor High-temperature Characterization Setups

In addition to the high-temperature gas testing system, high-temperature

characterization of SAWR sensors was conducted in a separate environment so that

it could be performed in parallel with high-temperature gas testing of SAWR gas sensors.

This setup was located in ESRB Room 284. The schematic for this testing environment is

shown in Figure 3.13. In this case, a two-port Agilent 8753D VNA was used to interrogate

two SAWR sensors during temperature cycling tests up to 850◦C in a Thermolyne 4800 box

furnace. A single KMQIN-125E-24 Omega K-type Inconel TC in conjunction with an NI

9213 TC module was used to measure the approximate temperature of the devices in the

same way as in the high-temperature gas testing setup described previously (one prior and

one after the frequency sweep, which were averaged to associate a temperature with that

particular frequency sweep). Frequency sweeps with 1601 points, bandwidth of 10 MHz

centered at 190 MHz and IF bandwidth of 3kHz were used for all the tests cited in Chapter

4.
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Figure 3.13. SAW sensor temperature characterization setup schematic.

All tests used two SAWR sensors mechanically secured to an Inconel plate using 4 mil

Pt wire and electrically connected to high-temperature coaxial cables using 1 mil Pt wire.

The witness TC was placed in close proximity to the SAWR sensors in air. Four setups

were tested with the temperature characterization setup. All of the mounted sensors had

previously been annealed at 800◦C for four hours in an alumina crucible, and this was the

only temperature treatment the devices experienced before being mounted for testing. The

test setup configurations are given in are given in Table 3.2.

Table 3.2. Summary of setups mounted and tested for temperature characterization.

Setup Device 1 Device 2
Devices
in
Crucible

B1 Film 1 Bare
14.7◦

Film 1 Bare
77.7◦ No

B2 Film 1 Bare
77.7◦

Film 1 50YSZ
77.7◦ No

B3 Film 1 Bare
26.7◦

Film 2 Bare
26.7◦ Yes

B4 Film 1 Bare
77.7◦

Film 1 Bare
77.7◦ Yes
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Setup B1 was implemented to compare the experimentally measured temperature

dependence of orientations Ψ = 14.7◦ and Ψ = 77.7◦ to the predicted temperature

dependence and verify the temperature of compensation (TCD = 0). The devices were

tested from 125◦C to 400◦C in 25◦C increments. Once the temperature was stable, 151

sweeps were taken at each temperature step. Setup B2 was tested in order to compare the

temperature dependence of Bare and 50nmYSZ-layered SAW sensors (50YSZ in Table 3.2)

oriented along Ψ = 77.7◦. The devices were tested fom 175◦C to 375◦C in 25◦C increments.

Both Setup B3 and B4 had additional devices placed in an alumina crucible to partake

in the temperature cycling, as shown in Figure 3.16. SEM images were taken from devices

employing either Film 1 or Film 2 as fabricated (State 1) and after annealing at 800◦C for four

hours in an alumina crucible. Setup B3 was tested to compare the temperature performance

of all devices employing Film 1 electrodes and reflectors vs. Film 2 IDTs and reflectors

up to 715◦C. This was done by exposing the devices to four rounds of temperature cycling

from nominal furnace temperatures were of 300◦C and 750◦C. The witness TC recordings for

one round of this temperature profile, labeled Profile 1, are shown in Figure 3.14. The TC

recorded on average 280◦C for the nominal 300◦C soaking periods and 714◦C for the nominal

750◦C soaking periods. Profile 1 consisted of four 1-hour cycles between 280◦C to 715◦C,

followed by a 10-hour soaking period at 715◦C and punctuated by another four 1-hour cycles

between 280◦C to 715◦C. SEM images were taken after this test (State 3). The average and

standard deviation of the SAW sensors after 45 minutes at the upper holding temperatures

(714◦C, for a total of 30 measurements for each average) were extracted.

56



Figure 3.14. Witness TC temperature readings for one round of Profile 1.

Setup B4 was tested to compare the temperature performance of all devices employing

Film 1 electrodes and reflectors vs. Film 2 IDTs and reflectors up to 850◦C using five rounds

of temperature cycling from nominal furnace temperatures 350◦C to 890◦C. The witness

TC recordings for one round of this temperature profile, labeled Profile 2, are shown in

Figure 3.15. The TC recorded on average 328◦C for the nominal 350◦C soaking periods

and 843◦C for the nominal 890◦C soaking periods. Profile 2 consisted of four 1-hour cycles

between 328◦C to 843◦C, followed by a 10-hour soaking period at 843◦C and punctuated by

another four 1-hour cycles between 280◦C to 715◦C. SEM images were taken after this test

(State 4). The average and standard deviation of the SAW sensors after 45 minutes at the

upper holding temperatures (843◦C, for a total of 30 measurements for each average) were

extracted. Figure 3.16 shows the physical layout of tests B3 and B4. Tests B1 and B2 were

similar, except no devices were in an alumina crucible.
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Figure 3.15. Witness TC temperature readings for one round of Profile 2.

Figure 3.16. SAW sensor temperature characterization setup.

58



3.4 Wireless High-temperature SAWR Gas Sensor Testing

High-temperature gas cycling tests were conducted on a SAW sensor through wireless

interrogation. The method of inductive coupling using antennas with 4 and 3 loops developed

in [111] were used to wirlessly interrogate a Film 1 Bare cycled (using Profile 1) device

oriented along Ψ = 26.7◦. The SAWR was attached to the 3-loop antenna using Aremco 571

high-temperature epoxy and connected electrically to the gold traces of the antenna using

1 mil wire. This antenna will be referred to from now on as the Sensor Antenna. Alumina

plates were further adhered at the corners of the sensor antenna using the same epoxy, and

the 4-loop was placed on top of the alumina plates and adhered with the same epoxy. This

top antenna will be referred to as the Interrogating Antenna. The distance between the traces

of the Sensor and Interrogating antennas was equal to 3 mm. The whole setup was then

placed inside one of the high-temperature stainless steel boxes and electrically connected to

an Inconel coaxial cable. This setup was then tested at 400◦C and 500◦C nominal furnace

temperatures using a frequency span of 40 MHz centered at 190 MHz; and at 400◦C using

a frequency span of 10 MHz centered at 191 MHz. In all cases, the number of points was

10,001 and the IF bandwidth was 1 kHz. The setup is shown in Figure 3.17.
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Figure 3.17. Wireless SAW gas sensor interrogation setup.
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CHAPTER 4

SAWR GAS SENSOR EXPERIMENTAL RESULTS AND DISCUSSION

This chapter presents and discusses the results obtained from the developed

high-temperature SAWR gas sensors. The high-temperature characterization of SAWRs

using the setups described in Section 3.3 are shown in Section 4.2. Gas sensor test results

are discussed in Sections 4.3-4.9 using the setups described in Section 3.2. The performance

of YSZ-layered sensors vs. Bare sensors is compared in Section 4.4. The findings involving

the impact of oxygen treatments for the SAW gas sensor operation at room temperature

are given in Section 4.5. H2 sensing results for different SAWR sensor orientations up to

500◦C are given in Section 4.6. Comparison of H2 sensing using Film 1 and Film 2 (defined

in Section 2.2.2) as electrodes are shown in Section 4.6. The feasibility of utilizing SAWR

sensors oriented along Ψ = 26.7◦ and Ψ = 77.7◦ as components of a two-sensor system to

simultaneously detect H2 presence and read ambient temperature is presented in Section 4.8.

Finally, wireless SAWR gas sensor measurements are given in Section 4.9.

4.1 Definition of Tracked Frequency

The fabricated SAWRs were probed at room temperature using a Cascade MicroTech

wafer probing station. The results for each of the orientations previously mentioned, Ψ =

14.7◦, 20.7◦, 26.7◦, 32.7◦ and 77.7◦ are given in Appendix B according to the mask design

definitions given in Section 2.1.2 (S, RC, and LC). It was found that the S IDT positioning

scheme gave a clearer frequency response with less spurious modes for SAWRs oriented along

the high-temperature orientations (Ψ = 14.7◦, 77.7◦) when compared to the performance of

RC and LC devices. For this reason, the section of the mask that had higher concentration

of S devices was normally selected to fabricate devices. To present the method of tracking

resonant frequencies used to monitor the SAWR resonant frequency, an example is given

below based on a typical frequency response of a SAWR sensor oriented along Ψ = 26.7◦.
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Figure 4.1 shows a typical frequency response of a SAWR oriented along Ψ = 26.7◦.

Figure 4.1a is a plot of the magnitude of the reflection coefficient |S11| in dB, and Figure

4.1b and 4.1c are plots of the real and imaginary part of the admittance in mS, respectively.

One can track the minimum value of the |S11| or the maximum value of the real part of the

admittance. It was found that there was no difference in tracking either of these variables

when monitoring changes due to temperature or gas exposure to gas exposure. The results

presented tracked the minimum value of |S11|.

Figure 4.1. Frequency response of SAWR oriented along Ψ = 26.7◦: a) magnitude of
reflection coefficient [dB]; b), real part of admittance [mS]; c) imaginary part of the

admittance [mS].

Figure 4.2 shows a zoomed-in window to the resonant frequency of the device. At this

magnification, it is possible to see the data points at which the VNA measured the S11.
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The E7071C has an S11 measurement accuracy of ±0.007 dB at the desired frequency range,

and so frequency shifting may occur between two adjacent points if the magnitudes are

close enough at that minimum [112]. For this reason, parabolic fitting was used with a

10-30kHz bandwidth (depending on the frequency step used for the tests, since this dictates

the number of points available for the polynomial fitting near the resonant frequency) for all

measurements in order to eliminate this frequency switching as shown in Figure 4.2.

Figure 4.2. Polynomial fitting around minimum S11 value to filter out frequency shifting
between adjacent points and improve the detection of minima for S11.

Figure 4.3 shows a typical frequency response of a SAWR oriented along Ψ = 20.7◦ with

RC IDT placement. To track the resonant frequency of devices with multiple resonances

such as the one shown in Figure 4.3, one of the frequency peaks was designated at the

beginning of the test as the frequency peak to be tracked, and that frequency peak was

tracked throughout the remainder of the test. This solution worked best for tests with a

temperature range spanning less than 200◦C, and often failed during tests that had wider

temperature ranges (from room temperature to 750◦C for example) as it is often the case

that some resonant frequencies become more pronounced at different temperatures and this
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prevented the selection of a particular peak at the beginning of a test for consistent tracking

under the technique implemented.

Figure 4.3. Frequency response of SAWR oriented along Ψ = 20.7◦ with RC IDT
placement: a) magnitude of reflection coefficient [dB]; b), real part of admittance [mS]; c)

imaginary part of the admittance [mS].

For gas cycling tests, unless otherwise specified, the frequency shifts measured from

figures are assumed to be measured from the instant before the gas transition in question to

the moment before the next gas transition.
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4.2 SAWR sensor High-temperature Characterization

This section will present the results obtained using the test setups described in Section

3.3 under Table 3.2.

4.2.1 Verification of Temperature Performance of Temperature Compensated

Orientations at temperatures above 150◦C

As described in Section 2.1.1, SAWR sensors oriented along Ψ = 14.7◦ and Ψ = 77.7◦ were

predicted to have compensated temperature behaviour around 180◦C and 310◦C respectively.

The results obtained using Setup B1 are shown in Figure 4.4. The measured temperature

of compensation for SAWR sensors oriented along Ψ = 14.7◦ and Ψ = 77.7◦ was found to

be approximately 150◦C and 290◦C, respectively [85]. Discrepancies between predicted and

measured results are expected due to uncertainties in the thermal coefficients used in the

calculations, as well as the influence of the Pt-Al2O3 electrodes, which were not taken into

account during calculations. The results proved that these two orientations are of interest

for operation around their respective temperatures of compensation, and also to provide

different temperature dependence of sensors being employed as components of multi-sensor

systems, such as the one proposed in Section 1.6.

4.2.2 Experimental results for influence of YSZ sensing film on temperature

performance of high-temperature SAWR sensors

Test setup B2 was tested to compare the temperature performance of Bare and 50nmYSZ

SAWR sensors oriented along Ψ = 77.7◦. The results are shown in Figure 4.5. There was

approximately a 5◦C shift upwards in temperature of compensation for the 50nmYSZ sensor

when compared to the Bare sensor, which is within expected experimental margins of error

considering the performance of similar sensors. This indicates that the YSZ film does not

significantly affect the temperature sensitivity of the SAWR sensors when compared to their

Bare counterparts [84].

65



Figure 4.4. Measured and predicted resonant fractional frequency variation normalized to
the maximum frequency with respect to measured temperature (f0 were 191.07 and 190.26

MHz for Ψ = 14.7◦ and Ψ = 77.7◦ respectively). Discrete points: measured data and
respective uncertainties; solid curves: second order polynomial fits; dashed curves:

numerically calculated responses for free surface. Curves A and B: Ψ = 14.7◦; Curves C
and D: Ψ = 77.7◦ [85].

Figure 4.5. Fractional frequency variation in SAWR sensor oriented along Ψ = 77.7◦ as a
function of temperature (f0 were 190.4 and 190.2 MHz for 50nmYSZ and Bare devices

respectively): Red curve: 50nmYSZ Sensor; Blue curve: Bare Sensor[84].
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4.2.3 Temperature stability performance of Film 1 and Film 2 SAWR Sensors

Both Setup B3 and B4 were used to study the stability performance of Bare SAWR

sensors employing either Film 1 or Film 2 electrodes and reflectors as described in Section

2.2.2. SEM images taken of the IDTs of each Film 1 and Film 2 for the four different

states described in Section 3.3 are shown in Figure 4.6 [93]. Both films are indistinguishable

at State 1, with smooth surfaces and no signs of deterioration. After annealing at 800◦C

four four hours, Film 1 (State 2 left) already showed the formation of stress hillocks and

material agglomeration, ranging in diameter from 400 nm to 1000 nm and a density of

approximately 1 hillock/3µm2 (0.35 hillocks/µm2). Film 2 (State 2 right) showed no sign of

hillock formation nor any material agglomeration due to the annealing process. For State

3 (after heating in Profile 1, Section 3.3, Figure 3.14), Film 1 continued to show hillocks

ranging from 400 nm to 1000 nm, whereas Film 2 still showed no sign of hillock formation or

material agglomeration. Upon exposure to multiple cycling between 328◦C and 843◦C (State

4, Figure 3.15), the thinner parts of the electrodes as discussed in Chapter 2.3, showed signs

of agglomeration for both Films 1 and 2. Interestingly, though, the center part of the graded

Film 2 electrodes, i.e., the part that has the nominal film thickness of 180 nm seemed to

be unaffected by the Profile 2 five rounds of cycling up to 843 ◦C. Film 1, on the other

hand, not only suffered severe agglomeration at the thinner part of the electrodes, but also

showed evidence of absence of material at the center part of the electrode, where the nominal

thickness is 180 nm.
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Figure 4.6. SEM images for Film 1 (left column) and Film 2 (right column) for the four
states discussed in the text. State 1: as fabricated; State 2: 800◦C for four hours; State 3:

after four rounds using Profile 1; State 4: after for five rounds using Profile 2.
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An example of the continuous-time frequency peak tracking of a Bare Film 1 sensor

oriented along Ψ = 26.7◦ during one of the rounds conducted for Profile 1 (described in

Section 3.3) is shown in Figure 4.7. As mentioned, in Section 3.3, the average and standard

deviation of the SAWR sensors after 45 minutes at the upper holding temperatures (715◦C

and 850◦C, for a total of 30 measurements for each average) were extracted.

Figure 4.7. Tracked Resonant Frequency vs. Time and Temperature, Profile 1

Figure 4.8 plots the average frequency variation of the last 30 measurements of each

cycling period at the highest temperature, which is shown on the right axis of the plot,

for both Film 1 (blue triangles) and Film 2 (green circles) SAWRs, where the reference

frequency, f0, is 188.725MHz for Film 1 and 188.093MHz for Film 2. The standard deviation

in the frequency measurements was smaller than 0.002% (comparable or smaller than the

size of the shapes used in Figure 4.8). The resonant frequency variations of the soaking

periods are consistently higher than subsequent excursions to the same temperature in the

cycles following, revealing that, although the TC mounted on the rear side of the Inconel

plate shows a stable temperature (Figure 3.16), the 1-hour shorter periods are not enough

for the SAWR sensors to reach a stable temperature even though it is enough time for the

TC to register a stable temperature during the same time frame. These differences are less

than about 12kHz, which for a temperature sensitivity around 10kHz/◦C for this orientation
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at 700◦C corresponds to a maximum temperature difference of 1.2◦C [113]. This value

of temperature variation is comparable to fluctuations in temperature due to the furnace

controller and thermocouple. Therefore, after the middle of the third round the Pt-Al2O3

electrode for both Films 1 and 2 had reached a stable operating frequency. This similarity in

stabilization time existed despite the difference in film quality observed after SEM analysis

(State 3). This suggests that the mitigation of stress hillocks accomplished at this sensor

state was not the main culprit for the initial device drift during the first rounds of Profile 1

heating [93].

Figure 4.8. Averaged relative frequency variation for Film 1 (blue triangles) and Film 2
(green circles) for setup B3 at the maximum temperature value shown on the right axis (f0,

Film 1: 188.725MHz, Film 2: 188.093MHz), Profile 1, Section 3.3.

Figure 4.9 shows the SAWR sensor continuous-time measurements conducted for five

rounds of Profile 2. The average frequency variation of the last 30 measurements of each

cycling period at the highest temperature is shown on the right axis of the plot for both

Film 1 (blue triangles) and Film 2 (green circles) SAWRs, where f0 is 186.539MHz for Film

1 and 186.093MHz for Film 2. In this case, both Film 1 and Film 2 exhibited frequency

variations that did not suggest stable operating frequency even after 5 rounds of Profile 2.
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The Film 1 SAWR drifted approximately 44 kHz after the fourth soaking period (Feature A

in Figure 4.9), while Film 2 SAWR drifted approximately 113 kHz (Feature B in Figure 4.9).

Subsequently Film 1 SAWR drifted approximately 39.4 kHz after the fifth soaking period

(Feature C in Figure 4.9), while Film 2 SAWR drifted approximately 85.8 kHz (Feature

D in Figure 4.9). These frequency variations can be correlated to the significant electrode

deterioration observed in Figure 4.6 for both Films 1 and 2. Suggested future work should

investigate the performance of sensors that do not require rotation during deposition. Under

such fabrication conditions, and based on the SEM images of Figure 4.6, in particular the

center part of the electrode of nominal thickness, Film 2 could potentially lead to stable

operating frequencies for SAW resonators employing Pt-Al2O3 thin films at temperatures

above 850◦C [93].

Figure 4.9. Averaged relative frequency variation for Film 1 (blue triangles) and Film 2
(green circles) for setup B4 at the maximum temperature value shown on the right axis (f0,

Film 1: 186.539MHz; Film 2: 186.093MHz), Profile 2, Section 3.3.
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4.3 SAWR Sensor Performance under Different Flow Rates and H2

Concentrations

This section describes results involving the characterization of the SAWR gas sensor

system using different gas delivery flow rates and concentrations of H2. Specifically, N2 flow

rate was varied from 100 sccm to 950 sccm at both room temperature and 500◦C. Gas cycling

between N2, O2 an 4%H2 at room temperature was conducted, first with 100 sccm flow rate

and then with 950 sccm flow rates to compare the SAWR sensor response to gas transitions

using both delivery flow rates. Gas testing was also conducted at 300◦C to compare the

impact of H2 (4% vs. 2%) concentration on gas sensor response. All results presented in

this and in following sections for gas cycling results show the tracked frequency

plotted on the left axis with a blue dotted-dashed line, the temperature of the

test plotted on the top-right axis with a red dotted line, and the exposure profile

plotted on bottom-right axis with a solid green line.

4.3.1 SAWR Sensor Response to Different N2 Flow Rates

In order to test the impact of varying gas delivery flow rates on tracked frequency, SAWR

sensors in Setup A5 (Section 3.2) were tested at room temperature and at 500◦C under 100

sccm of N2 flow, which was then increased to 150 sccm, 200 sccm, 400 sccm, 800 sccm, and

950 sccm of N2 every 20 minutes. The devices were interrogated 5 times before and after each

gas transition with 2001 points and a 2 MHz span centered at 191 MHz at room-temperature

and with 5001 points and a 5 MHz span centered at 192.5 MHz at 500◦C, for a frequency

step of 1 kHz in both cases. The result for Device 1 (Film 2 Bare cycled 14.7◦) of Setup A5

at room temperature is shown in Figure 4.10. The result shows that the tracked frequency

varies approximately 400 Hz during the entire test at room temperature, which is less than

the frequency step for these tests. This result suggested that there was no significant effect

of flow rate at room-temperature.
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Figure 4.10. Frequency variation of Setup A5 Device 1 (Film 2 Bare cycled 14.7◦) Tracked
Frequency response with respect to f0 = 190.816 vs. Different flow rates of N2 at Room

Temperature.

The test for Device 1 of Setup A5 at 500◦C is shown in Figure 4.11. Tracked frequency

varied approximately 7 kHz from 100 sccm to the final introduction of 950 sccm. This result

shows that the flow rate may produced a frequency variation of about 7 kHz at 500◦C as the

flow rate was varied from 100 sccm to 950 sccm. At 500◦C, a 6 kHz frequency variation is

equivalent to a temperature variation of approximately 1◦C for the orientation tested (14.7◦).

Temperature variations close to 1◦C are plausible at locations in the chamber close to the

gas inlet. This small temperature variation is not detected at the location near the gas outlet

by the TC as can be seen in Figure 4.11. In any case, during the tests that are presented

throughout the remainder of this Chapter, the flow rate should not vary more than ±10 sccm

during gas transitions, as the specifications of the mass flow controllers are metered to have

an accuracy of 1.0% at full scale (1000 sccm for both MFCs used) [114] and the command

input to the MFCs was varied according to the conversion parameters specified in [115].
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Figure 4.11. Setup A5 Device 1 Tracked Frequency response vs. Different flow rates of N2

at 500◦C.

4.3.2 Room temperature Gas Cycling SAWR Sensor Response under 100 sccm

and 950 sccm Flow Rates

To test the impact of gas cycling SAWR sensor response under different flow rates, Setup

A4 was tested at room-temperature immediately after mounting using 2001 points, 10 MHz

span (frequency step of 5 kHz) and 3kHz IF bandwidth . Figure 4.12 shows the obtained

results for Device 4 (Film 2 Bare non-cycled 26.7◦) in Setup A4 for a test under 100 sccm

flow and followed up immediately by a test under 950 sccm flow. The gas exposure profile

was identical for both 100 sccm and 950 sccm and consisted of either 20 min or 60 min

cycles between N2, O2 and 4%H2 under 100 sccm for the first test (Figure 4.12a) and 950

sccm for the second test (Figure 4.12b). The frequency shifts labeled in Figure 4.12 refer to

the measurements performed immediately before the introduction of 4%H2 into the chamber

until the measurement immediately before the end of the H2 exposure (for a total of 20 min

exposure measurement). The frequency shifts in 100 sccm flow labeled as as ∆f1st100sccm and

∆f2nd100sccm correspond to the first response 4%H2 after each respective oxidation sequence,
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and have a magnitude of 32.3 kHz and 29.3 kHz, respectively. The frequency shifts in

950 sccm flow labeled as as ∆f1st950sccm and ∆f2nd950sccm have magnitudes of 27.0 kHz and

26.1 kHz, respectively. The very first response to 4%H2 occurring at around 7 hours for

both tests deals with initial surface oxidation states, and its increased magnitude compared

to ∆f1st100sccm and ∆f2nd100sccm will be explained in Section 4.5. Considering the frequency

variations observed after the 4%H2 exposures, the results obtained suggest that the frequency

shift due to 4%H2 exposure is not significantly affected due to flow rate delivery for 100 sccm

and 950 sccm flow rates.
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Figure 4.12. Setup A4 Device 4 (Film 2 Bare non-cycled 26.7◦) Tracked Frequency at room
temperature vs. Gas Exposure with: a) 100 sccm gas flow; b) 950 sccm gas flow.

76



4.3.3 SAWR Sensor Response to Different H2 Concentrations

To test the impact of H2 concentration on SAWR sensor response, Setup A5 was tested

using 5001 points, 10 MHz span (2 kHz frequency step) and 2 kHz IF bandwidth at 300◦C.

Figure 4.13 shows the results obtained for Device 3 (Film 1 Bare cycled 14.7◦) in Setup

A5, where 2-hour N2 purging periods were used between 1-hour reducing periods in either

4%H2 or 2%H2. The first reduction is not labeled, as it will be discussed in Section 4.5.

The features labeled in Figure 4.13 correspond to the frequency shifts measured from the

measurement immediately preceding the introduction of H2 to the end of the 1-hour reducing

period in H2. For 4%H2, the features were 8.0kHz and 10.6kHz in magnitude (∆f1st4% and

∆f2nd4%) and for 2%H2, the features were 8.9 kHz and 8.6 kHz in magnitude (∆f1st2% and

∆f2nd2%). These results indicated that the saturation level for H2 interaction with the SAWR

sensors has already been reached at 2%, and additional concentration up to 4% does not

significantly increase H2 interaction with the SAWR sensors, which is consistent with [20],

[21] which indicate that higher gas concentrations after exposure for sufficient time do not

have a significant impact on sensor response.

Figure 4.13. Setup A5 Device 3 Tracked Frequency at 300◦C vs. Gas Exposure for
different H2 concentrations.
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4.4 Comparison of YSZ-layered and Bare SAW Gas Sensor Performance

This section presents the comparison between SAWR sensor performance at

high-temperature for the detection of 4%H2 using Bare and YSZ-layered devices. Setup

A2 compared Bare and YSZ-layered devices at 300◦C and Setup A4 compared YSZ-layered

vs. Bare SAWR sensor SAWR sensors at 200◦C, 300◦C and 400◦C.

YSZ-layered (15 nm YSZ thickness with 1 nm Pt decoration as described in Section 2.3)

and Bare SAWR sensors employing Film 2 for electrodes and reflectors were tested around

280◦C using Setup A2 was using 10,001 points, 5 MHz span (500 Hz frequency steps) with

a center frequency of 192.5 MHz and IF bandwidth of 1 kHz. The devices were cycled with

20-min periods in either O2 or 4%H2 with 1-hour purging periods in N2. The results are

shown in Figure 4.14 and for Figure 4.15 for Device 3 (Film 2 YSZ non-cycled 14.7◦) and

Device 4 (Film 2 Bare non-cycled 14.7◦), respectively. The frequency tracking of Device

4 experienced larger ripples, most likely to a defective connection with the 1 mil Pt wire.

Three features are marked on each figure, the shifts in frequency due to exposure to 4%H2

after the oxidation periods marked in the figures. The magnitude for the frequency shifts for

Device 3 were 19.7kHz, 18.7kHz, and 18.8kHz for ∆f1stY SZA3, ∆f2ndY SZA3 and ∆f3rdY SZA3

respectively. The magnitude for Device 4 were 29.3kHz, 25.3kHz and 25.2kHz for ∆f1stBareA3,

∆f2ndBareA3 and ∆f3rdBareA3 respectively. This result suggests that the Pt-decorated YSZ

layer actually impeded H2 from reaching the sensing film at the surface of the SAWR sensors,

and thus the Pt-decorated YSZ does not increase the Pt-Al2O3 based SAWR sensor response

to H2.
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Figure 4.14. Setup A2 Device 3 (Film 2 YSZ non-cycled 14.7◦) Tracked Frequency at
300◦C vs. Gas Exposure.

Figure 4.15. Setup A2 Device 4 (Film 2 Bare non-cycled 14.7◦) Tracked Frequency at
300◦C vs. Gas Exposure.
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These results were confirmed using Setup A4, which was tested at 200◦C, 300◦C and

400◦C using 2001 points, 10 MHz span (5 kHz frequency step) centered at 190 MHz and an

IF bandwidth of 5 kHz. As an example, the results for Device 2 (Film 2 Bare non-cycled

14.7◦) is shown in Figure 4.16. The gas exposure profile consisted of 3-hour oxidation periods

and 90-min reduction periods separated by 1-hour N2 purging periods, all in 100 sccm gas

flow. Three frequency shifts (∆fA, ∆fB and ∆fC in Figure 4.16) were recorded for each

device at each test temperature. The first frequency shift ∆fA is in most cases higher

in magnitude than the second ∆fB and third ∆fC frequency shifts, as will be clarified in

Section 4.5. The average of ∆fB and ∆fC was taken at each temperature for each device

(∆fi) and was normalized to f0i, defined as the last frequency recorded at the end of the

reducing period corresponding to ∆fB at a particular temperature for a particular device (in

the example Figure 4.16, the f0i was 190.886 MHz). The resulting normalized ∆fi/f0i are

plotted in Figure 4.17 versus temperature, where the average temperature recorded within

the corresponding chamber was used to associate the normalized ∆fi/f0i to a temperature

value. A compilation of all results is given in Section C.1. The measurements are connected

within the figure for convenience and do not to imply extrapolation. Device 1 (Film 2 YSZ

non-cycled 14.7◦) and Device 2 (Film 2 Bare non-cycled 14.7◦) showed frequency shifts within

measurement accuracy (5 kHz) from their counterparts in Setup A2 (the results from Figures

4.14 and 4.15), which confirm the fact that the YSZ layer actually impeded the interaction

between H2 and the SAWR sensors. The same was true at the test temperatures of 200◦C

and 400◦C for these devices. Additional evidence for this claim came from the comparison of

Device 3 (Film 2 YSZ non-cycled 26.7◦) and Device 4 (Film 2 Bare non-cycled 26.7◦), where

Device 4 (Bare 26.7◦) across all test temperatures exhibited over 50% higher frequency shifts

than Device 3 (YSZ 26.7◦).
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Figure 4.16. Setup A4 Device 2 (Film 2 YSZ non-cycled 14.7◦) Tracked Frequency at
297◦C vs. Gas Exposure.

Figure 4.17. Setup A4 Measured relative frequency variation due to 4%H2 exposure at the
measured temperatures for: Device 1 (Film 2 YSZ non-cycled 14.7◦) (pink crosses,

dotted-dashed line); Device 2 (Film 2 Bare non-cycled 14.7◦) (purple crosses, dotted line);
Device 3 (Film 2 YSZ non-cycled 26.7◦) (yellow circles, dashed line); Device 4 (Bare 26.7◦)

(blue circles, solid line). ∆fi and f0i are given in Section C.1.
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4.5 Oxygen Treatments for Gas Sensor Operation at Room Temperature

As has been observed in some of the previous results, the first frequency shift caused due

to the introduction of H2 was observed to be consistently higher than subsequent frequency

shifts due to H2 interaction with the sensors throughout the remainder of the test. This led

to the hypothesis that the oxidation state of the sensors may play an important role in the

subsequent H2 detection. For this reason, room-temperature gas cycling room-temperature

gas cycling tests were conducted on Setup A3 using O2 treatments at room temperature.

Additionally, Setup A3 was subject to high-temperature conditioning treatments at in O2

500◦C and 650◦C and in 4%H2 at 500◦C, brought back to room-temperature where gas

cycling tests were performed. Researchers Dr. Paul R. Ohodnicki and Dr. John Baltrus

from the National Energy Technology Laboratory (NETL) in Pittsburgh, PA contributed

valuable X-ray Photoelectron Spectroscopy (XPS) analysis that clarified the results obtained

using SAWR sensors.

4.5.1 O2 Treatments at Room Temperature

Setup A3 was exposed to a gas-cycling test at room temperature immediately after

mounting using 10 MHz span with a center frequency of 190 MHz, an IF bandwidth of

5 kHz, and 2001 points (5 kHz frequency step). The gases were delivered with a flow rate

of 950 sccm, and the profile consisted of either 25 or 60 min cycles between N2, O2 and

4%H2. Figure 4.18 shows the results for Device 3 (Film 2 Bare non-cycled 26.7◦). The

sequence of these exposures was designed to include several repeated exposures to either

4%H2 (reduction periods labeled R1, R2 and R3) or O2 (oxidation periods labeled O1, O2

and O3), with 60-min purging periods in N2 between reduction and oxidation (P1, P2 and

P3) . The events of frequency variations due to gas cycling are labeled, and correspond

to the 90.7 kHz frequency shift due to the first exposure to 4%H2 exposure (‘A’), sensor

recovery frequency shifts due to 4%H2/N2 cycling with shorter 25 min periods in N2 without

any prior oxidizing treatments averaging 5.7 kHz for the instances recorded in this test (‘B’),
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sensor recovery due to 1-hour N2 purging periods averaging 6.2 kHz (‘C’), sensor recovery

of 28.3 kHz, 26.8 kHz and 24.5 kHz after oxidizing cycles O1, O2 and O3 respectively (‘D1’,

‘D2’ and ‘D3’,) and frequency shifts of 34.3 kHz and 33.3 kHz due to 4%H2 exposure after

the oxidizing treatments (‘E1’, ‘E2’). Features B and C were consistent (less than 1 kHz

standard deviation) throughout the test and are therefore labeled as the same feature. The

complete results for several measurements taken from Setup A1 (Device 3, Film 1 Bare

non-cycled 26.7◦and Device 4, Film 1 Bare non-cycled 26.7◦) and Setup A4 (Device 4, Film

2 Bare non-cycled 26.7◦) for results obtained using 950 sccm gas flow are given in Appendix

C in Section C.2.1. Figure 4.18 revealed that sensor resonant frequency shift due to 4%H2

after oxidation periods (Features ‘E’) are less than half when compared to Features ‘A’,

which might be attributed to the initial reduction of the sensor surface through exposure

to 4%H2. As such, the surface state prior to Feature ‘A’ is not recovered by subsequent

oxidation cycling at room temperature in a reasonable time frame [116].

Figure 4.18. Setup A3 Device 3 (Film 2 Bare non-cycled 26.7◦) Tracked Frequency at room
temperature vs. Gas Exposure [116]
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The frequency recovery of the SAWR sensor during purging periods Pi were compared

with the frequency recovery during oxidation periods Oi (Figure 4.18) in order to analyze

the relevance of using the oxygen cycling with respect to the use of N2 alone. Figure

4.19 shows the frequency variation during the periods Pi and Oi , subtracted from the

minimum frequency before Pi, fmin1. Exponential fitting was extrapolated during the first

three minutes of the oxidizing period in Figure 4.19 to give the purging period Pi and the

oxidizing period Oi the same starting point in time. Other than this exponential fitting

during the three initial minutes of the Oi periods, all other points indicated in Figure 4.19

are measured data. As can be observed from Figure 4.19, the recovery due to oxygen cycling

decreases slightly after multiple reduction/oxidation cycle periods Oi. At the end of the

one-hour period shown in Figure 4.19, the frequency recovery for Feature D2 compared to

D1 decreases by 2 kHz, and for D3 compared to D2, 1 kHz. The response plotted Figure

4.19 is a typical response obtained out of 18 of these cycling period experiments repeated

with four different similar SAWR devices. After 22 minutes, the frequency recovery with

oxygen cycling for all the Di is at least 5 times greater than the recovery due to N2 purging

alone. In the worst case shown at the 22min mark, D3 recovered 22.7 kHz compared to the

4.5 kHz recovery with N2. After 57 minutes, the D3 recovery amounts to 25.3 kHz, and

the frequency recovery of purging periods amounts to 6.1kHz, representing still a four-fold

increase in sensor frequency recovery after approximately one hour. It is also interesting to

observe that most of the frequency recovery using the oxygen cycling takes place during a

few minutes, and that between the 22 min mark and the 57 min mark only an extra 10%

increase in frequency recovery is obtained for a 65% increase in recovery time [116].
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Figure 4.19. Comparison of Device 3 recoveries due to N2 and O2/N2 cycling [116].

After 3 hours idling (no measurements taken) in 100 sccm flow of N2, the same Setup

A3 was tested to at room temperature using frequency sweeps of 6MHz centered at 191MHz

with 10001 points and an IF bandwidth of 1kHz. The results are shown in Figure 4.20.

The gas delivery profile was identical to the profile from the previous test shown in Figure

4.18. The features in Figure 4.20 marked as E3 and E4 correspond to the frequency shifts

after the introduction of 4%H2 after O2 treatments, and corresponded to features E1 and

E2 marked in Figure 4.18. The magnitudes of E3 and E4 were 27.9 kHz and 28.4 kHz in

magnitude respectively. These results showed that after 4 of these reductions, the magnitude

of frequency shift does not seem to decrease further after the oxidation treatments [117].
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Figure 4.20. Setup A3 Device 3 (Bare 26.7◦ Film 2) Tracked Frequency at room
temperature vs. Gas Exposure, Second Test [117].

The tracked frequency of the device in this test was normalized according to the values

of f0min and f0max marked in Figure 4.20 through Equation 4.1.

fn = 100
f − f0min

f0max − f0min

(4.1)

Figure 4.21 plots the normalized measured frequency fn for Features C2ndtest and D2ndtest

and exponential fitting used to give the same starting point. After the first O2 around the

20-min mark, the sensor recovered to 78% of f0max, as opposed to 15% for N2 alone, for a

five-times larger frequency recovery for the referred 20-minute period. After 68 min in the

O2/2 cycling, the sensor recovered 90% of f0max, while in N2 that number drops to 21% [117].

It should be noted that the impact of gas treatments prior to 4%H2 have a reduced effect

at temperatures above 200◦C, as can be seen from the oxidation periods Figure 4.16, Figure

4.33 and Figure 4.28. As mentioned, the improvement at room-temperature is five-fold, while

at temperatures above 200◦C there is an improvement of less than 20%.
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Figure 4.21. Setup A3 Device 3 (Bare 26.7◦ Film 2) Tracked Frequency at room
temperature vs. Gas Exposure, Second Test, direct comparison of normalized frequency

variation [117].

4.5.2 High-temperature conditioning in O2 and in 4%H2

Test Setup A3 was heated to 500◦C in 100 sccm N2 flow, switched to 4%H2 100 sccm flow

for 3 hours at 500◦C, and allowed to cool down to room temperature in 4%H2 (Conditioning

A). A room temperature gas cycling tests was conducted following this similar to the ones

described previously in Section 4.5.1, with the exception of gases delivered using 100 sccm

instead of 950 sccm. VNA settings were 10,001 points, 10 MHz span centered at 190 MHz and

IF bandwidth of 1 kHz. Setup A3 was then heated to 500◦C in N2, switched to O2 100 sccm

flow for 3 hours at 500◦C, and allowed to cool down to room temperature in O2 (Conditioning

B) and tested similarly at room temperature. The setup was then heated to 650◦C in N2,

switched to O2 100 sccm flow for 3 hours at 650◦C, and allowed to cool down to room

temperature in O2 (Conditioning C) and tested similarly at room temperature. The results

at room temperature after each conditioning for Device 3 are shown in Figure 4.22. The

results showed that the SAWR sensor did not respond the gas cycling at room temperature

after Conditioning A. The curve labeled Conditioning B in Figure 4.22 showed that the
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device begins to respond to gas cycling at room temperature, with an initial response to H2

of 41.2 kHz and subsequent variations in the range of 3 to 5 kHz when exposed to H2 even

after oxidizing periods. Finally, the curve labeled Conditioning C showed that exposure to

650◦C further increases the device frequency variation to O2 and H2 cycling when compared

to the response after exposure to the oxidation environment at 500◦C. The feature marked

in Figure 4.22 as ∆f1 was of 73.2 kHz, markedly higher than the features ∆f1 and ∆f2 of

18.8kHz and 14.2 kHz respectively [116]. This oxidation conditioning at 650◦C was repeated

once for Setup A3 and done twice for Setup A4, and the results for Device 3 (Fim 2 Bare

non-cycled 26.7◦) in Setup A3 and Device 4 (Film 2 Bare non-cycled 26.7◦) in Setup A4 are

given in Appendix C in Section C.2.2.

Figure 4.22. Setup A3 Device 3 (Film 2 Bare non-cycled 26.7◦) Tracked Frequency at room
temperature vs. Gas Exposure after Conditioning A, B and C (explained in the text) [116].
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These results were additionally confirmed by XPS analysis performed by researchers Dr.

John Baltrus and Dr. Paul Ohodnicki from the (NETL) at Pittsburgh, PA. Bare SAWR

sensors employing Film 1 were sent to NETL. The XPS measurements were carried out with a

PHI 5600ci instrument using monochromatic Al Kα X-rays. The pass energy of the analyzer

was 23.5 eV and the scan step size was 0.1 eV. Binding energies were referenced to the Al 2s

peak, which was assigned a binding energy of 119.5 eV. Charge neutralization was employed

to minimize the effects of sample charging with the parameters for neutralization remaining

constant over all samples. The stability of neutralization was confirmed by measuring the

Na 1s peak (adventitious Na particles on the sample), which maintained a constant value

of 1072.56 ±0.04 eV. Peak positions were measured by fitting the spectra using CasaXPS

software. The samples were exposed to 20 minutes of either O2, N2 or 10% H2/Ar gases at

atmospheric pressure using a 30 sccm flow rate in a reaction chamber attached to the XPS

instrument, which permitted XPS analysis after gas treatment without exposure to air. For

conditioning at 600◦C, the temperature was raised at a rate of 10◦C/min up to the target

temperature, then held for the designated time, before cooling back to room temperature,

typically over a period of 1 hour. This procedure was aimed to mimic the conditioning and

gas cycling performed on the SAWR sensors at UMaine. The results for conditioning in O2

are shown in Figure 4.23. Figure 4.23 shows XPS Pt 4f7/2 binding energies measured after

exposure to different gas species immediately after the sample was conditioned at 600◦C

in oxidizing environment. The coordinate axis in Figure 4.23 shows the time during which

the sample was exposed to the treatment in question (high-temperature conditioning or

room temperature gas exposure). For the measurements, the sample was taken at the end

of each gas exposure into vacuum for XPS analysis at room temperature. The highest Pt

4f7/2 binding energies are measured after O2 exposure while the lowest binding energies are

measured after 10% H2 exposure. The N2 exposures generally result in intermediate Pt 4f7/2

binding energies. The lowest Pt 4f7/2 binding energy (70.9 eV) corresponds to Pt metal [116].
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Figure 4.23. Pt 4f7/2 binding energies after high-temperature oxidizing treatment. The
cross indicates XPS analysis after the high-temperature treatment, the upward triangle
indicates XPS analysis after room-temperature N2 exposure, the square indicates XPS
analysis after room-temperature O2 exposure, and the diamond indicates XPS analysis

after room-temperature H2 exposure [116].

The largest difference in Pt 4f7/2 binding energies between an O2 and 10% H2 treatment

in the series was measured upon the first 10% H2 exposure, where the XPS analysis showed

that there was about a 0.7 eV difference in binding energies between the oxidized state

(measured in the figure at the 280 minute-mark) and the reduced state (measured at the

320 minute-mark). This initial shift in binding energy corresponds to the initial shift in

resonant frequency in Figure 4.22 ∆f1. The subsequent periods in N2 and O2 caused an

approximate 0.6 eV shift in binding energy (measured at the 360 minute-mark with respect

to the 320 mark), showing that the previous oxidation state at 280 minute-mark was not fully

achieved, consistent with the results for the SAWR sensors. The next reduction treatment

(400 minute-mark) reported a shift in binding energy of about 0.5 eV, corresponding to the

second frequency shift in Figure 4.22 ∆f2. The measurements taken at the 440 minute-mark

for the SAW experiments and exhibited a variation in binding energy of about 0.2 eV
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with respect to the 420 minute-mark. The final oxidation period (measured at the 480

minute-mark) reported a 0.3 eV binding energy shift with respect to the last reduced state

(440 minute-mark), corresponding to the lower achieved recovery after the second oxidation

period in Figure 4.22 [116].

Additionally, conditioning in reducing environment was also conducted at 600◦C and gas

cycling was also performed. The results are shown in Figure 4.24 In this case, The initial

oxidation state of the surface does not allow for subsequent shifts in binding energy using

room-temperature O2 treatments higher than 0.3 eV, consistent with the inoperable state of

the SAWR sensor after this type of high-temperature conditioning [116].

Figure 4.24. Pt 4f7/2 binding energies after high-temperature reducing conditioning
treatment. The cross indicates XPS analysis after the high-temperature treatment, the
upward triangle indicates XPS analysis after room-temperature N2 exposure, the square
indicates XPS analysis after room-temperature O2 exposure, and the diamond indicates

XPS analysis after room-temperature H2 exposure [116].
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4.6 Influence of SAWR Sensor Orientation on H2 Detection

The SAWR sensor orientation was found to influence the magnitude of the frequency

shifts observed due to introduction of H2. To test the influence of SAWR sensor orientation

on H2 detection, Setups A3, A6 and A7 were tested up to 500◦C.

4.6.1 Extraction of Temperature Sensitivity up to 500◦C in N2 flow

The frequency dependency with temperature for the SAWRs mounted in Setup A3

(Device 1: Film 2 Bare non-cycled 77.7◦; Device 2: Film 2 Bare non-cycled 14.7◦; Device

3: Film 2 Bare non-cycled 26.7◦; Device 4: Film 2 Bare non-cycled 32.7◦) was obtained.

This work was done to assess the influence of possible temperature variations or fluctuations

in the gas readings. The SAWRs temperature dependence was extracted in a constant

N2 flow by subjecting the setup to increments of 20◦C from 60◦C to 480◦C and held at

temperature for 2 hours, while the sensors were interrogated every 5 minutes. The average

resonant frequency at each temperature was taken after one hour had transpired giving 12

measurements per temperature step. A second degree polynomial approximation (parabolic)

was used to extrapolate the results to the range between 0 and 500◦C. Figure 4.25a plots

the average data measured for the orientations used, normalized to the maximum measured

value of frequency for that orientation f0ΨT . Figure 4.25b shows the respective temperature

sensitivity curves calculated from the experimental results shown in Figure 4.25a [118].

92



Figure 4.25. a) Measured normalized frequency variation (f-f0ΨT )/f0ΨT vs. temperature for
the LGS orientations used and polynomial fit; b) calculated sensitivity. Device 1 (Film 2
Bare non-cycled 77.7◦): squares, dashed red line; Device 2 (Film 2 Bare non-cycled 14.7◦):
crosses, dotted purple line; Device 3 (Film 2 Bare non-cycled 26.7◦): circles, solid blue line.
Device 4 (Film 2 Bare non-cycled 32.7◦): triangles, dotted-dashed green line; The value of
f0ΨT is 189.927,191.075, 191.934, 191.465MHz for Device 1-Device 4 respectively [118].
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4.6.2 Influence of Orientation on H2 Detection up to 500◦C

The devices in Setup A3 were tested at the following discrete furnace setup temperature:

room temperature (no heating, furnace off), 100◦C, 200◦C, 300◦C, 400◦C, and 500◦C.

These values correspond to the following actual temperature in the chambers averaged from

measurements by the TCs in both chambers throughout the entire test after reaching a stable

temperature: 21◦C, 91◦C, 186◦C, 276◦C, 373◦C and 471◦C, respectively. The VNA settings

were set to a frequency sweep of 10 MHz centered at 190 MHz with 2001 points and an IF

bandwidth of 5kHz.

Figure 4.26 shows the results for Device 3 (Film 2 Bare non-cycled 26.7◦). The test

started with an initialization sequence consisting of N2 flow while the setup reaches a stable

temperature, and an initial oxidation period of three 20-min O2 and N2 cycles, followed by

an hour period in N2 as a purging period. Reduction periods consisted of four 20-min H2 and

four 20-min N2 cycles followed by a 1-hour purging period in N2. Oxidation periods consisted

of four 20-min O2 and four 20-min N2 cycles followed by an hour purging period in N2. The

frequency shift labeled as ∆f1 in Figure 4.26 is due to the first 20-min exposure to H2 after

the first oxidation period. Similarly, ∆f2 was recorded after the second oxidation period.

The resonant frequency at the end of the first 20-min exposure to H2 after the first oxidation

period (Feature ∆f1) was adopted as the reference frequency for that test at that particular

temperature and particular device [118]. The results for all devices and test temperatures

are given in Appendix C in Section C.3.1.
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Figure 4.26. Setup A3 Device 3 (Film 2 Bare non-cycled 26.7◦ Film 2) Tracked Frequency
at 186◦C vs. Gas Exposure.

Figure 4.27 plots the average of ∆f1 and ∆f2 (∆fi) normalized by the respective resonant

frequency f0i as a function of temperature for the devices in Setup A3. The data points are

connected for convenience and do not imply interpolation. There is a marked difference in

frequency variation due to the insertion of H2 for the different orientations tested. From

weaker to stronger frequency response to H2 the orientations can be ordered as: Ψ = 77.7◦,

Ψ = 14.7◦, Ψ = 32.7◦ and Ψ = 26.7◦. This order remained true from room temperature to

the maximum temperature measured of 471◦C. The data points at 471◦C for Device 3 and

Device 4 appear to have decreased considerably, while the data points for Device 1 and 2

remained the same from their values at 373◦C, This may have been due to inconsistencies in

the gas delivery system at this particular temperature for Chamber 2 (housing both Device

3 and Device 4). ∆T1 and ∆T1 shown in Figure 4.26, which represents the temperature

variation due to the switching from the N2 gas to the 4%H2 mixture, could compromise the

frequency variation results due to exposure to H2 in Figure 4.27. The measured temperature

variation by the TCs between the time the frequencies were measured to obtain the potential
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change in fractional frequency that was dependent on this measured temperature variation.

For the averaged measured temperatures 21◦C, 91◦C, 186◦C, 276◦C, 373◦C and 471◦C the

respective maximum ∆Ti were: -0.5◦C, -0.3◦C, -0.2◦C, -0.4◦C, -0.6◦C, and -0.7◦C. Using the

sensitivity curve given in Figure 4.25, the maximum temperature induced frequency variation

is also given in Appendix C. These frequency variations are smaller than the shapes used to

plot Figure 4.27, and thus found to not significantly affect the conclusions established from

Figure 4.27 in terms of the influence of the different orientations on the detection of H2.

Figure 4.27. Setup A3 Measured relative frequency variation due to 4%H2 exposure at the
measured temperatures for: Device 1 (Film 2 Bare non-cycled 77.7◦) (orange squares,

dashed line); Device 2 (Film 2 Bare non-cycled 14.7◦) (purple crosses); Device 3 (Film 2
Bare non-cycled 26.7◦) (blue circles); Device 4 (Film 2 Bare non-cycled 32.7◦) (green

triangles). Data points are connected for convenience and do not imply interpolation. ∆fi
and f0i are given in Section C.3.1.
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Based on the results of Figure 4.27, the magnitude of the frequency shifts due to

introduction of H2 seemed to be associated with K2 for each orientation (see Section 2.1),

with the exceptions of orientations Ψ = 77.7◦ and Ψ = 14.7◦, which have almost the sameK2.

Setup A6 was tested to verify whether or not coupling coefficient plays an important role in

the magnitude of frequency shifts due to the introduction of H2. Two devices oriented along

Ψ = 20.7◦ (Device 1, Film 1 Bare non-cycled 20.7◦and Device 3, Film 1 Bare non-cycled

20.7◦) were tested alongside a device oriented along Ψ = 26.7◦ (Device 4, Film 1 Bare

non-cycled 26.7◦) and Ψ = 77.7◦ (Device 2, Film 1 Bare non-cycled 77.7◦), since, from

Figure 2.1, the orientation Ψ = 20.7◦ has a K2 value of 0.4%, compared to the K2 values

of Ψ = 26.7◦ and Ψ = 77.7◦ of 0.3% and 0.15%, respectively. Setup A6 was tested using

VNA settings of a frequency sweep of 10 MHz centered at 190 MHz with 5001 points (2

kHz frequency step) and an IF bandwidth of 2kHz, at the nominal furnace temperatures of

220◦C, 320◦C, 420◦C and 525◦C. The results for Device 4 (Film 1 Bare non-cycled 26.7◦) at

nominal furnace temperature of 220◦C are shown in Figure 4.28. Four features were recorded

for each test and each device. Feature A in Figure 4.28 corresponds to the first frequency

shift due to H2 introduction. Feature B corresponds to the frequency shift due to H2 after a

1-hour purging period in N2. Feature C corresponds to the frequency shift due to H2 after a

3-hour purging period in N2. Feature D corresponds to the frequency shift due to H2 after

a 1-hour oxidation period separated from reductions by a 1-hour N2 period. The reference

frequency for each device and temperature was chosen to be the last measurement at the end

of the reducing period corresponding to Feature D. This was done because this is the only

4%H2 exposure which immediately followed an oxidation period, as was the case with the

results recorded for Figure 4.26. The results for each feature of all the tests conducted for

Setup A6 are given in Appendix C in Section C.3.2. The temperature variation within any

particular chamber for any particular test was less than ±2◦C from the average recorded up

to 500◦C, which is within the measurement accuracy of the TCs [119].
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Figure 4.28. Setup A6 Device 4 (Film 1 Bare non-cycled 26.7◦) Tracked Frequency at
220◦C vs. Gas Exposure.

The frequency shifts associated with Feature D for each device (∆fDi) were normalized to

the reference frequency f0i defined as the last frequency measurement associated with Feature

D, and the resulting values are plotted with respect to temperature in Figure 4.29. The data

points are connected for convenience and do not imply interpolation. The relative frequency

variations measured for the device oriented along Ψ = 26.7◦ and for the devices oriented

along Ψ = 20.7◦ were comparable at all temperatures (within 0.01%), which suggested that

coupling coefficient may not be the only parameter responsible for the differences in observed

frequency shifts due to the introduction of H2. Other possible parameters determining the

magnitude of frequency shifts due to the introduction of H2 to be considered in future studies

are: strip reflection coefficient, diffraction, and bulk irradiation.
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Figure 4.29. Setup A6 Measured relative frequency variation due to 4%H2 exposure at the
measured temperatures for: Device 1 (Film 1 Bare non-cycled 20.7◦) (pink diamonds,

dashed-dotted line); Device 2 (Film 1 Bare non-cycled 77.7◦) (orange squares, dashed line);
Device 3 (Film 1 Bare non-cycled 20.7◦) (yellow diamonds, dotted line); Device 4 (Film 1
Bare non-cycled 26.7◦) (blue circles, solid line). Data points are connected for convenience

and do not imply interpolation. ∆fDi and f0i are given in Section C.3.2.

Setup A7 tested Bare devices oriented along Ψ = 26.7◦ (Device 1: Film 1 Bare cycled

26.7◦, and Device 3: Film 1 Bare cycled 26.7◦) and Ψ = 77.7◦ (Device 2: Film 1 Bare

cycled 77.7◦, and Device 4: Film 1 Bare cycled 77.7◦) employing Film 1 as electrodes and

reflectors that had been previously been cycled using Profile 1 in an alumina crucible. These

orientations had not been previously tested in the same chamber and it was desired to

characterize them in the same environment, since they presented the largest difference in

response due to the introduction of 4%H2. Setup A7 was tested using VNA settings of a

frequency sweep of 10 MHz centered at 190 MHz with 5001 points (2 kHz frequency step)

and an IF bandwidth of 2kHz, at the nominal furnace temperatures from 100◦C to 500◦C in

50 ◦C increments. The results for Device 1 (Film 1 Bare cycled 26.7◦) at nominal furnace

temperature of 300◦C are shown in Figure 4.30. All gases were delivered using 100 sccm

flow rate. The exposure profile consisted of 3 hours in N2 to allow for cooling, an oxidation
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period consisting of 2 hours in O2 and 2 hours in N2, the two reductions of one hour in

4%H2 separated by a N2 purging period 3 hours long. The temperature measured by the

witness TC in the corresponding chamber was averaged for a four hour period starting 1.5

hours before the 1st reduction and ending 1.5 hours after the end of the 1st reduction and

considering the one hour reduction in H2 exposure. The largest standard deviation measured

for this time range across all temperatures was less than 0.3◦C, which was recorded at the

nominal furnace temperature of 150◦C in chamber 1. Two frequency values were obtained

for each device at each test and labeled as fNiTj and fHiTj corresponding to the average

of the 10 measurements obtained immediately prior to the beginning of the 1st reduction

and immediately prior to the end of the 1st reduction. The standard deviation of these

measurements was less than 1 kHz in all cases. The compiled results for all sensors and

values for acquired data are given in Appendix C in Section C.3.3.

Figure 4.30. Setup A7 Device 1 (Film 1 Bare cycled 26.7◦) Tracked Frequency at 294◦C vs.
Gas Exposure.

The average and standard deviation values temperature for the chamber, the recorded

average value fNiTj and fHiTj and the magnitude of the frequency shift from fNiTj to

fHiTj defined as ∆fi are given in Appendix C in Section C.3.3. At the nominal furnace
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temperatures of 400 and 500◦C, a data acquisition error did not allow for the interrogation

of Device 3 at those temperatures. The values of ∆fi were normalized with respect to

the corresponding value of fHiTj and the results for each device are shown in Figure 4.31.

The standard deviation both in frequency and in temperature are smaller than the shapes

used to plot the results. The data points are connected for convenience but do not imply

interpolation between the data points. A dotted line was used to connect the data points

of devices in Chamber 1 (Device 1 with blue circles and Device 2 with orange squares), and

dashed line was used to connect the data points of devices in Chamber 2 (Device 3 with

yellow circles and Device 4 with purple squares). The results confirmed a difference in the

magnitude of the frequency shift due to 4%H2 of at least 0.015% between devices oriented

along Ψ = 26.7◦ and Ψ = 77.7◦. Also notable from the results is that there is decrease in

relative frequency shifts in the temperature range from 200◦C to 350◦C when compared to

the shifts recorded from 100◦C to 200◦C, after which an increase in relative frequency shifts

is observed for all devices above 400◦C.

4.7 Film 1 vs. Film 2 SAW Gas Sensor Performance

Figure 4.32 shows the fractional frequency change due to the introduction of 4%H2 for all

Bare devices oriented along Ψ = 26.7◦. Figure 4.32 shows that the SAWR sensor response

for devices employing Film 2 that had not been previously cycled were 0.04% larger in the

temperature range from 250◦C to 400◦C than Devices employing Film 1, both previously

cycled and non-cycled.

Setup A5 was used to compare the SAWR sensor performance of Bare devices oriented

along Ψ = 14.7◦ previously cycled employing Film 1 (Device 3 and 4) and Film 2 (Device 1

and 2) at 200◦C, 300◦C, 400◦C, 500◦C and 600◦C, resulting in the highest temperature for

which successful H2 detection was observed during this work. The VNA settings were set

to 5001 points, 5 MHz span centered at 192.5 MHz with IF bandwidth of 1 kHz. Before

each test, the entire setup was heated to 650◦C in 100 sccm N2 flow, switched to 100 sccm
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Figure 4.31. Fractional frequency shift due to 4%H2 exposure for Devices 1-4 at the
temperatures measured. Data points are connected for convenience and do not imply

interpolation. Device 1 (Film 1 Bare cycled 26.7◦) blue circles connected with dotted line;
Device 2 (Film 1 Bare cycled 77.7◦) orange squares connected dotted line; Device 3 (Film 1
Bare cycled 26.7◦) yellow circles connected with dashed line; Device 4 (Film 1 Bare cycled

14.7◦) purple squares connected with dashed line.

of O2 flow for three hours and allowed to cool to the test temperature in 100 sccm O2 flow,

at which point gas cycling at the temperature was conducted. Example result at 213◦C for

Device 1 (Film 2 Bare cycled 14.7◦ are shown in Figure 4.33. For these tests, gases were

delivered with 100 sccm flow and the gas delivery profile consisted of 1-hour reduction periods

in H2 followed by 1-hour, 2-hour and 3-hour purging periods in N2, and oxidation periods

with 1-hour and 2-hour 100 sccm of O2 flow with 1-hour N2 purging periods separating the

oxidation from the reductions. Six frequency shifts were noted. Feature A in Figure 4.33

corresponds to the first frequency shift due to H2 introduction. Feature B corresponds to

the frequency shift due to H2 after a 1-hour purging period in N2. Feature C corresponds to

the frequency shift due to H2 after a 2-hour purging period in N2. Feature D corresponds to

the frequency shift due to H2 after a 2-hour purging period in N2. Feature E corresponds to

the frequency shift due to H2 after a 1-hour oxidation period separated from reductions by
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Figure 4.32. Fractional frequency shift due to 4%H2 exposure for all Bare devices oriented
along Ψ = 26.7◦ at the temperatures measured. Data points are connected for convenience
and do not imply interpolation. Solid blue line: Film 2 Bare non-cycled 26.7◦ (Device 4 in
Setup A4); dashed blue line: Film 2 Bare non-cycled 26.7◦ (Device 3 in Setup A3); dotted
yellow line: Film 1 Bare non-cycled 26.7◦ (Device 4 in Setup A6); dashed-dotted green

lines: Film 1 Bare cycled (Device 1 and Device 3 from Setup A7). The corresponding ∆fi
and f0i are defined in the corresponding result section for each setup.

a 1-hour N2 period. Feature F corresponds to the frequency shift due to H2 after a 2-hour

oxidation period separated from reductions by a 1-hour N2 period.

The results for all sensors at all temperature for these tests are tabulated in Appendix C in

Table C.6. The temperature variation within any particular chamber for any particular test

was less than ±2◦C from the average recorded up to 500◦C, which is within the measurement

accuracy of the TCs [119]. The frequency shifts related to Feature A were consistently

15%-35% higher than subsequent frequency shifts, which is related to the high-temperature

conditioning performed before the test. This was due to the high-temperature oxygen

conditioning at 650◦C before the tests. This phenomenon was studied at room temperature

and was explored in Section 4.5. A reference frequency f0i for each device at each test

temperature was defined as the last measured frequency at the end of Feature F. The average
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Figure 4.33. Setup A5 Device 1 (Film 2 Bare cycled 14.7◦) Tracked Frequency at 213◦C vs.
Gas Exposure.

of the frequency shifts associated with Features E and F were taken (∆fi) and normalized

to f0i. This was done because these features were oxidized prior to the H2 exposure. These

results are plotted in Figure 4.34, where the data points have been connected convenience

and do not imply interpolation. Additionally, the results for Device 2 from Setup A3 (Film

2 Bare non-cycled 14.7◦) are also plotted in Figure 4.34. At 500◦C, the response for Device

2 from Setup A5 (Bare Film 2 cycled 14.7◦) was compromised, most likely due to the

beginning of a malfunction in electrical connection, and at 600◦C the response for Device

2 was untraceable, likely due to failure in the 1 mil Pt connection. These results revealed

that the recorded fractional frequency shifts recorded near 300◦C and 400◦C for the Film 2

Bare cycled devices were not significantly higher than Film 1 Bare cycled devices, whereas

the fractional frequency shifts due to H2 for Film 2 Bare non-cycled devices around those

temperatures were higher than the other measured devices, suggesting that the observation

made from Figure 4.32 of higher sensor response to 4%H2 exposures in the temperature range

from 250◦C to 400◦C for Film 2 Bare devices only holds for non-cycled devices. At 600◦C,

the frequency shifts for Device 1 were higher than the recorded shifts for Device 3 and Device
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4, and it was noted that the results at 600◦C decreased with respect to the results acquired

at 500◦C.

Figure 4.34. Setup A5 (all devices) and Setup A3 (Device 2, Film 2 Bare non-cycled 14.7◦)
Measured relative frequency variation due to H2 exposure at the measured temperatures
for: Setup A5 Device 1 (Film 2 Bare cycled 14.7◦) orange crosses, solid line; Setup A5

Device 2 (Film 2 Bare cycled 14.7◦) orange crosses, dotted line; Setup A5 Device 3 (Film 1
Bare cycled 14.7◦) green crosses, dashed-dotted line; Setup A5 Device 4 (Film 1 Bare

cycled 14.7◦) green crosses, dashed line; Setup A3 Device 2 (Film 2 Bare non-cycled 14.7◦)
purple crosses, dashed line. ∆fi and f0i are given in Appendix C.

4.8 Multi-sensor System Analysis

The results obtained from Setup A7 (end of Section 4.6) were used to verify the feasibility

of a two-sensor system as outlined in Section 1.6. For convenience, Equation 1.14 is repeated

here:

fΨ ≈ RN2
Ψ (T ) + SΨ(T )×G, (4.2)

where RN2
Ψ (T ) is the temperature dependence of the frequency assuming a N2 baseline,

and SΨ(T )×G is a frequency shift due to the introduction of 4%H2 with respect to the N2
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baseline, where G = 1 represents the presence of H2. The RN2
Ψ (T ) and the SΨ(T ) term have

been experimentally determined for the two sensors oriented along Ψ = 26.7◦ and Ψ = 77.7◦.

The fractional frequency changes relative to the highest measured frequency value of

fNiTj , defined as f0maxi, were taken for Device 1 and Device 2 (f0max1 = 192.600MHz at

99◦C for Device 1 and f0max2 = 190.834MHz at 289◦C for Device 2, as shown in Table C.5).

The normalized fractional frequency variation under both nitrogen and hydrogen is defined

as:

∆Fnomr,i =
∆ftotali
f0maxi

= 100×
fNiTjorfHiTj − f0maxi

f0maxi

[%]. (4.3)

The results are shown in Figure 4.35, where parabolic fitting has been used to interpolate

the values both under N2 and under H2 for Device 1 and Device 2. The parabolic fitting had

R2 values of 0.9998 for Device 1 under N2, 0.9999 for Device 1 under H2, 0.9889 for Device

2 under N2 and 0.9913 for Device 2 under H2. In this temperature range, the SΨ(T ) for

both sensors were sufficiently constant across the temperature range to allow for polynomial

approximation of both the G = 0 and G = 1 case.
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Figure 4.35. Fractional frequency change with respect to the maximum value of frequency
recorded f0maxi for Device 1 (Film 1 Bare cycled 26.7◦) and Device 2 (Film 1 Bare cycled

77.7◦) (both devices in Chamber 1). Data points are connected via parabolic fitting.
Device 1 under N2: blue circles, dotted line; Device 1 under H2: green circles,

dashed-dotted line; Device 2 under N2: blue squares, solid line; Device 2 under H2: green
squares, dotted line. Values of f0maxi are given in Appendix C in Section C.3.3.
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The difference ∆Fnorm,1 −∆Fnorm,2 between Device 1 and Device 2 under both N2 and

H2 is shown in Figure 4.36. As can be seen from Figure 4.36, the difference between the

frequency readouts of the devices is approximately linear in this temperature range.
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Figure 4.36. Values of ∆Fnorm,1 −∆Fnorm,2 (defined in the text) as a function of
temperature. Solid blue curve is under N2, dashed green curve is under H2.

A zoomed-in portion into the region around 270◦C from Figure 4.36 is shown below

in Figure 4.37. For a difference ∆Fnorm,1 − ∆Fnorm,2 of between the two devices of 0.3%,

there are two possible temperatures for which this readout could be interpreted: 263◦C and

271◦C, whose difference is shown in the figure as ∆T , depending on whether there is H2

presence or not, respectively. The difference between these two temperatures is shown in

the figure as ∆T . A zoomed-in plot around 270◦C from Figure 4.35 is shown in Figure

4.38, relating the two possible temperature identified in Figure 4.37 with four possible values

for ∆Fnorm,1, identified in Figure 4.38 as 1 to 4. For a ∆Fnorm,1 sensor reading of 0.293%,

corresponding to Point 1, the temperature is determined to be 263◦C in N2 environment. For

a ∆Fnorm,1 reading of 0.311%, corresponding to Point 2, the temperature is be determined

to be 271◦C in N2 environment. For a ∆Fnorm,1 reading of 0.321%, corresponding to Point

3, the temperature is be determined to be 263◦C in H2 environment. For a ∆Fnorm,1 reading

of 0.338%, corresponding to Point 4, the temperature is be determined to be 271◦C in H2
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environment. The difference between Points 2 and 3, which are the closest possible ∆Fnorm,1

readings out of the four possible values of ∆Fnorm,1 is equal to 0.01%. This difference

corresponds to approximately 19kHz for a normalization value of f0max1 = 192.600MHz,

which is detectable using the current methods of interrogation.
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Figure 4.37. Zoomed-in section of resulting ∆Fnorm,1 −∆Fnorm,2 values around 270◦C.
Solid blue curve is under N2, dashed green curve is under H2.
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Figure 4.38. Zoomed-in portion around 270◦C of fractional frequency values for Device 1
(Figure 4.34). Dotted blue curve is under N2, dotted-dashed green curve is under H2.
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4.9 Wireless Interrogation

The test setup described in Section 3.4 was tested at 400◦C and 500◦C using VNA

settings of 10,001 points, 40 MHz span centered at 190 MHz and IF bandwidth of 1 kHz;

and 400◦C with VNA settings of 10,001 points, 10 MHz span centered at 191 MHz and

IF bandwidth of 1 kHz. The gas exposure used consisted of 5 hours in N2; followed by a

two-hour period in O2 followed by a two-hour period in N2 to allow for device oxidation at

the test temperature; and two 1-hour periods in 4%H2 separated by a three-hour purging

period in N2. Time-gating was performed from 0.6µs to 5µs on the acquired frequency

spectra. A moving-average filter was applied to the presented data. The results for the 40

MHz bandwidth measurements are shown in Figures 4.39 and 4.40 for 400◦C and 500◦C

nominal furnace temperature, respectively; and the results for the 10 MHz bandwidth at

400◦C nominal furnace temperature are shown in Figure 4.41.

Figure 4.39. Wireless test results analysis at 378◦C using 40 MHz bandwidth.
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Figure 4.40. Wireless test results analysis at 478◦C using 40 MHz bandwidth.

Figure 4.41. Wireless test results analysis at 379◦C using 10 MHz bandwidth.

110



The average temperature and standard deviation in temperature during a 4-hour period

starting 1.5 hour prior to the first reduction and ending 1.5 hours after the end of the first

reduction was taken for each test. The ten frequency measurements prior to the start of the

first reduction were taken at each temperature and the average was defined as fNWLTj . A

value was similarly defined for the 10 measurements prior to the end of the first reduction and

defined as fHWLTj . Wireless measurements of the H2 induced frequency shifts were possible

at both 378◦C and 477◦C, which corresponded to less than 10 kHz differences from the values

obtained using wired measurements of Setup 1 (for the 10 MHz bandwidth measurements

at 378◦C). It is noticeable from the figures that the standard deviation for the frequency

measurements is as much as five times larger for the 40 MHz bandwidth measurements

with respect to the 10 MHz, indicating that smaller bandwidths are desired in particular

for these wireless measurements. For the 40 MHz bandwidth case, the standard deviation

in frequency falls between 5 and 8 kHz, which is noticeably larger than for the 10 MHz

bandwidth (between 1 and 2 kHz). This increase in uncertainty is mostly due to the 4 kHz

frequency steps in the case of 40 MHz compared to the 1 kHz steps in the case of 10 MHz

bandwidth. In the wireless operation, there is also added frequency uncertainty due to the

time-gating signal processing.
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CHAPTER 5

CONCLUSIONS

5.1 Summary of Work

Chapter 2 presented the selection of orientations on the commercial LGS wafer,

the development of thin film materials for high-temperature SAW gas sensors including

yttria-stabilized zirconia thin films to be employed as sensing layers and Pt-Al2O3 composite

electrodes for high-temperature SAWR operation. And the fabrication of one-port SAWR

sensors.

Chapter 3 detailed the development and implementation of a high-temperature gas sensor

testing system. Three stainless steel boxes with two chambers each, capable of housing

and interrogating two SAWR sensors and one TC in each chamber, were designed and

fabricated. The developed gas delivery system and SAWR sensor interrogation modules

were also detailed. A summary of the test setups used to acquire the experimental results

was also presented.

Chapter 4 presented the experimental results obtained from SAWR sensor temperature

and gas response characterization. Temperature characterization of developed SAWR sensors

was conducted up to 500◦C. Temperature cycling of two different Pt-Al2O3 film compositions

(graded and non-graded) was undertaken up to 715◦C for more than 200 hours and up to

850◦C for more than 300 hours. Gas cycling up to 600◦C confirmed the ability of SAWR

sensors operating along five different orientations of the commercially available LGS wafer

(Ψ = 14.7◦, Ψ = 20.7◦, Ψ = 32.7◦, Ψ = 20.7◦, and Ψ = 32.7◦) to operate as gas sensors.

Pt-decorated YSZ-layered devices were compared to Bare devices up to 400◦C with regards to

SAWR sensor response to 4%H2. The impact of oxygen gas treatments at room temperature

and up to 650◦C on SAWR gas sensor operation was studied. Film 1 (graded film) and

Film 2 (non-graded film) Pt-Al2O3 devices were compared in the 200◦C-600◦C sensor range.

A two-sensor system employing devices oriented along Ψ = 26.7◦ and Ψ = 77.7◦ was
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characterized in the temperature range from 100◦C to 500◦C. Finally, successful wireless

interrogation of a SAWR sensor above 450◦C was achieved.

5.2 Findings

The work in this thesis resulted in the following findings:

• Two orientations (described by the last Euler angle Ψ) were predicted and confirmed

to have compensated-temperature operation above 150◦C: Ψ = 14.7◦ and Ψ = 77.7◦.

• High-temperature cycling of graded and non-graded Pt-Al2O3 films revealed stable

operation for cycling up to 715◦C for more than 200 hours. Hillock and agglomeration

removal was possible from the center of the IDTs for SAWR sensors exposed to

temperature cycling up to 850◦C for over 300 hours using a graded thin film deposition

technique.

• Pt-Al2O3 films were found to have 50% higher SAWR sensor response to 4%H2

exposures than Pt-decorated YSZ-layered SAWR sensors.

• It was found that O2 treatments at room temperature resulted in a five times larger

frequency variation recovery in the first 20 minutes when compared to the same

time-lapse in N2 environment for room temperature SAWR sensor operation. These

results were corroborated by XPS analysis performed by researchers from NETL at

Pittsburgh, PA.

• It was found that the SAWR sensor orientation has an influence on H2 detection in the

temperature range from room temperature to 600◦C.

• Successful characterization of a two-sensor system utilizing Ψ = 26.7◦ and Ψ = 77.7◦

devices was successful in the 100◦C-500◦C temperature range.

• Successful wireless operation revealed that it is possible to use the SAWR sensors as

wireless, high-temperature H2 sensors.
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5.3 Publications Resulting from this Work

This work resulted in the following publications:

• A. Ayes, P. R. Ohodnicki, R. J. Lad, and M. Pereira Da Cunha, “Enhanced Hydrogen

Gas Detection Using SAW Sensor Through Oxygen Pre-Treatment,” 2019 IEEE Int.

Ultrasonics Symposium, pp. 189–192, 2019.

• A. Ayes and M. Pereira Da Cunha, “Influence of Langasite Crystal Orientation on

Hydrogen Gas Detection up to 400◦C,” 2019 IEEE Int. Ultrasonics Symposium, pp.

735–738, 2019.

• A. Ayes, G. Bernhardt, and M. Pereira da Cunha, “Removal of Stress Hillocks from

Platinum-Alumina Electrodes Used in High-temperature SAW Devices,” 2019 IEEE

Int. Ultrasonics Symposium, pp. 727–730, 2019.

• A. Ayes, A. Maskay, and M. Pereira Da Cunha, “Predicted and measured temperature

compensated surface acoustic wave devices for high-temperature applications,” IET

Electronic Letters, vol. 53, no. 11, pp. 699–700, 2017.

• A. Maskay, A. Ayes, R. Lad, M. Pereira da Cunha; "Stability of Pt/Al2O3 langasite

SAW sensors with Al2O3 capping layer and yttria-stabilized zirconia sensing layer",

2017 IEEE Int. Ultrasonics Symposium, 2017.

5.4 Suggested Future Work

Suggestions for future work based on the findings of these work:

• Improve SAWR design of selected high-temperature orientations Ψ = 14.7◦ and Ψ =

77.7◦ to eliminate spurious modes. Additionally, the design of SAW delay lines along

these orientations is recommended for more in depth analysis of the mechanisms of

different sensing films and the interaction with other types of gases.
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• Analysis of the impact of different concentrations of H2 and other gases on SAW

response. This may be potentially accomplished by developing faster interrogation

methods, for example, parallel device interrogation as opposed to series interrogation,

in order to extract time-constant information of the H2 interaction with the SAWR

sensors.

• Refinement of thin film deposition techniques to increase immediate film stability. The

elimination of stress hillocks and agglomeration from the center of the IDT electrodes

using the graded Pt interface is promising, and more work should be dedicated to

advancing deposition techniques that avoid the problems that were observed at the

edge of the electrodes.

• Continued improvements to be made to the developed high-temperature gas testing

system. For example, controlling the furnace setpoints and soaking periods with the

same PC that controls the data acquisition and gas delivery modules would allow for

the automation of week-long and even month-long testing.
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APPENDIX A

DETAILS FOR THE OPERATION OF THE HIGH TEMPERATURE GAS

TESTING SYSTEM AND FREQUENCY TRACKING CODE

This Appendix presents details for the high-temperature gas testing system described in

Chapter 3. The design details for the high-temperature stainless steel box are given. A

description of the LabVIEW Software developed for controlling the gas delivery system and

SAWR sensor and TC interrogation module is also presented. Frequency tracking code

including parabolic approximation and peak selection is also given.

A.1 Stainless Steel Box details

The stainless steel box used for high-temperature testing was designed on AutoCad with

the assistance of Dr. Anin Maskay. A total of three boxes were fabricated at the Advanced

Manufacturing Center (AMC) at the University of Maine. The exact dimensions for the box

(Figure A.1) and the caps (Figure A.2) are given below.

Male NPT-threaded connectors from Swagelok were used in order to give access to the

Thermocoax high-temperature Inconel coaxial cables, Omega Inconel-sheath TCs and to

the 1/8” diameter stainless-steel tubing for gas input and output. The exact part numbers

were: i) for access with the coaxial cables: SS-4M0-1-2BT (Stainless Steel Swagelok Tube

Fitting, Bored-through Male Connector, 4mm Tube OD x 1/8 in. Male NPT); ii) for access

with the TCs: SS-200-1-2BT (Stainless Steel Swagelok Tube Fitting, Bored-through Male

Connector, 1/8 in. Tube OD x 1/8 in. Male NPT); iii) SS-200-1-2 (Stainless Steel Swagelok

Tube Fitting, Male Connector, 1/8 in. Tube OD x 1/8 in. Male NPT). The caps were

secured onto the stainless steel box body using 316 stainless steel 40 mm M3 screws with

corresponding 316 stainless steel nuts.
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A.2 Software Details

The block diagram for the functionality of the main LabVIEW script developed can be

found in Figure A.3. The last iteration of the Main LabVIEW script may be found in the

MAL10 network file center under:

\\MAL10\Grads\AAyes\Labview\LabVIEW_LatestFolder\OPERATION_AS_OF

20200121\Measurements_RT_Table_20191114_LF.vi

Figure A.3. User input and output flow diagram for LabVIEW software.

The user inputs are given into the LabVIEW Front Panel, and the Main function

runs until the completion of the specified gas exposure profile. The relevant user inputs

include gas exposure profile, hardware addresses to communicate with the VNA and USB

control modules controlling the RF multiplexer and gas delivery system, The frequency of

interrogations, the number of interrogations and the directory to save the results. These

data is communicated to the main function via input fields and a table in the LabVIEW

Front Panel. The flow diagram for the Main LabVIEW function is shown in Figure A.4.
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Figure A.4. Flow diagram for Main LabVIEW script.
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The two blocks in the Main function flow diagram functioning to set the gas delivery

exposure and to take the measurements are modularized functions. The block diagram of

this iteration contains the information necessary for specifying the gas exposure species in

the input table for the Main LabVIEW function. The latest iteration of the gas delivery

function is in the MAL10 network file center under:

\\MAL10\Grads\AAyes\Labview\LabVIEW_LatestFolder\OPERATION_AS_OF

20200121\Gas_control_Design_10_Ayes_20190804.vi

The latest iteration of the interrogation module for taking measurements is in the MAL10

network file center under:

\\MAL10\Grads\AAyes\Labview\LabVIEW_LatestFolder\OPERATION_AS_OF

20200121\VNA_Measure_20180921_RT.vi

Additionally, there is a TC interrogation module which is called within the interrogation

module. The latest iteration of this TC interrogation module is in the MAL10 network file

center under:

\\MAL10\Grads\AAyes\Labview\LabVIEW_LatestFolder\OPERATION_AS_OF

20200121\TC_measure_Ayes_Final_numeric_chamber.vi

A.3 Frequency Tracking Code

Matlab frequency tracking code that includes polynomial fitting around resonant

frequency and the selection of a peak to track during a test for data collected by the LabVIEW

software can be found below and also in MAL10 under:

\\MAL10\Grads\AAyes\MATLAB\Peak_Analysis_withPeakApprox_20191018

%c l e a r a l l ;

% c l o s e a l l ;
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% c l e a r a l l ;

%i f us ing Z : \AAyes\Measurements\Gas Measurements\Data

%then s p e c i f y c u r r e n t f o l d e r = 1 ;

%i f us ing \\MAL10\Grads\AAyes\Measurements\Gas Measurements\Data

%then s p e c i f y c u r r e n t f o l d e r = 2 ;

c u r r e n t f o l d e r = 2 ;

i f c u r r e n t f o l d e r == 1

s = what ;

homedir = s . path ;

t e s t = homedir ( 1 , 4 5 : l ength ( homedir ) ) ;

e l s e i f c u r r e n t f o l d e r == 2

s = what ;

homedir = s . path ;

t e s t = homedir ( 1 , 5 6 : l ength ( homedir ) ) ;

e l s e

e r r o r ( ’ Choose a c o r r e c t va lue f o r cu r r en t f o l d e r ’ )

end

end

%The code w i l l p l o t the r e s u l t s f o r a t e s t us ing the gas setup

%developed s t a r t i n g TEST30 . In order to run i t , S e l e c t the f o l d e r

%o f the de s i r ed t e s t to be analyzed . This f o l d e r must conta in four

%f o l d e r s : Device0 , Device1 , Device2 and Device3 . Upon execut ion o f

%the code , the r e s u l t s with r e sp e c t to gas p r o f i l e and temperature

%w i l l be p l o t t ed and the r e s u l t i n g p l o t s w i l l be saved in the

%f o l d e r .
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% User inputs : the se inputs are f o r the t i t l e s o f the p lo t s , they

%sp e c i f y what type o f dev i ce i s be ing worked with in each

%sc ena r i o .

%They must be the same length

Devicetypes ( 1 , : ) = ’26S Film 1 ’ ;

Devicetypes ( 2 , : ) = ’77RC Film 1 ’ ;

Devicetypes ( 3 , : ) = ’26S Film 1 ’ ;

Devicetypes ( 4 , : ) = ’77RC Film 1 ’ ;

% code f o r a c c e s s i n g each dev i c e f o l d e r

f o r j = 0 :3

newdir = num2str ( j ) ;

newdir = s t r c a t ( ’ Device ’ , newdir ) ;

newdir = s t r c a t ( homedir , ’ \ ’ , newdir ) ;

cd ( newdir ) ;

cd ;

Device = j ;

i f Device == 0 | | Device == 1

chamber = 1 ;

e l s e

chamber = 2 ;

end
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chambernum = num2str ( chamber ) ;

Devicenum = num2str ( Device ) ;

% t i t l e gene ra t i on f o r p i c t u r e s

t i t u l o = s t r c a t ( ’ Device ’ , Devicenum , ’ , ’ , Devicetypes ( j +1 , : ) , . . .

’ , Chamber ’ , chambernum ) ;

i = 0 ;

f i l ename = num2str ( i ) ;

f i lename_data = s t r c a t ( ’ SData ’ , f i l ename ) ;

% Determine how many peaks at the beg inning o f the t e s t f o r

%each dev i c e and which one to f o l l ow

prompt = ’What i s the d e s i r ed prominence o f peaks ? ’ ;

prominence = input ( prompt ) ;

SData = importdata ( f i lename_data ) ;

f requency = SData ( : , 1 ) ;

mag = SData ( : , 2 ) ;

maginv = −mag ;

f i g u r e ( 1 ) ; c l f ;

f i ndpeaks (maginv , frequency , ’ MinPeakProminence ’ , prominence , . . .

’ Annotate ’ , ’ extents ’ )

prompt = ’Which peak should one t rack (1 i s l e f tmos t )? ’ ;

peaktotrack = input ( prompt ) ;

whi l e e x i s t ( f i l ename , ’ f i l e ’ ) == 2 % cont inue the loop as long
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%as there are f i l e s

data = importdata ( f i l ename ) ;

SData = importdata ( f i lename_data ) ;

t ime_device ( i + 1 ,1) = data ( 1 , 1 ) ;

roomtemp( i + 1 ,1) = data ( 1 , 5 ) ;

temp1 = data ( 1 , 3 ) ;

temp2 = data ( 1 , 4 ) ;

temp( i +1 ,1) = ( temp1 + temp2 ) /2 ;

f requency = SData ( : , 1 ) ;

f r equency = frequency /1 e6 ;

mag = SData ( : , 2 ) ;

% get the i nv e r s e o f mag f o r peak ana l y s i s

maginv = −mag ;

[ pks , l o c s ] = f indpeaks (maginv , ’ MinPeakProminence ’ , . . .

prominence ) ;

Ind = l o c s ( peaktotrack , 1 ) ;

min_freq ( i + 1 ,1) = frequency ( Ind ) ;

p r o f i l e ( i + 1 ,1) = data ( 1 , 2 ) ;

% polynomial approximation

d i s t = 2 ;

fnew = frequency ( Ind − d i s t : Ind + d i s t ) ;

magnew = mag( Ind − d i s t : Ind + d i s t ) ;

p1 = p o l y f i t ( fnew , magnew , 2 ) ;

f po l y = l i n s p a c e ( f requency ( Ind − d i s t ) , . . .

f r equency ( Ind + d i s t ) , 1001 ) ;
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magpoly = po lyva l ( p1 , f po l y ) ;

[ Min_magpoly , Ind_poly ] = min (magpoly ) ;

min_freqpoly ( i + 1 , 1) = fpo l y ( Ind_poly ) ;

i = i + 1 ;

f i l ename = num2str ( i ) ;

f i lename_data = s t r c a t ( ’ SData ’ , f i l ename ) ;

end

cd ( homedir ) ;

cd ;

f i g u r e ( 1 ) ; c l f ; yyax i s l e f t ; p l o t ( time_device / 3 6 0 0 , . . .

min_freqpoly , ’ b ’ )

f i g u r e ( 1 ) ; yyax i s r i g h t ; p l o t ( time_device /3600 , p r o f i l e , ’ r ’ )

t i t l e 1 = s t r c a t ( t i t u l o , . . .

’ Gas P r o f i l e , Peak Tracking and Peak Approx , in hours ’ ) ;

yyax i s l e f t ; y l ab e l ( ’ Frequency (MHz) ’ ) ; x l ab e l ( ’Time ( hours ) ’ ) ;

yyax i s r i g h t ; y l ab e l ( ’ P r o f i l e State ’ ) ;

s e t ( gca , ’ FontSize ’ , 1 8 ) ;

g r i d on ;

s a v e f i g ( t i t l e 1 ) ;
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f i g u r e ( 2 ) ; c l f ; yyax i s l e f t ; p l o t ( time_device / 3 6 0 0 , . . .

min_freqpoly , ’b ’ )

f i g u r e ( 2 ) ; yyax i s r i g h t ; p l o t ( time_device /3600 , temp , ’ r ’ )

t i t l e 2 = s t r c a t ( t i t u l o , . . .

’ Temperature , Peak Tracking and Peak Approx , in hours ’ ) ;

yyax i s l e f t ; y l ab e l ( ’ Frequency (MHz) ’ ) ; x l ab e l ( ’Time (min ) ’ ) ;

yyax i s r i g h t ; y l ab e l ( ’ Temperature (\ c i rcC ) ’ ) ;

s e t ( gca , ’ FontSize ’ , 1 8 ) ;

g r i d on ;

s a v e f i g ( t i t l e 2 ) ;

end
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APPENDIX B

FREQUENCY RESPONSE OF BARE FABRICATED DEVICES

The typical frequency response of devices oriented along Ψ = 14.7◦, 20.7◦, 32.7◦ and 77.7◦ for

IDT placements S, RC, and LC (described in Section 2.1.2). Results are given for: magnitude

of reflection coefficient (S11) in the corresponding figure inset a) (in dB); real part of the

admittance in the corresponding inset b) (in mS); and imaginary part of the admittance in

the corresponding inset c) (in mS).

B.1 Typical Frequency Response of Fabricated SAWRs

Devices oriented along Ψ = 14.7◦ for IDT placement S, RC and LC are given in Figures

B.1-B.2. Devices oriented along Ψ = 20.7◦ for IDT placement S, RC and LC are given in

Figures B.4-B.6. Devices oriented along Ψ = 32.7◦ for IDT placement S, RC and LC are

given in Figures B.7-B.9. Devices oriented along Ψ = 77.7◦ for IDT placement S, RC and

LC are given in Figures B.10-B.12.
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Figure B.1. Typical frequency Response Ψ = 14.7◦ IDT placement S: a) |S11 in dB; b) real
part of admittance in mS; c) imaginary part of admittance in mS.

Figure B.2. Typical frequency Response Ψ = 14.7◦ IDT placement RC: a) |S11 in dB; b)
real part of admittance in mS; c) imaginary part of admittance in mS.
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Figure B.3. Typical frequency Response Ψ = 14.7◦ IDT placement LC: a) |S11 in dB; b)
real part of admittance in mS; c) imaginary part of admittance in mS.

Figure B.4. Typical frequency Response Ψ = 20.7◦ IDT placement S: a) |S11 in dB; b) real
part of admittance in mS; c) imaginary part of admittance in mS.
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Figure B.5. Typical frequency Response Ψ = 20.7◦ IDT placement RC: a) |S11 in dB; b)
real part of admittance in mS; c) imaginary part of admittance in mS.

Figure B.6. Typical frequency Response Ψ = 20.7◦ IDT placement LC: a) |S11 in dB; b)
real part of admittance in mS; c) imaginary part of admittance in mS.
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Figure B.7. Typical frequency Response Ψ = 32.7◦ IDT placement S: a) |S11 in dB; b) real
part of admittance in mS; c) imaginary part of admittance in mS.

Figure B.8. Typical frequency Response Ψ = 32.7◦ IDT placement RC: a) |S11 in dB; b)
real part of admittance in mS; c) imaginary part of admittance in mS.
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Figure B.9. Typical frequency Response Ψ = 32.7◦ IDT placement LC: a) |S11 in dB; b)
real part of admittance in mS; c) imaginary part of admittance in mS.

Figure B.10. Typical frequency Response Ψ = 77.7◦ IDT placement S: a) |S11 in dB; b)
real part of admittance in mS; c) imaginary part of admittance in mS.
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Figure B.11. Typical frequency Response Ψ = 77.7◦ IDT placement RC: a) |S11 in dB; b)
real part of admittance in mS; c) imaginary part of admittance in mS.

Figure B.12. Typical frequency Response Ψ = 77.7◦ IDT placement LC: a) |S11 in dB; b)
real part of admittance in mS; c) imaginary part of admittance in mS.
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APPENDIX C

COMPILED GAS SENSOR TESTING RESULTS

The compiled gas sensor results are given below for all setups cited in Section 3.2 in Table 3.1.

The results are ordered as follows: YSZ-layered vs. Bare results from Setup A4 at nominal

furnace temperatures of 200◦C, 300◦C, and 400◦C, referenced in Section 4.4; Results at room

temperature from Setups A1, A3 and A4 related to oxygen treatments for devices oriented

along Ψ = 26.7◦, referenced in Section 4.5 ; Results from Setup A3 at nominal furnace

temperatures of 100◦C, 200◦C, 300◦C, 400◦C, and 500◦C; Results from Setup A6 for at

nominal furnace temperatures of 200◦C, 300◦C, 400◦C and 500◦C; Results from Setup A7

for all temperatures tested (100◦C to 500◦C in 50◦C increments); Results from Setup A5 at

200◦C, 300◦C, 400◦C, 500◦C, and 600◦C.

C.1 YSZ vs. Bare SAWR sensor

Table C.1 shows the tabulated results of the YSZ vs. Bare comparison conducted on

Setup A4 (Device 1: Film 2 YSZ non-cycled 14.7◦, Device 2: Film 2 Bare non-cycled 14.7◦,

Device 3: Film 2 YSZ non-cycled 26.7◦, Device 4: Film 2 Bare non-cycled 26.7◦). The

average temperature of the corresponding chamber was taken for the test, and the frequency

shifts ∆fA, ∆fB, and ∆fC , as well as the reference frequency f0i were recorded as described

in Section 4.4. The results for all devices at the corresponding nominal furnace temperature

are shown in Figures C.1-C.12. All tests shown in this section were conducted with 100 sccm

flow rates.
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Table C.1. Summary of results using Setup A4 comparing YSZ-layered vs. Bare Devices at
200◦C, 300◦C and 400 ◦C.

Temp (◦C) Feature Magnitude (kHz)
Device 1 Device 2

f0 (MHz) ∆fA ∆fB ∆fC f0 (MHz) ∆fA ∆fB ∆fC

204 192.401 13.6 10.5 10.0 192.012 19.8 19.7 19.8
297 192.235 17.6 15.7 16.1 190.868 30.9 27.4 26.6
393 191.865 28.8 25.0 25.6 190.545 38.3 33.8 34.2

Device 3 Device 4
f0 (MHz) ∆fA ∆fB ∆fC f0 (MHz) ∆fA ∆fB ∆fC

208 193.025 43.1 37.3 34.4 191.52 65.1 68.3 69.5
303 192.516 64.3 56.0 52.0 191.043 103.0 97.8 98.4
400 191.804 83.6 73.4 83.8 190.415 132.2 120.7 119.9
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Figure C.1. Setup A4 test results at nominal furnace temperature 200◦C for Device 1.
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Figure C.2. Setup A4 test results at nominal furnace temperature 200◦C for Device 2.
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Figure C.3. Setup A4 test results at nominal furnace temperature 200◦C for Device 3.
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Figure C.4. Setup A4 test results at nominal furnace temperature 200◦C for Device 4.
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Figure C.5. Setup A4 test results at nominal furnace temperature 300◦C for Device 1.
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Figure C.6. Setup A4 test results at nominal furnace temperature 300◦C for Device 2.
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Figure C.7. Setup A4 test results at nominal furnace temperature 300◦C for Device 3.
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Figure C.8. Setup A4 test results at nominal furnace temperature 300◦C for Device 4.
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Figure C.9. Setup A4 test results at nominal furnace temperature 400◦C for Device 1.
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Figure C.10. Setup A4 test results at nominal furnace temperature 400◦C for Device 4.
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Figure C.11. Setup A4 test results at nominal furnace temperature 400◦C for Device 3.
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Figure C.12. Setup A4 test results at nominal furnace temperature 400◦C for Device 4.

C.2 O2 Treatments

Results at room temperature from Setups A1, A3 and A4 related to oxygen treatments

for Bare devices oriented along Ψ = 26.7◦, referenced in Section 4.5 are given in this section.

C.2.1 O2 Treatments at Room Temperature

Table C.2 shows the calculated frequency shifts as defined in Section 4.5.1 for tests

involving room temperature O2 treatments (13 tests). Tests 1-8 were conducted on Setup

A1 (Device 3 and Device 4), Tests 9-11 were conducted on Setup A3 (Device 3), and Tests

12-13 were conducted on Setup A4 (Device 4). All tests documented in this subsection were

conducted with 950 sccm flow rates. The corresponding tests are shown in Figures C.13-C.33.

The first H2 exposure frequency shift for Tests 1-8 was not recorded as at this point in time

the devices were exposed to air after the end of a test (were not left idling in N2 flow) and

therefore humidity may have formed on the surface due to idling in air.
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Table C.2. Compiled room temperature results for Ψ = 26.7◦ devices.
Setup Device Test Feature Magnitude (kHz)

A B C D E
A1 3 1 108;
A1 3 2 7.6; 4.1; 4.9;
A1 3 3 5.6; 5.3; 5.5; 4.6;
A1 3 4 7.3; 6.4; 3.9; 5.3;
A1 3 5 7.0; 5.8; 7.0; 4.1;
A1 3 6 7.7; 7.4; 9.8; 35.2; 45.7;
A1 3 7 9.3; 8.4; 9.8; 34.6; 47.2;
A1 3 8 8.5; 8.3; 9.0; 35.5; 47.2;
A1 4 1 115;
A1 4 2 10.2; 8.1; 7.4
A1 4 3 6.1; 4.8; 5.3; 5.3;
A1 4 4 6.2; 5.2; 4.3; 5.2;
A1 4 5 5.0; 4.3; 3.6; 3.4;
A1 4 6 6.6; 6.3; 8.2; 37.6; 45.6;
A1 4 7 6.6; 6.2; 8.1; 38.1; 48.6;
A1 4 8 6.3; 6.1; 8.0; 39.1; 48.8;
A3 3 9 90.7; 6.9; 5.2; 6.4; 5.4;

5.9 ;4.5;
6.5; 6.1;
5.9;

28.3;
26.8;
24.5;

34.4;
33.3;

A3 3 10 5.4; 4.9; 5.1; 4.7;
5.1; 4.6;

5.7; 5.3;
5.7;

24.1;
23.2;
22.3;

35.4;
29.7;
29.1;

A3 3 11 4.6; 4.4; 4.7; 4.3;
4.9; 4.2;

5.4; 5.4;
5.9;

21.6;
22.3;
22.2;

30.3;
27.9;
28.4;

A4 4 12 80.1;
A4 4 13 2.8; 2.4; 2.4; 2.9;

2.5; 2.4; 2.7; 2.5;
2.2;

4.3; 4.3;
4.1;

22.1;
21.2;
20.4;

32.5;
27.0;
25.8;
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Figure C.13. Setup A1 Device 3 Test 1 results at room temperature.
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Figure C.14. Setup A1 Device 3 Test 2 results at room temperature.
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Figure C.15. Setup A1 Device 3 Test 3 results at room temperature.
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Figure C.16. Setup A1 Device 3 Test 4 results at room temperature.
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Figure C.17. Setup A1 Device 3 Test 5 results at room temperature.
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Figure C.18. Setup A1 Device 3 Test 6 results at room temperature.
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Figure C.19. Setup A1 Device 3 Test 7 results at room temperature.
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Figure C.20. Setup A1 Device 3 Test 1 results at room temperature.
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Figure C.21. Setup A1 Device 4 Test 1 results at room temperature.
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Figure C.22. Setup A1 Device 4 Test 2 results at room temperature.
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Figure C.23. Setup A1 Device 4 Test 3 results at room temperature.
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Figure C.24. Setup A1 Device 4 Test 4 results at room temperature.

155



0 100 200 300 400 500 600

Time [Minutes]

191.83

191.86

191.89

191.92

191.95

191.98

192.01

192.04

192.07

192.1

192.13

F
re

q
u
e

n
c
y
 [

M
H

z
]

N
2

O
2

4% H
2

18

20

22

24

26

T
e

m
p
e
ra

tu
re

 [
°
C

]

B B B B

Figure C.25. Setup A1 Device 4 Test 5 results at room temperature.
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Figure C.26. Setup A1 Device 4 Test 6 results at room temperature.
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Figure C.27. Setup A1 Device 4 Test 7 results at room temperature.
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Figure C.28. Setup A1 Device 4 Test 1 results at room temperature.
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Figure C.29. Setup A3 Device 3 Test 9 results at room temperature.
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Figure C.30. Setup A3 Device 3 Test 10 results at room temperature.
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Figure C.31. Setup A3 Device 3 Test 11 results at room temperature.
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Figure C.32. Setup A4 Device 4 Test 12 results at room temperature.
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Figure C.33. Setup A4 Device 4 Test 13 results at room temperature.

158



C.2.2 O2 Conditioning at 650◦C

For high-temperature conditioning, Setup A3 (Device 3, Film 2 Bare non-cycled 26.7◦)

and Setup A4 (Device 4, Film 2 Bare non-cycled 26.7◦) were heated to 650◦C in N2, soaked

in O2 for three hours at 650◦C and allowed to cool down in O2, after which they were tested

at room temperature. This was done twice for each device. The results for Setup A3 Device

3 were obtained with 950 sccm flow rates and the results for Setup A4 Device 4 were obtained

with 100 sccm flow rates. The results are shown in Figures C.34-C.37 and the frequency

shifts are given as referenced in Section 4.5.2.
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Figure C.34. Setup A3 Device 3 Test 1 results at room temperature after high-temperature
conditioning in oxygen at 650◦C.
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Figure C.35. Setup A3 Device 3 Test 2 results at room temperature after high-temperature
conditioning in oxygen at 650◦C.
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Figure C.36. Setup A Device 4 Test 1 results at room temperature after high-temperature
conditioning in oxygen at 650◦C.
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Figure C.37. Setup A4 Device 4 Test 2 results at room temperature after high-temperature
conditioning in oxygen at 650◦C.
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C.3 Influence of Orientation

This section gives the compiled results for high-temperature gas testing of Setup A3, A6

and A7.

C.3.1 Setup A3

The results for Setup A3 (Device 1 Film 2 Bare non-cycled 77.7◦; Device 2 Film 2 Bare

non-cycled 14.7◦; Device 3 Film 2 Bare non-cycled 26.7◦; Device 4 Film 2 Bare non-cycled

32.7◦) are given as referenced in Section 4.6. Table C.3 shows the summary of compiled results

as described for Setup A3 in Section 4.6 at each temperature (average of both chambers),

with the corresponding maximum temperature variation ∆Ti as described in Section 4.6

and the corresponding maximum normalized frequency variation due to the temperature

variation using the temperature sensitivities calculated in Section 4.6. The results are given

in Figures C.38-C.57. All results shown for this test were conducted with 950 sccm flow

rates.
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Table C.3. Tabulated results for Setup A3.
Device f0i (MHz) ∆f1 (kHz) ∆f2 (kHz) ∆Ti (◦C) Max ∆fT/f0i

21◦C
1 188.962 4 5 -0.61 -0.002
2 190.476 11 11 -0.61 -0.0009
3 191.929 28 28 -0.24 0.00009
4 191.436 22 23 -0.24 0.00001

97◦C
1 189.431 5 5 -0.36 -0.0009
2 190.685 12 11 -0.36 -0.0003
3 191.886 35 32 -0.17 0.0002
4 191.441 29 27 -0.17 0.0001

186◦C
1 189.776 9 8 -0.4 -0.0006
2 190.743 20 20 -0.4 0.00004
3 191.64 48 47 -0.24 0.0004
4 191.251 42 40 -0.24 0.0004

276◦C
1 189.924 16 16 -0.35 -0.0001
2 190.621 37 38 -0.35 0.0003
3 191.215 85 86 -0.34 0.0009
4 190.882 73 72 -0.34 0.0008

373◦C
1 189.86 27 26 -0.75 0.0005
2 190.299 58 58 -0.75 0.001
3 190.579 137 137 -0.59 0.002
4 190.314 106 105 0.59 -0.002

471◦C
1 189.695 25 28 -0.48 0.0009
2 189.904 58 59 -0.48 0.001
3 190.045 NA NA -0.56 0.002
4 189.772 NA NA -0.56 0.002
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Figure C.38. Setup A3 Device 1 test results at 100◦C.

0 5 10 15 20

Time [Hours]

189.63

189.66

189.69

189.72

189.75

189.78

189.81

189.84

189.87

189.9

189.93

F
re

q
u
e
n
c
y
 [
M

H
z
]

N
2

O
2

4% H
2

182

184

186

188

190

T
e
m

p
e
ra

tu
re

 [
°
C

]

f
1

f
2

Figure C.39. Setup A3 Device 1 test results at 200◦C.
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Figure C.40. Setup A3 Device 1 test results at 300◦C.
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Figure C.41. Setup A3 Device 1 test results at 400◦C.
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Figure C.42. Setup A3 Device 1 test results at 500◦C.
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Figure C.43. Setup A3 Device 2 test results at 100◦C.
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Figure C.44. Setup A3 Device 2 test results at 200◦C.
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Figure C.45. Setup A3 Device 2 test results at 300◦C.
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Figure C.46. Setup A3 Device 2 test results at 400◦C.
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Figure C.47. Setup A3 Device 2 test results at 500◦C.
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Figure C.48. Setup A3 Device 3 test results at 100◦C.
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Figure C.49. Setup A3 Device 3 test results at 200◦C.
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Figure C.50. Setup A3 Device 3 test results at 300◦C.
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Figure C.51. Setup A3 Device 3 test results at 400◦C.
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Figure C.52. Setup A3 Device 3 test results at 500◦C.
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Figure C.53. Setup A3 Device 4 test results at 100◦C.
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Figure C.54. Setup A3 Device 4 test results at 200◦C.
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Figure C.55. Setup A3 Device 4 test results at 300◦C.

168



0 5 10 15 20

Time [Hours]

190.17

190.2

190.23

190.26

190.29

190.32

190.35

190.38

190.41

190.44

190.47

F
re

q
u
e

n
c
y
 [

M
H

z
]

N
2

O
2

4% H
2

367

369

371

373

375

T
e

m
p
e
ra

tu
re

 [
°
C

]

f
1

f
2

Figure C.56. Setup A3 Device 4 test results at 400◦C.
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Figure C.57. Setup A3 Device 4 test results at 500◦C.
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C.3.2 Setup A6

The results for Setup A6 (Device 1 Film 1 Bare non-cycled 20.7◦; Device 2 Film 1 Bare

non-cycled 77.7◦; Device 3 Film 1 Bare non-cycled 20.7◦; Device 4 Film 1 Bare non-cycled

26.7◦) are given as referenced in Section 4.6. Table C.3 shows the summary of compiled results

as described for Setup A6 in Section 4.6 at each temperature (average of the corresponding

chamber). The results are given in Figures C.58-C.73. All results shown for this section were

conducted with 100 sccm flow rates.

Table C.4. Tabulated results for Setup A6.
Temp (◦C) f0i (MHz) A (kHz) B (kHz) C (kHz) D (kHz)

Device 1
217 191.51 44.5 38.1 41.3 46.6
312 191.088 42.1 35.3 39.6 45.7
409 190.521 52.2 45.3 46.3 52.8
510 189.832 51.1 38.8 40.6 56.3

Device 2
217 190.421 8.2 8.2 9 9
312 190.951 7.9 7.2 7.4 8.2
409 190.408 12.9 10.2 11.4 13.1
510 190.138 30.3 19.6 23.4 32.1

Device 3
220 191.532 40.3 37.6 40 42.5
316 191.089 37.6 34.3 38 40.6
412 190.499 46.9 44.6 44.1 49.4
512 189.768 58.2 45.3 47.2 62.3

Device 4
220 192.102 54.2 47.1 48.6 49.4
316 191.636 43.8 34.2 37.1 40.1
412 191.013 58.1 49.7 51.6 58.8
512 190.256 78 55.6 62 73
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Figure C.58. Setup A6 Device 1 test results at 220◦C.
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Figure C.59. Setup A6 Device 1 test results at 320◦C.
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Figure C.60. Setup A6 Device 1 test results at 420◦C.
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Figure C.61. Setup A6 Device 1 test results at 520◦C.

0 5 10 15 20

Time [Hours]

190.27

190.3

190.33

190.36

190.39

190.42

190.45

190.48

190.51

190.54

190.57

F
re

q
u

e
n

c
y
 [

M
H

z
]

N
2

O
2

4% H
2

211

213

215

217

219

T
e

m
p

e
ra

tu
re

 [
°
C

]

A B C D

Figure C.62. Setup A6 Device 2 test results at 220◦C.
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Figure C.63. Setup A6 Device 2 test results at 320◦C.
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Figure C.64. Setup A6 Device 2 test results at 420◦C.

0 5 10 15 20

Time [Hours]

190

190.03

190.06

190.09

190.12

190.15

190.18

190.21

190.24

190.27

190.3

F
re

q
u

e
n

c
y
 [

M
H

z
]

N
2

O
2

4% H
2

503

505

507

509

511

T
e

m
p

e
ra

tu
re

 [
°
C

]

A B C D

Figure C.65. Setup A6 Device 2 test results at 520◦C.
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Figure C.66. Setup A6 Device 3 test results at 220◦C.
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Figure C.67. Setup A6 Device 3 test results at 320◦C.
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Figure C.68. Setup A6 Device 3 test results at 420◦C.
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Figure C.69. Setup A6 Device 3 test results at 520◦C.
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Figure C.70. Setup A6 Device 4 test results at 220◦C.
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Figure C.71. Setup A6 Device 4 test results at 320◦C.
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Figure C.72. Setup A6 Device 4 test results at 420◦C.
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Figure C.73. Setup A6 Device 4 test results at 520◦C.

C.3.3 Setup A7

The results for Setup A7 (Device 1 Film 1 Bare cycled 26.7◦; Device 2 Film 1 Bare

cycled 77.7◦; Device 3 Film 1 Bare cycled 26.7◦; Device 4 Film 1 Bare cycled 77.7◦) are

given as referenced in Section 4.6. Table C.5 shows the summary of compiled results as

described for Setup A7 in Section 4.6 at each temperature (average of the corresponding TC

measurements alongside standard deviation of temperature for a 4-hour period starting 1.5

hours before the first reduction and ending 1.5 hours after the end of the first reduction)

and the recorded frequencies as described in Section 4.6 for Setup A7 results. The results

are given in Figures C.74-C.107. All results shown for this section were conducted with 100

sccm flow rates. The results at 400◦C and 500◦C for Device 3 were not recorded due to a

mistake in data acquisition that copied the data for Device 2 instead of the data for Device

3 at those temperatures.
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Figure C.74. Setup A7 Device 1 test results at 100◦C.
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Figure C.75. Setup A7 Device 1 test results at 150◦C.
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Figure C.76. Setup A7 Device 1 test results at 200◦C.
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Figure C.77. Setup A7 Device 1 test results at 250◦C.
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Figure C.78. Setup A7 Device 1 test results at 300◦C.
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Figure C.79. Setup A7 Device 1 test results at 350◦C.
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Figure C.80. Setup A7 Device 1 test results at 400◦C.
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Figure C.81. Setup A7 Device 1 test results at 450◦C.
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Figure C.82. Setup A7 Device 1 test results at 500◦C.
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Figure C.83. Setup A7 Device 2 test results at 100◦C.
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Figure C.84. Setup A7 Device 2 test results at 150◦C.
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Figure C.85. Setup A7 Device 2 test results at 200◦C.
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Figure C.86. Setup A7 Device 2 test results at 250◦C.

0 2 4 6 8 10 12 14

Time [Hours]

190.73

190.75

190.77

190.79

190.81

190.83

190.85

190.87

190.89

190.91

190.93

F
re

q
u

e
n

c
y
 [

M
H

z
]

N
2

O
2

H
2

282

284

286

288

290

T
e

m
p

e
ra

tu
re

 [
°
C

]

f
N i T

j

f
H i T

j

Figure C.87. Setup A7 Device 2 test results at 300◦C.
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Figure C.88. Setup A7 Device 2 test results at 350◦C.
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Figure C.89. Setup A7 Device 2 test results at 400◦C.

0 2 4 6 8 10 12

Time [Hours]

190.56

190.58

190.6

190.62

190.64

190.66

190.68

190.7

190.72

190.74

190.76

F
re

q
u
e
n
c
y
 [
M

H
z
]

N
2

O
2

H
2

432

434

436

438

440

T
e
m

p
e
ra

tu
re

 [
°
C

]

f
N i T

j

f
H i T

j

Figure C.90. Setup A7 Device 2 test results at 450◦C.
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Figure C.91. Setup A7 Device 2 test results at 500◦C.
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Figure C.92. Setup A7 Device 3 test results at 100◦C.

0 2 4 6 8 10 12

Time [Hours]

192.39

192.41

192.43

192.45

192.47

192.49

192.51

192.53

192.55

192.57

192.59

F
re

q
u

e
n

c
y
 [

M
H

z
]

N
2

O
2

H
2

145

147

149

151

153

T
e

m
p

e
ra

tu
re

 [
°
C

]

f
N i T

j

f
H i T

j

Figure C.93. Setup A7 Device 3 test results at 150◦C.
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Figure C.94. Setup A7 Device 3 test results at 200◦C.
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Figure C.95. Setup A7 Device 3 test results at 250◦C.
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Figure C.96. Setup A7 Device 3 test results at 300◦C.
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Figure C.97. Setup A7 Device 3 test results at 350◦C.
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Figure C.98. Setup A7 Device 3 test results at 450◦C.
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Figure C.99. Setup A7 Device 4 test results at 100◦C.
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Figure C.100. Setup A7 Device 4 test results at 150◦C.
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Figure C.101. Setup A7 Device 4 test results at 200◦C.
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Figure C.102. Setup A7 Device 4 test results at 250◦C.
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Figure C.103. Setup A7 Device 4 test results at 300◦C.
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Figure C.104. Setup A7 Device 4 test results at 350◦C.
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Figure C.105. Setup A7 Device 4 test results at 400◦C.
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Figure C.106. Setup A7 Device 4 test results at 450◦C.
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Figure C.107. Setup A7 Device 4 test results at 500◦C.

Table C.5. Tabulated results for Setup A7.
Tj Std. Dev. Tj fNiTj fHiTj ∆fi fNiTj fHiTj ∆fi

(◦C) (◦C) (MHz) (MHz) (kHz) (MHz) (MHz) (kHz)
Chamber 1
Device 1 Device 2

99.02 0.13 192.6 192.534 66 190.342 190.327 15
147.24 0.3 192.486 192.424 62 190.554 190.54 14
194.02 0.294 192.34 192.277 64 190.7 190.687 13
240.48 0.21 192.147 192.091 56 190.794 190.78 14
289.12 0.25 191.912 191.859 53 190.834 190.823 11
338.5 0.19 191.638 191.5868 52 190.796 190.784 12
387.67 0.17 191.339 191.285 55 190.772 190.756 16
436.59 0.24 191.01 190.952 58 190.68 190.663 17
485.92 0.15 190.66 190.583 77 190.553 190.521 32

Chamber 2
Device 3 Device 4

101.1 0.04 192.628 192.567 61 190.327 190.312 15
150.33 0.23 192.517 192.461 56 190.54 190.527 13
198.03 0.25 192.376 192.322 54 190.686 190.673 13
245.2 0.2 192.189 192.141 48 190.776 190.764 12
293.46 0.22 191.96 191.912 47 190.811 190.8 11
342.48 0.07 191.699 191.652 47 190.796 190.784 12
391.27 0.07 NA NA NA 190.74 190.725 15
439.74 0.13 191.096 191.046 50 190.197 190.175 22
488.34 0.09 NA NA NA 190.07 190.039 31
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C.4 Film 1 vs. Film 2 Comparison

The results for Setup A6 (Device 1 Film 2 Bare cycled 14.7◦; Device 2 Film 2 Bare

cycled 14.7◦; Device 3 Film 1 Bare cycled 14.7◦; Device 4 Film 1 Bare cycled 14.7◦) are

given as referenced in Section 4.7. Table C.6 shows the summary of compiled results as

described for Setup A6 in Section 4.7 at each temperature (average of the corresponding TC

measurements for the test) and the recorded frequency shifts as described in Section 4.7 for

Setup A6 results. The results are given in Figures C.74-C.107. All results shown for this

section were conducted with 100 sccm flow rates. The results at 600◦C for Device 2 were not

recorded due to a failure of the 1 mil Pt connection.

Table C.6. Tabulated results for Setup A6.

Temp f0i ∆f (kHz) f0i ∆f (kHz)
(◦C) (MHz) Device 1 (MHz) Device 2

f0i A B C D E F f0i A B C D E F
213 191.48 27 21 21 21 20 21 191.494 26 20 19 20 19 20
311 191.308 22 15 17 16 15 17 191.319 24 16 16 17 17 19
412 190.582 24 18 24 26 34 36 190.582 30 18 14 18 32 32
509 190.058 55 46 49 50 62 66 190.096 49 31 25 31 37 42
606 189.428 37 29 28 28 39 48 NA NA NA NA NA NA NA
(◦C) (MHz) Device 3 (MHz) Device 4

f0i A B C D E F f0i A B C D E F
215 191.986 30 22 23 23 23 24 192.168 24 18 19 19 19 19
314 191.394 25 20 21 21 21 22 191.564 20 15 16 16 16 17
415 191.05 29 23 24 24 27 29 191.228 23 19 20 20 23 24
512 190.557 51 45 48 49 51 54 190.735 49 44 47 47 50 52
609 189.908 22 23 25 23 27 28 190.112 19 17 16 15 14 10
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Figure C.108. Setup A5 Device 1 test results at 220◦C.
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Figure C.109. Setup A5 Device 1 test results at 320◦C.
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Figure C.110. Setup A5 Device 1 test results at 420◦C.

190



0 5 10 15 20 25

Time [Hours]

189.95

189.98

190.01

190.04

190.07

190.1

190.13

190.16

190.19

190.22

190.25

F
re

q
u

e
n

c
y
 [

M
H

z
]

N
2

O
2

4% H
2

503

505

507

509

511

T
e

m
p

e
ra

tu
re

 [
°
C

]

A B C D E F

Figure C.111. Setup A5 Device 1 test results at 520◦C.
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Figure C.112. Setup A5 Device 1 test results at 620◦C.
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Figure C.113. Setup A5 Device 1 test results at 220◦C.
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Figure C.114. Setup A5 Device 1 test results at 320◦C.
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Figure C.115. Setup A5 Device 1 test results at 420◦C.
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Figure C.116. Setup A5 Device 1 test results at 520◦C.
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Figure C.117. Setup A5 Device 1 test results at 220◦C.
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Figure C.118. Setup A5 Device 1 test results at 320◦C.
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Figure C.119. Setup A5 Device 1 test results at 420◦C.
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Figure C.120. Setup A5 Device 1 test results at 520◦C.
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Figure C.121. Setup A5 Device 1 test results at 620◦C.
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Figure C.122. Setup A5 Device 1 test results at 220◦C.
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Figure C.123. Setup A5 Device 1 test results at 320◦C.
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Figure C.124. Setup A5 Device 1 test results at 420◦C.
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Figure C.125. Setup A5 Device 1 test results at 520◦C.
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Figure C.126. Setup A5 Device 1 test results at 620◦C.
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APPENDIX D

SIGNAL PROCESSING DETAILS OF TIME-GATING ALGORITHMS

This section details the implementation of two time-gating algorithms in Matlab for

frequency tracking of the inductive-loop wireless measurements described in Sections 3.4

and 4.9. A frequency spectrum acquired using the wireless setup described in Section 3.4

with VNA setting of 10 MHz bandwidth centered at 191 MHz, 10,001 points (frequency step

of 1 kHz) and 1 kHz IF bandwidth will be used in this appendix as an example. A kaiser

window with β = 15 was used to avoid the concentration of energy near the edges of the

acquired frequency spectrum. A time-gating start of 500 ns and a time-gating stop of 4µs

was used for time-gating.

D.1 Full Frequency Spectrum Representation for Real-valued Time-domain

Response

The acquired frequency spectrum may be transformed to a real-valued time-domain

response by considering the conjugate spectrum and including it in the Fourier Transform

algorithm, as shown in Figure D.1, where the magnitude of the windowed spectrum of

measured data is shown [120]. The SAW response is embedded within this spectrum close to

the noise level, and the time-gating algorithm will aid in extracting the SAW response. An

input to the Matlab fft() and ifft() functions reflecting this conjugate spectrum was created

. For a 1 kHz frequency step, an array extending from f = 0Hz to the the next power of 2

after the last measurement frequency (196 MHz in this case) was created, and the conjugate

values of the measured frequency spectrum mirrored until the end of the mirrored frequency

array, as shown in FigureD.2. The Matlab ifft() function may then be used to obtain the

real-valued time-domain response associated with the windowed spectrum. Time-gating is

then applied along the desired time span (500 ns to 4µs) and the fft() function is used to
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obtain the forward Fourier Transform of the time-gated signal. The implemented code is

given below and can be found in in MAL10 under:

\\MAL10\Grads\AAyes\MATLAB\TGfullspectrumAA.m
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Figure D.1. Conjugate frequency spectrum for real-valued time-domain response.

0 100 200 300 400 500

Frequency [MHz]

0

0.2

0.4

0.6

0.8

1

M
a

g
n

it
u

d
e

 W
in

d
o

w
e

d
 |
S

1
1
|

Conjugates

Figure D.2. Array to be passed to Matlab fft functions.
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f unc t i on [ f3 , Hfgated ] = TGfullspectrumAA ( f , S11 , t s t a r t , t s top )

%TGwindowedAA i s a time gat ing funt i on to use in con junct ion

%with w i r e l e s s measurements done by induc t i v e loop antenna .

% S11 should be a complex column array with r e a l and

% imaginary components o f r e f l e c t i o n c o e f f i c i e n t and f should

%be a column array in Hz .

%Var iab l e s obta ined from frequency in fo rmat ion

BW = f ( end)− f ( 1 ) ; %Bandwidth o f measurement

df = f (2)− f ( 1 ) ; %frequency step

%Create f requency spectrum f o r i f f t

f 1 = ( 0 : df : f ( end ) ) ;

p = nextpow2 ( l ength ( f1 ) ) ;

f 2 = l i n s p a c e (0 , df ∗(2^(p+1)−1) ,2^(p+1)) ’ ;

Hf = ze ro s (2^(p+1) ,1) ;

[ min1 , index1 ] = min ( abs ( f2−f ( 1 ) ) ) ;

[ min2 , index2 ] = min ( abs ( f2−f ( end ) ) ) ;

Hf ( index1 : index2 ) = S11 ;

%Hummels code

N = 2^(p+1);

Hf (N:−1:N/2+2) = conj ( Hf ( 2 :N/ 2 ) ) ;

%take i f f t from frequency to time

Ht = i f f t (Hf ) ;
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Ts = 1/ df ;

t = l i n s p a c e (0 , Ts , 2^(p+1)) ;

%Nowindow

%Htnowindow = i f f t (Hfnowindow ) ;

%gate in time us ing window

[ mintime1 , indextime1 ] = min ( abs ( t−t s t a r t ) ) ;

[ mintime2 , indextime2 ] = min ( abs ( t−t s top ) ) ;

%Hummels code

Htgated = ze ro s (N, 1 ) ;

Htgated ( indextime1 : indext ime2 ) = Ht( indextime1 : indextime2 ) ;

%take f f t from time to f requency

Hfgated = f f t ( Htgated ) ;

f 3 = f2 ( index1 : index2 ) ;

Hfgated = Hfgated ( index1 : index2 ) ;

end

D.2 Bandpass Spectrum Representation for Complex-valued Time-domain

Response

Additionally, the acquired frequency spectrum may be transformed into a complex-valued

time-domain response by moving the spectrum to the frequency origin, which is the

equivalent of multiplying the time domain signal by an ej2πf0t term, where f0 is the reference

frequency (in this case, the center frequency of the measured spectrum, or 191 MHz), as
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shown in Figure D.3 [120], where the magnitude of the windowed spectrum has been displaced

from the 191 MHz center frequency to have a center frequency of 0 Hz. The SAW response

is embedded in the displaced spectrum close to the noise level and the time-gating algorithm

will aid in extracting the SAWR sensor peak. The resulting windowed and displaced spectra

can be placed in an array with a length of power 2 that is large enough to fit the displaced

spectrum. The ifft() can then be implemented to obtain the complex-valued time-domain

response where the time-gating is implemented. The fft() is then taken to obtain the

time-gated frequency spectrum.
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Figure D.3. Displaced spectrum for complex-valued representation of time-domain
response.

The advantage of the bandpass spectrum representation is that it allows for the clear

identification of the sensor response in the time-domain, which is not possible using the

real-valued time-domain response from the full spectrum representation. This is due to

the fact that the sensor information is now contained in the phase of the complex-valued

time-domain response, as shown in Figure D.4. The slope of the phase in the region marked

as sensor response in Figure D.4 denotes the frequency offset of the sensor energy with respect
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to the selected value of f0 (191 MHz), which in this case was the center of the measured

spectrum (191 MHz) [120].
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Figure D.4. Phase of the complex-valued time-domain response.

The implemented code is given below and can be found in in MAL10 under:

\\MAL10\Grads\AAyes\MATLAB\TGfullcomplexrepAA.m

f unc t i on [ fout , Hfout ] = TGcomplexrepAA( f , Hfin , t_start , t_end ,N)

%TGcomplexrepAA i s a time gat ing a lgor i thm us ing a bandpass

%complex r ep r e s en t a t i on o f the time−domain s i g n a l o f the

%acqu i red f requency spectrum . This code was developed with

%help from Dr . Don Hummels

% f i s the f requency array o f measured data . Hfin i s the

% windowed S11 complex data . t s t a r t i s the i n i t i a l time

% of the time gate and t s top i s l a s t time o f the time gate .

% N i s the number o f po in t s in the FFTs .
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% Prepare f o r index ing f o r the FFT

Nd = length ( f ) ; % Data l ength

df = f (2)− f ( 1 ) ; % Frequency r e s o l u t i o n o f measurement

T = 1/ df ; % Total per iod ( seconds ) covered by i f f t

dt = T/N; % Time r e s o l u t i o n

f f = ze ro s (N, 1 ) ; % frequency o f f s e t s from cente r in f f t

f f ( 1 :N/2+1) = ( 0 :N/2)∗ df ;

f f (N:−1:N/2+2) = (−1:−1:−(N/2−1))∗ df ;

t t = ( 0 :N−1)∗dt ; % Time va lue s in FFT arrays

% Se l e c t the r e f e r e n c e f requency f o r the complex r ep r e s en t a t i on

f0 = ( f ( end)− f ( 1 ) )/2 + f ( 1 ) ;

[ junk , n0 ] = min ( abs ( f−f 0 ) ) ; % n0 = index o f r e f e r e n c e f r e q

f0 = f ( n0 ) ; % Actual r e f e r e n c e f requency

n_pos = Nd−n0+1; % Number o f samples at or above f0 ;

n_neg = Nd−n_pos ; % Number o f samples below f0

% Move the measured data in to the FFT array

ss11 = ze ro s (N, 1 ) ;

s s11 ( 1 : n_pos ) = Hfin ( n0 : end ) ;

s s11 (N−n_neg+1:N) = Hfin ( 1 : n0−1);

% Inve r s e trans form g i v e s the impulse re sponse

h_ss11 = i f f t ( s s11 ) ;
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% Time window the r e s u l t

ind = f i nd ( tt>t_start & tt<t_end ) ;

twin_N = length ( ind ) ;

twin = window(@rectwin , twin_N ) ;

tw = ze ro s (N, 1 ) ;

tw( ind ) = twin ;

h_ss11_w = h_ss11 .∗ tw ;

% Back to s11 va lue s us ing the time−windowed data . . .

ss11_w = f f t (h_ss11_w ) ;

%Outputs

fout = f f+f0 ;

Hfout = ss11_w ;

end

D.3 Comparison of Time-gated Results

Figure D.5 shows the obtained time-gated frequency spectrum results for the Full

Spectrum and Bandpass Spectrum algorithms described, as well as the results for the

time-gated frequency spectrum results for the Chirp-z transform algorithm implemented

by Dr. Thomas Pollard [120], [121]. All of the algorithms coincide for the extraction of

the resonant frequency of the SAWR sensor. The resonant frequency of the SAWR can

be interpreted to be the maximum value of this time gated response, and corresponds to

191.255 MHz. The slope obtained in Figure D.4 was about 280 kHz, showing that the slope

of the phase for the complex valued time-domain response does correspond to the extracted

frequency of the SAW sensor.
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Figure D.5. Time-gated spectra for all algorithms.
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