1

New Equations for Atomic Mass, Mass per Nucleon and Mass defects of Elements in Terms of Rest Mass Based Neutron Numbers

Raji Heyrovska

Institute of Biophysics, Academy of Sciences of the Czech Republic, 135 Kralovopolska, 612 65 Brno, Czech Republic. Email: rheyrovs@hotmail.com

Abstract

Conventional neutron numbers are based on the approximations that the mass of the electron is zero and that those of the proton and neutron are each equal to unity. It was shown, by using the exact rest masses, that the neutron numbers are actually one or two less than the conventional ones for atomic masses greater than 108. Presented here are new equations for the atomic mass, mass per nucleon and mass defects for the most abundant stable isotope (or the one with the longest half life) of each of the 118 elements of the Periodic Table.

1. Introduction

Atomic masses of nuclides are usually interpreted through the mass defects (MD), $\Delta A_{Z,N}$, or the binding energies (B.E.), ¹⁻³

$$MD = A_{Z,N} - A_r = \Delta A_{Z,N} = B.E./c^2$$
(1a)
$$A_{Z,N} = Zm_H + Nm_n$$
(1b)

where $A_{Z,N}$ is the expected mass sum for a nuclide with atomic number Z and neutron number N (= A – Z), A is the mass number^{4a}, A_r is the actual atomic mass^{4b} relative to that of the carbon 12 isotope of atomic mass 12 u (u = atomic mass unit^{4c}, 1u = 931.494028 MeV), B.E., the binding energy, is the energy equivalent of the mass defect and c is the velocity of electromagnetic radiation. There have been several attempts to explain the exact values of the B.E., see e.g.⁵⁻⁸. However, the equations have so far been semi empirical and no exact solution has been found yet. In this work, rather than mass defects, the atomic masses as such have been interpreted based on the rest masses of the electron, proton and neutron. Simple equations have been presented for the atomic mass, mass per nucleon and mass defects, and the article has been divided into suitable sections.

2. The conventional neutron numbers

The mass number, A, of an isotope of an element is defined^{1-3,4a} as the rounded up whole integer closest to the relative atomic mass, A_r , of the isotope. (The recommended symbols A for mass number^{4a} and A_r for relative atomic mass^{4b} used here replace M and A, respectively, used in the previous work^{9,10} on rest mass based neutron numbers). In Table 1 are presented the values of Z (column 2), A_r (column 3, data from^{11,12}) and the conventional neutron number N (= A –Z, column 4) for the most abundant stable isotope (or the one with the longest half life) of each of the 118 elements of the Periodic Table¹³. Also marked with asterisks in column 1 of Table 1, are the 21 elements which occur 100% in only one stable natural isotopic form. The exact atomic masses for the nine nuclides listed in the last rows of Table 1 are not yet known¹³, but for the whole numbers.

3. The rest mass based neutron numbers

In the absence of the knowledge of the exact masses, the mass (m_e) of the electron was assumed^{1.3} to be zero and those of the proton (m_p) and neutron (m_n) to be 1u, and the mass number, A, was considered to be equal to the nucleon number, Z + N. The conventional neutron numbers (N) are simply taken as the difference, A - Z. Note that this also implies that in equation (1b), $A_{Z,N} = Z + N = A$ and the mass defect and binding energy, $\Delta A_{Z,N} = A - A_r$. It was pointed out in⁹ that, although the exact rest masses of the electron, proton and neutron have become known with high precision^{8,11,12} (m_e = 0.000548580u , m_p = 1.007276467u and m_n = 1.008664916 u), and the original idea that atomic masses of isotopes are whole numbers¹⁴ have long changed in the light of later accurate data^{8,11,12}, the definition of the conventional neutron numbers as N = A - Z has continued to be in use, while the rest mass of the neutron and the conventional neutron number were used in equation (1b) to calculate $A_{Z,N}$, e.g. see¹⁻³.

Therefore, the exact rest mass based neutron numbers, $N_{r.m.}$ (this replaces the symbol N' used before⁹) were calculated in^{9,10} for the then known 105 nuclides, from the atomic masses (A_r) in^{11,12a} as,

$$A_{\rm r} = Zm_{\rm H} + N_{\rm r.m.}m_{\rm n} \tag{2}$$

$$N_{r.m.} = (A_r - Zm_H)/m_n$$
 (3)

where $m_{\rm H} = (m_{\rm e} + m_{\rm p}) = 1.00782505$ u is the mass of an atom of hydrogen isotope (H). Here, the values of $N_{\rm r.m.}$ calculated using the recent atomic mass data^{12b} (see column 3, Table 1) are tabulated in column 5 of Table 1. In⁹ the values of $N_{\rm r.m.}$, were rounded up and denoted by *N* (in italics, to distinguish it from N, the conventional number) such that $N > N_{\rm r.m.} > (N - 1)$, were shown to be 1) N = N, for all nuclides with $A_r < 108$ (for Z < 48, see Table 1), 2) N = N -1 for those with A_r in the range, $108 < A_r > 251$ (for Z = 48 to Z = 98) and 3) N = N - 2 for $A_r > 251$ (for Z = 99 and above). These can be seen by comparing the values of N (column 4) and *N* (column 6) in Table 1. Besides, it was pointed out⁹ that, of the three particles, the electron, proton and neutron, since the last is the least stable (decays with a half life of about 10 mins. in the free state¹⁵), $N_{r.m.} < N$ and that the above equation (2) for the atomic mass gives the highest mass defect per nucleon, in accordance with the criterion for stability².

4. Equation for the atomic mass

This work reports the interesting finding that a graph of A_r versus the nucleon number, $Z + N_{r.m}$ (see column 7, Table 1) for all the present nuclides from Z = 1 to 118, is a straight line with a slope, m*, and a small intercept (see Figure 1). Also plotted in this graph are the coordinates for the nuclides of 21 elements which exist in only one stable isotopic form. The slope of this line is 1.00833917 u. This is close to that for the whole region from Z = 1 to 118, m* = 1.00834045 u. The product $(Z + N_{r.m})m*$ reproduces A_r for all the 118 nuclides with an accuracy of ~ - 0.005 u in the third decimal place (see column 10, Table 1).

On re-writing equation (2) in terms of the nucleon number, $(Z + N_{r.m})$, it follows that the atomic mass, A_r is given (up to the sixth decimal place) by the equations,

$$\mathbf{A}_{\mathbf{r}} = (\mathbf{Z} + \mathbf{N}_{\mathbf{r},\mathbf{m}})\mathbf{m}^* + [\mathbf{N}_{\mathbf{r},\mathbf{m}}\,\delta\mathbf{m}_{\mathbf{n}} - \mathbf{Z}\delta\mathbf{m}_{\mathbf{H}}] \tag{4a}$$

$$= Z (m^* - \delta m_H) + N_{r.m} (m^* + \delta m_n)$$
(4b)

$$= Zm_{\rm H} + N_{\rm r.m.}m_{\rm n} \tag{2}$$

where $m^* = m_H + \delta m_H = m_n - \delta m_n = 1.00834045 \text{ u}$, $\delta m_H + \delta m_n = (m_n - m_H) = 0.00083987 \text{ u}$, $\delta m_n = 0.00032447 \text{ u}$ and $\delta m_H = 0.00051540 \text{ u}$ (< $m_e = 0.00054858 \text{ u}$). The second term in the square brackets, [$N_{r.m} \delta m_n - Z \delta m_H$] = δA_r is negative (see column 11, Table 1) and it accounts for the deviation of A_r from (Z + $N_{r.m}$)m* from the third to the sixth decimal place. Note that the equation (4a) for the atomic mass contains the three constants, m*, δm_H and δm_n .

Equation (4a) may be interpreted to mean that out of the mass, $(Z + N_{r.m})m^*$, the subtracted amount, δA_r is the mass shared by both Z and $N_{r.m}$, where δm_H and δm_n are distributed between H and n as shown by equation (4b) and their sum $\delta m_H + \delta m_n = (m_n - m_H)$. These values are compared with those of the quarks in the section below.

5. Neutrons, protons and quarks

If one considers the mass (m_n) of a neutron as constituted by two down quarks of mass m_{qd} each and one up quark of mass m_{qu} and the mass of a proton (m_p) as made of those of two up quarks and one down quark,¹⁶ then, $(m_n + m_p)/3 = m_{qd} + m_{qu} = 0.671947128$ u = 625.9147369 MeV and $m_n - m_p = m_{qd} - m_{qu} = \delta m_H + \delta m_n + m_e = 0.001388449$ u = 1.2933320 MeV. From these, one gets,

$$m_{ad} = 0.33666779 u (= 313.6040349 MeV)$$
 (6a)

$$m_{qu} = 0.33527934 \text{ u} (= 312.3107025 \text{ MeV})$$
 (6b)

These masses are close to those of constituent quarks¹⁷. The mass of the quark by itself, which is bound to the constituent quark by gluons, is termed the current quark mass, which is around 2.01 MeV (= 0.002158 u) for the up quark and 4.79 MeV (= 0.005142 u) for the down quark^{17d,e}. These are about ten times higher

than $\delta m_n = 0.00032447$ u (= 0.3022419 MeV), $\delta m_H = 0.0005154$ u (= 0.4800920 MeV) and $m_e = 0.00054858$ u (= 0.5109990 MeV).

6. Equation for the mass per nucleon

On dividing equation (4a) by $Z + N_{r.m}$, the atomic mass per nucleon, m_A is obtained as,

$$m_{\rm A} = A_{\rm r}/(Z + N_{\rm r,m}) = m^* - \delta A_{\rm r}/(Z + N_{\rm r,m})$$
(5a)

$$= m_{\rm H} + N_{\rm r.m} (m_{\rm n} - m_{\rm H}) / (Z + N_{\rm r.m})$$
(5b)

Equation (5b) shows the linear increase of m_A from the value $m_A = m_H$ at $N_{r.m} = 0$ as the ratio $N_{r.m.}/(Z + N_{r.m})$ (see column 8, Table 1) increases and reaches $m_A = m_n$ at Z = 0. The values of m_A are given in column 10 of Table 1. Figure 2 shows the linear variation of m_A with $N_{r.m}/(Z + N_{r.m})$ for all the nuclides. The slope of the line = $(m_n - m_H) = 0.00083987u$ and the intercepts, $m_A = m_n$ at $N_{r.m} = 1$ (for the neutron, Z = 0) and $m_A = m_H$ at $N_{r.m} = 0$ (for hydrogen, Z = 1).

7. Variation of the ratio $(A_r - Zm_H)/A_r$ with Z

The ratio, $(A_r - Zm_H)/A_r = N_{r.m.}m_n/A_r$ of the mass of neutrons in the atom to the atomic mass (data in column 8, Table 1) varies with Z as shown in Figure 3. The 21 nuclides which are available 100% in only one natural isotopic form are shown as filled circles. The rare gas nuclides are marked as open squares with the dotted line passing through them. The nuclides (He, C, N, O, Ne, Mg, Si, S and Ca) for which the ratio, $N_{r.m.}m_n/A_r \sim 0.5$ are marked as open squares. Note that of these, C, N, O and S, are the primary atoms in the life giving molecules, like the amino acids and DNA^{18} . It is interesting that for values of Z > 75, the ratio, $N_{r.m.}m_n/A_r$ reaches a limiting value of about 0.61 (which is close to $0.618 = 1/\phi$, where ϕ is the Golden ratio^{19,20}).

8. Equation for the mass defects of nuclides

The equation (1) for the mass defect written with the rest mass based whole neutron number, N, becomes

where $A_{Z,N} = Zm_H + Nm_n$. Figure 4 shows a plot of MD vs Zm_H . It can be seen that there are three regions i) Z=1 to 47, ii) Z=48 to 98 and iii) Z=99 to 118. The points in the first two regions are found to be close to straight lines (with the slopes a ~ 0.02 as given in the Figure 4) which can be represented by,

$$MD = \Delta A_{Z,N} = (N - N_{r.m.})m_n \sim aZm_H - b$$
(7)

9. Summary

In this work, instead of the conventional semi empirical interpretations of the atomic masses through the binding energies, atomic masses as such of the most abundant stable isotopes of all the elements have been represented by the equation (4), in terms of the rest mass based neutron numbers and three constants. Also, the mass per nucleon is expressed as a linear function of the ratio $Z/(Z + N_{r.m})$ or $N_{r.m}/(Z + N_{r.m})$ by the equations (5a, b). For large values of Z, the ratio $(A_r - Zm_H)/A_r$ is found to reach a limiting value of about 0.61, which is close to the reciprocal of the Golden ratio. The mass defects are shown to vary nearly linearly with the atomic number for Z = 1 to 98. All the relevant data are presented in Table 1 and supporting Figures 1 - 4 have been provided.

References

- 1. Pauling L. General Chemistry (Freeman and Co., San Francisco, 1954).
- 2. Gucker, F. T. & Seifert, R. L. Physical Chemistry (The English Universities Press Ltd., London, 1967).
- 3. Housecroft, C. E. & Sharp, A. G. Inorganic Chemistry (Pearson Prentice Hall, N.J., 2008).
- 4. a) http://goldbook.iupac.org/M03726.html Last update: 2009-09-07; (last accessed: 18th May 2010)
- b) http://goldbook.iupac.org/R05258.html, Last update: 2009-09-07; (last accessed: 18th May 2010)
- c) http://physics.nist.gov/cgi-bin/cuu/Value?eqtukg;(last accessed: 18th May 2010)

(6)

5. Samyn, M., Goriely, S., Bender, M., Pearson, J. M. Further explorations of Skyrme-Hartree-Bogoliubov mass formulas. III. Role of particle-number projection. *Phys. Rev.* C **70**, 044309, 2004.

6. Koura, H., Tachibana, T., Uno, M., & Yamada, M., Nuclidic mass formula on a spherical basis with an improved even-odd term. *Progr. Theor. Phys.*, **113**, 305-325, 2005.

7. Cook, N. D. *Models of the Atomic Nucleus: With Interactive Software*. (Springer, Berlin, New York, 2006).

8. Mohr, P. J., Tailor, B. N. & Newell, D. B. CODATA recommended values of the

fundamental physical constants: 2006, Rev. Mod. Phys., 80, 633 -730, 2008; also in J. Phys. Chem. Ref.

Data, 37, 1187-1284, 2008; http://www.nist.gov/physlab/div842/fcdc/upload/chart.pdf

9. Heyrovska, R. On neutron numbers and atomic masses. J. Chem. Educ., 69, 742-743, 1992.

10. Heyrovska, R. 216th National Meeting of the American Chemical Society, Boston, August 1998, a)short abstract nr. 9: Text of the full contribution printed by Desktop Publisher, Arjun Consultancy &Publishing Inc., Wayne NJ (USA), 1998, and b) short abstract nr. 11.

11. a) *Handbook of Chemistry and Physics*, 46th and 67th edns., CRC Press, Florida, 1965- 66 and 1986-87;
b) Commission on Atomic Weights and Isotopic Abundances *Pure and Appl. Chem.*, **58**, 1677-1692, 1986.

12. a) Audi, G. & Wapstra, A. H. Nuclear and hadronic physics, *Nuclear Physics A*, **565**, Issue: 1, 1-65, 66-157, 158-192, 1993.

b) NIST Standard Reference Database 144: <u>http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl</u> (last accessed: 18th May 2010).

13. http://www.webelements.com/ (last accessed: 18th May 2010).

14. http://nobelprize.org/nobel_prizes/chemistry/laureates/1922/aston-lecture.pdf, (see Table on page 16).

15. Christensen, C. J., Nielson, A., Bahnsen, A., Brown, W. K. & Rustad, B. M. Free-neutron beta-decay half-life. *Phys. Rev. D*, **5**, 1628-1640, 1972.

16. M. J. G. Veltman, <u>http://www.youtube.com/watch?v=Xcww72_6gCI&feature=related</u>, June 2006 (last accessed: 21st May 2010).

17. a) http://en.wikipedia.org/wiki/Constituent_quark: Ref. to A. Watson (2004). The Quantum Quark.

Cambridge University Press. pp. 285–286, b) http://en.wikipedia.org/wiki/Quark: Ref. to C. Amsler et al.

http://pdg.lbl.gov/2008/tables/rpp2008-sum-quarks.pdf., d)

http://www.sciencedaily.com/releases/2010/05/100503162349.htm

e) http://news.sciencemag.org/sciencenow/2010/04/mass-of-the-common-quark-finally.html

18. Heyrovska, R. & Narayan, S. Atomic structures of molecules based on additivity of atomic and/or ionic radii: *Nature Precedings*, http://dx.doi.org/10.1038/npre.2009.3292.1, 2009.

19. Livio, M. *The Golden Ratio, the Story of Phi, the World's Most Astonishing Number* (Broadway books, New York, 2003).

20. Heyrovska, R. The Golden ratio in the creations of Nature arises in the architecture of atoms and ions.

Ch. 12 in book: Innovations in Chemical Biology, (Ed.: Sener, B. Springer, 2009).

Acknowledgement: The author thanks the Institute of Biophysics for institutional grant Nos.

AV0Z50040507 and AV0Z50040702 of the Academy of Sciences of the Czech Republic.

[&]quot;Review of Particle Physics: Quarks". Physics Letters B 667 (1): 1–1340, c)

Figure 1: Dependence of relative atomic mass (A_r) on the nucleon number, $Z + N_{r.m.}$ for the most abundant stable isotope of each of the nuclides from Z = 0 to 118.

Figure 2: Linear increase of the mass per nucleon (m_A) with $N_{r.m.}/(Z + N_{r.m.})$ for the most abundant stable isotope of each of the nuclides from Z = 0 to 118.

Figure 3: Dependence of the ratio, $(A_r - Zm_H)/A_r$, of the mass of neutrons to that of atomic mass, on atomic number, Z for the most abundant stable isotope of each of the nuclides from Z = 0 to 118.

Figure 4: Dependence of mass defects, $(N - N_{r.m.})m_n$ on Zm_H for the most abundant stable isotope of each of the nuclides from Z = 0 to 118.

Table 1: Atomic numbers, Z, relative atomic masses, A_r, conventional neutron numbers, N, rest mass based neutron numbers, N_{r.m.}, rounded up values, *N*, of N_{r.m.}, and mass per nucleon, m_A, for the most abundant isotope (or one with longest half life) of each element. The 21 nuclides available in only one natural isotopic form are marked with asterisks (*). $\delta A_r = N_{r.m.} \delta m_n - Z \delta m_H$; A_r, cal = (Z+N_{r.m.})m*+ δA_r and m* = 1.0083392 u

1	2	3	4	5	6	7	8	9	10	11	12
Х	z	A _r (in u)	Ν	N _{r.m.}	Ν	Z+N _{r.m.}	N _{r.m} m _n /A _r	m _A (in u)	(Z+ <i>N_{r.m.}</i>)m*	δA _r	A _r ,calc
n	0	1.008665	1	1.000000	1	1.000000	1.000000	1.0086649	1.008340	0.000324	1.008665
н	1	1.007825	0	0.00000	0	1.000000	0.000000	1.0078250	1.008340	-0.000515	1.007825
Не	2	4.002603	2	1.969884	2	3.969884	0.496415	1.0082418	4.002995	-0.000392	4.002603
Li	3	7.016004	4	3.958231	4	6.958231	0.569060	1.0083028	7.016266	-0.000262	7.016004
Be*	4	9.012182	5	4.938094	5	8.938094	0.552683	1.0082891	9.012641	-0.000459	9.012182
в	5	11.009306	6	5.918894	6	10.918894	0.542285	1.0082803	11.009963	-0.000656	11.009306
С	6	12.000000	6	5.901910	6	11.901910	0.496087	1.0082415	12.001177	-0.001177	12.000000
Ν	7	14.003074	7	6.888609	7	13.888609	0.496198	1.0082416	14.004447	-0.001373	14.003074
0	8	15.994915	8	7.864172	8	15.864172	0.495927	1.0082414	15.996487	-0.001572	15.994915
F*	9	18.998403	10	9.842691	10	18.842691	0.522569	1.0082638	18.999848	-0.001445	18.998403
Ne	10	19.992440	10	9.829022	10	19.829022	0.495897	1.0082414	19.994405	-0.001965	19.992440
Na*	11	22.989770	12	11.801436	12	22.801436	0.517782	1.0082597	22.991610	-0.001840	22.989770
Mg	12	23.985042	12	11.788991	12	23.788991	0.495773	1.0082413	23.987402	-0.002360	23.985042
Al*	13	26.981538	14	13.760578	14	26.760578	0.514419	1.0082569	26.983773	-0.002235	26.981538
Si	14	27.976927	14	13.748249	14	27.748249	0.495672	1.0082412	27.979682	-0.002755	27.976927
P*	15	30.973762	16	15.720172	16	30.720172	0.511930	1.0082548	30.976392	-0.002630	30.973762
S	16	31.972071	16	15.710738	16	31.710738	0.495647	1.0082412	31.975220	-0.003149	31.972071
CI	17	34.968853	18	17.682609	18	34.682609	0.510049	1.0082532	34.971877	-0.003024	34.968853
Ar	18	39.962383	22	21.634075	22	39.634075	0.546052	1.0082835	39.964641	-0.002258	39.962383
к	19	38.963707	20	19.644810	20	38.644810	0.508551	1.0082520	38.967126	-0.003418	38.963707
Ca	20	39.962591	20	19.635946	20	39.635946	0.495616	1.0082411	39.966528	-0.003937	39.962591
Sc*	21	44.955910	24	23.587203	24	44.587203	0.529220	1.0082693	44.959080	-0.003170	44.955910
Ti	22	47.947947	26	25.554369	26	47.554369	0.537579	1.0082764	47.950994	-0.003047	47.947947
v	23	50.943964	28	27.525482	28	50.525482	0.544991	1.0082826	50.946887	-0.002923	50.943964
Cr	24	51.940512	28	27.514302	28	51.514302	0.534317	1.0082736	51.943954	-0.003442	51.940512
Mn*	25	54.938050	30	29.486922	30	54.486922	0.541381	1.0082796	54.941367	-0.003317	54.938050
Fe	26	55.934942	30	29.476083	30	55.476083	0.531537	1.0082713	55.938778	-0.003836	55.934942
Co*	27	58.933200	32	31.449417	32	58.449417	0.538269	1.0082770	58.936912	-0.003711	58.933200
Ni	28	57.935348	30	29.460970	30	57.460970	0.512921	1.0082557	57.940220	-0.004872	57.935348
Cu	29	62.929601	34	33.413152	34	62.413152	0.535562	1.0082747	62.933706	-0.004105	62.929601
Zn	30	63.929147	34	33.404944	34	63.404944	0.527058	1.0082675	63.933770	-0.004623	63.929147
Ga	31	68.925581	38	37.359289	38	68.359289	0.546720	1.0082840	68.929437	-0.003855	68.925581
Ge	32	73.921178	42	41.312804	42	73.312804	0.563719	1.0082983	73.924266	-0.003088	73.921178
As*	33	74.921596	42	41.305461	42	74.305461	0.556093	1.0082919	74.925202	-0.003606	74.921596
Se	34	79.916522	46	45.258311	46	79.258311	0.571227	1.0083046	79.919361	-0.002839	79.916522
Br	35	78.918338	44	43.269534	44	78.269534	0.553033	1.0082894	78.922338	-0.003999	78.918338
Kr	36	83.911507	48	47.220642	48	83.220642	0.567619	1.0083016	83.914740	-0.003233	83.911507
Rb	37	84.911789	48	47.213164	48	84.213164	0.560844	1.0082959	84.915540	-0.003751	84.911789
Sr	38	87.905614	50	49.182103	50	87.182103	0.564336	1.0082988	87.909241	-0.003627	87.905614
Y*	39	88.905848	50	49.174577	50	88.174577	0.557901	1.0082934	88.909993	-0.004145	88.905848
Zr	40	89.904704	50	49.165685	50	89.165685	0.551603	1.0082881	89.909367	-0.004663	89.904704
Nb*	41	92.906376	52	51.142404	52	92.142404	0.555242	1.0082912	92.910913	-0.004537	92.906376
Мо	42	97.905408	56	55.099325	56	97.099325	0.567658	1.0083016	97.909177	-0.003769	97.905408
Тс	43	97.907216	55	54.101950	55	97.101950	0.557372	1.0082930	97.911824	-0.004608	97.907216
Ru	44	101.904350	58	57.065579	58	101.065579	0.564844	1.0082993	101.908512	-0.004162	101.904350
Rh*	45	102.905504	58	57.058966	58	102.058966	0.559284	1.0082946	102.910183	-0.004679	102.905504
Pd	46	105.903483	60	59.032023	60	105.032023	0.562243	1.0082971	105.908038	-0.004554	105.903483

Ag	47	106.905094	60	59.025863	60	106.025863	0.556917	1.0082926	106.910166	-0.005072	106.905094
Cd	48	113.903358	66	64.964841	65	112.964841	0.575293	1.0083080	113.907018	-0.003660	113.903358
In	49	114.903878	66	64.957598	65	113.957598	0.570220	1.0083038	114.908056	-0.004178	114.903878
Sn	50	119.902197	70	68.913812	69	118.913812	0.579730	1.0083118	119.905607	-0.003410	119.902197
Sb	51	120.903818	70	68.907661	69	119.907661	0.574876	1.0083077	120.907745	-0.003927	120.903818
Те	52	129.906223	78	76.833564	77	128.833564	0.596579	1.0083259	129.908094	-0.001871	129.906223
I *	53	126.904468	74	72.858428	73	125.858428	0.579095	1.0083112	126.908144	-0.003676	126.904468
Хе	54	131.904155	78	76.815998	77	130.815998	0.587408	1.0083182	131.907062	-0.002907	131.904155
Cs	55	132.905447	78	76.809521	77	131.809521	0.582934	1.0083145	132.908872	-0.003425	132.905447
Ва	56	137.905241	82	80.767197	81	136.767197	0.590746	1.0083210	137.907897	-0.002656	137.905241
La	57	138.906348	82	80.760537	81	137.760537	0.586441	1.0083174	138.909522	-0.003173	138.906348
Се	58	139.905434	82	80.751873	81	138.751873	0.582190	1.0083138	139.909126	-0.003692	139.905434
Pr*	59	140.907648	82	80.746310	81	139.746310	0.578010	1.0083103	140.911857	-0.004209	140.907648
Nd	60	141.907719	82	80.738623	81	140.738623	0.573882	1.0083069	141.912446	-0.004727	141.907719
Pm	61	144.912744	84	82.718666	83	143.718666	0.575763	1.0083084	144.917344	-0.004600	144.912744
Sm	62	151.919728	90	88.666289	89	150.666289	0.588696	1.0083193	151.922914	-0.003185	151.919728
Eu	63	152.921226	90	88.660016	89	151.660016	0.584799	1.0083160	152.924929	-0.003703	152.921226
Gd	64	157.924101	94	92.620747	93	156.620747	0.591571	1.0083217	157.927034	-0.002933	157.924101
Tb*	65	158.925343	94	92.614220	93	157.614220	0.587803	1.0083186	158.928794	-0.003450	158.925343
Dy	66	163.929171	98	96.575896	97	162.575896	0.594237	1.0083240	163.931852	-0.002680	163.929171
Ho*	67	164.930319	98	96.569276	97	163.569276	0.590589	1.0083209	164.933517	-0.003198	164.930319
Er	68	165.930290	98	96.561489	97	164.561489	0.586983	1.0083179	165.934006	-0.003716	165.930290
Tm*	69	168.934211	100	98.540438	99	167.540438	0.588361	1.0083190	168.937801	-0.003589	168.934211
Yb	70	173.938858	104	102.502925	103	172.502925	0.594411	1.0083241	173.941677	-0.002819	173.938858
Lu	71	174.940768	104	102.497061	103	173.497061	0.590973	1.0083212	174.944105	-0.003336	174.940768
Hf	72	179.946549	108	106.460673	1 07	178.460673	0.596750	1.0083261	179.949115	-0.002566	179.946549
Та	73	180.947996	108	106.454349	107	179.454349	0.593412	1.0083233	180.951079	-0.003083	180.947996
W	74	183.950933	110	108.432322	109	182.432322	0.594571	1.0083242	183.953890	-0.002957	183.950933
Re	75	186.955751	112	110.412160	111	185.412160	0.595696	1.0083252	186.958581	-0.002830	186.955751
Os	76	191.961479	116	114.375719	115	190.375719	0.600989	1.0083296	191.963538	-0.002059	191.961479
lr 👘	77	192.962924	116	114.369394	115	191.369394	0.597837	1.0083270	192.965501	-0.002576	192.962924
Pt	78	194.964774	117	115.354880	116	193.354880	0.596797	1.0083261	194.967546	-0.002772	194.964774
Au*	79	196.966552	118	116.340294	117	195.340294	0.595778	1.0083253	196.969520	-0.002968	196.966552
Hg	80	201.970626	122	120.302213	121	200.302213	0.600803	1.0083295	201.972824	-0.002198	201.970626
ті	81	204.974412	124	122.281028	123	203.281028	0.601736	1.0083303	204.976483	-0.002071	204.974412
Pb	82	207.976636	126	124.258294	125	206.258294	0.602640	1.0083310	207.978581	-0.001945	207.976636
Bi*	83	208.980383	126	124.254251	125	207.254251	0.599726	1.0083286	208.982845	-0.002461	208.980383
Ро	84	208.982416	125	123.257099	124	207.257099	0.594907	1.0083245	208.985717	-0.003300	208.982416
At	85	209.987131	125	123.254016	124	208.254016	0.592046	1.0083221	209.990948	-0.003817	209.987131
Rn	86	220.011384	134	132.192989	133	218.192989	0.606052	1.0083339	220.012816	-0.001432	220.011385
Fr	87	223.019731	136	134.176325	135	221.176325	0.606847	1.0083346	223.021035	-0.001304	223.019732
Ra	88	224.020202	136	134,169034	135	222.169034	0.604104	1.0083322	224.022024	-0.001821	224.020203
Ac	89	227.027747	138	136,151576	137	225.151576	0.604910	1.0083329	227.029441	-0.001693	227.027748
Th*	90	232.038050	142	140 119670	141	230 119670	0 609097	1 0083364	232 038972	-0.000921	232.038051
Pa*	00 Q1	231 035879	140	138 126941	139	220 126941	0.603040	1.0083314	231 037963	-0.002083	231 035880
	02	201.000010	140	144 002416	145	229.120941	0.003040	1.00000014	231.037303	0.002003	231.033000
U Nr	92 02	230.UJU/03	140	144.002410	140	230.002410	0.010004	1.0000070	230.001400 237 040006		230.UJU/84
мр Рн	93 04	231.040101 244 064102	144	142.009240	140	200.009240	0.004000	1.0003327	201.049990	-0.001029	201.040100
Δm	94 95	243.061373	148	146 052461	147	241 052461	0.606094	1 0083301	243 062047	-0.000411	243 061374
Cm	96	247.070347	151	149.027829	150	245.027829	0.608406	1.0083359	247.071471	-0.001123	247.070348
Bk	97	247,070299	150	148.028614	149	245.028614	0.604327	1.0083324	247.072263	-0.001963	247,070300
Cf	98	251.079580	153	151.004286	152	249,004286	0.606631	1.0083344	251,081093	-0.001513	251.079581
Es	99	252.082970	153	150.999889	151	249.999889	0.604199	1.0083323	252.085000	-0.002030	252.082971

Fm	100	257.095100	157	154.969795	155	254.969795	0.607995	1.0083355	257.096358	-0.001257	257.095101
Md	101	258.098425	157	154.965333	155	255.965333	0.605614	1.0083335	258.100199	-0.001774	258.098426
No	102	259.101021	157	154.960149	155	256.960149	0.603251	1.0083315	259.103313	-0.002291	259.101022
Lr	103	260.109693	157	154.960989	155	257.960989	0.600915	1.0083296	260.112500	-0.002806	260.109694
Rf	104	261.108751	157	154.952297	155	258.952297	0.598582	1.0083276	261.112076	-0.003324	261.108752
Db	105	262.114152	157	154.949894	155	259.949894	0.596277	1.0083257	262.117993	-0.003840	262.114153
Sg	106	266.121933	160	157.924079	158	263.924079	0.598570	1.0083276	266.125324	-0.003391	266.121934
Bh	107	264.124733	157	154.944868	155	261.944868	0.591718	1.0083218	264.129606	-0.004873	264.124734
Hs	108	277	169	166.710363	167	274.710363	0.607057	1.0083347	277.001571	-0.001571	277.000001
Mt	109	268.138823	159	156.926141	157	265.926141	0.590313	1.0083207	268.144084	-0.005261	268.138824
Ds	110	281	171	168.677667	169	278.677667	0.605478	1.0083334	281.001964	-0.001963	281.000001
Rg	111	272.153484	161	158.907979	159	269.907979	0.588950	1.0083195	272.159133	-0.005649	272.153485
Cn	112	285	173	170.644970	171	282.644970	0.603942	1.0083321	285.002356	-0.002356	285.000001
Uut	113	284	171	168.654393	169	281.654393	0.598999	1.0083280	284.003518	-0.003517	284.000001
Uuq	114	289	175	172.612273	173	286.612273	0.602450	1.0083309	289.002749	-0.002748	289.000001
UUp	115	288	173	170.621697	171	285.621697	0.597570	1.0083268	288.003910	-0.003909	288.000001
Uuh	116	292	176	173.588167	174	289.588167	0.599631	1.0083285	292.003463	-0.003462	292.000001
Uus	117	294	177	174.571819	175	291.571819	0.598927	1.0083279	294.003659	-0.003658	294.000001
Uuo	118	294	176	173.572652	174	291.572652	0.595499	1.0083250	294.004499	-0.004498	294.000001