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“Certainly, let us learn proving, but also let us learn guessing.” (Polya, 1954, p. vi)

ABSTRACT
Food webs represent the trophic interactions among species in communities. Those interactions both
structure and are structured by species richness, ecological diversity, and evolutionary processes.
Geological and macroevolutionary timescales are therefore important to the understanding of food web
dynamics, and there is a need for proper reconstruction and analysis of paleocommunity food webs. The
fossil record presents many challenges, but the problem may be approached with combinatoric analysis,
and graph and network theories. This paper is a brief introduction to the aspects of those disciplines

relevant to the study of paleo-food webs, and explores several probabilistic and numerical approaches.

INTRODUCTION
THIS contribution an introduction for students of paleontology to graph and network theories, and an
exploration of their current and potential applications to paleo-food web analysis. The theories are
closely related, with networks comprising a subset of graphs, and both have proven to be powerful and
intuitive approaches to the representation of relationships and interactions. Current trends in science
and society have led to a proliferation of rich datasets that capture interactions among entities, and
network theory has become a fundamental part of the scientific toolkit. Ecology amassed a tremendous

amount of information in the 20™ century on the interactions of organisms with their environments and
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each other. Since then, a growing number of ecologists have been assembling this information to
understand the complexity of real-world ecological systems. Those systems, including food webs, are
true complex systems since properties may emerge from the assembled systems that are not apparent or
easily predicted from the individual parts. Network theory is a powerful tool in the analysis of these
complex biological systems. It can also be extended to understanding the history of complex systems on
geological timescales, where communities and ecosystems are exposed to low frequency, high impact
interactions with the geophysical world, and systems themselves vary because of evolutionary change
and long-term fluctuations of system composition.

The increasingly frequent combination of empiricism and quantitative theory in paleontology is
justification enough for including graphs and networks in this short course volume, but I will focus on
current and potential applications to paleo-food web analysis. The chapter will develop brief
introductions to graph and network theories using food webs throughout as examples, and finally will
examine paleocommunity food webs and the combinatoric network CEG (Cascading Extinction on
Graphs) model (Roopnarine, 2006). Development of this final section requires exercises in
combinatorics and counting, both of which form the basis of much of probability theory, a central topic
in this volume. Emphasis is placed on the unique challenges of constructing and analyzing paleo-food
webs, and the application of these food webs to analyses of extinction. Examples will be presented
throughout, mathematical when necessary and real-world when possible. The paper is not an exhaustive
review of graph or network theory, combinatorics, nor of network food webs, but is intended as an
accessible introduction from which a solid foundation may be built for deeper exploration of these
topics. A significantly more biological and paleobiological treatment of paleo-food webs is presented in
Roopnarine (2009), while here I will focus on the more technical aspects. The paper assumes that

readers have at least an introductory undergraduate course in probability and statistics or equivalent.
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GRAPHS
A food web is a summary of interspecific trophic interactions. A mathematical graph is the
combination of two sets, commonly written G(V, E), where the elements of E are relationships among
the elements of V. Both concepts may be expressed graphically as diagrams of relationships among
species or elements, an exercise that makes clear the relationship between the real-world biological
system and the abstract mathematical one. The area of mathematics dealing with graphs is known as
graph theory, familiarity with which proves very useful in the exploration and analysis of not only food
webs, but of any real-world system (biological and otherwise) that can be expressed as relationships or
interactions among discrete entities. Examples of other systems include networks of genomic
interactions, metabolic networks, and phylogenetic trees.
Examine the simple food webs illustrated in Figure 1. The circles represent species, and the links
between them are interspecific interactions. Describing these systems mathematically as G(V,E), the
elements of E are relationships among the elements of V. The elements of V are typically referred to as

vertices or nodes, and their relationships, or the elements of E, are referred to as edges or links. Edges
are written as pairs of vertices, for example {v,,v»}, where v, and v, are vertices in G (that is, v,€V

and v,€V). Species in the food web are therefore nodes, and trophic interactions or links are edges.
The first web (Fig. 1.1) is a system of non-interacting species. It could function only if embedded
within a larger system of species with which these species interacted, or if all three species were
autotrophic. Such a graph where no vertices or nodes are connected (E is an empty set) is an
unconnected graph, one with some edges is connected (Fig. 1.2), while a graph with all vertices
connected (Fig. 1.3) is a complete graph. Any node to which another is linked is termed its neighbor.
Note the alternative representation of a graph as an n by n binary adjacency matrix, where element v;v;

equals one if an edge connects the two vertices, and zero otherwise.
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The three graphs would obviously depict food webs with very different implications for the species
involved. For example, the density of interactions increases as the number of edges, or |El, increases
(see Appendix 1 for an explanation of notation). This density is often described simply by the
connectance (C) of the graph, standardized as the ratio of the number of edges to the maximum number
of edges possible. Each node or species could hypothetically interact with every other species, therefore
the number of possible interactions is n(n-1). Note, however, that links would be counted twice, for
example {1,2} and {2,1}, so we halve this number. Then

201E| __ 2|E]
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The connectances of Figures 1.1-1.3 are therefore zero, 0.333 and 1. We extend this by noting that
species may sometimes interact with themselves trophically if individuals are true cannibals. The
number of possible edges now increases by n. This situation is illustrated in figures as loops, or unit
diagonal entries in the adjacency matrix (Fig. 1.4). We can now generalize by stating that the

connectance of food webs expressed as graphs is measured as
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and the connectance of the complete food web in Fig. 1.4 is therefore 1.

In addition to the overall link density of the graph, or the number of interactions in the food web, we are
also interested in the number of interactions per species. This number indicates how trophically
specialized or generalized a species is, and is interesting from both evolutionary and ecological
perspectives. For example, very specialized species may have stronger ecological and coevolutionary
interactions with the species to which they are linked, and specialization itself may require temporally
extended intervals of stability or high productivity to evolve. Generalized species, on the other hand,

might be less susceptible to major perturbations if the intensities of their interactions are distributed
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broadly among their neighbors. The number of edges or links attached to a node is termed the degree of
the node. The simplest cases are those where all nodes are of the same degree, for example Figs. 1.1, 1.3
and 1.4. The distribution of links within the graph, or the link distribution, is then single-valued, and
may be described as a Dirac delta function or Kronecker's delta. A slight probabilistic generalization,
where nodes have the same number of links on average, instead of precisely the same degree, leads to
the significant development of random graphs and the eventual study of real-world networks.

Random graphs.--Given a set of species V, let us construct a food web by assigning interactions (links)
randomly to species (nodes), but with equal probability p. Species will therefore have equal numbers of
interactions on average. The probability that a species can be found with r links, and therefore be of
degree 1, is given by the binomial probability

R .
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If we assume that the number of species is far greater than the number of links per species, that is |V

>>r, then the above formula may be re-written as
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where z is the average number of links per species, or the coordination number of the graph. P(r) is the
probability distribution function of a Poisson distribution with mean z. Such graphs are known as
Erdos-Renyi graphs and possess many interesting properties. While Erdos-Renyi random graphs rarely
describe real-world food webs (that is, species in a community do not have on average the same number
of interactions), they prove useful in demonstrating certain concepts.

The link or degree distribution P(r) describes, for a set of nodes V, an entire ensemble of graphs. For
example, the graphs illustrated in Figure 2.1 are both realizations of graphs with z =2, and |IEl = 5. No

two realizations of graphs based on the same link distributions need be the same in detail, but they will
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have the same properties on average. The entire set of graphs based on a given set of parameters is the
ensemble, and ensemble properties are usually written in angled brackets as <x>. The ensemble number
of links per node in our two graphs is therefore <2>. It is also interesting to note that the two graphs are
in fact identical if one ignores the labeling of the nodes. The vertex arrangements differ, but the graphs
themselves are identical, bearing exactly the same information. Identical graphs are termed isomorphic.
Recognizing graph isomorphism allows us to distinguish between the properties of a graph, and any
particular depiction of that graph, whether by illustration or adjacency matrix. Determination, however,
of whether two finite graph depictions are isomorphic becomes increasingly difficult as the size (IVI
and |El) of the graph increases. In fact, no formulaic solution exists to the problem, it is believed to be
NP-hard or NP-complete, and it is usually tackled with algorithmic computational approaches of
varying efficiencies. Are the two graphs in Figure 2.2 isomorphic? The answer is yes, but I will leave

that demonstration as an exercise for the reader!

NETWORKS
Perhaps the most obvious structural elements of real food webs that distinguishes them from the graphs
presented earlier is directionality of the links. Links are trophic interactions, that is, predator-prey
relationships, and they describe the passage of energy from prey species to predators. They can also be
used to describe the impact of predation on a prey species, recognizing that the relationship is an
asymmetrical one between nodes. The “traditional” manner in which to depict this graphically is with
arrows between nodes (Fig. 3). Whereas the graphs illustrated so far have been undirected graphs, a
food web is defined properly as a directed graph, or digraph. The asymmetry is also reflected by the
adjacency matrix, which is no longer symmetric about the diagonal.

The most straightforward applications of graph theory to food web biology are analyses of the structure
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or topology of digraphs. Digraphs are often referred to as networks in modern usage, and the study of
digraphs, especially those describing real-world networks such as the Internet or social networks, is
termed network theory. The reader should be aware, however, that networks are technically graphs that
are digraphs having weighted or parameterized links or nodes. A network therefore depicts a food web
when it contains species interactions, the direction of those interactions, and some measure of the
interactions, such as interaction strength. A digraph without measures or weights on the links is in
reality a special case of a food web digraph, one in which all links are considered equivalent.

A very simple three species food web is illustrated in Fig. 3.1. Species 1 (S1) is prey only (perhaps a
primary producer), S2 is both a predator or consumer of S1 while being prey to S3, and S3 is the top
consumer in the network. Alternative arrangements for three species are illustrated in Fig. 3.2-3.4,
including a simple food chain (Fig. 3.2), a web where the top consumer is also cannibalistic (Fig. 3.3),
and a cycle among the three species (Fig. 3.4). These networks bear only information about the
existence and direction of interactions among species, but this information is important because
structure always affects function (Strogatz, 2001). The basic network approach has proven useful as a
means of capturing the complexity of food webs, deriving basic comparative properties such as
connectance and link (degree) distributions, and assessing one type of robustness against perturbation
as discussed later.

System complexity.-- The complexity of a food web depends upon the taxon richness of the system, as
well as the topology and dynamics of interspecific interactions. Although richness and topology are
captured by graphic depictions, the utility of the depictions is often limited to impressing upon the
viewer the overwhelming structural complexity of the systems. For example, Figure 4 is a Greater
Antillean coral reef food web comprising 265 trophic guilds and 4,656 interactions (Roopnarine and

Hertog, 2010), currently one of the most detailed food webs available. The system is definitely
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complicated, as expected of a coral reef community, but not much else can be concluded from the
graph. In fact, it is in reality more complicated than illustrated, being based on a dataset comprising 750
species and 34,465 interspecific interactions. Many of the species have been aggregated into sets
termed trophic guilds, where members of a guild share prey drawn from the same guild(s), and likewise
for predators. Species aggregation is a common way in which to reduce food web network complexity,
but there are few formulaic methods for aggregation. The most common method is based on the concept
of trophic species (trophospecies), where aggregated species are assumed to have exactly the same prey
and predators. The trophic guild concept on the other hand was formulated specifically for fossil taxa
and assumes uncertainty in species interactions. It is very important to understand the impacts of
aggregation on network structure and dynamics, and the implications for species' roles in the system.
Whether different aggregation schemes yield similar insights into complex systems is currently poorly
understood. I will return to this topic in a later section.

Connectance.-- A number of measures and summary statistics are used to describe and compare food
webs, perhaps the most common one being connectance. Food web connectance differs from the graph
connectance defined earlier, because the networks are now directional. Each node may link to every
other node including itself, but a directional link from species A to B is no longer equivalent to a link
from B to A. The maximum number of links possible is therefore now the square of the number of

nodes. Using symbols common in the food web literature,

where L is the number of directional links in the network, and S is the number of nodes. Connectance
values are generally well below one, reflecting the relative sparsity of links in food webs (Dunne et al.,
2002a, 2004), but it is difficult to compare connectances among food webs that use different

aggregation schemes. Perhaps given this difficulty, it is quite surprising that there is a regular
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relationship between L and S spanning a large number of food webs (Martinez, 1992; Dunne et al.,
2002b; Roopnarine et al., 2007; Hertog, 2009; Roopnarine and Hertog, 2010; see also Ings et al., 2009),
compiled from a variety of sources, and using different aggregation methods (Fig. 5). The exponential
nature of the relationship shows that link density, or connectance, increases with increasing node
richness. It is possible that increasing taxon richness in a community demands greater connectivity in
order to maintain efficient energy transfer and hence stability, or the relationship is spurious and any
true relationship is obscured by the heterogeneity of food web metadata. This remains an open problem
in food web theory.

Link or degree distributions.-- The other measure commonly taken of food web networks is the link or
degree distribution. Real-world networks, unlike random graphs, rarely have Poisson or normal link
distributions, having instead scale-free or power law distributions (Barabdsi and Jeong, 2000; Barabasi

et al., 2000). The terms scale-free and power law refer to the fact that these distributions lack

characteristic scales (see below), and take the general form P(X)=cX™, where the probability of a value
is a power function of the value itself. Scale-free distributions have been found in networks as diverse
as the Internet, transportation networks, anatomical circulatory networks, social networks and food
webs (Strogatz, 2001). There are two features of these distributions that are of importance to food web
theory. First, being scale-free means that the distribution has no characteristic scale. Many distributions
have a characteristic scale, often captured by a peak (or high density region) and measured as a mean or
mode, for example Poisson or normal distributions. The form of a sample drawn from one of those
distributions depends on the range from which it is drawn, whereas the shape of a power law
distribution is approximately invariant throughout its range. One part of the distribution may be used to
predict another with a simple rescaling of the density (Fig. 6). Therefore, a partial sampling of the range

yields an overall approximation.
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Second, power law distributions are long-tailed decay distributions. The decay of the distribution's

density with increasing X, dictated by the negative exponent y, means that the distribution's density is
concentrated at low values of X. Nevertheless, the long tail also means that there is measurable density
high in the X range. Contrast this with the exponential distribution in Figure 6, which is also a decay
distribution, but with a rapidly decaying short tail. A long tailed link distribution has nodes that are of
considerably greater degree than others. These highly linked or hub nodes confer significant resistance
to failure of network connectivity. The canonical example is the Internet. Random failure of any single
server is unlikely to affect the network broadly because most servers are of low degree (drawn from the
high density region of P(X), and hence of low degree), but there is a high probability that they are
linked to high-degree hubs. The network is susceptible, however, to targeted attacks on hubs (Albert et
al., 2000). It is not clear how long tailed distributions arise in networks, but models of preferential
growth (Barabadsi et al., 2002; Yook et al., 2002), where new links have a greater probability of being
added to already highly linked nodes (the “rich get richer” model) are reasonable hypotheses when
applied to flow networks (for example, information, energy) or social networks (the blogosphere,
personal relationships).

Food webs have been characterized most frequently by their in-link (or in-degree) distributions, which
are the frequency distributions of the number of prey per consumer species (species in-degree). In-link
distributions therefore describe patterns of energy flow in the system, as well as the trophic habits or
dietary breadths of the species. Most documented food webs have decay in-link distributions and those
are either scale-free, power law distributions, or they have properties of exponential decay, or seem to
be a mixture of the two types of distributions (Camacho et al., 2002; Dunne et al., 2002b; Montoya and
Sole, 2002). Exponentially decaying distributions have greater concentrations of density at low degree.

The latter group of distributions, described as mixed exponential-power law distributions, are of the
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form

P(r)=efrlg
where
< =e(y*1)ln(M)/y ,

r is species in-degree and M is the maximum number of prey species available (Fig. 6).

Dunne et al. (2002a) examined the link distributions of 16 published food webs, though the survey
included both links to (in-links) and from (out-links) predators. They found significant variation among
the networks, but distributions belonged mostly either to power law, exponential or uniform
distributions. Camacho et al. (2002), in an analysis of six of those same food webs concluded that

trophic in-link distributions in fact follow a universal functional form,

P(r)=e* —LE
(ry=e* ~sTE,

r
2z

where z is the coordination number of the network and E,(x) is the exponential integral function. The
above is also a decay function, significantly related to a scaled number of prey, r/2z. The authors
derived a value of z=7.5 from the pooled data of the six networks. The distribution itself was derived
analytically from an interpretation of the niche model of Williams and Martinez (2000), which has
demonstrated some success in describing empirical trophic link distributions. The data are generally
aggregated averages of species population distributions, however, and it is not clear to what extent, if
any, the niche model actually predicts any underlying community mechanisms, rather than describing
those specific parameterized and averaged representations.

The in-link distribution of the Greater Antillean coral reef raises again the issue of species aggregation.
The distribution of the guild-level network, where 750 species are aggregated into 265 guilds on the

basis of very precise trophic data, is a distinct power law distribution of the form

P(r)=11196¢""
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The high resolution of this dataset allows us, however, to also examine the species-level network, for
which the distribution is certainly not a decay distribution, but instead has a distinct mode at 30 links
(Fig. 7). The most precise trophic data are available for the vertebrate species in the network and the
vertebrate-only distribution is similar to the overall species-level distribution, though with a mode at 76
links. Clearly the discrepancy between the guild- and species-level distributions is caused by the
omission of species richnesses and accompanying degree variance from the aggregated guilds. Thus it
remains to be resolved if communities in fact always have greater proportions of trophic specialists and
hence decay-type in-link distributions, or if this pattern is restricted to guilds, and if the pattern occurs

naturally at all or is in fact an artifact.

PALEO-FOOD WEB RECONSTRUCTION
Network treatments of food webs allow the application of graph theoretic concepts to the representation
of food webs as complex systems. So far we have derived descriptive measures of food web networks,
but the primary interest lies in using these networks to understand system dynamics. From a
paleontological perspective, this means examining the behavior of communities and ecosystems on
macroevolutionary and geological timescales, and the behaviors of those systems when they interact
with large scale geophysical processes or other disruptions. The first area of inquiry has received little
attention so far, but one opportunity there is to formalize food webs in frameworks such as Vermeij's
Theory of Escalation (Vermeij, 1987), Bambach's “guilds through time” (Bambach, 1993), or Van
Valen's Red Queen Hypothesis (Van Valen, 1973). Food webs, though not their representation as
complex networks, have also been used in interesting models of recovery after mass extinction (Sole et
al., 2002). Most recently, Angielczyk et al. (2008) have used food web networks to inquire into the

macroevolutionary expansion of tetrapod herbivory during the Permian. The second area of inquiry has
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been the focus of the CEG model, which has been used most extensively to model a variety of
paleocommunities, including Permian-Triassic terrestrial communities and Miocene-Pliocene marine
communities, and their potential responses to different types of perturbation (Angielczyk et al., 2005;
Roopnarine, 2006; Roopnarine et al., 2007; Hertog, 2009). Regardless of the question to which the
network models are applied, there are several basic steps required for network construction and analysis.
Many of these details are presented in Roopnarine (2009); here I will concentrate on the specific
relationship to graph and network theories. Specifically, the remainder of the paper will cover the
reconstruction of paleo-food web networks, dealing with uncertainty, calculating probabilities of
extinction, and the analysis of community robustness.

Uncertainty.--Uncertainty is of paramount importance when dealing with paleo-food webs. There is
uncertainty associated with and inherent to the structures of many modern food web models, but there
is always the opportunity of reducing or even eliminating much of that through empirical observation.
Opportunities are more limited in the fossil record. Two different approaches to the problem have
developed, namely restricting reconstruction to exceptionally well-preserved portions of the record, and
modeling uncertain data and the impact of uncertainty. Both approaches are discussed in the following
section, but since the former approach differs little from the reconstruction of modern communities,
emphasis is placed on the latter.

The first step in constructing a food web network model of a paleocommunity is the assembly of a
comprehensive taxonomic database of species known to have been members of that particular
community. I will not discuss definitions of paleocommunities here. There are two sources of
uncertainty in this step: missing species and community averaging. There are many taxa that have never
been preserved as fossils, or their preservation prevents proper enumeration for network purposes, for

example many microbial taxa. Solutions to these problems include a restriction to lagerstattén, or
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restricting one's interpretations to comparative dynamics. The first option was adopted by Dunne et al.
(2008) in their reconstruction of two Cambrian food webs. These marine food webs preserve several
grades of organisms that are generally not present as fossils, namely soft-bodied organisms. The
taxonomic completeness of the food webs are therefore expected to be greater than what is otherwise
available for most of the fossil record. The other approach is suitable when two or more communities
are being compared, for example the Permo-Triassic communities of the Karoo Basin compared in
Angielczyk et al. (2006) and Roopnarine et al. (2007). This approach asserts that although the
reconstructed food webs lack all the original species, consistent rules of reconstruction will result in
comparable reconstructions. Any observed differences will therefore be the result of true ecological
differences, and not be functions of the network model. The approach necessarily assumes reasonable
taphonomic uniformity among the paleocommunities.

The impact of incompleteness has been investigated preliminarily by “fossilizing” two high quality
modern marine food webs, the Greater Antillean coral reef discussed earlier, and the San Francisco Bay
community (LaScala-Gruenewald et al., 2009). Fossilization was simulated by removing from the
networks all genera that are not represented at the genus level in the Sepkoski genus-level database
(Sepkoski, 2002). Comparing the perturbation dynamics (see below) of the modern and fossil networks
shows that the fossilized and incomplete networks exhibit greater variance and lowered resistance to
perturbation, but that the qualitative form of the results is unchanged.

Trophic parameterization and taxon aggregation.--The second step is the basic trophic parameterization
of the species, that is, determining the prey and predators of each species. A key assertion of the CEG
model is that a paleocommunity's trophic network can never be specified by a single topology
(Roopnarine, 2006, 2009). There is uncertainty associated with the biotic interactions of a fossil species

because no one was there to observe them. Preserved evidence of interactions such as bite marks, gut
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contents or leaf damage record a subset of the possible range of interactions. Moreover, the topology
specified for a single community is expected to vary spatially and temporally (Eveleigh et al., 2007).
The strength and direction of interspecific interactions of extant species are known to vary according to
physical conditions, the presence or absence of other species in the community (Edeline et al., 2008;
Petanidou et al., 2008), relative population sizes, and the incumbency of species when addition to the
community is asynchronous (Edgell and Rochette, 2008). These uncertainties must be incorporated into
any realistically complex model of a community food web. In the CEG model, species are therefore
grouped into trophic guilds based on the most accurate trophic interpretations available. Trophic guilds
are defined by the trophic habits and habitats of member species, for example, the “very small
carnivorous amniotes” of a Late Permian terrestrial community.

The resulting guild structure represents a species aggregation scheme. The aggregation scheme used
most commonly is the assembly of species into groups called “trophic species” (Cohen and Briand,
1984). Trophic species group species that are assumed to have the same prey and predators. The
motivation for this grouping is unclear in cases where link data are available at the species level. One
advantage, however, may be to avoid biases introduced by an undersampling of poorly resolved links.
Patterns of connection among trophic species may also illuminate patterns of energy and nutrient flow
among major species ecotypes in the community (Allesina et al., 2005). There is no guarantee, though,
and in fact no expectation for the preservation of network topology in the conversion of species-level
data to a trophic species network. It is always preferable to use species-level data to represent true
community complexity. Furthermore, aggregation into trophic species is an inference the strength of
which cannot be justified for fossil taxa, and the scheme should be avoided in paleo-food webs. Given
that species-level data are rarely available for fossil species, however, and are basically never complete,

aggregation is usually necessary. Dunne et al. (2008) therefore converted species-level data to trophic
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species in their study of the Cambrian food webs. The CEG model, as mentioned, aggregates species
into trophic guilds, groups of species that cannot be distinguished trophically on the basis of available
data. Another example would be “epifaunal, seagrass-dwelling suspension feeding bivalves”. Those
species, in a particular community, potentially share the same predators and prey. Trophic guilds are
similar but not equivalent to trophic species, yet it is clear that if a trophic species is an accurate
representation of the species which it comprises, then the composition of a similar trophic guild will
approach the composition of the trophic species as the species data become more precise. A network of
trophic guilds is termed a metanetwork (Roopnarine, 2006) to distinguish it from a fully detailed food
web, and is an hierarchically higher level representation of a species-level food web network (Fig. 8).
Two trophic guilds linked in a metanetwork contain species that are potentially trophic interactors. A
metanetwork therefore summarizes the most accurate and precise data available for a paleocommunity's
food web.

The contrast between the two aggregation schemes is therefore reducible to one of accuracy and
precision. The trophic species scheme assumes a high level of precision, thereby justifying an
assumption of trophic neutrality among species within the trophic species. This level of precision is
unlikely to be available for fossil taxa, and in any case can never be tested. The metanetwork and
trophic guild scheme assumes that the understanding of a species trophic habit is accurate, even though
its precise interspecific interactions may be unknown or known incompletely. These uncertainties,
stemming from incomplete data and temporal-spatial variance of the data, are addressed in the next
section by exploring the range of species-level food webs implied by the metanetwork.

Species-level networks.--The final step in network construction is the generation of species-level
networks (SLNs). A SLN is considered a single potential pattern of food web interactions in any given

place at an instant of time, and may be constructed in two distinctly different ways. First, using
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empirical observations, one could construct the SLN of a community. This is typically the fashion in
which SLNs are reconstructed for modern communities; workers observe and record the community's
trophic interactions. SLNs of this type are precise and without error, though usually taxonomically
incomplete, and we cannot have similar confidence in their accuracies because of the sources of
uncertainty and variability described above. Capturing their variability requires repeated observations,
which is possible under some circumstances. Such repeated observations are impossible for paleo-food
webs. The best that can be done is to measure spatial or temporal variation in taxonomic composition.
The latter of course could describe variability on only the longest of ecological timescales. Dunne et al.
(2008) compiled SLNs of the two Cambrian food webs derived from the Burgess Shale and Chenjiang
lagerstatten, comprising 142 and 85 taxa respectively. The taxa in both these networks were
subsequently aggregated into trophic species, 48 and 33 respectively, on the basis that species within
the trophic species have identical consumers and resources. As argued above, it is impossible to validate
this claim for fossil taxa. Trophic species-level links were ranked according to uncertainty in these
networks, but there was no explicit attention paid to uncertainty at the level of species within the trophic
species.

The CEG model takes an alternative approach to SLN reconstruction, generating multiple plausible
SLNs from the metanetwork and hypothetical or underlying principles of food web networks as gleaned
from modern food webs. This type of SLN generation requires a trophic in-link distribution for each
guild. Recall that a trophic in-link distribution describes the number of prey per species within a guild.
This number ranges from 1 (a heterotrophic species must prey upon at least 1 other species) up to the
total species-richness of all guilds that are specified as prey of the guild in the metanetwork. SLN-
generation requires initially that species within a guild be treated neutrally, that is, they have no

distinguishing trophic properties. Stochastic draws from specific guild trophic in-link distributions then
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determine the number of prey to be assigned to each species. The prey species themselves are drawn
randomly from the pool of prey guilds of the predatory species. The result is a directed graph or
network in which each species in the community has been assigned prey, and many therefore also have
predators (Fig. 9). SLNs capture the uncertainty associated with the reconstruction of fossil food webs,
and in fact any food web, in a manner in which static or unvarying trophic link determinations cannot.
Repeated stochastic generation of SLNs accounts for the sources of uncertainty discussed earlier,
namely uncertainty of the particular interactions of a species, and the temporal and spatial variability of
a community type. Also, even though any two SLNs derived from any moderately complex
metanetwork are unlikely to share the same exact topology (isomorphic), they are drawn from the same
ensemble, as discussed earlier for Erdos-Renyi random graphs. Whether the argument can then be
extended to claim that they will also have the same behavior on average, as with random graphs, is an
interesting question, because the ensemble is the range of variation possible for a paleocommunity's
food web based on paleontological uncertainty. The remainder of the paper therefore deals with a
description of the ensemble, and the ecological dynamics of the SLNs in an ensemble.

SLN SPACE
I begin the description of the ensemble space by recognizing that it is a probability space of all the
species-level networks possible given a specific metanetwork. We will adopt a set of formal definitions
of the space, namely as a probability space (S, F, P). The set S is the complete sample space of the
metanetwork whose topology is U, F is the set of sets for which real-world SLNs exist (see below) and
P is the probability of an element in F, that is, P(SLN). F is often taken to be the power set of S, or the
set of all sets, but as shown below, many of those sets in S would contain SLNs that cannot exist in the
real world.

Ensemble size.-- The number of SLNs that can be derived from a metanetwork ensemble is finite,
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because there is a finite number of arrangements or graphs of the species. The number or ensemble size
also defines the maximum variation possible for a real community, unless the taxon composition itself
changes. The number of SLNs (the number of elements in S, or the cardinality of S) is designated ISI.
Examine the simple metanetwork in Figure 10. We will designate the metanetwork U, and the number
of guilds as IUl. Guilds 1 and 2 (G1 and G2) comprise species that are preyed upon by species in G4. In
order to construct a SLN, we must specify exactly which species in G1 and G2 are preyed upon by each
species in G4. Let the presence of a metanetwork link be indicated by elements a; of the adjacency
matrix, being one if a link exists, and zero otherwise. Then the maximum number of prey species
(maximum in-degree) available to any species in G4, denoted rp,y 1S

r G4)=a31|G1|+a32|G2|+a33|G3|+6134|G4|=a31|G1|+a32|G2|=5

max(
since as; and ass equal zero. This can be generalized to a metanetwork of any complexity as
U]
rmax(Gi)=Z al/|Gj|
j=1
Since every species in G4 may have an in-degree range of one to 1., and every one of these

possibilities or predatory states could be combined with every other state of the remaining species in

G4, the maximum number of possible networks is simply r 54 Moreover, the in-degree or

number of predatory states of every species in the network may be combined regardless of guild
membership, allowing us to generalize to metanetworks of all sizes and complexity. By this argument,
the number of possible SLNs, ISI, is the product of the number of predatory states of species in every

guild, that is,

Ul U] G|
1SI=T12. (a,lG "
i=1 j=1

This formula overestimates |S| because prey species in a guild are treated neutrally from a consumer's

point of view. Neutral is used here in the sense of ecological neutrality; the species are indistinguishable
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from each other on the basis of trophic properties. In other words, the above calculation of S| does not
specify which prey species are linked to when the predatory states of different predators are combined.
Therefore, many of the combinations counted in the calculation will be isomorphic food webs, and they
would not have unique ecological properties.

In order to resolve this problem, and gain a more accurate measure of IS|, we need to understand the
number of different ways in which a consumer's links can be distributed among it's prey. This is a
classic partitioning problem, where say we wish to determine the number of ways in which n fossils can
be distributed among m museum drawers, with k; fossils in the first drawer, k; in the second, and so on.
The fossils (links) are not distinct, and we do not care specifically to which drawer (prey species and
guild) they are assigned. The trick is to first state the problem as: How many combinations of n fossils
can I get if I have m drawers to select from? Or, how many combinations of r links can I get if there are
g guilds to select from? We recognize that we are in fact permuting n fossils plus m-1 partitions among

the drawers, yielding

n+m—1
m

Therefore in our sample food web (Fig. 10), if a species in G4 has three in-links, then the problem is

3+2-1 4)=4

3

3

The links can be partitioned between guilds G1 and G2 as {3,0}, {2,1}, {1,2} or {0,3}. None of these
are isomorphic topologies.

The calculation of S| can now be refined, where the topologies obtained for a particular in-degree are
combined with those of other species, rather than simply combining the number of in-degrees possible.
We proceed in several steps. First, determine the maximum number of in-links possible for a species in

guild G;. Next, determine the number of in-link topologies possible for each in-degree (1 to ry.), given
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the set of prey guilds,

max

X
lf=z ri+a—1
re=1 a.

1

where #; isthe number of topologies possible for species x;, which is a member of guild G; (x,€G;),

r/ is the in-degree of x;, and a; is the number of guilds upon which G; preys (sum of the G;" row of

the adjacency matrix). Note that this is calculated and summed over all possible in-degree values, one

to I'max. Following from the earlier calculation of ISI, the number of topological combinations among

.. . G
species in G; is tj‘)l | . We therefore re-calculate IS as

U]

=TTl

i=1

G/

This calculation is still an overestimate, however, because the number of links between a consumer
species and any prey guild is unconstrained. It represents all elements in the power set of S. In terms of
the museum fossils analogy, we have assumed that the cabinet drawers are of infinite capacity (sadly, a
curatorial fantasy). A more accurate measure of ISl is possible if we limit drawer capacity to some finite
number of fossils, thereby limiting ourselves to the set F of real possibilities. The food web situation is
more complicated because different prey guilds will most likely have different species-richnesses, and
hence differing capacities for links. The situations would be analogous if drawers in the collection were

of different sizes, indeed a curatorial nightmare! The solution would be to modify the above formula for

t; , using only topologies where the number of links from a prey guild to x; is less than or equal to
the species-richness of the prey guild. That is, the capacity of the prey guild is not exhausted. This
solution, however, requires partitioning ry appropriately among the prey guilds so that this condition is
met. The set of all such partitions that match the constraints of prey guild species-richnesses can be

determined, but the solution is not straightforward and requires application of a partition function and
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partition theory. Both those topics are, unfortunately, beyond the scope of the current paper. Therefore,
the given calculation of ISI remains an overestimate at this point. It is possible, however, to determine
the probability of any particular SLN being found in a metanetwork's ensemble.

SLN probability.--There are elements or SLNs in S that cannot exist because they possess topologies
inconsistent with observed guild species richnesses. We define those SLNs as having probabilities
equal to zero, and are therefore interested in the subsets of F, which are those comprising SLNs of
probability greater than zero. The above arguments on ensemble composition conclude that the
members of F cannot be easily enumerated, but the probability of any specific SLN can be determined

and if exceeding zero, could therefore have been an actual food web of the paleocommunity. Let species

Xi (x€G;) have r{ in-links, or prey, and topology f; . The probability of ¢ , constrained by the

1 1

metanetwork topology and guild species-richnesses, is given by the multinomial probability

r!
plt)=————= ,
agkla,k)l...a;, kg

a,k, @y ki

alkl
P Dy Py

U]

where k, is the number of links from species in guild G, to x;, Z k,=r; ,and p, is the probability
n=1

that a link, drawn randomly between x; and any other species, will connect to a species in G,. Factorial

zero is defined conventionally as equal to one. p, is estimated empirically from the data as

— ain |Gn|
n ||
2. 4;lG|
j=1
The multinomial formula calculates the number of ways in which r links can be arranged among the

guilds with k; assigned to Gy, k, to G,, and so on, and then multiplies this number by the product of the

probabilities, which is equal to the probability of drawing k,links between x; and G,, and k,links

between x; and G,, and so on. In order for p(tf) to be greater than zero, no k, can exceed the number
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of species in G,. The probability of any SLN may now be defined formally as

X
r;!
i a, k, apk, k) .

PP, Pl if0<k, <G, Vn,

oo ‘U‘

p(th)= agkla,ky!...a;, kg

otherwise
0

It now becomes immediately obvious that among SLNs of probability greater than zero, some are of
greater probability than others. Examine the SLNs in Figure 11, arranged in order of descending
probability. p; 1s 0.36, p, is 0.16 and ps is zero. The most probable food web is therefore one where the
predatory species, with two in-links, preys exclusively on species in G,. The third SLN is of probability
zero since the metanetwork (Fig. 10) forbids links between G; and G,4. Most food webs are of course
significantly more complicated than the example used here, but the probability of a SLN is simply the

product of the topological probabilities of all species in the food web given the metanetwork,

Ul |G|

p(SLN)=]T11r()

i=1 n=1

Finally, although the set of possible SLNs cannot be delimited analytically, the preceding formula may
be used as the basis of a likelihood model, facilitating Markov Chain Monte Carlo exploration of
(S,F,P) (see Wang, this volume).

EXTINCTION DYNAMICS
The CEG model asserts that food web structure plays a role in extinction. The intricate patterns of
relationships among species in a community distribute the effects of changes in one species to others in
its community. Therefore, while the ultimate causes of increased extinction in an interval of time may
be abiotic, and might affect only some species directly, the effects could be felt more broadly. Another
way of viewing this is to realize that there is not necessarily a one to one relationship between ultimate

cause and extinction; many species extinctions could be biotically-driven collateral damage. A recent
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claim of this sort is the effects of nannoplankton extinction after the K-T impact (Jiang et al., 2010). The
CEG model, then, hypothesizes about the minimum direct effect of a perturbation required to explain
an observed magnitude of extinction.

The role of food web structure in modern extinctions has been studied extensively, and mostly
theoretically, leading to the concept of secondary extinction. Secondary extinction is often defined as
the extinction of a species when it has lost all its resources. In a food web network, a species therefore
becomes secondarily extinct when it loses all its in-links. Here I will use a broader definition, stating
that a species becomes secondarily extinct when extinction is the result of changes to the demographics
of at least one other species in its community. The various ways in which network structure might drive
secondary extinction is unclear, mostly because of a lack of direct observations (experiments on natural
communities is out of the question!), and the limitations of network models. A useful measure of the
effect, however, is resistance, or the number of species which survive a perturbative event.

Topographic secondary extinction.--The narrow definition of secondary extinction, where a species
becomes extinct because it has lost all its resources, is termed topological secondary extinction
(Roopnarine, 2009). Topological refers to the dependence of extinction solely upon the topology
(pattern) of the network. Note that topological secondary extinction affects the network only in a
bottom-up fashion, that is, in the direction of energy flow from producers to consumers of increasing
trophic level. It is impossible for a species to suffer topological secondary extinction as the result of a
loss of any of its consumers (Allesina and Bodini, 2005; Roopnarine, 2006, 2009; Dunne and Williams,
2009) . The losses of higher trophic level predators can certainly result in local extinctions, for example
the well known keystone predator effect, but resolving those top-down processes requires more
information than is present in network topology alone.

Topological secondary extinction is a direct function of the in-degree of a species, and its relationship
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to the perturbed species. A species is immune to this extinction if its in-degree exceeds the magnitude
of the perturbation, or the magnitude of the perturbation that has percolated to it through the network
(Roopnarine, 2006). In general, higher connectance, which implies on average higher in-degrees or
coordination number, lowers the probability of a topological species extinction because perturbations of
greater magnitude are required.

Measuring or estimating topological secondary extinction in a food web, in response to a particular
perturbation, can be approached in three ways, again depending on whether one assumes accuracy of a
higher-level representation of the food web (e.g. a metanetwork) or precision of a species-level network.
I will first outline a probabilistic approach, using metanetworks, that incorporates network uncertainty.
I will then describe a straightforward method for measurement in precise SLNs, and finally mention an
interesting new approach for estimating the potential for topological secondary extinction in networks.
Probabilistic approach.--Let a perturbation of magnitude w be equal to the number of species removed

randomly from the network. The probability that a species x; will become secondarily extinct is the

probability that all its links are to species that are a subset of the w set. This is determined from a

hypergeometric distribution, where we can first ask: Given an in-degree of r; , what is the

X

probability that n; of them will be lost?

X X -1
plof=| " |51 281
I’li w—n,

l

w

where there are S-1 other species in the network and 0<w<S-1. The probability of x; becoming extinct

X X
occurs when n;=r; ,

Ne 1 [g—1\" S—1-r) 1(S—1—c)!
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The formula can be re-stated interestingly as

o . (perturbation magnitude )!(species richness — trophic breadth )!
p(extlnctlon of species x; ) = — ; ; :
species richness! (perturbation magnitude — trophic breadth)!

where trophic breadth is the number of species consumed by species x;, out of a pool of potential prey
(species richness). For example, in a network of 10 species, 1< r; <9 and 0<w<9, and the

probability of extinction increases as w—S-1, and decreases as r; —S-1 (Fig. 12). Species with more
resources are thus more resistant to topological secondary extinction. This is the same as saying that the
more trophically generalized a species, the greater its resistance to extinction.

This explains in part the suggestion that food webs of greater connectance (C) are more resistant to
topological secondary extinction (Dunne et al., 2002a). Overall food web or network resistance to this
type of extinction has been termed structural robustness (Dunne and Williams, 2009). Food web
connectance does not increase, however, because of uniform increases in the in-degrees of all species in

the network, but increases instead because of the presence of highly linked species. The skewed, long-

tailed in-link distributions discussed earlier indicate the non-uniformity of in-degrees within real food

webs. The above formula for extinction shows that p(e;)<p(e}) for two species x; and y; if r| >

r , thatis, x; is of greater in-degree than y;. This will also be the case if the species on which x; preys

are more resistant to extinction, evenif r; = r] . The presence of generalist consumers therefore

enhances robustness both because of their own greater resistance, and the resistance which they confer
upon their consumers.

Propagation.--Understanding the dual role of in-degree on resistance makes it possible to examine the
structural robustness of an entire metanetwork in response to a specific perturbation. First, the network
is perturbed by the removal (extinction) of several species from one or more guild. If enough species, or

the “right” ones are removed, this could in turn cause topological secondary extinctions of species that
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consume the extinct ones. Whether that actually happens or not depends on the probabilities of
extinction. Therefore, to estimate topological secondary extinction in our network, after perturbing it,
we have to follow the paths of propagation and estimate the levels of resulting secondary extinction
from the probabilities of extinction.

Let guild G; comprises species of different in-degrees, y;, and hence probabilities of secondary
extinction. If x; (X;€G;) is a species that potentially preys upon species in G;, then its probability of
extinction, given a measured level of extinction of y;, denoted (pﬁ , 18

Ml =70
P(efc|tllyf)—wj (|yj| i’,])
A | |,( y_rx)v
y./"w./‘ ij/*

Note that this is a simple re-statement of the earlier formula given for the probability of topological

secondary extinction, with two differences. First, r;‘. is the expected number of x;'s links that come

from y;-type species. It is estimated simply as the proportion of y;-type species out of the total number

of species available as prey to x;:

X |y| X
E(r”)=ai/7’ri

ly;l itself can be estimated from the trophic in-link distribution of guild G; as

f P(r))
r-1

i~

fP(”j)

0

Second, g’ is substituted for w as a generalization. Whereas w referred specifically to the primary

perturbation of the network, (pj refers to any species removal, including secondary extinction in

guild G;j caused by perturbation elsewhere in the network.

The total expected level of secondary extinction of species of in-degree x; can now be estimated by
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applying the above formula to all types of prey species in all guilds with in-links leading to G;.

Ul b,
E(w))=lx|[TI1 p(elw)
Jj=1ri=1
Incorporating the estimates of secondary extinction, ¢ for each class (in-degree) of species in each

guild, we can see how an iterative estimate of secondary extinction can be made for the entire network.

Say that the perturbation was a disruption of primary productivity and that guild G; is a guild of

primary consumers. Then ([J; is an estimate of the level of topological secondary extinction of y;

species. If guild G; is a guild of secondary consumers, carnivores, with species that prey on those in G;,

then we see why topological secondary extinction of species in G, x;, is a function of ijf . The actual

order in which the calculations is made is important, because the perturbation will propagate along
paths in an order defined and constrained by the metanetwork and food web topologies.

The formulas for  p(e/|y}) and E(y;) are significant, because they enable the estimation of the
magnitude of extinction in a paleocommunity in response to the extinction of any single species or
guild.

Exact approach.--Topological secondary extinction can be calculated precisely in response to any
perturbation to the network when species-level food webs (SLNs) are available. The SLNs can be the
result of empirically-based assumptions (e.g. Dunne et al., 2008) or of stochastic draws from CEG-type
metanetworks, uncertainty being kept in mind in both cases. Calculating topological secondary
extinction is simply a matter of removing the targeted node(s) or species, and subsequently following all
paths leading away from the perturbation. The perturbation propagates only in the direction of the links,
those being the direction of prey to predator, and of energy transfer. A species anywhere in the
metanetwork becomes secondarily extinct if all its prey nodes become extinct as a result of either the

initial perturbation or of its propagation. The most comprehensive study to-date based on this approach
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is that of Dunne et. al (2002b), who examined 16 food webs of varying resolutions and extents of
aggregation. The authors concluded that broadly, structural robustness increases with increasing
connectance, regardless of whether the perturbation comprised the most connected nodes (usually
aggregations of species) or were random. An explicit description of the methodology is not given, but
one can presume that any method of manual tracking could be applied directly to small webs, or
translated into a computer program for larger webs.

Roopnarine (2009) presented a simple algorithm that can be applied to the adjacency matrix of any
graph or network. Let AO be the binary asymmetric adjacency matrix of the species-level network. A
row represents a species’ incoming links, that is, the ij™ element, or a; is one if species i consumes
species j, and zero otherwise. The initial perturbation to the network is implemented by replacing all
elements of the i™ row and column with zeros, if the removal of species i constitutes part of the
perturbation. An examination of the matrix will reveal if, as a consequence, the row elements of any
other species now consists entirely of zeros. If this is the case, then that species has become
topologically extinct because it has lost all incoming links or resources. Its own corresponding column
elements are now also replaced with zeros. These steps are iterated until no more changes occur in the
matrix, at which point propagation of the perturbation, and topological extinction, have ceased. A
worked example is given in Roopnarine (2009).

This method was applied to a Late Miocene shallow coastal marine community from the Dominican
Republic (Hertog, 2009). The metanetwork is illustrated in Roopnarine (2009), and only results of the
perturbations are presented here. The paleocommunity has 29 guilds and 139 guild-level links. The
guilds range from phytoplankton to epifaunal benthic carnivores to pelagic carnivorous fish. There are
130 species in the community. One hundred SLNs were drawn stochastically from the metanetwork and

subjected to two types of perturbation. The first perturbation is a progressive bottom-up reduction of
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primary productivity, implemented as a progressive reduction in the size of all four primary production
guilds. Primary production is represented as units of productivity in the SLNs, and not producer species
since none of those have been preserved. The second perturbation is a top-down removal of apex fish
guilds (16 species). Topological extinction caused by the bottom-up perturbation follows an
“exponential-type” of increase (Fig. 13.1). This exponential increase is caused by the rapid extinction of
highly-linked consumer species at increasing levels of perturbation, corresponding to the long-tails of

the underlying in-link distributions. Notice also that the pattern takes a little “hop™ at an approximate

perturbation magnitude w=0.67. The hop is due to the complete extinction, at that point, of two guilds:
epifaunal herbivores, and shallow infaunal herbivores. These two guilds consume the
macroalgae/seagrass guild exclusively.

The top-down perturbation generates noticeably lower levels of secondary extinction (Fig. 13.2).
Secondary extinction increases approximately linearly in simple response to the removal of the high
trophic level consumers. Those species represent 12.3% of the consumer diversity in the community.
Maximum levels of secondary extinction of all the SLNs ranges between 15% and 25%. The additional
species are invertebrate taxa that are dependent on the vertebrate consumers, either as predators or in a
few cases, ectoparasites.

These results highlight a significant limitation of the use of topological secondary extinction to assess
the robustness or resistance of food webs: Secondary extinction results solely from the removal and
cascading loss of links in the network without any regard for the demographic or population dynamics
of species in the community. Topological analyses of network vulnerabilities are minimal estimates of
the severity of link losses when those links have variable interaction strengths, and the nodes cannot be
treated neutrally (species differ in their properties). For example, species could and are likely to alter

interaction strengths to compensate for lost resources. Topological vulnerability analyses may be well
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suited for networks with equivalent links and nodes with static properties, perhaps such as actor
networks and the Internet, but are ill-suited for networks such as ecologic systems where links and
nodes are dynamic. Reductions of primary productivity have been implicated in many intervals of
increased extinction in the fossil record (Vermeij, 1995; Martin, 1996; Allmon, 2001), but it is difficult
to conceive of reductions greater than 80% as being required to explain observed levels of extinction
60-70% if one simply imagines the consequences of perturbations of that scale in a modern ecosystem.
Furthermore, perturbation of top-level consumers are observed in nature to often result in top-down
cascading effects, compatible with notions such as keystone predators. These processes are simply not
captured by the topological approach. Given these limitations, it is therefore unclear whether greater
connectance does indeed promote greater robustness in food webs. That conclusion can only be valid if
greater connectance has no effect on, or dampens the negative effect of the omitted demographic
processes.

Dominators.--Allesina and Bodini (2004) suggested that food web robustness could be summarized by
two metrics, error sensitivity and attack sensitivity. Error sensitivity (ES) measures robustness to
random perturbations as

Z |dom (i)]—1
ES:l;tr

(N=1)
which is the average number of dominators of every species in the network. A species dominates
another if its extinction ensures the topological secondary extinction of the other. Attack sensitivity,
AS, is the maximum level of secondary extinction that can be caused by the perturbation of a single

species,

_[jdom(i)=1]
AS—max[ (N—1) }

On this basis, Allesina et al. (2006) introduced two interesting extension of the topological model. First,
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food web network links were weighted, that is, not all links are equivalent. The authors relied upon
energy flow networks, where link weights are estimates of the energetic, or carbon transfer, dependency
of consumers on their prey species. Second, they identified species that dominate other species
energetically, in that extinction of the dominator ensures extinction of the dominated even in the
absence of topological secondary extinction because of the dominator's significance in maintaining the
energy supply chain of the consumer (dominated species). Such key species in a network are
bottlenecks to energy flow.

Although the dominator model represents an advancement beyond the strict topological model because
links are no longer treated uniformly, it is still limited to understanding perturbations from a bottom-up
perspective only. Nevertheless, it is also important for recognizing that interspecific interactions vary in
strength. Describing demographic interactions in food web networks requires parameterization beyond
network topology and poses significant empirical challenges. A great deal of effort is focused on
understanding the role of interaction strength variance, the distribution of interaction strengths, and
how to measure them in modern food webs (Paine, 1992; Wootton, 1997; McCann et al., 1998; Neutel et
al., 2002; Peacor and Werner, 2004; Navarette and Berlow, 2006; Novak and Wootton, 2008). Again,
opportunities are more limited for paleo-food web analysis. The final section of the paper describes a
modeling approach to these challenges.

Beyond pattern.--Moving beyond considerations of network topology alone is motivated by the
knowledge that many additional parameters are important factors in food web dynamics. For example,
there are both theoretical and empirical reasons to justify the importance of relative population sizes
and interaction or link strengths. Furthermore, there are processes important to the extinction or
survival of species in a community that are not captured by topology, such as top-down effects. A now

standard framework incorporating many of those features are the numerous derivatives of the Lotka-



Nature Precedings : hdl:10101/npre.2010.4433.2 : Posted 20 Jun 2010

Volterra concept of coupled descriptions of species' population dynamics. Obtaining the parameters
required to apply such descriptions to an entire real-world food web is generally not feasible, and
essentially impossible for paleo-food webs. The CEG model addresses this problem, specifically to gain
a more complete understanding of secondary extinction, by modeling the parameters based on network
topology. CEG networks are dynamically weighted, in that links are no longer uniform but instead vary
among species, and weights change in response to the demographic properties of neighboring species
(prey and predators). Those demographic properties, most significantly relative population size, are also
dynamic; an initial perturbation to the network is represented both as the removal of one of more
species, as above, and also by the reduction of their relative population sizes to zero. The weighting of
links and node (species) parameterization allows bi-directional effects and propagation in CEG
networks, meaning that there are both bottom-up and top-down interactions.

The first major postulate of the CEG model is that at any given instant in time, species populations in a
food web network will be in equilibrium between energy gained from the consumption of other species
and energy lost to predation (Roopnarine, 2006). The second major postulate is that species will
compensate for the extinction of a resource species by increasing the strengths of their interactions with

any remaining resources. These postulates are combined into a discrete dynamic equation,

*
i

V) JPVIRES ST
N7 (0) |7=1 k=1

where N;(¢) is the relative (standardized) population size of species x; at step t, sy is the interaction
strength with prey species y;, s is the interaction strength with predator z, and there are  p; predators

of x; (that is, x; is of out-degree  p; ). Analysis proceeds by constructing a metanetwork of the target

community, including parameterization of guild trophic in-link distributions, construction of one or

more SLNs from the metanetwork, and then perturbation of the SLN. The model is implemented
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numerically with the dynamic equations of all species being updated iteratively after a perturbation
until all species have attained steady states of either survival or extinction.

We have no precise knowledge of the guild or network parameters for paleo-food webs, and insufficient
knowledge for most modern food webs. Uniform parameterization of multiple community networks,
however, allows us to compare dynamics across multiple communities, and this is illuminating when
examining communities throughout an interval of time, or distributed in space, both instances in which
community and population compositions are expected to vary. The utility of this approach is
demonstrated with an analysis of three stratigraphically successive paleocommunities from the late
Permian through Early Triassic of the Karoo Basin of South Africa, representing the late Permian
Dicynodon Assemblage Zone (DAZ), early Early Triassic Lystrosaurus Assemblage Zone (CAZ) and
the late Early Triassic Cynognathus Assemblage Zone (CAZ). The DAZ would have been the
community subjected to the end Permian upheaval, and LAZ represents the aftermath and earliest
phases of recovery. Details of how these communities were reconstructed may be found in Angielczyk
et al. (2005) and Roopnarine et al. (2007). One hundred SLNs were generated stochastically from each
of the three metanetworks and subjected to bottom-up perturbations of primary productivity similar to
the topological analysis of the Dominican Republic Miocene community presented earlier (Fig. 14).
The results show clearly that the dynamics of the aftermath community, LAZ, differs substantially from
the pre-extinction DAZ and the perhaps more fully recovered CAZ (Fig. 14). The dynamics also differ
significantly from the expectations of topological secondary extinction only (see also Roopnarine,
2009) in that secondary extinction is no longer a linearly smooth response to perturbation. Secondary
extinction now includes both topological secondary extinction, and extinction driven by further
demographic interactions (including top-down processes) among species. Both DAZ and CAZ exhibit

uniform responses over a broad range of perturbation magnitudes up to a critical point where the level
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of secondary extinction increases rapidly in response to increasing perturbation. Beyond that, secondary
extinction is catastrophically high. The nonlinearity of the full CEG model is even more extreme in the
LAZ results, where some SLNs “conform” to the results of the other two communities, but others
display extremely high levels of secondary extinction at even low levels of perturbation (Roopnarine et
al., 2007).

The results bear implications for both food web network analysis and the comparative analysis of paleo-
food webs. The implementation of weighted networks and top-down effects generally increases levels of
secondary extinction compared to topological-only models. Moreover, it is no longer clear whether
conclusions derived from the topological models are valid, such as the hypothesis that increasing
connectance increases robustness. The LAZ community is more connected than either DAZ or CAZ
(Roopnarine et al., 2007), and it is entirely possible that greater connectance among or generated by
certain functional groups would in fact decrease resistance or robustness by generating greater feedback
among species and perpetuating perturbation propagation. The greater variance of the LAZ results is
also surprising given the multinomial probability model for SLNs outlined earlier. The non-uniform
(decay) shape of the guild trophic in-link distributions used to model the Karoo communities, mixed
exponential-power law distributions, should dictate a smooth probability space (S,F,P), meaning that
there should be a class of topologically closely related SLNs that are more probable than other SLNs in
the space. Imagine a landscape, where distance is measured discretely by the topological differences
between networks (a simple differencing of adjacency matrices) and topographic height is a measure of
resistance to secondary extinction. The expectation of drawing stochastically from (S,F,P) is that the
SLNs will be of high probability and topologically similar, as dictated by the multinomial distribution.
The CEG results demonstrate that those SLNs also possess similar dynamics, and we therefore depict

the DAZ and CAZ landscapes as having a defined region of high probability SLNs of uniform
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resistance (Fig. 15.1). The LAZ results, on the other hand, comprise SLNs of very different resistances
and clearly hail from a different landscape. Characterizing the landscape remains an outstanding
problem, but could be performed using exploratory MCMC-based methods as suggested earlier. A
conjecture at this point, however, is that the LAZ landscape is in fact rugged, with network resistance
being highly sensitive to minor differences in food web topology (Fig. 15.2).

A comparison of the three communities also suggests that ecologically, the LAZ community was quite
different. The apparent instability of LAZ networks can be interpreted as either real ecological
vulnerability to secondary extinction, or an indication that in order for the LAZ community to have
been as resistant to secondary extinction, it would have to have functioned very differently. Real
vulnerability would have imposed harsh conditions on the long-term ecology of LAZ species and
increased intensities of natural selection. Species would have responded with increased rates of
evolution, possibly manifested as a high rate of species turnover because of either resultant speciation
or extinction. The particular outcome would depend specifically on the biology and the network
position of the species. The vulnerability, on the other hand, could be confined to the CEG model and
the LAZ community was in reality as resistant to secondary extinction as the preceding and successive
communities. The community after all was real enough to actually be preserved and reconstructed from
the fossil record. In that case, the dynamics required for resistance would be quite different from those
envisioned in the CEG model for the other communities, and would perhaps be informative of the

nature of communities and recovery in the aftermath of mass extinctions.

FURTHER READING
Comprehensive but accessible treatments of counting, combinatorics and probability may be found in

Goldberg (1960) and Riordan (1958). The topics of networks, network theory and complex systems are
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currently very popular and there are a large number of popular treatments. Several which I recommend

are Barabasi (2003), Watts (2003) and Mitchell (2009).

SUMMARY

1. Food webs can be represented as mathematical graphs, specifically weighted digraphs and
networks. As such, they are amenable to many of the analytic tools and measures available in
graph and network theory.

2. Paleo-food webs present unique challenges stemming from uncertainty in the data. The
approach advocated here is a probabilistic one, incorporating uncertainty in taxon aggregration
and species-level food webs.

3. Fossil taxa can be aggregated into trophic guilds if knowledge of their trophic habits is accurate.
Guilds are further assembled into higher-level food webs called metanetworks.

4. Species-level food web networks are generated from metanetworks on the basis of current
understanding of the link distributions underlying modern food webs.

5. Secondary extinction, the extinction of species in trophic response to the extinction of other
species, can be explored probabilistically using the metanetwork, or precisely using derived
species-level networks. Those calculations of secondary extinction are limited to bottom-up
perturbations of the networks.

6. A more complete measure of secondary extinction, incorporating top-down and other
demographic processes, requires modeling of demographic parameters in the metanetwork.
Even though such parameters are rarely available for fossil taxa, uniform approaches to
parameterization allow the comparison of different paleocommunities. The CEG model detailed

in this paper is currently the only approach available for such analyses.
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APPENDIX

List of mathematical symbols and notation used in text.
€ - a member of a set, for example, x€G reads as “x is a member or element in the set G”.
IXI - the size or cardinality of a set X, that is, the number of members of X.

x!
yx—y)!

X

- the binomial coefficient, expanded as
Yy

x . . -
a; - aparameter of a species x in guild i.

Y - for all.
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FIGURE 1.--Simple graphs and corresponding adjacency matrices. Links, or edges, between nodes
indicate a relationship between those nodes. Adjacency matrices are node by node matrices. An entry
of one indicates the presence of an edge between the row and column nodes, and zero otherwise.
Hence, the unconnected graph (Fig. 1.1) has all zero entries, while the complete graph (Fig. 1.4) has

entries all equal to one.

FIGURE 2.--Isomorphic graphs. The pairs of graphs in Figures 2.1 and 2.2 are isomorphic, differing
only in the graphic arrangements. The isomorphism is easily recognized in the first pair (Fig. 2.1)
because the nodes are labeled. Simply equating numbered and lettered nodes between the graphs

reveals the isomorphism. The second pair is more challenging.

FIGURE 3.--Simple food web networks. Species are labeled S1, S2 and S3. S1 is autotrophic, while S2

and S3 are consumers.

FIGURE 4.--Guild-level network of a Greater Antillean Caribbean coral reef food web. Circles on the
periphery are guilds and links are trophic interactions. There are a total of 265 guilds and 4,656 links in

the system.

FIGURE 5.--Link density, or numbers of links and nodes in published food webs. Open circles —
modern terrestrial and aquatic food webs, closed circle — modern Greater Antillean coral reef food web,
open triangles — Permo-Triassic terrestrial paleo-food webs from the Karoo Basin, South Africa
(Roopnarine et al., 2007), and open square — Miocene marine paleo-food web from the Dominican

Republic.
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FIGURE 6.--Types of in-link or in-degree distributions underlying various networks and food webs.
Solid line — exponential distribution, broken line — power law distribution, broken-dotted line — mixed
exponential-power law distribution, and solid line with circles — Poisson distribution with a mean of 4.
The inset focuses on the tails of the distributions, showing the more significant densities of the power

law and mixed distributions.

FIGURE 7.--Trophic in-link distributions of the Greater Antillean coral reef species-level network. The
upper plot includes all consumer species (unicellular and multicellular, invertebrate and vertebrate),
while the lower plot includes vertebrate species only. Note that both distributions have distinct peaks

(modes), but are also very right-skewed.

FIGURE 8.--Guild-level food web, or metanetwork, of a Late Miocene shallow coastal marine

community from the Dominican Republic. A detailed description is given in Roopnarine (2009).

FIGURE 9.--A single species-level network (SLN) drawn stochastically from the metanetwork

illustrated in Fig. 7. The lines represent trophic interactions, and points of convergence are species.

FIGURE 10.--Simple three-guild metanetwork. Guilds 1 and 2 (G1 and G2) comprise species that are
potentially preyed upon by species in G4. Circles and rectangles within the guilds represent actual guild

species-richnesses and individual species.

FIGURE 11.--Species-level networks (SLNs) derived from the model metanetwork (Fig. 10). SLN
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probability depends upon the likelihood of links being drawn between guilds, and are dictated by
metanetwork topology and guild richnesses. Probabilities of the SLNs are: 1 —p =0.36, 2 — p =0.16,

and3-p=0.

FIGURE 12.--Probability of extinction as a function of species in-degree (number of in-links) and
magnitude of the perturbation. The relationship between in-degree and the probability of extinction is
nonlinear, with species resistance to extinction increasing rapidly as in-degree increases incrementally.
Also note that this is a stepped surface, because degrees and perturbation magnitudes occur as integer

values only.

FIGURE 13.--Topological secondary extinction in the Dominican Republic metanetwork. Simulations
were carried out on 100 SLNs. The upper figure plots extinction in response to an increasing shutdown
of primary productivity (Perturbation magnitude), while the lower figure plots extinction in response to

the removal of high trophic level fish.

FIGURE 14.--CEG simulations of secondary extinction in three paleocommunities of the Karoo Basin,
South Africa, in stratigraphic order. Lower plot — Food web of the Late Permian Dicynodon
Assemblage Zone, middle — food web of the early Early Triassic Lystrosaurus Assemblage Zone, and
upper — food web of the late Early Triassic Cynognathus Assemblage Zone. Perturbation is a
progressive shutdown of primary productivity in each system. Simulations were performed on 100

SLNs per paleocommunity.

FIGURE 15.--Heuristic landscapes as potential explanations of difference between the Lystrosaurus
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Assemblage Zone and the other Karoo communities. The first figure illustrates a community
represented by high probability SLNs with uniform dynamics, while the landscape on the right suggests
a community with diverse, yet high probability SLNs with contrasting dynamics. The surface of the
landscape is populated by SLN topologies, with a metric defined by topological differences.

Topographic elevation is measured by extinction resistance of corresponding SLNs.
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