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Knowledge-Guided Bayesian Support Vector Machine Methods For High-Knowledge-Guided Bayesian Support Vector Machine Methods For High-
Dimensional Data Dimensional Data 

Abstract Abstract 
Support vector machines (SVM) is a popular classification method for analysis of high dimensional data 
such as genomics data. Recently, new SVM methods have been developed to achieve variable selection 
through either frequentist regularization or Bayesian shrinkage. The Bayesian framework provides a 
probabilistic interpretation for SVM and allows direct uncertainty quantification. In this dissertation, we 
develop four knowledge-guided SVM methods for the analysis of high dimensional data. 

In Chapter 1, I first review the theory of SVM and existing methods for incorporating the prior knowledge, 
represented bby graphs into SVM. Second, I review the terminology on variable selection and limitations 
of the existing methods for SVM variable selection. Last, I introduce some Bayesian variable selection 
techniques as well as Markov chain 

Monte Carlo (MCMC) algorithms . 

In Chapter 2, we develop a new Bayesian SVM method that enables variable selection guided by structural 
information among predictors, e.g, biological pathways among genes. This method uses a spike and slab 
prior for feature selection combined with an Ising prior for incorporating structural information. The 
performance of the proposed method is evaluated in comparison with existing SVM methods in terms of 
prediction and feature selection in extensive simulations. Furthermore, the proposed method is illustrated 
in analysis of genomic data from a cancer study, demonstrating its advantage in generating biologically 
meaningful results and identifying potentially important features. 

The model developed in Chapter 2 might suffer from the issue of phase transition \citep{li2010bayesian} 
when the number of variables becomes extremely large. In Chapter 3, we propose another Bayesian SVM 
method that assigns an adaptive structured shrinkage prior to the coefficients and the graph information 
is incorporated via the hyper-priors imposed on the precision matrix of the log-transformed shrinkage 
parameters. This method is shown to outperform the method in Chapter 2 in both simulations and real 
data analysis.. 

In Chapter 4, to relax the linearity assumption in chapter 2 and 3, we develop a novel knowledge-guided 
Bayesian non-linear SVM. The proposed method uses a diagonal matrix with ones representing feature 
selected and zeros representing feature unselected, and combines with the Ising prior to perform feature 
selection. The performance of our method is evaluated and compared with several penalized linear SVM 
and the standard kernel SVM method in terms of prediction and feature selection in extensive simulation 
settings. Also, analyses of genomic data from a cancer study show that our method yields a more 
accurate prediction model for patient survival and reveals biologically more meaningful results than the 
existing methods. 

In Chapter 5, we extend the work of Chapter 4 and use a joint model to identify the relevant features and 
learn the structural information among them simultaneously. This model does not require that the 
structural information among the predictors is known, which is more powerful when the prior knowledge 
about pathways is limited or inaccurate. We demonstrate that our method outperforms the method 
developed in Chapter 4 when the prior knowledge is partially true or inaccurate in simulations and 
illustrate our proposed model with an application to a gliobastoma data set. 

In Chapter 6, we propose some future works including extending our methods to more general types of 
outcomes such as categorical or continuous variables. 
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ABSTRACT

KNOWLEDGE-GUIDED BAYESIAN SUPPORT VECTOR MACHINE METHODS FOR

HIGH-DIMENSIONAL DATA

Wenli Sun

Qi Long

Support vector machines (SVM) is a popular classification method for analysis of high dimensional

data such as genomics data. Recently, new SVM methods have been developed to achieve variable

selection through either frequentist regularization or Bayesian shrinkage. The Bayesian framework

provides a probabilistic interpretation for SVM and allows direct uncertainty quantification. In this

dissertation, we develop four knowledge-guided SVM methods for the analysis of high dimensional

data.

In Chapter 1, I first review the theory of SVM and existing methods for incorporating the prior knowl-

edge, represented bby graphs into SVM. Second, I review the terminology on variable selection and

limitations of the existing methods for SVM variable selection. Last, I introduce some Bayesian vari-

able selection techniques as well as Markov chain Monte Carlo (MCMC) algorithms .

In Chapter 2, we develop a new Bayesian SVM method that enables variable selection guided by

structural information among predictors, e.g, biological pathways among genes. This method uses

a spike and slab prior for feature selection combined with an Ising prior for incorporating structural

information. The performance of the proposed method is evaluated in comparison with existing

SVM methods in terms of prediction and feature selection in extensive simulations. Furthermore,

the proposed method is illustrated in analysis of genomic data from a cancer study, demonstrat-

ing its advantage in generating biologically meaningful results and identifying potentially important

features.

The model developed in Chapter 2 might suffer from the issue of phase transition (Li and Zhang,

2010) when the number of variables becomes extremely large. In Chapter 3, we propose another

Bayesian SVM method that assigns an adaptive structured shrinkage prior to the coefficients and

the graph information is incorporated via the hyper-priors imposed on the precision matrix of the
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log-transformed shrinkage parameters. This method is shown to outperform the method in Chapter

2 in both simulations and real data analysis..

In Chapter 4, to relax the linearity assumption in chapter 2 and 3, we develop a novel knowledge-

guided Bayesian non-linear SVM. The proposed method uses a diagonal matrix with ones repre-

senting feature selected and zeros representing feature unselected, and combines with the Ising

prior to perform feature selection. The performance of our method is evaluated and compared

with several penalized linear SVM and the standard kernel SVM method in terms of prediction and

feature selection in extensive simulation settings. Also, analyses of genomic data from a cancer

study show that our method yields a more accurate prediction model for patient survival and reveals

biologically more meaningful results than the existing methods.

In Chapter 5, we extend the work of Chapter 4 and use a joint model to identify the relevant features

and learn the structural information among them simultaneously. This model does not require that

the structural information among the predictors is known, which is more powerful when the prior

knowledge about pathways is limited or inaccurate. We demonstrate that our method outperforms

the method developed in Chapter 4 when the prior knowledge is partially true or inaccurate in

simulations and illustrate our proposed model with an application to a gliobastoma data set.

In Chapter 6, we propose some future works including extending our methods to more general

types of outcomes such as categorical or continuous variables.
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CHAPTER 1

INTRODUCTION

1.1. Support Vector Machines (SVMs)

1.1.1. Linear Classification

Support Vector Machine (SVM) originally proposed by Vapnik and Vapnik (1998), is a powerful tool

for classification problems in the machine learning field. It has achieved success in various tasks

such as image classification, pattern recognition and forecasting (Nayak, Naik, and Behera, 2015;

Salcedo-Sanz et al., 2014). The basic idea of SVM for classification is to find a linear hyperplane

that separate two classes of data points with the largest minimal separating distance or margin.

Suppose there are n samples in the training set of data. Let x be the p dimensional predictors, and

y ∈ {−1, 1} be the corresponding classification label. The classical SVM constructs a hyperplane

H0 to separate the two classes by maximizing the margin, which can be represented as:

βTx + b = 0,

such that:

βTx + b ≥ 1 for y = +1,

βTx + b ≤ −1 for y = −1.

Let H1 and H2 be the hyperplanes (Fig. 1.1) separating the classes such that there is no other data

point between them. The goal is to maximize the margin M between the two classes. The objective

function to be maximized is:

max
β,b

M

s.t. yi(βTxi + b) ≥ 1, i = 1, ..., n.

1



Figure 1.1: The figure shows a linear SVM classifier for two linearly separable classes (square and
circles). The solid square and circles represent the support vectors

The margin M is equal to 2
||β|| . The objective function can re-written as:

min
β,b

1

2
||β||2

s.t. yi(βTxi + b) ≥ 1, i = 1, ..., n.

If the two classes are not linearly separable, a slack variable ξ = (ξ1, ..., ξn) (Figure 1.1) can be

introduced to allow some points to be on the wrong side of the hyperplane. Then the modified

objective function is:

min
β,b

1

2
||β||2 + C

n∑
i=1

ξi

s.t. yi(βTxi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, ..., n.

The parameter C can be tuned using the validation set. If ξi is defined as the hinge loss function,

then this optimization problem can be re-expressed as:

min
β,b

1

2
||β||2 + C

n∑
i=1

max(0, 1− yi(βTxi + b)) (1.1)

2



Directly solving this problem is difficult because the constraints are quite complex. The mathe-

matical tool of choice for simplifying this problem is the Lagrangian dual formulation (Bertsekas,

1999):

L(α) =

n∑
i=1

αi −
n∑

i,j=1

yiαiyjαjK(xi, xj) (1.2)

s.t.
∑
i

yiαi = 0, 0 ≤ αi ≤ C, i = 1, ..., n.

where αi are Lagrange multipliers and K(xi, xj) = xixj here represent the case of linear classifi-

cation.

The solution α1, ..., αn is computationally easier. β and the linear discriminant boundary for the

optimal hyperplane is then recovered from α̂:

β̂ =

n∑
i

α̂iyjxi

ˆy(x) =(β̂Tx + b̂) =

n∑
i

αiyjxix + b̂

1.1.2. Non-linear Classification

Non-linear separation can be achieved by mapping the original feature space to some higher-

dimensional feature space where the training set is separable. This is known as the ”kernel trick”

(Cristianini, 2001; Hofmann, Schölkopf, and Smola, 2008), which solves the computational prob-

lem of dealing with many dimensions, even infinite-dimensional spaces. The learning process

using nonlinear SVM consists of two steps: (a) initially, the input vectors are transformed into high-

dimensional feature vectors to be linearly separated; (b) secondly, the SVM learning algorithm is

applied to find the optimum margin hyperplane in the new feature space. This separating hyper-

plane is a linear function in the transformed feature space, but its inverse mapping is a nonlinear

structure in the original input space.

Let Φ : x→ φ(x) denote a nonlinear mapping from the input space to a higher dimensional feature

space. The problem formulation corresponds to the equation 1.2, where K(xi, xj) is called a kernel

function, and K(xi, xj) can be defined as φ(xi)
Tφ(xj). Then the hyperplane that corresponds to

3



the decision boundary in the feature space is defined as β̂Tφ(x) + b = 0 and β̂ =
∑n
i α̂iyjφ(xi).

The kernel function K is sometimes more precisely referred to as Mercer kernels, because they

must satisfy Mercer’s condition (Cristianini, 2001). For any function f with finite norm
∫
g(x)

2
dx <

∞, K must satisfy: ∫
K(u, v)g(u)g(v)dudv ≥ 0

The kernel function K must be continuous, symmetric, and have a positive definite matrix. Such a

K means that there exists a mapping to a reproducing kernel Hilbert space (a Hilbert space is a

vector space closed under inner products) such that the inner product there gives the same value

as the function K. If a kernel does not satisfy Mercer’s condition, then the corresponding quadratic

problem may have no solution. The two commonly used families of kernels are polynomial kernels

and radial basis functions. Polynomial kernels are of the form K(u, v) = (1 +uT v)d, for any positive

integer d. The case of d = 1 is a linear kernel and the case of d = 2 gives a quadratic kernel. The

most common form of radial basis function is a Gaussian distribution, calculated as:

K(u, v) = e−(u−v))2/2σ2

where σ is the length scale parameter, and can be chosen via cross-validation.

1.2. Incorporation of Prior Knowledge in SVM

In real-world applications, some prior knowledge is usually known and should be integrated into the

classification model to improve power in detection. Recently, Lauer and Bloch (2008) provided a

comprehensive review on methods for incorporating prior knowledge in SVM for classification . In

their paper, the prior knowledge is classified into two categories: class-invariance and knowledge on

the data. The class-invariance is the invariance of the class to a transformation of the input pattern.

For instance, if an image is slightly rotated or translated it will represent the same information.

Knowledge on the data refers to unlabeled samples, imbalance of the training set and quality of

the data. Sometimes, poor quality or unbalanced data may mislead the decision of a classifier. To

incorporate prior information, there are three main types of methods: sample methods (Schölkopf,

Burges, and Vapnik, 1996; Wu and Srihari, 2004), kernel methods (Decoste and Schölkopf, 2002;

Wang et al., 2005) and optimization methods (Chapelle and Schölkopf, 2002; Fung, Mangasarian,

4



and Shavlik, 2003; Graepel and Herbrich, 2004). Sample methods refer to incorporating the prior

knowledge either by generating new data or by modifying the way they are taken into account.

Kernel methods refer to incorporating the prior knowledge in the kernel function or creating a new

kernel. Optimization methods refer to incorporating the prior knowledge in the problem formulation

either by adding constraints or by defining a new formulation which includes the prior knowledge.

However, the prior knowledge defined aforementioned is not applicable to some fields. For example,

in genomic studies, genes tend to act in groups through pathways, while a single gene may not have

a strong impact. So accounting for the relationship between genes has the potential to improve the

power in detection of key molecular features and yield biologically meaningful results. Recent work

(Chang, Kundu, and Long, 2018; Pan, Xie, and Shen, 2010; Zhao et al., 2016) demonstrated that

integrating biological knowledge such as gene or metabolic pathways in predictive modeling offers

great promise of improved predictive accuracy. Therefore, a new category of prior knowledge for

SVM is investigated in my dissertation project: biological knowledge represented by graphs. Prior

biological knowledge usually refers to the structural information among predictors which can be

extracted from existing databases (Ashburner et al., 2000; Nishimura, 2001; Ogata et al., 1999).

Alternatively, the Gaussian graphical model can be adopted to estimate the graph structure and

provide a sparse and interpretable representation of the conditional dependencies found in the

data.

1.3. Gaussian Graphical Model

Suppose a graph G = 〈V,E〉 is given where V = {1, . . . , p} represents the set of predictors and the

edge set E ⊂ {(j, k) : j, k ∈ V, j 6= k} represents associations between the predictors. Let G be the

adjacency matrix of G, the predictors X is assumed to follow a Gaussian graphical model (GMM)

with respect to the graph G (Dempster, 1972). In other words, we have x ∼ N (0,Ω−1), where

the precision matrix Ω = (ωjk) is such that ωjk = 0 if and only if gjk = 0 in G. In the Gaussian

graphical model, the graph structure represents conditional dependencies among predictors. The

edge between j and k is present if (and only if) the corresponding two predictors are conditionally

correlated (dependent). In other words, gjk = 0 implies that the predictors j and k are conditionally

independent given all other predictors. Because the graphical model estimation corresponds to

estimation of a sparse version of Ω, regularization methods are a natural approach. Fig. 1.2
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Figure 1.2: The simulated graphs and their corresponding precision matrix Ω and covariance matrix
Σ for different structures. The number highlighted in red represents the important features which
are relevant with the outcomes.

shows two different structures of X with their corresponding adjacency matrix, precision matrix and

covariance matrix.

1.4. Variable Selection in SVM

Variable selection has been widely investigated in model prediction, and it refers to selecting the

best subset of predictors among a large set of variables, to provide good predictions and interpreta-

tions. As shown in equation 1.1, SVM is equivalent to a regularization framework of loss + penalty,

thus, variable selection in SVM, utilizing the prior knowledge of sparsity, can be achieved by impos-

ing appropriate sparsity-inducing penalties. Bradley and Mangasarian (1998), Song et al. (2002),

and Zhu et al. (2004) adapted the LASSO techinique (Tibshirani, 1996) into SVM and studied the

properties of the L1 penalized SVM (L1SVM); however, these L1SVM variable selection methods

do not take advantage of prior knowledge such as structural information among features. Wang,

Zhu, and Zou (2006) proposed a double regularization SVM (DrSVM), which combines the L1 and
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L2 norm to encourage the selection of correlated features. Zou and Yuan (2008) suggested a L∞

penalized SVM when there is prior knowledge about the grouping information of features. Becker

et al. (2011) and Zhang et al. (2005) considered the SVM with a non-convex penalty in the appli-

cation of gene selection (SCADSVM). Despite their success, the SVM variable selection methods

suffer from two drawbacks: 1. The flexibility for incorporation of the prior knowledge into SVM is

limited. For instance, if the network information of the genes is given, it might be difficult to de-

sign the suitable regularization forms for matching the prior information of the correlation between

genes; 2. Most of the existing SVM models are focused on point estimation and they do not allow

for uncertainty in variable selection and prediction.

1.5. Bayesian Variable Selection in SVM

As seen in the previous section, the regularization approaches based on the frequentist framework

have some shortcomings, which naturally lead researchers to explore the Bayesian approach. In

the Bayesian framework, the penalty could be replaced by specifying a prior distribution on the

parameter. Fortunately, it has been shown that SVM can be reformulated into a MAP (Maximum

a Posteriori) estimation in a probabilistic generative model by the technique of data augmentation.

Polson and Scott (2011) re-expressed the original SVM by an exponential transformation and de-

rived the pseudo-likelihood as a location-scale mixture of normals, and then introduced auxiliary

variables to the pseudo-likelihood to allow drawing samples from the augmented posterior. This

work enables Bayesian SVM to provide geometric interpretation, flexible feature modeling, and

predictive uncertainty quantification.

In the Bayesian framework, the spike-and-slab prior for variable selection has been widely used.

Mitchell and Beauchamp (1988) proposed a spike and slab prior model used for the predictors. The

spike component represents the unimportant predictors by placing probability mass at zero, while

the slab component represents important predictors by assuming uniform distributions in a wide

range. Similarly, George and McCulloch (1993) proposed a stochastic variable selection algorithm,

which assumed the predictors to be a mixture of a low and high variance normal prior centered

at zero, with the low variance corresponding to the slab and high variance corresponding to the

spike. The general idea for the spike-and-slab prior is to introduce indicator variables to determine

whether the corresponding predictors will be included in the model. Traditionally, the independent
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and identically distributed (iid) Bernoulli priors are assigned to the indicators, while the iid Bernoulli

prior may not be able to utilize and incorporate the prior structure information among predictors.

In my first project, a Ising prior is proposed, to account for the the pairwise interactions between

predictors.

In summary, the goal of my dissertation research is to develop highly accurate, biologically mean-

ingful prediction Bayesian SVM methods to tackle high dimensional data such as genomics data

with tens of thousands of variables. These Bayesian SVM methods provide a probabilistic inter-

pretation for SVM and allow direct quantification of the uncertainty of prediction and estimation.

In addition, the structural information among the predictors represented by graphs can be easily

incorporated in these models to help understand the underlying biological mechanism and improve

predictive accuracy. A diagram of our model structure is illustrated in Figure 1.3.

Figure 1.3: The main components our model.
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CHAPTER 2

KNOWLEDGE-GUIDED BAYESIAN VARIABLE SELECTION IN SUPPORT VECTOR

MACHINE FOR STRUCTURED HIGH-DIMENSIONAL DATA (KBSVM)

2.1. Introduction

The support vector machine (SVM) (Vapnik and Vapnik, 1998) is a popular classification method in

data mining and machine learning. It has achieved great successes in various data mining tasks

such as image classification, pattern recognition and forecasting (Nayak, Naik, and Behera, 2015;

Salcedo-Sanz et al., 2014). Many SVM approaches with feature selection have been introduced in

the literature, among which the ones that use a specific penalty on the coefficients (normal vector)

are popular. The L1 norm penalized SVM (L1SVM) (Bradley and Mangasarian, 1998; Song et al.,

2002; Zhu et al., 2004) applies the LASSO penalty (Tibshirani, 1996) into SVM. The SVM with

a non-convex penalty (Becker et al., 2011; Zhang et al., 2005) (SCADSVM) adopts the smoothly

clipped absolute deviation penalty (Fan, 2001) to alleviate the bias in estimating nonzero coeffi-

cients. Double regularization SVM (DrSVM) (Wang, Zhu, and Zou, 2006) combines the L1 and L2

norm to encourage the selection of correlated features. L∞ penalized SVM (Zou and Yuan, 2008)

encourages all the features in the same group to be selected simultaneously. These approaches

and their variants have proven their superiority during the past two decades. In this era of big data,

however, where the multi-omics data need to be analyzed beyond the GWAS or genomic studies, it

is imperative that new innovation is required.

In some real world applications, some prior knowledge on data may be available, which can be

integrated into the analysis and improve the power of detecting important signals. For exam-

ple, a comprehensive review (Lauer and Bloch, 2008) summarizes the methods that incorporate

such prior knowledge into SVM, while classifying the prior knowledge into two categories: class-

invariance and knowledge on the data. The class-invariance stands for the invariance of the class

to a transformation of the input pattern, and the knowledge on the data refers to such knowledge

as the information in unlabeled samples, the imbalance of the training set, and the quality of the

data. This article aims to consider the prior biological knowledge that is represented by the pathway

graph information. Enormous genomic studies have revealed that the genes influence phenotypes
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through a complex regulatory network represented by a directed acyclic graph, where each gene

is expressed by a node and the promotion/inhibition relationships between the genes are indicated

by the edges. The network is composed of multiple gene pathways and the knowledge on the path-

way graphs is publicly available (“Pathway Databases”) and still growing. Recent works (Chang,

Kundu, and Long, 2018; Pan, Xie, and Shen, 2010; Stingo et al., 2011; Zhao et al., 2016) have

attempted to incorporate the pathway graph information, motivated from its biological interpretation,

by encouraging group-wise selection of adjacent predictors. They demonstrate that the incorpora-

tion of such prior knowledge offers a great promise toward the improved predictive accuracy and

the increased power of detecting key molecular signatures and acting pathways. In addition, the

resulting prediction models become more interpretable as they help select key biological pathways

and likely lead to idenfication of potential molecular targets for treatments Chuang et al., 2007.

However, only very few works (Zhu, Shen, and Pan, 2009) in the SVM framework can incorporate

the prior knowledge on the correlation structure among features. At the same time, most penaliza-

tion based SVM methods (Becker et al., 2011; Bradley and Mangasarian, 1998; Fan, 2001; Song

et al., 2002; Wang, Zhu, and Zou, 2006; Zhang et al., 2005; Zhu et al., 2004; Zhu, Shen, and

Pan, 2009; Zou and Yuan, 2008) provide point estimates, failing to systematically quantify the un-

certainty of the estimates. Therefore, we propose a knowledge-guided Bayesian SVM (KBSVM),

which is a Bayesian approach capable of incorporating the graphical structure of features. As a

Bayesian method, our approach can provide not only the uncertainty information but also the en-

semble inference, which leads to more accurate and reliable performance in both classification and

feature selection. Some Bayesian approaches (Bhosale and Ade, 2014; Luts and Ormerod, 2014;

Yang, Pan, and Guo, 2017) have been proposed to perform feature selection by introducing shrink-

age priors on the normal vector, but to the best of our knowledge, none of them utilizes the graph

structure among the features. Also, note that the exising frequentist approaches (Wang, Zhu, and

Zou, 2006; Zhu, Shen, and Pan, 2009; Zou and Yuan, 2008) either force the coefficients to have

similar values or apply smoothing between all the member coefficients in a pathway group, which

may cause bias. Unlike those works, our approach uses the pathway graph information, which is

more refined than the pathway membership information, and encourages only the joint selection

among the adjacent features rather than smooths their coefficient estimates. This helps achieve

enhanced performance without the expense of bias.
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In the proposed model, we employ the spike-and-slab prior (George and McCulloch, 1993) for fea-

ture selection. The selection status of each feature is represented by a latent binary variable. The

gaussian prior with small variance (spike) is assigned for the inactive coefficient, and the gaus-

sian prior with large variance (slab) is assigned for the active coefficient. This prior shrinks the

inactive coefficients toward zero and reduces the bias for the active coefficients. In addition to the

spike-and-slab prior, we assign the Ising prior (Ising, 1925) to the latent indicator variables to reflect

the graphical structure of the predictors. This prior encourages any pair of predictors which are

adjacent on the graph to have the same selection status. Note that (Stingo et al., 2011) uses the

Markov random field (MRF) prior for the latent indicator variables, which is similar to the Ising prior.

The difference is that, while the MRF prior only has the selected features encourage the selection

of the adjacent features, the Ising prior also has the unselected features encourage the deselection

of the neignboring features. Therefore, our model prefers both group-wise inclusion and exclusion

of adjacent features, which further improves the prediction performance.

We present the Gibbs sampling algorithm (Gilks, Richardson, and Spiegelhalter, 1996) that per-

forms the Bayesian prediction and feature selection. We employ the the state-of-the-art data aug-

mentation techniques (Polson and Scott, 2011) to make our algorithm efficient and easy to im-

plement. Another contribution to the Bayesian SVM literature is that we propose the corrected

pseudo-likelihood. Having the proper form of likelihood allows other model parameter to have a

better interpretation, which will be elaborated in Section 2.2.1. The performance of the proposed

method is evaluated in comparison with other existing SVM methods in terms of prediction and fea-

ture selection under extensive simulation scenarios. In addition, we illustrate an application of our

method to the analysis of genomic data from a cancer study, further demonstrating its advantage

in identifying important features and yielding biologically meaningful results.

The rest of the article is organized as follows. In Sections 2.2, we describe the proposed models

and the computing algorithms. In Section 2.3, we conduct simulation to evaluate our approach in

comparison with several existing approaches. In Section 2.4, we apply our approach to a TCGA

glioblastoma dataset. We conclude with a brief discussion in Section 2.5.
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2.2. Methods

2.2.1. Likelihood

Suppose there are n samples in the training set of data where yi ∈ {−1, 1} are the binary outcome

variables and xi are the (p + 1) dimensional feature vector including the intercept. The classical

SVM seeks to find a classification function f to separate the two classes by minimizing

Θ(β) = κ

N∑
i=1

max(1− yif(xi), 0) +R(f), (2.1)

where
∑N
i=1 max(1− yif(xi), 0) is the hinge loss function and R is a regularization function con-

trolling the complexity of f . The tuning parameter κ can be seen as part of the regularization

parameters. For the linear classifier f = x′iβ, minimizing the objective function (2.1) is equivalent

to find the mode of the following pseudo-posterior density (Henao, Yuan, and Carin, 2014).

p(β|X,y, κ) ∝ p(β)L(y|X,β, κ)

∝ p(β)

n∏
i=1

κe−2κmax(1−yix′iβ,0).

Note that κe−2κmax(1−yix′iβ,0) is the pseudo-likelihood contribution from the i-th observation (as it

does not sum to a constant) and obviously prefers the coefficients that reduces the hinge loss.

Note that this pseudo-likelihood is not exactly same as the one that has been widely used in the

Bayesian SVM literature. We correct the one used in Henao, Yuan, and Carin (2014) and Polson

and Scott (2011) by multiplying it by κ. This newly proposed pseudo-likelihood gives a plausible

interpretation for the parameter κ; the parameter κ learns the overall (average) scale of the errors.

In fact, the posterior distribution of κ converges to a degenerate distribution concentrated at 0 under

the previous pseudo-likelihood, as the sample size increases. Note also that another important role

of the parameter κ is to allow the normal vector β to explore its parameter space more freely in

MCMC.

We use the Gamma prior for κ ∼ G(aκ, bκ), where aκ and bκ are hyperparameters representing the

shape and the rate parameters of the Gamma distribution, the values of which can be chosen in an

uninformative or data-driven manner.
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2.2.2. Spike-and-Slab and Ising Prior

As aforementioned, we use the spike-and slab prior for β to perform the feature selection. We

introduce the latent binary variables γj indicating the inclusion of the j-th feature into the model,

and assume βj |γj ∝ N(0, v2
j )

p(β|γ) = C

p+1∏
j=1

v
− 1

2
j e

−
β2j
2vj ,

where vj = γjσ
2
1 + (1 − γj)σ2

0 with σ2
0 < σ2

1 and C is the normalizing constant. If γj = 0, then the

prior of βj has the spike variance vj = σ2
0 and βj is shrunk toward 0. If γj = 1, then the prior of βj

has the slab variance vj = σ2
1 and βj is less biased.

Let G = 〈V,E〉 be a pathway graph where V = {1, . . . , p + 1} is the set of genes and E ⊂ {(j, k) :

j, k ∈ V, j 6= k} be the set of edges representing (partial) correlations among the genes. Let G be

the adjacency matrix of G. To incorporate the graph structure between predictors, we use the Ising

prior for γ given as follows.

p(γ) = Cµ,ηe
−µ

∑
j γj+η

∑
j 6=k GjkI(γj=γk), (2.2)

where Cµ,η is the normalizing constant and I(·) is the indicator function. The tuning parameters µ

controls the sparsity of γ and η controls the smoothness of γ over E. Note that (2.2) encourages

γk = 1 if γj = 1 and Gjk = 1 and promotes γk = 0 if γj = 0 and Gjk = 1. Therefore, the group-wise

selection of the j-th and the k-th genes are encouraged if there is an edge between them.

The Ising prior is slightly different from the Markov random field prior proposed in the literature

earlier Li and Zhang, 2010; Stingo et al., 2011

p(γ) = Cµ,ηe
−µ

∑
j γj+η

∑
j 6=k Gjkγjγk , (2.3)

Note that (2.3) only encourages γk = 1 if γj = 1 and Gjk = 1. However, there is little difference

from the computational point of view because I(γj = γk) = 2γjγk − γj − γk + 1.
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2.2.3. Posterior Inference

Let zi = yixi and Z = [z1, . . . , zn]′. To facilitate the Bayesian compututation, we use the variable

augmentation technique; see, for example, Polson and Scott, 2011.

e−2κmax(1−z′iβ,0) =

∫ ∞
0

√
κ√

2πρi
e
−κ(ρi+1−z′iβ)2

2ρi dρi. (2.4)

Note that (2.4) makes the conditional distribution of β become the multivariate Gaussian distribu-

tion, which leads to a straightforward Gibbs sampler.

2.2.4. Gibbs Sampling Algorithm

We sample (κ,ρ) jointly, by first sampling κ with ρ marginalized out and then sampling ρ condition-

ing on κ (and other parameters). The conditional distribution of κ is given by

κ|β, Z ∼ G

(
aκ +

3n

2
, bκ +

n∑
i=1

(ρi + 1− z′iβ)2

2ρi

)
.

The conditional distribution of ρi is given by

ρi|β, zi, κ ∼ GIN (1/2, κ, κ(1− z′iβ)2),

where GIN (p, a, b) stands for the generalized Gaussian distribution. Alternatively, the conditional

distribution of ρ−1
i given (β, zi, κ) is an inverse Gaussian distribution, denoted by IN .

ρ−1
i |β, zi, κ ∼ IN (|1− z′iβ|−1, κ),

where the density function of IN (µ, λ) is given by

f(x;µ, λ) =

√
λ√

2πx3
e
−λ(x−µ)2

2µ2x .

The conditional distribution of γj is given by

p(γj |βj ,γ−j) ∝ v−1/2
j e

−
β2j
2vj
−µγj+η

∑
k GjkI(γj=γk)

,
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where γ−j = (γ1, . . . , γj−1, γj+1, . . . , γp+1).

Finally, let 1 be a vector of 1’s, Dρ = diag(ρ1, . . . , ρn), and Dv = diag(v1, . . . , vp+1). The conditional

distribution of β follows a multivariate Gaussian:

β|Z, κ,ρ ∼ N (µβ ,Σβ),

where µβ = κ(D−1
v + Z ′D−1

ρ Z)−1Z ′D−1
ρ (1 + ρ) and Σβ = (D−1

v + κZ ′D−1
ρ Z)−1.

2.2.5. Markov chain Monte Carlo Sampling Algorithm for KBSVM

The latent variable representation form and the full conditional distributions lead to a computation-

ally efficient Gibbs sampler. In the Gibbs sampling scheme, several steps are included to update

the variable selection indicators γ conditional on the current β and the graph G, to update β and

covariance matrix, and to sample the latent variables κ and ρi. A brief outline of the sampling

scheme is given in the succeeding algorithms.

1 for t = 1 to T do
2 Sample κ ∝ G(aκ, bκ + 2

∑
i max(1− Ziβ, 0)).

3 for i = 1 to n do
4 Sample ρ−1

i ∝ IN (κ|1− Ziβ|−1, κ2)
5 end
6 for j = 1 to p+ 1 do

7 Sample γj from π(γj |βj ,γ−j) ∝ v−1/2
j exp

(
− β2

j

2vj
− µγj + η

∑
kGjkI(γj = γk)

)
8 end
9 Sample β ∝ N ((D−1

v + Z ′D−1
ρ Z)−1Z ′D−1

ρ (J + κρ), (D−1
v + Z ′D−1

ρ Z)−1)

10 end
Algorithm 1: Full Gibbs sampling algorithm for KBSVM

Beginning from an arbitrary set of initial values, the algorithm iterates until representative samples

are obtained from the posterior distribution. Samples from the burn-in period, which are affected by

the initial conditions, are discarded, and the remaining samples are used as the basis for inference.
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2.3. Simulation Studies

2.3.1. Design of Experiment

We use both the linear discrimination analysis (LDA) model and the probit model to generate corre-

lated data to evaluate the performance of our KBSVM method and make comparisons with other ex-

isting methods such as the standard SVM (L2SVM), L1SVM, DrSVM and SCADSVM. We generate

m = 100 datasets, each with a training sample of size n = 200, a validation sample of size n = 200

and an independent test sample of size n = 10000. We specify different combinations of the feature

dimension p and the nonzero feature dimension q for different models. To assess the performance

of the predictive model, we compute the prediction error (PE), prediction sensitivity (PSEN), predic-

tion specificity (PSPEC), Matthews Correlation Coefficients (MCC), feature selection true positive

(FSTP) and feature selection false positive (FSFP) averaged across the m = 100 datasets. The ap-

proach for obtaining PE is described in the following section. PSEN is calculated as the proportion

of positives (yi = 1) that are correctly identified and PSPEC is calculated as the proportion of nega-

tives (yi = −1) that are correctly identified. MCC is defined as TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

,

where TP is the number of true positives, TN is the number of true negatives, FP is the number of

false positives and FN is the number of false negatives. FSTP and FSFP are the average number

of selected relevant and irrelevant features in the training samples.

2.3.2. Parameter Tuning

For each of the existing methods, we use the penalizedSVM R-package Becker et al., 2009 to fit

the model on the training datasets, tune the parameters in the validation datasets and obtain the

results from the testing datasets. σ2
1 is set to 100 to account for large variances for the slab. η is

set to 1 or 0, to account for the prior knowledge used or not. σ2
0 , µ need to be tuned to achieve

the best performance. To tune the parameters σ2
0 and µ, we apply our algorithm on each training

data and draw 1000 samples from the joint posterior distribution of β and γ. Each sample of β

and the corresponding γ values are plugged into the model to make predictions on the validation

sample. If γj = 1, the corresponding βj is selected. If γj = 0, the corresponding βj is set to

zero. Then the prediction can be obtained by ŷ = sign(Xβ), where X is the observation matrix

of the validation sample. PE can be calculated as the number of non-zero elements of (y − ŷ)

divided by the number of observations of the validation sample (n = 200). Then the averaged PE
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across the 1000 posterior samples will be acquired and used for choosing the optimal parameters,

and the corresponding 1000 samples are plugged into the model again to make predictions on the

independent test sample. We repeat this procedure on the m = 100 datasets to obtain the average

PE and the corresponding standard errors.

2.3.3. Simulation I: LDA model in the absence of the graph

The LDA model is used to evaluate the prediction and variable selection performance of our KBSVM

method without incorporating the prior graph information. Let X = (x1,x2, ...,xp), and the same

setting of (ρ = −0.2, p = 400, q = 5) is adapted as in Xiang et al. (“Variable selection for support

vector machines in moderately high dimensions”). The similar results for the existing methods such

as L1SVM, L2SVM and SCADSVM are obtained. Moreover, the cases for ρ = 0 and 0.2 is also

included to investigate different correlation structure of X impact on the performance of our method

and other methods.

Model: P (y = ±1) = 0.5, X|y ∼ N (sign(y)µ,Σ), µ = (0.1, 0.2, 0.3, 0.4, 0.5, 0, ..., 0) and

Σ =




1 ρ

. . .

ρ 1


q×q

0

0 I


p×p

,

where ρ = ±0.2 or 0, q = 5 and p = 400.

Table 2.1 compares different methods for the LDA model with the negative correlation, independent

or positive correlation between genes. The numbers in the parentheses are the corresponding

standard errors over the 50 datasets. It is not surprising to see that the performance deteriorates

when ρ increases from −0.2 to 0.2 for all the methods, because in general, the variance of β is
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proportional to the inverse of the covariance matrix Σ. When ρ = −0.2,

Σ−1 =




1.67 0.83

. . .

0.83 1.67


5×5

0

0 I


400×400

and when ρ = 0.2,

Σ−1 =




1.11 −0.14

. . .

−0.14 1.11


5×5

0

0 I


400×400

.

Therefore, β learned from the training set with positive correlation will have smaller variance and

may not be particularly stable when making predictions for the testing set. When ρ = −0.2, DrSVM

has similar performance as L2SVM and also a very high FSTP because it tends to select more

variables. SCADSM and KBSVM achieve significantly lower PE and greater MCC, which may be

due to the negative correlation structure, while our method KBSVM has the least PE, largest MCC

and highest FSTP. When ρ = 0, genes in X are independent, DrSVM still has the highest FSTP, as

well as the highest FSFP. PE for SCADSVM and KBSVM are close, while KBSVM has significantly

lower FSFP than the other methods. When ρ = 0.2, PE and MCC for L1SVM, SCADSVM and

KBSVM are similar, while L1SVM has the highest FSTP, SCADSVM has the highest FSFP and

KBSVM has the moderate FSTP and the lowest FSFP. In sum, Our KBSVM method outperforms

the presented methods in terms of PE, PSEN, MCC and FSFP. Even without the guidance of prior

knowledge, the performance of our method doesn’t degrade.
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Method PE (%) PSen (%) PSpec(%) MCC (%) FSTP (%) FSFP (%)
p = 400, q = 5, ρ = −0.2

L2SVM 41.73 (0.23) 56.71 (2.62) 59.88 (2.53) 17.79 (0.34) – –
L1SVM 15.63 (0.51) 84.00 (0.81) 84.73 (0.72) 68.92 (1.16) 98.78 (0.72) 5.58 (0.38)
DrSVM 39.24 (0.24) 60.08 (1.32) 61.46 (1.33) 21.88 (0.37) 98.00 (0.83) 61.26 (1.15)
SCADSVM 8.63 (0.45) 90.85 (0.74) 91.89 (0.42) 82.88 (0.85) 98.80 (0.94) 0.14 (0.04)
KBSVM 8.25 (0.32) 91.38 (0.64) 92.11 (0.42) 83.60 (0.74) 99.99 (0.56) 0.09 (0.04)

p = 400, q = 5, ρ = 0
L2SVM 42.56 (0.31) 61.59 (3.09) 53.26 (3.19) 16.37 (0.46) – –
L1SVM 33.73 (0.58) 68.36 (1.25) 32.94 (1.18) 32.94 (1.18) 79.00 (3.05) 20.00 (0.77)
DrSVM 40.78 (0.23) 59.87 (1.93) 58.52 (1.85) 19.06 (0.44) 93.60 (1.44) 70.88 (2.05)
SCADSVM 30.09 (0.50) 70.73 (1.30) 69.07 (1.28) 40.38 (0.99) 51.60 (2.13) 1.92 (0.33)
KBSVM 29.93 (0.50) 71.49 (0.96) 68.55 (1.02) 40.48 (1.00) 49.94 (1.95) 0.41 (0.11)

p = 400, q = 5, ρ = 0.2
L2SVM 44.12 (0.41) 56.64 (4.08) 55.05 (4.09) 13.31 (0.79) – –
L1SVM 36.44 (0.55) 63.25 (1.17) 63.87 (1.29) 27.48 (1.13) 50.21 (2.65) 8.02 (2.53)
DrSVM 42.18 (0.31) 54.49 (2.77) 61.13 (2.49) 16.65 (0.53) 44.80 (2.48) 3.28 (2.30)
SCADSVM 35.58 (0.79) 63.73 (2.01) 65.01 (1.77) 30.15 (1.53) 45.11 (3.50) 10.43 (3.39)
KBSVM 34.98 (0.64) 64.62 (1.15) 65.41 (1.12) 30.27 (1.34) 40.55 (1.67) 1.87 (0.53)

Table 2.1: Simulation results for linear discrimination model for ρ = −0.2, 0, 0.2

2.3.4. Simulation II: Probit model in the presence of the graph

This section is to illustrate how to model the prior structure information and how to incorporate it in

our method.

a. Graph simulation

Note that the true correlation structure of the genes is unknown in practice. As mentioned, we

use the undirected graph G to represent the relationship between genes. In our simulation, we

distinguish the underlying true graph G which is used for generating the data, and the working

graph G∗ which is providing the guidance to KBSVM algorithms.

In our simulation examples, the true graph G is pre-defined. Let X = (x1,x2, ...,xp) ∼ N (0,Ω−1),

where the precision matrix Ω = (ωij) is such that (i, j) /∈ E implies ωij = 0. We then say that X

follows a Gaussian graphical model (GMM) with respect to the graph G. In order to convert the

graph G to the precision matrix Ω, the Gaussian graphical model is adopted and several steps are

performed. First, a matrix is created by assigning uniformly distributed random numbers over an

interval of [−1, 1] to the off diagonal elements corresponding to the edges in the graph G; second,

the absolute value of the lowest eigen-value of the resulting matrix in the first step is obtained
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Figure 2.1: The true graph G and the corresponding adjacency matrix G, precison matrix Ω and
covariance matrix Σ

and added to a small positive number, denoted as |λ| + ∆; third, the elements on the diagonal

of the matrix are reset to |λ| + ∆, and therefore, all the eigenvalues of the resulting matrix are

positive. Then the precision matrix can be obtained through scaling the resulting matrix by making

the diagonal elements equal to 1’s. Correspondingly, the covariance matrix Σ can be obtained by

normalizing the inverse of the precision matrix. An example of the three matrices are illustrated in

Fig. 2.1(b, c, d).

The working graph G∗ represents the prior knowledge we now have to incorporate into our algo-

rithm, thus it could be the true graph G indicating that the truth is known, a partial graph indicating

that the truth is partially known or a noisy graph indicating that the prior knowledge is wrong. To

simulation the partial graph, we adopt the Gaussian graphical model and set a threshold value on

the precision matrix to remove some weak correlations. We first define a threshold value t, then

compare the absolute values of each element of the precision matrix to t: if less than t, the element

is set to zero; if equal or greater than t, the element remains the same value. Then the adjacency

matrix of the partial graph is acquired by setting all the off-diagonal nonzero values of the resulting

matrix to 1’s, indicating the connection between nodes, while setting the diagonal elements to 0’s.

The steps of partial graph generated from the true graph is shown in Fig. 2.2.

To simulate the noisy graph, we can directly work on the lower triangle part of the corresponding

adjacency matrix. First, we create a dimension 0(p+1)×(p+1) matrix, define a maximum number

of connections n and generate a uniformly distributed random integer k over the interval of [0, n].

Second, we count the total number of the elements of the lower triangle part without including the

diagonal elements, denoted as m, then generate m standard uniformly distributed random numbers

and sort them. Third, the first k elements in the ordered m samples are assigned 1’s and the left
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Figure 2.2: The simulation steps of the partial graph G∗.

elements are assigned 0’s. Then we apply some transformations to create a symmetric adjacency

matrix from the lower part.

b) Probit model

The probit model is used to demonstrate the benefits of incorporating prior knowledge into our

KBSVM method. The model can be written as : X ∼ N (0,Σ), Σ = f(G), P (y = 1|X) = Φ(Xβ+β0).

G is the true underlying true structure among predictors. The covariance structure of Σ should

have a similar pattern to G, in other words, a function of G. Φ is the CDF of the standard normal

distribution. β0 is the intercept set to 0.5 and β = (0.8, 0.8, .., 0.8, 0.8, 0, , 0) is the p-dimension

coefficient with the first q non-zero elements.

We specify four settings for our model and compare them to L2SVM, L1SVM, DrSVM and SCADSVM.

The four settings are: no working graph incorporated (η = 0), the working graph G∗ is assigned by

a noisy graph (nG), a partial graph (pG) and the true underlying graph (G). Table 2.2 summarizes

the simulation results for both n > p and n < p cases. Clearly, for all the cases, when the working

graph G∗ is assigned by the true graph G, our model KBSVM performs the best among the other

settings as well as other existing methods. When p = 20 and q = 10, L2SVM gives the largest PE

and the lowest MCC, the prediction performance for L1SVM, DrSVM, SCADSVM, KBSVM (η = 0)

and KBSVM (G∗ = nG) are similar, while L1SVM has a very high FSFP, and tends to select a larger

model. When p = 100 and q = 20, PE for KBSVM(G∗ = G) is significantly decreasing comparing to

the other settings and other existing methods. When η = 0, the performance is the worst, among

the four settings, but still outperforms L2SVM, DrSVM and SCADSVM. We also note that L1SVM

still has the highest FSFP, and DrSVM has the second highest FSFP, which case is a little differ-

ent from the case with p = 20. When p = 500, the prediction errors of L2SVM and DrSVM are
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similar, L1SVM and KBSVM (G∗ = pG) are similar, while L1SVM has the much higher high FSTP

and FSFP. SCADSVM and KBSVM (G∗ = G) achieve the best results in terms of PE. In general,

our method gives the smallest PE, the greatest MCC, a very low FSFP and BS. Even when G∗ is

assigned by nG, the performance of our method doesn’t deteriorate too much.

In addition, we generate a new set of data from the independent correlation structure and thus we

only need specify two settings for our model: η = 0 and G∗ = nG. The results are summarized in

Table 2.3. When p = 20 and 100, KBSVM(η = 0) outperforms the other methods in terms of PE

and MCC. L1SVM, DrSVM, SCADSVM tend to select more variables with a very high FSFP. Both of

two settings for KBSVM give a significantly lower FSFP but keep the relatively high FSTP, showing

the consistent ability of feature selection. When p = 500, L1SVM gives the best performance in

terms of PE, MCC and FSTP, while our model with η = 0 achieves satisfactory performance and

also agrees with the findings in the LDA model.

In this simulation section, we consider two models under two conditions which are absence of

the graph and presence of the graph. We observe that if the graphical network information is

associate with the outcome and we utilize the true network information in the model, our KBSVM

model outperforms other methods in terms of both prediction and selection accuracy. If the prior

graph is not available, the performance doesn’t degrade. Such stability is desirable and the results

demonstrate encouraging gene selection ability and prediction power for our method.

2.4. Data Analysis

In this section, we apply our methods as well as other existing methods to classify a glioblastoma

data set obtained from the Cancer Genome Atlas Network. Glioblastoma is a highly malignant

brain tumor, also related to other cancer. This data set includes survival times (Y) and the gene

expression levels for p = 12, 999 genes (X) and 303 glioblastoma patients. For the purpose of

classification, we define a new indicator variable Z to account for the one year survival outcome by

setting

Z =


1, Y < 365,∆ = 0,

0, Y > 365,

22



Method PE (%) PSen (%) PSpec(%) MCC (%) FSTP (%) FSFP (%)
p = 20, q = 10

L2SVM 14.10 (0.11) 89.97 (0.31) 80.75 (0.47) 71.52 (0.22) – –
L1SVM 11.82 (0.09) 90.09 (00.22) 85.75 (0.30) 76.06 (0.19) 98.05 (0.51) 52.30 (2.51)
DrSVM 11.92 (0.08) 89.69 (0.23) 86.04 (0.26) 75.88 (0.16) 99.80 (0.14) 18.20 (1.33)
SCADSVM 11.84 (0.11) 89.63 (0.21) 86.30 (0.28) 76.04 (0.23) 98.10 (0.42) 28.60 (3.08)
KBSVM, η = 0 11.92 (0.11) 89.83 (0.22) 85.86 (0.30) 75.87 (0.22) 96.23 (0.62) 16.44 (2.22)
KBSVM, G∗ = nG 12.02 (0.11) 89.59 (0.24) 85.94 (0.29) 75.69 (0.22) 97.20 (0.45) 25.93 (2.56)
KBSVM, G∗ = pG 11.59 (0.11) 90.00 (0.20) 86.41 (0.30) 76.56 (0.22) 98.36 (0.48) 12.94 (2.06)
KBSVM, G∗ = G 11.55 (0.11) 90.00 (0.22) 86.48 (0.30) 76.64 (0.21) 98.56 (0.41) 11.00 (1.91)

p = 100, q = 20
L2SVM 20.96(0.11) 83.23 (0.44) 73.87 (0.62) 57.77 (0.27) – –
L1SVM 17.27 (0.19) 84.93 (0.30) 80.03 (0.46) 65.18 (0.39) 90.41 (0.83) 40.57 (1.66)
DrSVM 19.74 (0.15) 83.13 (0.31) 76.73 (0.46) 60.16 (0.30) 84.40 (2.13) 28.43 (2.12)
SCADSVM 18.18 (0.27) 83.89 (0.34) 79.28 (0.51) 63.35 (0.54) 73.65 (1.46) 9.85 (1.63)
KBSVM, η = 0 17.92 (0.29) 83.67 (0.33) 80.13 (0.42) 63.85 (0.58) 78.71 (1.16) 8.10 (0.56)
KBSVM, G∗ = nG 17.29 (0.25) 84.30 (0.30) 80.76 (0.42) 65.15 (0.50) 79.11 (1.12) 9.63 (0.66)
KBSVM, G∗ = pG 15.76 (0.24) 85.67 (0.27) 82.51 (0.42) 68.25 (0.49) 87.83 (0.91) 7.19 (0.46)
KBSVM, G∗ = G 14.40 (0.11) 87.08 (0.27) 83.79 (0.35) 70.97 (0.41) 96.66 (0.55) 6.69 (0.41)

p = 500, q = 20
L2SVM 33.61 (0.29) 75.02 (1.92) 56.96 (2.26) 33.44 (0.45) – –
L1SVM 24.34 (0.46) 79.39 (0.97) 71.07 (0.87) 50.87 (0.91) 67.59 (1.47) 9.65 (0.85)
DrSVM 32.26 (0.24) 75.19 (1.28) 58.57 (1.26) 34.75 (0.47) 31.67 (5.06) 1.56 (0.36)
SCADSVM 24.16 (0.56) 77.48 (0.77) 73.83 (1.02) 51.36 (1.12) 48.00 (2.38) 1.38 (0.12)
KBSVM, η = 0 24.87 (0.54) 76.89 (0.80) 72.97 (1.00) 49.96 (1.08) 45.64 (2.53) 2.06 (0.59)
KBSVM, G∗ = nG 24.67 (0.52) 77.30 (0.66) 72.90 (0.91) 50.28 (1.05) 42.86 (2.04) 1.23 (0.39)
KBSVM, G∗ = pG 24.32 (0.51) 77.72 (0.63) 73.11 (0.81) 50.94 (1.04) 46.60 (2.71) 1.25 (0.22)
KBSVM, G∗ = G 24.11 (0.52) 77.76 (0.53) 73.63 (0.94) 51.56 (1.06) 48.94 (2.50) 1.33 (0.20)

Table 2.2: Comparison of the prediction performance and variable selection when the dimension
of predictions p changes from 20 to 500 among different methods. q is the number of relevant
variables. η = 0 represents the working graph G∗ is not incorporated in our KBSVM model.

Method PE (%) PSen (%) PSpec(%) MCC (%) FSTP (%) FSFP (%)
p = 20, q = 10

L2SVM 16.74 (0.20) 87.76 (0.55) 77.22 (0.86) 65.90(0.39) – –
L1SVM 14.13 (0.13) 88.40 (0.37) 82.45 (0.45) 71.15 (0.25) 100.00 (0.00) 56.98 (3.12)
DrSVM 14.31 (0.12) 88.20 (0.37) 82.33 (0.48) 70.82 (0.25) 100.00 (0.00) 45.80 (3.47)
SCADSVM 13.89 (1.48) 87.95 (0.37) 83.65 (0.42) 71.71 (0.29) 100.00 (0.00) 25.80 (4.51)
KBSVM, η = 0 13.67 (0.12) 88.03 (0.34) 84.03 (0.39) 72.15 (0.24) 99.95 (0.03) 10.48 (2.27)
KBSVM, G∗ = nG 13.90 (0.14) 87.91 (0.34) 83.68 (0.42) 71.69 (0.29) 99.88 (0.08) 15.84 (2.97)

p = 100, q = 20
L2SVM 22.93 (0.19) 83.56 (0.68) 69.08 (0.90) 53.74 (0.37) – –
L1SVM 17.68 (0.25) 85.90 (0.51) 77.90 (0.57) 64.29 (0.51) 99.39 (0.23) 39.69 (2.27)
DrSVM 21.14 (0.21) 82.25 (0.46) 74.68 (0.52) 57.26 (0.43) 99.00 (0.35) 43.38 (2.95)
SCADSVM 19.58 (0.58) 82.66 (0.60) 77.65 (0.87) 60.46 (1.17) 89.50 (1.68) 25.75 (5.08)
KBSVM, η = 0 16.61 (0.39) 85.07 (0.49) 81.32 (0.53) 66.49 (0.78) 94.48 (0.75) 7.93 (1.05)
KBSVM, G∗ = nG 17.11 (0.42) 84.57 (0.53) 80.82 (0.60) 65.50 (0.85) 93.67 (1.18) 9.34 (1.05)

p = 500, q = 20
L2SVM 36.16 (0.27) 81.90 (1.09) 41.55 (1.82) 26.27 (0.53) – –
L1SVM 26.33 (0.68) 78.36 (0.68) 67.86 (0.72) 46.65 (0.99) 88.75 (1.30) 18.49 (0.27)
DrSVM 35.43 (0.17) 74.23 (0.90) 52.67 (1.21) 27.90 (0.35) 43.70 (4.51) 9.10 (0.94)
SCADSVM 27.07 (0.70) 76.64 (0.67) 68.34 (1.19) 45.22 (1.44) 71.90 (1.81) 14.98 (0.38)
KBSVM, η = 0 26.90 (0.61) 76.07 (0.63) 69.43 (0.85) 45.68 (1.27) 64.03 (1.77) 13.33 (0.37)
KBSVM, G∗ = nG 27.95 (0.59) 74.80 (0.66) 68.67 (0.81) 43.55 (1.20) 59.11 (2.16) 12.31 (0.45)

Table 2.3: Comparison of the prediction performance and variable selection when the predictors
are independent.

23



where ∆ represents censoring. Those subjects with Y < 365,∆ = 1 are removed so the total

number of subjects is 286 with P (Z = 1) = 45%, P (Z = 0) = 55%. First, we use the gene-ranking

methods to select important genes. For each gene, the p value is acquired from the logistic regres-

sion and the top 1000 genes corresponding to the smallest 1000 p values are selected. Second, we

obtain the network G for all the 12, 999 genes from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database, use an algorithm to search the connections within the top 1000 genes, and then

map them to the working graph G∗. We specify two settings (η = 0 and 1) for our model to compare

with other methods. The optimal tuning parameters for each methods are chosen by the minimum

20-fold cross-validation error. The average cross-validation error and the number of selected genes

are summarized in Table 2.4.

As can be seen, L1SVM selects most of the 1000 genes and has a similar performance to L2SVM.

DrSVM and SCADSVM give the very close CV errors while DrSVM select fewer number of genes.

Our method KBSVM (η = 1) achieves the lowest CV error and BS and identifies a moderate number

of genes. KBSVM(η = 0) imposes more sparsity on the model and select only 69 genes, yet

provides the satisfactory cross-validation error. In addition, all the genes selected by KBSVM (η =

0) are contained in the set of genes selected by KBSVM (η = 1), which confirms the stability.

We also conduct the pathway enrichment analysis for the selected genes for our method via Topp-

Gene Suite Chen et al., 2009. When η = 0, our method doesn’t encourage the inclusion of the

connected genes, therefore, fewer genes and pathways are detected. However, several important

genes are still selected, such as PICK1, IL22, BHLHE40 and NTN1, which are the members of the

glioma pathways. When η = 1, the pathways detected by our method are highly enriched, such

as protein processing in endoplasmic reticulum (1.16 × 10−6), asparagine N-linked glycosylation

(6.69 × 10−3), ATF6 (ATF6-alpha) activates chaperone genes (7.86 × 10−3), and unfolded protein

response (1.08 × 10−2). The numbers in the parentheses are the Bonferroni-adjusted p values.

These pathways were found to be linked with the cancer cell proliferation and survival Clarke et al.,

2014; Grantham et al., 2017; Hiramatsu, Joseph, and Lin, 2011; Kurtoglu et al., 2007. Moreover,

the most highly enriched diseases are glioblastoma, mammary neoplasms and malignant tumor of

colon. Therefore, the detected pathways and diseases further confirm our method can offer great

promises of improved power in detection of key molecular signatures and provide valuable insights

on biological bases of diseases.
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Table 2.4: Results of the analysis of TCGA data. n = 286, p = 1000.
CV error (%) # selected genes

L2SVM 30.45 1000
L1SVM 29.85 957
DrSVM 27.52 399
SCADSVM 27.31 864
KBSVM, η = 0 28.92 69
KBSVM, η = 1 26.49 821

In sum, for our method KBSVM, when the prior network incorporated, the cross-validation error

is reduced and the related pathways are significantly enriched, yielding biologically meaningful

results. Therefore, we believe that our method KBSVM enjoys the benefits of incorporating prior

knowledge to improve predictive performance.

2.5. Discussions

In this project, we have developed a Knowledge-guided Baysian SVM approach, which allows per-

forming the variable selection and incorporating the prior structural information simultaneously. This

method relies on specifying the structural network in the Ising priors combined with the spike-and-

slab priors. The numerical results confirm the performance of our method in terms of the improved

prediction and variable selection accuracy. However, we expect that the performance will be in-

fluenced by the level of agreement between the prior structural information and actual underlying

predictive structure. There will be significant gains when the working graph is correctly specified,

and a robust performance when the working graph is not incorporated or miss-specified. One

of the limitations of our model is that we use the data augmentation technique and introduce more

hyper-parameters than other methods. In order to achieve better performance, the hyper-parameter

tuning procedure may be computationally expensive, especially in high-dimensional settings.
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CHAPTER 3

GRAPH-GUIDED BAYESIAN SVM WITH ADAPTIVE STRUCTURED SHRINKAGE

PRIOR FOR HIGH-DIMENSIONAL DATA (ASBSVM)

3.1. Introduction

Recently, support vector machines (SVMs) have been widely used in biomedical studies for building

classification models for disease risk, uncovering molecular signatures associated with a disease

and identifying potential therapeutic targets (Guyon et al., 2002; Mukherjee et al., 1999). When the

sample size is large enough compared to the number of features, the classical SVM has demon-

strated its success in serving as a classification tool. The remarkable success of SVM is mainly due

to its excellent adaptability to different data sets with the help of highly plausible geometric interpre-

tation, and the quadratic programming formulation which can be implemented efficiently. However,

one significant limitation of the standard SVM is that its performance deteriorates when the sample

size is small compared to the number of features. In recent genomics studies, for example, gene

expression data often involve tens of thousands of genes and a large portion of data are redundant

and noisy. This poses a great challenge in detecting the important signals which can be associated

with the phenotype.

Recently, several SVM methods have been developed by replacing the penalty functions of the stan-

dard L2SVM to accommodate different purposes. The L1 norm penalized SVM (L1SVM) (Bradley

and Mangasarian, 1998; Song et al., 2002; Zhu et al., 2004), produces sparse models by adopting

the LASSO technique (Tibshirani, 1996) into SVM. However, the L1SVM does not take correlations

among predictors into account. In contrast, double regularization SVM (DrSVM) (Wang, Zhu, and

Zou, 2006), which applies the elastic-net penalty to encourage the selection of grouped features;

the L∞ penalized SVM (Zou and Yuan, 2008) uses a grouped variable selection scheme such

that all features derived from the same factor are include or excluded simultaneously; the smoothly

clipped absolute deviation SVM (SCADSVM) uses a non-convex continuous penalty to select cor-

related features and eliminate biases in estimating nonzero coefficients. Despite their successes,

these methods rely solely on the sparse estimation of coefficients and as a result they are still prone

to fail to detect the important but weak features.
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It is a well known fact that genes lie on a graphical structure and interact with connected genes

in biological processes, and the neighboring genes tend to work jointly to influence biological pro-

cedures. For example, there are certain pathways associated with cancer risk and the expression

levels of the genes in the pathway can be positively/negatively correlated. Most of the individual

genes in the pathway often have weak influence, but their aggregated signal can be stronger and

hence easier to be detected. Such pathway and graphical knowledge on genes or other entities

have been structured and stored in various databases, such as Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Ogata et al., 1999), Gene Ontology (GO)(Ashburner et al., 2000) and BioCarta

(Nishimura, 2001). It has been shown to be highly valuable to incorporate such graphical knowledge

into analysis of gene expression data in relation to disease risk. For example, a network-constrained

penalty was used to encourage smoothness of the connected features with respect to a graph (Li

and Li, 2008); a group penalty was developed the weighted Lγ norm to realize ”grouped” feature

selection (Pan, Xie, and Shen, 2010); a nonconvex penalty proposed was then proposed without

assuming the coefficients for the connected features being similar (Kim, Pan, and Shen, 2013). In

the Bayesian framework, the spike and slab priors combined with the Markov Random Field (MRF)

prior were proposed to encourage the joint selection of features (Li and Zhang, 2010; Stingo and

Vannucci, 2010). Zhou and Zheng (2013) developed a Bayesian random graph-constrained model

to allow uncertainty over the graph.

On the other hand, several Bayesian SVM approaches have been proposed for classification and

feature selection. A comprehensive formulation of SVM in the Bayesian setting is given by Mallick,

Ghosh, and Ghosh (2005). However, they do not make any attempt at variable selection along with

class prediction. Simultaneous gene selection and class prediction in the Bayesian SVM set-up

has been discussed in multi-class cases (Chakraborty, 2009). A Bayesian elastic-net model (Li and

Zhang, 2010) has been formulated as a prior structure similar to the elastic-net for linear regression

problems. A variational inference approach has been proposed in Luts and Ormerod (2014) to

provide faster computation. More recently, a knowledge-guided Bayesian linear SVM which enables

incorporation of the prior network information among predictors has been proposed, known as

KBSVM (Sun et al., 2018), and shown that it outperforms existing SVM methods. However, in

high-dimensional setting, the Markov random field prior or the Ising prior used in KBSVM suffers

the phase transition problem, where adjacent indicator variables are either extremely correlated or

almost uncorrelated, resulting in a very different tuning of the sparsity parameter.

27



In this paper, we propose a Bayesian shrinkage approach analogous to the work of Chang, Kundu,

and Long (2018) in the linear regression framework. The proposed approach assigns Laplace

priors to the regression coefficients and incorporates the underlying graph information via a hyper-

prior for the shrinkage parameters in the Laplace priors. Specifically, the shrinkage parameters are

assigned a log-normal prior specifying the inverse covariance matrix as a graph Laplacian (Chung

and Graham, 1997), which has a zero or positive partial correlation depending on whether the

corresponding edge is absent or present. This enables smoothing of shrinkage parameters for

connected variables in the graph and conditional independence between shrinkage parameters for

disconnected variables. Thus, the resulting approach encourages connected variables to have a

similar degree of shrinkage in the model without forcing their regression coefficients to be similar in

magnitude.

The rest of this article is organized as follows. In Section 2, we describe our model and the MCMC

algorithm for posterior inference and prediction. In Section 3, we evaluate the performance of our

model in comparison with other existing methods in simulations. In Section 4, we apply our method

to a cancer genomics study. In section 5, we summarize our findings and discuss possible future

extensions. All derivations and proofs are provided in the Appendix A.

3.2. Methods

3.2.1. Likelihood

Suppose there are n samples in the training set of data where yi ∈ {−1, 1} are the binary outcome

variables and xi are the (p + 1) dimensional feature vector including the intercept. The classical

SVM seeks to find a classification function f to separate the two classes by minimizing

Θ(β) =

N∑
i=1

max(1− yif(xi), 0) +R(f), (3.1)

where
∑N
i=1 max(1− yif(xi), 0) is the hinge loss function and R is a regularization function con-

trolling the complexity of f . For the linear classifier f = x′iβ, minimizing the objective function (3.1)

is equivalent to find the mode of the following pseudo-posterior density (Henao, Yuan, and Carin,
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2014).

p(β|X,y, κ) ∝ p(β)L(y|X,β, κ) (3.2)

∝ p(β)

n∏
i=1

κe−2κmax(1−yix′iβ,0), (3.3)

∝ p(β)

n∏
i=1

∫ ∞
0

√
κ√

2πρi
e
−κ(ρi+1−yix

′
iβ)2

2ρi dρi, (3.4)

Note that (3.3) obviously prefers the coefficients that reduces the hinge loss, and is called the

pseudo-likelihood as it does not sum to a constant. (3.4) rewrites the likelihood as a location-scale

mixture of normals by introducing a latent variable ρi to facilitate Gibbs sampling.

3.2.2. Priors for the parameters

We assign the following priors for β and the form is taken as

p(β|λ) =
1

2p

p∏
j=1

λje
−λj |βj |. (3.5)

If the shrinkage parameters λj are homogeneous (λj ≡ λ) and fixed, (3.5) boils down to the

Bayesian lasso prior. In our model, λj are heterogeneous and random, so that they are able to

learn the shrinkage level adaptive to the coefficient βj and the graphical structure incorporated.

We use the lognormal prior for the shrinkage parameters λj . That is, we have

log π(α|µ,Ω) = Cν +
1

2
log |Ω| − 1

2ν
(α− µ)′Ω(α− µ), (3.6)

where α = (log λ1, . . . , log λp)
T . Here, µ = µ1 is the sparsity parameter and ν is the coefficient-

adaptivity parameter. Obviously, the larger µ is, the larger λj tend to be. Assume for now that Ω = I.

We can also see that, the larger ν is, the more volatile λj is, which leads to greater sensitivity to the

coefficient βj—hence the name of ν.
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The network information is conveyed through Ω, which takes the following form

Ω =



1 +
∑
j 6=1 ω1j −ω12 · · · −ω1p

−ω21 1 +
∑
j 6=2 ω2j

. . . −ω2p

...
. . . . . .

...

−ωp1 −ωp2 · · · 1 +
∑
j 6=p ωpj


,

and we assign the following prior to ω = {ωjk : j 6= k}

π(ω) ∝ |Ω|−1/2
∏

Gjk=1

ωaω−1
jk exp(−bωωjk)1(ωjk > 0)

∏
Gjk=0

δ0(ωjk), (3.7)

where δ0 is the Dirac delta function concentrated at 0 and 1(·) is the indicator function. Since Ω is

symmetric and diagonally dominant, it is guaranteed to be positive definite. According to (??), we

have ωjk = 0 if Gjk = 0 and ωjk > 0 if Gjk = 1. In other words, the shrinkage parameters λj and

λk have a positive partial correlation if predictors j and k are connected and have a zero partial

correlation otherwise. The magnitudes of the positive partial correlations are automatically learned

from the data through the normal vector coefficients, with a higher partial correlation leading to the

smoothing of corresponding shrinkage parameters.

Our framework has several appealing features. First, a higher positive partial correlation between

two connected predictors results in an increased probability of having both predictors included or

excluded. This is more appealing when both variables are important or unimportant. Second, in the

case where one of the connected predictors is important and the other is not, the method can learn

from the data and impose a weak partial correlation, thereby enabling the corresponding shrinkage

parameters to act in a largely uncorrelated manner. Finally, the selection of unconnected variables

is guided by shrinkage parameters which are partially uncorrelated.

The prior in (3.7) involves a shape parameter aω and the rate parameter bω, which serve the sim-

ilar roles as those of the gamma distribution. Note that they directly regulate the correlations ωjk

between the elements of α. In order for the aforementioned features to work as expected, two con-

ditions must be met. First, the mean of ωjk must be large enough to encourage strong correlation

between shrinkage parameters for connected variables. At the same time, the variance of ωjk must

be large enough so that ωjk can take a small value in case only one of j and k is an informative
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predictor while the other is uninformative. Chang et al. (Chang, Kundu, and Long, 2018) suggests

that 2 ≤ aω ≤ 4 and bω = 1 should work for a broad range of scenarios, although more general

choices are also possible.

3.2.3. Posterior Inference

Note that it is helpful to express the Laplace prior as a location-scale mixture of normals.

e−λj |βj | =

∫ ∞
0

λj√
2πτj

exp

(
−
λ2
jτ

2
j + β2

j

2τj

)
dτj . (3.8)

This faciliate the sampling of βj . The full pesudo-posterior density is given by

p(κ,ρ, τ ,α,ω,β|y,K) ∝
n∏
i=1

√
κ√

2πρi
e
−κ(ρi+1−yix

′
iβ)2

2ρi × κaκ−1e−κbκ

×
p+1∏
j=1

e2αj√
2πτj

exp

(
−
e2αjτ2

j + β2
j

2τj

)

× exp

(
− 1

2ν
(α− µ)′Ω(α− µ)

)
× ωaω−1

jk exp(−bωωjk).

It is not stratightforward to directly sample the model paramters from this complex distribution.

Therefore, we use the Markov chain Monte Carlo sampling procedure. In particular, Metropolis-

Hastings (MH) sampling (Gelfand and Smith, 1990) within Gibbs sampling algorithms (Metropolis

et al., 1953) is used. We list the conditional distributions and illustrate the MH procedures in this

section.

The conditional distribution of κ is given by

κ|β, X,y,ρ ∼ G

(
aκ +

3n

2
, bκ +

n∑
i=1

(ρi + 1− yix′iβ)2

2ρi

)
(3.9)

Note that this sampling step can be replaced by the following, as the augmented variables ρj can

be marginalized.

κ|β, X,y ∼ G

(
aκ + n, bκ + 2

n∑
i=1

max(1− yix′iβ, 0)

)
. (3.10)
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The conditional distribution of ρi is given by

ρi|β,xi, yi, κ ∼ GIN (
1

2
, κ, κ(1− yix′iβ)2). (3.11)

Here, GIN stands for the generalized inverse gaussian distribution. Note that it is equivalent to

sample ρ−1
i from the inverse Gaussian distribution, denoted by IN , as follows.

ρ−1
i |β,xi, yi, κ ∼ IN (|1− yix′iβ|−1, κ). (3.12)

Note that density function of IN (µ, λ) is given by

f(x;µ, λ) =

√
λ√

2πx3
e
−λ(x−µ)2

2µ2x .

Similarly, the conditional distribution of τ−1
j is given by

τ−1
j |βj , λj ∼ IN (λj/|βj |, λ2

j ). (3.13)

The conditional distribution of β follows the multivariate Gaussian distribution.

β|X,y, κ,ρ, τ ∼ N ((D−1
τ + κX ′D−1

ρ X)−1κZ ′1, (D−1
τ + κX ′D−1

ρ X)−1), (3.14)

where Dρ = diag(ρ1, . . . , ρn), Dτ = diag(τ1, . . . , τp+1), 1 is a vector of 1’s, and Z is an n × (p + 1)

matrix with the ith row zi = (1 + ρ−1
i )yixi.

The conditional distribution of ωjk follows the Gamma distribution. If (j, k) ∈ E with j < k, we have

ωjk|α ∼ G(aω, bω +
1

2ν
(αj − αk)2). (3.15)

If (j, k) /∈ E, we have ωjk = 0. For j > k, we have ωjk = ωkj .

Finally, the conditional distribution α is given by

π(α|τ ,ω) ∝ [

p+1∏
j=1

exp

(
2αj −

e2αjτj
2

)
] exp

(
− 1

2ν
(α− µ)′Ω(α− µ)

)
(3.16)
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Since π(α|τ ,ω) has an unknown density form, we resort to the MH algorithm.

We use the Laplace approximation to find a good proposal distribution for α. That is, the proposal

density q(.|α, τ ,ω) is as follows.

q(.|α, τ ,ω) = N (α−H−1
τ ,ω(α)gτ ,ω(α)/c,H−1

τ ,ω(α)/c), (3.17)

where gτ ,ω(α) and Hτ ,ω(α) are the gradient vector and the Hessian matrix of the negative condi-

tional log-density with respect to α.

gτ ,ω(α) = Ωα/ν + δ − (2 + µ/ν)1,

Hτ ,ω(α) = Ω/ν + 2diag(δ),

where δ = (τ1e
2α1 , . . . , τp+1e

2αp+1)T . Here, c controls the acceptrance rate of the MH algorithm. As

c increases, the proposal is more concentrated to the current value of α.

Letαt−1 be the last state ofα, we draw a sampleα∗ from the proposal distribution q(.|αt−1, τ t−1,ωt−1).

The proposal is then accepted with probability

min

(
1,

π(α∗|τ t−1,ωt−1)q(αt−1|α∗, τ t−1,ωt−1)

π(αt−1|τ t−1,ωt−1)q(α∗|αt−1, τ t−1,ωt−1)

)
. (3.18)

Derivations are provided in Appendix. The Markov chain Monte Carlo sampling algorithm is de-

scribed in Algorithm 2

3.3. Simulation Studies

3.3.1. Design of Experiment

In this section, we study the performance of our ASBSVM methods through the simulated probit

model. We simulate the examples for both the graph (G) related covariance structure and inde-

pendent covariance struture for the input features. In each experimental setting, we generate 100

datasets, each with a training sample for fitting, a validation sample for tuning and an independent

test sample for estimating the prediction error (PE), prediction sensitivity (PSEN), prediction speci-

ficity (PSPEC), Matthews Correlation Coefficients (MCC), feature selection true positive (FSTP)
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1 for t = 1 to T − 1 do
2 Sample κ ∼ G

(
aκ + 3n

2 , bκ +
∑n
i=1

(ρi+1−yix′iβ)2

2ρi

)
.

3 for i = 1 to n do
4 Sample ρ−1

i ∼ IN (|1− yixiβ|−1, κ)
5 end
6 Sample β ∼ N ((D−1

τ + κZ ′D−1
ρ Z)−1κZ ′D−1

ρ (J + ρ), (D−1
τ + κZ ′D−1

ρ Z)−1)

7 for j = 1 to p do
8 Sample τ−1

j ∼ IN (eαj/|βj |, e2αj )

9 end
10 for j = 1 to p do
11 for k = j + 1 to p do
12 ωjk ∼ Gjk × G(aω, bω + 1

2ν (αj − αk)2),
13 end
14 end
15 Generate a proposal α∗ ∼ q(.|αt−1).
16 Generate u ∼ U(0, 1).

17 if u < min(1, π(α∗)q(αt−1|α∗)
π(αt−1)q(α∗|αt−1) ) then

18 αt ← α∗;
19 else
20 αt ← αt−1;
21 end
22 end

Algorithm 2: MH algorithm for ASBSVM

and feature selection false positive (FSFP).

The prediction sensitivity is calculated as the proportion of positives (y = 1) that are correctly

identified and the prediction specificity is calculated as the proportion of negatives (y = −1) that

are correctly identified. MCC is defined as TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

, where TP is the

number of true positives, TN is the number of true negatives, FP is the number of false positives

and FN is the number of false negatives.

The sample size for training, validation and testing data is 200, and the feature dimension p is set at

120 and 480, representing both n > p and n < p cases. We also compare our results with L1SVM,

L2SVM, DrSVM, SCADSVM and KBSVM with knowledge guided (G∗ = G, details can be been in

Chapter 2). We summarize the average PE, PSEN, PSPEC, MCC, FSTP and FSFP over the 100

datasets in Table 1.
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3.3.2. Parameter Tuning

For L1SVM, L2SVM, DrSVM and SCADSVM, we use the penalizedSVM R-package (Becker et al.,

2009) to tune the parameters in the validation datasets. For KBSVM, three parameters (µ, η and

σ2
0) need to be tuned. For our method ASBSVM, MCMC samples cannot take exact zeroes under a

Laplace prior. To perform feature selection, we use two strategies, one is to include all the features

(labeled as ’a’ in Table 1), the other one is to treat the cut-off values as tuning parameters (labeled

as ’b’ in Table 1). We set (aω, bω) = (2, 1) for ωjk, which is fairly uninformative. The remaining

parameters µ and ν are chosen by validation method.

3.3.3. A simulation dataset generated from the underlying graph

The probit model is used to demonstrate the benefits of incorporating prior network information

into our ASBSVM method. The general idea is that the covariance structure of the simulated data

has the graph information embedded, which mimics the genetic data with underlying interactions

between genes. If we utilize the known graph to guide our algorithm, we should be able to improve

the prediction performance and identify the relevant features. As mentioned, we use the graph G

to represent the network among predictors. The model can be written as : X ∼ MN(0,Ω−1), Ω =

f(G), P (Y = 1|X) = Φ(Xβ+β0). G is the underlying true structure among predictors. Φ is the CDF

of the standard normal distribution. β0 is the intercept set to 0.5 and β = (0.8, 0.8, .., 0.8, 0.8, 0, , 0)

is the p-dimension coefficient with the first q non-zero elements. The precision matrix Ω = (ωij) is

the inverse of the covariance matrix.

Here we adopt the Gaussian graphical model and allow the precision matrix to represent the con-

nection strength between predictors. Thus, the precision matrix Ω of X should have a similar

pattern to G which is the adjacency matrix of G. Fig. 3.1 shows the procedure of how to generate

the covariance matrix from the graph G. First, we pre-define a undirected acyclic graph G, which

has p = 120 predictors and the first q = 12 are the important features, then we generate the corre-

sponding adjacency matrix G which is a symmetric p× p matrix, with element ”1” representing the

edge between connected predictors and ”0” representing no edges. Note the diagonal elements

of G are 0 because each predictor itself is not connected. Second, we generate the same size

p × p matrix with random numbers over an interval of [−1, 1] for each edge. Third, the smallest

eigen-value of the resulting matrix is calculated. If it is positive, the precision matrix is obstained
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and guaranteed to be positive denite; if negative, some small number is added on the diagonal of

the resulting matrix to make it positive denite. The covariance matrix is acquired by normalizing the

inverse of the precision matrix.

Figure 3.1: The simulated graph G contains 20 sub-networks, with 6 nodes in each sub-network
(a), the corresponding adjacency matrix G (b), precision matrix Ω (c) and covariance matrix Σ (d)

3.3.4. Working graph simulation

Once the simulated data with graph-related covariance structure is acquired, we use the graph to

guide our algorithm to make classification and feature selection. However, the graph might not be

correct in practice. For example, in genetic study, the pathways in the database might be incomplete

or noisy. To mimic these situations, we define the working graph adjacency matrix G∗ under three

conditions: 1. G indicating that the truth is known, 2. a partial graph (pG) indicating that the truth is

partially known or 3. a noisy graph (nG) indicating that the graph is completely random.

The partial graph can be generated by removing some weak signals of the original precision matrix

Ω (Fig. 3.2(b)). If the absolute value of the elements of Ω less than a pre-set value, then they are

set to zero; The resulting matrix Ω∗ is converted to the binary matrix with zeros and ones, and the

diagonal elements are set to zero as shown in 3.2(d).
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Figure 3.2: The procedure of generating partial graph pG.

The noisy graph can be generated by randomly assigning ”1” on the lower triangle part of the

corresponding adjacency matrix and making the upper part the same as the lower part.

3.3.5. Simulation results

In Table 3.1, we present the average prediction error of the competing methods. We report our

ASBSVM results under three different conditions (G∗ = nG, pG,G) by two scenarios (a and b). The

number in parentheses is the standard error. ”–” in the last two column represents no simultaneous

feature selection performed. Ideally, we would like to include only the correct features in a model.

If a model includes too many features then although it would be possible to capture all the true

covariates but too many noise features will reduce the prediction accuracy.

The prediction error as reported in Table 3.1 for both n > p and n < p cases indicate that our

ASBSVM model consistently outperforms other existing methods in terms of the lowest average

prediction error when the working graph is correctly specified (G∗ = G). Moreover, the performance

of our proposed model with the strategy b, which consider the cut off values as tuning parameters

is even better than the strategy a. It is particularly clear that the proposed strategy ASBSVM b of

37



selecting features and fitting them for predicition is highly reliable. The L1SVM, SCADSVM and

KBSVM which do a simultaneous feature selection and classification are also quite effective in both

settings.

When the graph is partially specified or noisy, the performance of our method doesn’t degrade too

much, and still outperforms L2SVM and SCADSVM, demonstrating its robustness to mis-specified

graph information. The robustness comes from the ability to adaptively learn the correlation be-

tween shrinkage parameters. In addition, in the high dimensional setting (p = 480), FSTP for the

existing methods dramatically decrease, particularly for L2SVM and DrSVM. While our proposed

method drops about only 12%, which demonstrates the stability of our method. One of the rea-

sons is that the proposed method learns small values of the partial correlations between pairs of

connected important and unimportant variables resulting in weak smoothing, and imposes stronger

partial correlations for other sets of connected variables, which enable accurate variable selection

and prediction.

In this simulation section, we consider two strategies under three conditions for both low and high

dimensional settings. We observe that if the graphical network information is associate with the

outcome and we incorporate the true network information in the model, our ASBSVM model out-

performs other methods in terms of both prediction and feature selection accuracy. If the prior graph

is mis-specified, the performance doesnt severely deteriorate. Such stability is desirable and the

results demonstrate encouraging gene selection ability and prediction power for our method.

3.4. Data Analysis

Glioblastoma is one of the most common and aggressive form of primary brain cancers in human

adults, and it is also related to other cancer development. In this section, we apply the proposed

methods as well as other existing methods to examine the impact of protein levels on glioblastoma

survival. The data set obtained from the Cancer Genome Atlas Network (Verhaak et al., 2010)

includes survival times (T) and the gene expression levels of p = 12, 999 genes for 303 glioblastoma

subjects. We are interested in making predition on the one year survival status. The survival label
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Method PE (%) PSen (%) PSpec(%) MCC (%) FSTP (%) FSFP (%)
p = 120, q = 12

L2SVM 22.88 (0.16) 80.89 (0.49) 72.84 (0.63) 54.28 (0.32) – –
DrSVM 22.60 (0.18) 80.73 (0.46) 73.61 (0.60) 54.82 (0.35) 79.17 (3.28) 17.57 (3.81)
SCADSVM 19.92 (0.29) 81.52 (0.41) 78.41 (0.49) 60.09 (0.58) 76.83 (1.61) 7.20 (1.64)
L1SVM 18.46 (0.19) 83.36 (0.36) 79.46 (0.41) 63.03 (0.38) 92.42 (1.96) 24.64 (1.38)
KBSVM, G∗ = G 18.41 (0.40) 83.32 (0.44) 80.25 (0.56) 63.71 (0.80) 92.83 (1.59) 28.89 (1.34)
ASBSVMa, G∗ = nG 19.63 (0.24) 79.73 (0.32) 81.02 (0.35) 60.72 (0.49) – –
ASBSVM b, G∗ = nG 19.19 (0.24) 80.00 (0.29) 81.69 (0.35) 61.65 (0.48) 90.67 (1.14) 24.28 (2.64)
ASBSVMa, G∗ = pG 19.10 (0.19) 80.18 (0.30) 81.76 (0.31) 61.91 (0.39) – –
ASBSVM b, G∗ = pG 18.75 (0.20) 80.42 (0.29) 82.15 (0.37) 62.55 (0.42) 92.25 (0.97) 26.45 (2.92)
ASBSVMa, G∗ = G 18.34 (0.23) 81.27 (0.30) 82.08 (0.38) 63.33 (0.44) – –
ASBSVM b, G∗ = G 18.13 (0.20) 81.16 (0.29) 82.65 (0.37) 63.79 (0.41) 92.25 (1.01) 18.07 (2.39)

p = 480, q = 24
L2SVM 30.54 (1.76) 74.61 (0.89) 63.86 (1.10) 39.47 (0.30) – –
DrSVM 30.37 (0.13) 73.39 (0.69) 65.57 (0.78) 39.50 (0.27) 38.25 (3.16) 1.95 (0.26)
SCADSVM 25.85 (0.29) 75.36 (0.46) 72.85 (0.50) 48.34 (0.58) 48.42 (1.78) 6.39 (1.78)
L1SVM 22.95 (0.24) 78.92 (0.50) 75.02 (0.53) 54.22 (0.49) 67.67 (2.34) 8.65 (0.49)
KBSVM, G∗ = G 22.90 (0.21) 78.09 (0.52) 78.93 (0.50) 55.16 (0.42) 63.35 (2.58) 1.57 (0.29)
ASBSVMa, G∗ = nG 24.07 (0.24) 75.57 (0.30) 76.33 (0.32) 51.88 (0.48) – –
ASBSVM b, G∗ = nG 23.20 (0.24) 75.93 (0.29) 77.74 (0.32) 53.65 (0.48) 74.79 (1.52) 14.29 (1.80)
ASBSVMa, G∗ = pG 23.50 (0.24) 76.02 (0.29) 77.04 (0.32) 53.03 (0.47) – –
ASBSVM b, G∗ = pG 22.99 (0.25) 76.10 (0.27) 78.02 (0.31) 54.08 (0.49) 79.71 (1.43) 19.39 (2.34)
ASBSVMa, G∗ = G 22.84 (0.24) 76.77 (0.29) 77.56 (0.32) 54.31 (0.49) – –
ASBSVM b, G∗ = G 21.88 (0.23) 77.37 (0.29) 78.95 (0.26) 56.28 (0.45) 80.33 (1.39) 16.82 (2.03)

Table 3.1: Comparison of the prediction performance for different p and q with graph related covari-
ance structure among X .

yi for each subject i is defined as

yi =


1, Ti < 365,∆i = 0,

−1, Ti > 365,

where ∆i represents censoring for each subject i. Those subjects with Ti < 365,∆i = 1 are

removed so the total number of subjects is 286 with 45% dead (yi = 1) and 55% alive (yi = −1).

To focus our analysis on the 500 genes which have the most impact on the survival status, an

univariate logistic regression model is fit for each gene expression level xj :

log
p(y = 1)

1− p(y = 1)
= β0 + β1xj (3.19)

The p value for each gene expression level xj is acquired and ranked ascendingly, where the top

500 genes are selected. The corresponding expression levels X and survival labels y are used to

apply our methods (ASBSVMa and ASBSVM b) and other methods.

39



The prior knowledge on the graphical structure between these 500 genes is retrieved from the Kyoto

Encyclopeida of Genes and Genomes (KEGG) database (Ogata et al., 1999). The corresponding

adjacency matrix G∗ is generated and incoporated in our proposed methods.

In Table 3.2, we provide a comparative performance of our model ASBSVM with the other existing

methods in terms of the average cross-validation (CV) error and the number of selected genes. The

optimal tuning parameters for each methods are chosen by the minimum 5-fold cross-validation

error. Note that L2SVM and ASBSVMa don’t perform feature selection, so all the 500 genes are

included. L1SVM produces a slightly better performance than L2SVM while the cv error of them are

both around 30%. The performance of DrSVM and SCADSVM is similar in terms of CV error but

DrSVM select fewer number of genes. When incorporating G∗ extracted from the database, both

our proposed methods (ASBSVM b, ASBSVM b) and KBSVM produce a lower CV error comparing

to the other four methods, which suggests that the prior graph improves the prediction accuracy.

Particularly, comparing to L2SVM, L1SVM and SCADSVM, our model ASBSVM b produces the

smallest prediction error and a relatively sparser model when using the cut-off values as tuning

parameters.

To validate the genes selected by our method, a gene list enrichment analysis is conducted via the

ToppGene Suite (Chen et al., 2009). A number of enriched pathways are identified such as Protein

processing in endoplasmic reticulum (1.98 × 10−7), extracellular matrix organization (3.45 × 10−5),

and unfolded protein response (5.60 × 10−5). The numbers in the parentheses is the Bonferrorni-

adjusted p value. These pathways were found to be linked with the cancer cell proliferation and

survival (Clarke et al., 2014; Grantham et al., 2017; Hiramatsu, Joseph, and Lin, 2011; Kurtoglu et

al., 2007). Moveover, the most highly enriched diseases are glioblastoma and acute promyelocytic

Leukemia. Therefore, the detected pathways and diseases further confirm our method can offer

great promises of improved power in detection of key molecular signatures and provide valuable

insights on biological bases of diseases.

3.5. Discussions

In this article we have developed a graph-guided Bayesian SVM approach, which can incorporate

the structural information between covariates in high dimensional settings. The approach relies

on specifying informative priors on the log-shrinkage parameters of the Laplace priors on the re-
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n=286, p=500 CV error (%) # genes selected
L2SVM 31.27 500
L1SVM 29.55 468
DrSVM 27.26 369
SCADSVM 27.94 492
KBSVM 25.87 439
ASBSVMa 25.53 500
ASBSVM b 25.19 460

Table 3.2: Results for glioblastoma data.

gression coefficients, which results in adaptive regularization. The numerical results confirm the

performance of our method in terms of the improved prediction and variable selection accuracy.

Our method yields significant performance when the working graph is correctly specified, and is

fairly robust when the working graph is mis-specified. One limitation of our model is that when the

number of features is very large, MCMC samples might be slow to converge,and tuning parame-

ters is also computationally expensive. Instead of drawing samples from the MCMC step, we can

combine our model with the EM algorithm to obtain the MAP estimate, which leads to scalability to

ultra-high dimensional settings. Another potential avenue is to extend the approach to more general

classes of priors on the shrinkage parameters, which will translate to more diverse penalties. We

hope to tackle these issues as future research questions of interest.
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CHAPTER 4

BAYESIAN NON-LINEAR SUPPORT VECTOR MACHINE FOR HIGH-DIMENSIONAL

DATA WITH INCORPORATION OF GRAPH INFORMATION ON FEATURES (BNSVM)

4.1. Introduction

Recently, rapid advances in high-throughput technologies have generated a large amount of omics

data such as gene expressions data. As a result, new challenges have emerged related to the anal-

ysis and interpretation of such omics data. For instance, in genomics studies, the number of gene

expression features is often much larger than the sample size. Because of this high dimensionality,

one of the challenges is to avoid over-fitting the data. Another challenge is feature selection, i.e.,

selection of a subset of informative features, leading to more interpretable results.

The linear support vector machine (SVM) is a popular technique to handle such high dimensionality

and has been extended to select informative features by applying penalties on the coefficients such

as L1SVM (Bradley and Mangasarian, 1998; Song et al., 2002; Zhu et al., 2004) implementing the

LASSO technique (Tibshirani, 1996) into SVM, DrSVM (Wang, Zhu, and Zou, 2006) combining the

L1 and ridge penalties to encourage the selection of correlated features, and SCADSVM (Becker

et al., 2011; Zhang et al., 2005) adoptting smoothly clipped absolute deviation penalty (Fan, 2001)

to into SVM. In addition to frequentist approaches, Bayesian SVM with variable selection methods

have received much attention recently with many successful applications (Luts and Ormerod, 2014;

Marchiori and Sebag, 2005). Bayesian approaches can naturally incorporate the prior knowledge

and make posterior inference explaining uncertainty of model parameters. Recently, a knowledge-

guided Bayesian linear SVM (Sun et al., 2018), enables incorporation of the prior network informa-

tion among predictors, known as KBSVM, and shows that it outperforms a number of preexisting

linear SVM approaches that do not take advantage of such knowledge.

However, if the data are not linearly separable, the existing linear SVM methods may not be ade-

quate. To address this problem, the non-linear separation for SVM can be realized by mapping the

original data into some high dimensional feature space where the data is linearly separable and

constructing an optimal hyperplane in this space. This mapping is performed by a kernel function,
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which is referred to as ”the kernel trick” (Vapnik and Vapnik, 1998). Although it is more challeng-

ing to perform feature selection for non-linear SVM, some techniques based on the frequentist

framework have been developed. Weston et al. (2001) reduced the feature dimensions by mini-

mizing bounds on the leave-one-out error via a gradient approach; Zhang (2006) implemented a

smoothing spline ANOVA framework to conduct simultaneous classification and feature selection;

Mangasarian and Kou (2007) proposed an approach that inserts a diagonal indicator matrix into the

non-linear kernel and minimizes the objective function as well as the number of features selected.

There is little work on feature selection in the Bayesian non-linear SVM framework, to the best of

our knowledge.

In this work, we propose to incorporate the prior graph information such as pathways from func-

tional genomics to further guide feature selection. One of the primary motivations for incorporating

such pathways information is that weak signals are often grouped into pathways and accounting

for the structure information among them has the potential to increase power of detecting key sig-

natures and yield biologically more meaningful results. Such informative priors for related features

often lie on undirected acyclic graphs where nodes represent genes and edges represent functional

interactions between genes. Some recent works use the known graph or network information de-

scribing the relationships between features to guide feature selection, which leads to improvement

in prediction and feature selection, especially for high dimensional data. For example, Li and Li

(2008) proposed a network-constrained penalty to encourage smoothness of the connected fea-

tures with respect to a graph; Pan, Xie, and Shen (2010) developed a group penalty using the

weighted Lγ norm to realize ”grouped” feature selection; Kim, Pan, and Shen (2013) proposed a

nonconvex penalty without assuming the coefficients for the connected features being similar. In

the Bayesian framework, Li and Zhang (2010) and Stingo and Vannucci (2010) proposed spike and

slab priors combined with the Markov Random Field (MRF) prior to encourage the joint selection of

features. Zhou and Zheng (2013) developed a Bayesian random graph-constrained model to allow

uncertainty over the graph. More recently, Chang, Kundu, and Long (2018) developed a Bayesian

shrinkage approach by assigning independent Laplace priors on the regression coecients, while

incorporating the graph information via the hyperprior imposed on the shrinkage parameters of the

Laplace distributions.

However, the above-mentioned approaches for incorporating graph information are only applicable
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to linear models and no existing work has been developed for non-linear SVM. To fill this important

gap, we propose a Bayesian non-linear SVM feature selection method with incorporation of the

graph information (BNSVM). The non-linear classifier in our model is assumed to be drawn from

a zero mean Gaussian process (Henao, Yuan, and Carin, 2014) with a special covariance matrix.

This covariance matrix is constructed by the usual non-linear kernel function embedded with la-

tent binary variables representing the selection status of features. Furthermore, Ising priors are

assigned to the latent binary variables to incorporate the graphical structure of the features. This

Ising prior allows our model to encourage both group-wise inclusion and exclusion of neighboring

features, and therefore, further improve the prediction performance.

By using the data augmentation techniques developed by Polson and Scott (2011), we re-express

the likelihood, incorporate the graph-guided priors, and employ the Metropolis Hastings (MH) sam-

pling within Gibbs sampling algorithm to perform Bayesian inference and prediction. The perfor-

mance of our method is investigated by extensive simulation studies in comparison with L1SVM,

standard linear SVM (L2SVM) and the knowledge-guided Bayesian linear SVM (KBSVM) method

described in Chapter 2 as well as the non-linear SVM (Kernel-SVM) methods in terms of predic-

tion and feature selection. Of note, among these existing methods, only L1SVM and KBSVM can

perform feature selection. We also apply our methods to a glioblastoma cancer study with a large

number of genes, and construct a classification model to predict the survival status and identify the

subset of genes that are predictive of patient survival.

The remainder of the paper is organzed as follows. Section 4.2 describes the Bayesian model and

prediction. Section 4.3 and Section 4.4 present the simulation study and the real data application,

respectively. Section 4.5 concludes the paper with brief discussion remarks.

4.2. Methods

4.2.1. Likelihood

Let D = {xi, yi}ni=1 be n samples in the training set, where xi ∈ Rp are the feature inputs and

yi ∈ {−1, 1} are the corresponding binary labels. Our task is to learn a classification rule from the

training set so that we can assign a class label to any new subject observed in the future. The linear

SVM is a large margin classifier which seperates two classes by maximizing the margin between
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them. The classical SVM seeks to find the optimal function f by solving the following regularized

hinge loss objective:

f̂ = arg min
f

(
N∑
i=1

(1− yif(xi))+ + λR(f)

)
, (4.1)

where (x)+ ≡ max(x, 0) and R(f) is a regularization term reflecting the complexity of f . λ is

a tuning parameter controlling the tradeoff between error minimization and the complexity of f .

The classification function is then given by sign(f̂(x)). Note that the optimization problem (4.1) is

equivalent to finding the mode of the following pseudo-posterior:

π(f |X,y, ν) ∝ π(f |X)L(y|X, f, ν) (4.2)

∝ π(f |X)

n∏
i=1

νe−2νmax(1−yif(xi),0) (4.3)

∝ π(f |X)

n∏
i=1

∫ ∞
0

√
ν√

2πρi
e
− ν(ρi+1−yif(xi))

2

2ρi dρi (4.4)

The proposed pseudo-likelihood enables ν in (3) to learn the overall scale of the errors and a

Gamma prior G(aν , bν) is assigned for ν. aν represents the shape parameter, bν represents the

rate parameters of the Gamma distribution, and the values can be tuned in an uninformative or

data-driven manner. (4) re-expresses (3) as a location-scale mixture of Gaussians by introducing

a latent variable ρi (Polson et al. Polson and Scott, 2011) to facilitates Gibbs sampling. Following

Henao, Yuan, and Carin (2014), we assume the non-linear classifiers f(xi) to be drawn from a

zero-mean Gaussian process GP(0,K). The details are given in the following session.

4.2.2. Prior for the non-linear classifier f(x)

A Gaussian process is a collection of random variables where the joint distribution of any combina-

tion of the variables is Gaussian. Such a process f(x) is completely determined by its mean func-

tion µ(x) = E(f(x)) and the covariance kernel function k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))].

We assume the prior mean functions µ(x) to be zero, which implies that there is no preference of

positive or negative values for the mean given no data.

In our case, the random variables f1, . . . , fn replace f(x1), . . . , f(xn) and their prior covariance

matrix K ≡ K(γ) ≡ K(γ, X) is given by an n × n matrix with non-linear kernels k(xi,xj) =

φ
∑p
l=1 γl(xil−xjl)

2

, where φ ∈ (0, 1) and γl is the latent binary variable indicating the inclusion or
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exclusion of the lth feature of the model. This covariance structure encourages fi and fj to be highly

correlated when xi and xj are close, or uncorrelated if xi and xj are far enough. The parameter φ

determines the sensitivity of correlation to the distance. We assign the uniform distribution as the

prior for φ.

The contribution of our work is to insert a binary variable γl for each feature l into the kernel function

controlling the number of features used in the model.

4.2.3. Ising prior for γ

γl plays an important role of performing selection of each feature l. Usually, the iid Bernoulli prior is

assigned for γ, allowing the predictors to be independently selected, while ignoring the underlying

structure information among predictors. The prior structrual information of predictors is represented

by a graph G = 〈V,E〉, where V = {1, . . . , p} represents the set of predictors and the edge set

E ⊂ {(j, k) : j, k ∈ V, j 6= k} represents associations between the predictors. To take into account

the fact that adjacent features are likely to influene the response jointly, we take the Ising prior for

γ given as follows.

π(γ) = Cµ,ηe
−µ

∑
j γj+η

∑
j 6=k GjkI(γj=γk), (4.5)

where Cµ,η is the normalizing constant and I(·) is the indicator function. Here, G is the adjacency

matrix of G; Gjk indicates the presence of an edge between the predictors j and k. The tuning

parameters µ controls the sparsity of γ and η controls the smoothness of γ over E. When γj = 1,

its neighbors are more likely to stay at ”1”. Similarly, when γj = 0, its neighbors are likely to stay

at ”0”. Thus, the Ising prior will encourage the group-wise feature selection of the j-th and the k-th

features if there is an edge between them.
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4.2.4. Posterior Inference and Computation

The full data pseudo-posterior distribution is given by

π(ν,ρ,γ, φ, f |y, X) ∝
n∏
i=1

√
ν√

2πρi
e
− ν(ρi+1−yifi)

2

2ρi

× e−µ
∑
j γj+η

∑
j 6=k GjkI(γj=γk)

× |K|− 1
2 e−

1
2 f
TK−1f × νaν−1e−bνν .

MCMC is implemented by Metropolis Hastings within Gibbs algorithm. Most of the conditional

distributions can be easily sampled. We have

ν|f ,y,ρ ∼ G

(
aν +

3n

2
, bν +

n∑
i=1

(ρi + 1− yifi)2

2ρi

)
, (4.6)

and we have

ρi|f ,y, ν ∼ GIN (1/2, ν, ν(1− yifi)2),

where GIN (p, a, b) stands for the Generalized Inverse Gaussian distribution. Alternatively, the

conditional distribution of ρ−1
i is an inverse Gaussian distribution, denoted by IN .

ρ−1
i |f ,y, ν ∼ IN (|1− yifi|−1, ν), (4.7)

where the density function of IN (µ, λ) is defined as below:

f(x;µ, λ) =

√
λ√

2πx3
e
−λ(x−µ)2

2µ2x .

The conditional distribution of γj follows the Bernoulli distribution which is given by

γj |γ−j , f , X ∼ Ber
(

Π(γj = 1,γ−j)

Π(γj = 1,γ−j) + Π(γj = 0,γ−j)

)
, (4.8)

where γ−j = (γ1, . . . , γj−1, γj+1, . . . , γp) and Π(γ) = |K(γ)|−
1
2 e−

1
2 f
TK(γ)−1fe−µγj+η

∑
k 6=j GjkI(γj=γk).
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The conditional distribution of φ is given by

π(φ|f ,γ, X) ∝ |K|−
1
2 e−

1
2 f
TK−1f (4.9)

We use the Metropolis-Hasting algorithm to draw samples from π(φ|f ,γ, X). Since φ ∈ (0, 1), the

logit normal distribution q(x;µ, τ2) = 1
τ
√

2π
1

x(1−x)e
− (logit(x)−µ)2

2τ2 is chosen as the proposed distribu-

tion. Assume the last state is φt−1, we draw a sample φ∗ from q(x;φt−1, τ2), where τ2 is set to a

value that keeps the acceptance rate around 40%. We accept or reject the current proposed φ∗

with probability αt.

αt = min
(

1,
π(φ∗|f ,γ, X)φ∗(1− φ∗)

π(φt−1|f ,γ, X)φt−1(1− φt−1)

)

LetDρ = diag(ρ1, . . . , ρn) and z be a vector with entries zi = (1+ρ−1
i )yi. The conditional distribution

for f is a multivariate Gaussian:

f |y, ν,ρ,K ∼ N (ν(νD−1
ρ +K−1)−1z, (νD−1

ρ +K−1)−1) (4.10)

1 for t = 1 to T do
2 Sample ν ∼ G

(
aν + 3n

2 , bν +
∑n
i=1

(ρi+1−yifi)2
2ρi

)
;

3 for i = 1 to n do
4 Sample ρ−1

i ∼ IN (|1− yif(xi)|−1, ν);
5 end
6 for i = 1 to p do
7 Sample γj ∼ Ber

(
Π(γj=1,γ−j)

Π(γj=1,γ−j)+Π(γj=0,γ−j)

)
;

8 end
9 Generate a proposal φ∗ ∼ q(φ;φt−1, τ2);

10 Generate u ∼ U(0, 1);

11 if u < min
(

1, π(φ∗|f ,γ,X)φ∗(1−φ∗)
π(φt−1|f ,γ,X)φt−1(1−φt−1)

)
then

12 φt ← φ∗;
13 else
14 φt ← φt−1;
15 end
16 Sample f ∼ N (ν(νD−1

ρ +K−1)−1z, (νD−1
ρ +K−1)−1);

17 end
Algorithm 3: MCMC algorithm for BNSVM.
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4.2.5. Prediction

To predict the label for a new testing case, the inference is divided into two steps: first computing the

distribution of the latent non-linear function f∗ corresponding to the test case; second cpmputing

the predictive label probabilities of the test case.

Let θ = (γ, ν,ρ, φ)T denote the vector of model parameters. The predictive distribution of f∗ for a

new testing data vector x∗p×1 given the training dataset X, y and θ can be written as

f∗|x∗, X,y,θ ∼ N (µ, σ2), (4.11)

where

k∗ = (k(x∗,x1), . . . , k(x∗,xn))T ,

k∗ = k(x∗,x∗),

Σ = (K + ν−1Dρ)
−1,

µ = k∗TΣDρz,

σ2 = k∗ − k∗TΣk∗.

Then, we can use the probit link to compute the conditional predictive class probabilities.

π(y∗ = 1|x∗, X,y,θ) =

∫
Φ(f∗)π(f∗|x∗, X,y,θ)df∗

= Φ

(
k∗TΣDρz√

1 + k∗ − k∗TΣk∗

)
. (4.12)

The derivations of (4.11) and (4.12) can be found in Appendix A. To estimate the marginal predictive

probability π(y∗ = 1|x∗, X,y), the MCMC samples of θ are used.

p̂ =
1

M

M∑
m=1

p(y∗ = 1|x∗, X,y,θm), (4.13)

where θ1, . . . , θM are the MCMC samples of θ.

The prediction error can be measured by the cross-entropy between the predictive probabilities and
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the actual class.

CE = −
N∑
i=1

I(y∗i = 1) log p̂i −
N∑
i=1

I(y∗i = −1) log(1− p̂i),

where N is the sample size of testing data. The decision can be made by ŷi = sign(p̂i − 0.5) and

the associated prediction error can be reported as follows.

PE =
1

N

N∑
i=1

I(ŷi 6= y∗i ). (4.14)

4.3. Simulation studies

4.3.1. Design of Experiment

In this section, we study the performance of our BNSVM methods through the simulated additive

models. We simulate the examples for both the graph-related covariance structure and independent

covariance structure for the input features. In each experimental setting, we generate 100 datasets,

each with a training sample for fitting, a validation sample for tuning and an independent test sample

for computing the following performance metrics: the prediction error (PE), prediction sensitivity

(PSEN), prediction specificity (PSPEC), Matthews Correlation Coefficients (MCC), feature selection

true positive (FSTP) and feature selection false positive (FSFP).

For comparision, prediction errors are reported by (4.14) as not all methods provide probabilistic

prediciton. The prediction sensitivity is calculated as the proportion of positives (y = 1) that are

correctly identified and the prediction specificity is calculated as the proportion of negatives (y =

−1) that are correctly identified. MCC is defined as

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(4.15)

where TP is the number of true positives, TN is the number of true negatives, FP is the number

of false positives and FN is the number of false negatives. FSTP is the percentage of important

features selected by the model among the total important features and FSFP is the percentage of

unimportant features selected by the model among the total unimportant features.
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The sample size for training, validation and testing data is 200, and the feature dimension p is

set at 20, 100 and 500, representing both n > p and n < p cases. In addition to L1-SVM, L2-

SVM (the linear SVM with L2 penalty) and Kernel-SVM (the standard non-linear SVM), our method

is compared with KBSVM with the correctly specified graph (KBSVM, G∗ = G) and a simplified

version of KBSVM without using graph information (KBSVM, η = 0). Of note, Sun et al. Sun et al.,

2018 showed that KBSVM outperforms several penalized linear SVM methods such as Dr-SVM

and SCAD-SVM, and provided additional details of KBSVM. Tables 1 and 2 present the average

performance metrics over the 100 simulated datasets for each simulation setting.

4.3.2. Parameter Tuning

For L1SVM, L2SVM and Kernel-SVM, we use the penalizedSVM R-package Becker et al., 2009 to

tune the parameters in the validation datasets. For KBSVM, three parameters (µ, η and σ2
0) need to

be tuned. For our method BNSVM, when η = 0, representing no graph incorporated, only µ needs

to be tuned; when η 6= 0, representing the graph information is incorporated, two parameters (µ, η)

need to be tuned to achieve the best performance in terms of PE.

4.3.3. Generating data from an underlying true graph

The additive model is used to demonstrate the benefits of incorporating prior network information

into our BNSVM method. The general idea is that the covariance structure of the simulated data

has the graph information embedded, which mimics the genetic data with underlying interactions

between genes. If we utilize the known graph to guide our algorithm, we should be able to improve

the prediction performance and identify the relevant features. As mentioned, we use the undirected

graph G to represent the network among predictors. The model can be written as : x ∼ N (0,Ω−1
p×p),

f(x) = x2
1 +x2

2 + ..+x2
q, where x1, ..., xq are the first q dimensions of x and f is only relevant with the

first q features. The binary response y is determined by a cut-off value of f(x), which divides the

two classes almost equally. The precision matrix Ω = (ωij) is the inverse of the covariance matrix

with each entry

ωij =


0, (i, j) /∈ E

ρij ∈ [−1, 1], otherwise

Here we adopt the Gaussian graphical model and allow the precision matrix to represent the con-

nection strength between predictors. Thus, the precision matrix Ω of x should have a similar pattern
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to G which is the adjacency matrix G.

Fig. 4.1 shows the procedure of how to generate the covariance matrix from the graph. First,

we pre-define a undirected acyclic graph G, which has p = 20 predictors and the first q = 10

are the important features, then we generate the corresponding adjacency matrix G which is a

symmetric p× p matrix, with element ”1” representing the edge between connected predictors and

”0” representing no edges. Note the diagonal elements of G are 0 because each predictor itself

is not connected. Second, we generate the same size p × p matrix with random numbers over an

interval of [−1, 1] for each edge. Third, the smallest eigenvalue of the resulting matrix is calculated,

if it is positive, the precision matrix can be acquired by resaling the diagonal elements to be 1; if

negative, some small number is added on the diagonal of the resulting matrix to make it positive

definite, then rescale and obtain the precision matrix. The covariance matrix is acquired by inverting

the precision matrix.

4.3.4. Generating working graph

Once the simulated data with graph-related covariance structure is acquired, we use the graph to

guide our algorithm to make classification and feature selection. However, the graph might not be

correct in practice. For example, in genetic study, the pathways in the database might be incomplete

or noisy. To mimic these situations, we define the working graph adjacency matrix G∗ under three

conditions: 1. G indicating that the truth is known, 2. a partial graph (pG) indicating that the truth is

partially known or 3. a noisy graph (nG) indicating that the graph is completely random. Fig. 4.2

shows the three conditions.

The partial graph can be generated by removing some weak signals of the original precision matrix

Ω (Fig. 4.2(b)). If the absolute value of the elements of Ω less than a pre-set value, then they

are set to zero; The resulting matrix is converted to the binary matrix with zeros and ones, and the

diagonal elements are set to zero as shown in Fig. 4.2(d).

The noisy graph can be generated by randomly assigning ”1” on the lower triangle part of the

corresponding adjacency matrix and making the upper part the same as the lower part. A noisy

graph example is shown in Figure 4.2(e).
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Figure 4.1: The true graph G (a) with the subsets in red are the relevant q features, the correspond-
ing adjacency matrix G (b), precision matrix Ω (c) and covariance matrix Σ (d)

4.3.5. Simulation results

Four settings are specified for our method BNSVM: no working graph incorporated (η = 0), the

working graph G∗ is assigned by a noisy graph (nG), a partial graph (pG) and the true underlying

graph (G). Two settings are specified for KBSVM: no working graph incorporated (η = 0), the

working graph G∗ is assigned by the true graph. Table 4.1 summarizes the simulation results for

both n > p and n < p cases.

When p = 20 and q = 10, our method BNSVM(G∗ = G) gives the smallest PE and the highest

MCC. The prediction performance for the four linear methods L1SVM, L2SVM, KBSVM(η = 0) and

KBSVM(G∗ = G) are similar. The non-linear Kernel-SVM gives a relatively low PE; while even
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Figure 4.2: Three settings for working graph G∗.

no graph guided (η = 0), our method has a lower PE and high MCC, comparing to the settings

of G∗ = nG and G∗ = pG. When the working graph is assigned by nG, PE increase about 15%

comparing to the setting of BNSVM(G∗ = G), while still gives satisfactory MCC, FSTP and FSFP.
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When the working graph is assigned by the true graph G, the lowest PE is achieved, moreover,

it discovers all the relevant features while with the lowest FSFP at 7%. Note that when the graph

is incorporated, the PE of the KBSVM drops 2% and the FSTP increases 9%, which confirms the

advantage of incorporating prior knowledge even the wrong model is applied.

When p = 100 and q = 20, PE for BNSVM(G∗ = G) still gives the smallest PE comparing to

the other settings and other existing methods. When the working graph is assigned by nG, the

performance is very close to Kernel-SVM. If no working graph is incorporated, PE doesn’t inclease

a lot comparing to the case when true graph is assigned. This observation may indicate that even

without the graph guidance, our algorithm still work well. If the prior knowledge is not certain,

we prefer not use it. We also note that when the dimension p increases, both FSTP and FSFP

decrease because the ratio of the relevant features becomes small comparing to the total number

of dimensions.

When p = 500, since our training sample size is n = 200, this is the n < p case. We see that all the

methods generate a relatively high PE and low MCC. The performance of L1SVM, L2SVM, KBSVM

and Kernel-SVM are similar, give the PE around 45%, while PE of our methods (η = 0, G∗ = pG

and G∗ = G) is below 40%. In general, our method gives the smallest PE, the greatest MCC, and

high FSTP. Even when G∗ is assigned by nG, the performance of our method doesn’t deteriorate

too much.

In addition, we simulate a new dataset which has the independent covariance structure (x ∼

N (0, Ip×p)). In the graphical view, all the predictors are isolated without connections. Therefore,

we only need specify two settings to test for our model: η = 0 and G∗ = nG and one setting η = 0

for KBSVM. The results are summarized in Table 4.2. When p = 20, Kernel-SVM performs the best

in terms of PE, our method (η = 0) achieves a similar PE but has the highest MCC. When p = 100

and p = 500, we observe that our method (η = 0) performs the best among the other settings as

well as other existing methods.

In the simulation section, we consider two datasets with different covariance structures (i.e corre-

lated or independent). We have found that the existing linear SVM methods (i.e. L1SVM, L2SVM,

KBSVM) don’t perform well for complex data, as well as the non-linear kernel-SVM in high dimen-

sion settings. If the working graph is partially or fully correctly specified, our method outperforms
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Method PE (%) PSen (%) PSpec(%) MCC (%) FSTP (%) FSFP (%)
p = 20, q = 10

L1SVM 48.30 (1.15) 43.41 (3.61) 59.80 (4.67) 4.15 (2.80) 53.00 (11.35) 61.00 (11.81)
L2SVM 49.20 (0.86) 46.55 (2.30) 54.93 (2.75) 1.56 (1.72) – –
KBSVM, η = 0 46.10 (0.60) 39.87 (3.21) 62.61 (2.74) 9.38 (0.80) 22.00 (8.24) 14.00 (9.70)
KBSVM, G∗ = G 45.15 (0.58) 40.09 (4.92) 62.83 (5.68) 10.82 (1.38) 24.00 (8.41) 12.00 (9.23)
Kernel-SVM 17.35 (0.62) 79.90 (0.98) 85.31 (1.41) 65.49 (1.27) – –
BNSVM, η = 0 16.00 (0.73) 67.04 (2.49) 91.73 (1.17) 60.85 (2.92) 95.00 (2.52) 11.00 (1.68)
BNSVM, G∗ = nG 17.80 (0.83) 70.15 (1.10) 93.11 (1.33) 66.01 (1.74) 95.00 (3.20) 10.00 (1.98)
BNSVM, G∗ = pG 16.35 (0.89) 72.73 (1.43) 94.29 (0.83) 68.83 (1.70) 98.00 (1.25) 11.00 (2.19)
BNSVM, G∗ = G 15.50 (0.52) 73.54 (1.06) 94.18 (1.01) 69.42 (1.50) 100.00 (0.00) 7.00 (2.00)

p = 100, q = 20
L1SVM 46.60 (0.81) 53.75 (1.60) 53.01 (2.14) 6.79 (1.61) 59.50 (9.01) 62.00 (7.98)
L2SVM 48.75 (0.83) 46.43 (0.94) 51.00 (1.54) 1.15 (1.82) – –
KBSVM, η = 0 46.50 (0.68) 40.63 (6.62) 56.77 (1.82) 7.57 (1.31) 42.00 (8.30) 36.13 (9.85)
KBSVM, G∗ = G 45.50 (0.61) 46.77 (5.01) 61.64 (4.16) 9.08 (1.19) 25.00 (6.70) 21.12 (7.11)
Kernel-SVM 34.75 (1.01) 63.42 (2.62) 66.81 (1.99) 30.55 (2.07) – –
BNSVM, η = 0 30.95 (1.36) 55.31 (3.47) 78.67 (6.96) 42.13 (3.16) 62.00 (11.84) 8.25 (6.96)
BNSVM, G∗ = nG 35.10 (1.90) 43.00 (4.37) 75.16 (2.91) 34.94 (3.75) 56.00 (8.43) 12.25 (3.86)
BNSVM, G∗ = pG 32.50 (1.12) 52.83 (2.30) 85.15 (3.40) 37.19 (3.09) 64.50 (8.99) 5.75 (1.33)
BNSVM, G∗ = G 27.50 (0.94) 74.05 (3.78) 71.01 (3.79) 46.32 (1.66) 66.50 (6.78) 5.13 (1.32)

p = 500, q = 20
L1SVM 46.00 (1.19) 52.21 (1.77) 55.86 (1.31) 8.03 (2.39) 20.50 (4.33) 21.34 (3.31)
L2SVM 48.30 (1.13) 47.56 (2.04) 49.25 (1.49) 3.44 (2.27) – –
KBSVM, η = 0 45.90 (1.01) 42.47 (7.16) 51.75 (2.10) 7.70 (2.04) 44.00 (12.20) 37.10 (13.07)
KBSVM, G∗ = G 44.90 (0.71) 44.68 (6.00) 55.92 (1.37) 12.31 (0.83) 48.00 (13.33) 46.73 (13.69)
Kernel-SVM 45.05(0.76) 58.02 (4.47) 51.78 (5.33) 10.20 (1.52) – –
BNSVM, η = 0 36.40 (0.82) 55.13 (1.98) 74.00 (2.87) 34.19 (2.64) 62.00 (8.67) 1.27 (0.31)
BNSVM, G∗ = nG 42.50 (0.38) 48.80 (2.45) 69.07 (1.69) 31.82 (2.70) 53.00 (7.69) 3.33 (0.41)
BNSVM, G∗ = pG 37.56 (1.32) 52.53 (3.11) 74.95 (2.53) 35.47 (2.38) 63.00 (8.62) 1.56 (0.31)
BNSVM, G∗ = G 33.35 (1.01) 57.48 (2.50) 78.09 (2.50) 36.73 (2.84) 65.50 (8.85) 1.40 (0.29)

Table 4.1: Comparison of the prediction performance and variable selection when the dimension
of predictions p changes from 20 to 500 among different methods. q is the number of relevant
variables. η = 0 represents the working graph G∗ is not incorporated in KBSVM and BNSVM
methods.

all the other methods in terms of both prediction and selection accuracy. If the working graph is not

available or noisy, the performance is comparable to the kernel-SVM in low dimension settings (i.e

p = 20, 100), while perform better in the high dimension setting (p = 500).

4.4. Data Analysis

Glioblastoma is known as one of the most aggressive brain cancers, only 12% of the samples were

censored and it is also related to other cancer development. We obtained a glioblastoma data

set from the Cancer Genome Atlas Network Verhaak et al., 2010. This data set includes survival

times (T) and the gene expression levels of p = 12, 999 genes (X) for 303 glioblastoma patients.

To perform the classification, a new indicator variable Z is defined to denote the one year survival
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Method PE (%) PSen (%) PSpec(%) MCC (%) FSTP (%) FSFP (%)
p = 20, q = 10

L1SVM 47.89 (0.71) 41.12 (3.24) 63.98 (3.64) 4.22 (1.00) 42.22 (9.97) 41.11 (8.65)
L2SVM 48.55 (1.04) 41.06 (1.94) 56.21 (2.87) 3.12 (2.12) – –
KBSVM, η = 0 45.55 (0.73) 33.79 (4.20) 74.83 (3.43) 9.58 (1.35) 28.00 (7.23) 19.00 (9.63)
Kernel-SVM 20.20 (0.68) 79.30 (1.02) 80.29 (1.48) 50.74 (1.35) – –
BNSVM, η = 0 20.95 (1.06) 86.00 (2.41) 72.11 (3.00) 59.43 (2.02) 97.00 (2.00) 20 (5.76)
BNSVM, G∗ = nG 21.60 (2.49) 84.30 (1.32) 72.58 (5.05) 57.50 (4.71) 90.00 (8.39) 25.00 (6.13)

p = 100, q = 20
L1SVM 47.70 (0.92) 51.38 (1.70) 54.96 (1.06) 4.55 (1.84) 69.00 (7.38) 70.62 (6.56)
L2SVM 50.00 (1.22) 47.18 (1.50) 52.39 (1.61) 3.18 (2.22) – –
KBSVM, η = 0 46.20 (0.74) 48.42 (4.19) 57.02 (3.63) 5.47 (2.25) 43.00 (11.57) 44.12 (11.67)
Kernel-SVM 38.95 (1.33) 65.91 (4.68) 55.77 (3.01) 22.86 (3.14) – –
BNSVM, η = 0 32.87 (0.95) 55.53 (4.15) 59.38 (2.07) 34.32 (1.58) 63.50 (10.76) 1.85 (0.34)
BNSVM, G∗ = nG 35.88 (0.88) 43.83 (4.13) 71.99 (4.44) 29.28 (3.79) 54.50 (12.74) 22.63 (12.18)

p = 500, q = 20
L1SVM 45.50 (0.91) 53.24 (1.02) 54.07 (1.80) 9.04 (1.80) 21.00 (4.00) 20.90 (2.43)
L2SVM 49.85 (1.13) 48.98 (1.73) 51.49 (1.01) 2.32 (2.16) – –
KBSVM, η = 0 44.85 (0.67) 42.38 (3.87) 56.05 (1.62) 8.83 (1.53) 60.00 (12.60) 55.62 (13.98)
Kernel-SVM 45.35 (0.88) 47.66 (4.70) 62.54 (4.12) 10.69 (1.51) – –
BNSVM, η = 0 36.97 (0.76) 49.11 (1.52) 66.06 (2.58) 30.20 (1.22) 59.50 (9.41) 1.85 (0.34)
BNSVM, G∗ = nG 41.67 (0.89) 44.80 (1.93) 65.49 (3.08) 27.98 (1.04) 56.00 (9.68) 2.04 (0.31)

Table 4.2: Comparison of the prediction performance and variable selection when the predictors
are independent.

outcome:

Y =


1, T < 365,∆ = 0,

0, T > 365,

where ∆ represents censoring. Those subjects with T < 365,∆ = 1 are removed so the total

number of subjects is 286 with P (Y = 1) = 45%, P (Y = 0) = 55%. In this section, we apply our

methods and other existing methods to classify the survival status of the glioblastoma patients.

First, we fit an univariate logistic regression model for each gene x:

log
p(x)

1− p(x)
= β0 + β1x (4.16)

We calculate the p value from the logistic regression and create a list of ascend ordered p-value as

well as the corresponding genes. Second, we use the gene-ranking methods to select important

genes, for example, we select the top 500 genes in the list and generate the new feature inputs from

the gene expression levels.

Second, we create a graph G for all the 12, 999 genes from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database, and we use an algorithm to retrieve the connections within the top
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Table 4.3: Results of the analysis of TCGA data. n = 286, p = 500.
CV error (%) # selected genes

L1SVM 29.55 468
L2SVM 31.27 500
KBSVM, η = 0 26.94 233
KBSVM, G∗ = G 25.87 439
Kernel-SVM 25.86 500
BNSVM, η = 0 25.00 67
BNSVM, G∗ = G 21.43 232

500 genes, and then map them to the working graph G∗.

We specify two settings (η = 0 and G∗ = G) for both our model and KBSVM (Sun et al. Sun

et al., 2018) to compare with other methods. The optimal tuning parameters for each methods

are chosen by the minimum 5-fold cross-validation error. The average cross-validation error and

the number of selected genes are summarized in Table 4.3. Note that L2SVM doesn’t perform

feature selection, so all the 500 genes are selected. L1SVM selects most of the 500 genes and has

a similar performance to L2SVM. Kernel-SVM achieves a lower cross-validation error, which may

suggest that the non-linear classifier is more plausible. KBSVM with graph incorporated (G∗ = G)

produces a lower cross-validation error comparing to the no graph guided one, which may indicate

that the prior graph improves the prediction accuracy. For our method BNSVM, if the graph is not

incorporated (η = 0), fewer genes are detected, but still provides the satisfactory cross-validation

error; if the graph is incorporated (G∗ = G), more genes are detected and achieves the smallest

cross-validation error.

To validate the selected genes by our method, a pathway enrichment analysis is conducted via

ToppGene Suite (Chen et al. Chen et al., 2009). If no graph information is provided (η = 0),

only 67 genes including several key genes such as PICK1 and IL22 that are members of glioma-

related pathways are selected and no significant pathways are identified. If the graph information

is provided (G∗ = G), our BNSVM method encourages the selection of the connected genes. As a

result, a number of pathways are enriched in the set of selected genes, such as extracellular matrix

organization (4.18× 10−2), protein processing in endoplasmic reticulum (3.29× 10−4), and unfolded

protein response (9.34× 10−2), where the numbers in the parentheses are the Bonferroni-adjusted

p values. The pathways detected have been found to be related to cancer cell development and

survival (Clarke et al., 2014; Hiramatsu, Joseph, and Lin, 2011; Koh et al., 2018; Pointer et al.,
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2016). Moreover, the most highly enriched diseases are malignant neoplasm of ovary, glioblastoma,

and malignant tumor of colon. These results further confirm that the integration of existing biological

knowledge yields biologically more meaningful results.

4.5. Discussions

This chapter introduces a knowledge-guided Bayesian non-linear SVM approach that uses the

structural information between features to guide feature selection and is more robust than the exist-

ing linear SVM methods. Our numerical studies demonstrate that the proposed method outperforms

several existing methods including the knowledge-guided Bayesian linear SVM and the standard

nonlinear SVM in terms of prediction and feature selection. In the analysis of the real gene expres-

sion data, our results suggest that the integration of prior biological knowledge into our model leads

to an increased ability to identify important genes, and yields biologically meaningful results and

improved prediction accuracy.
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CHAPTER 5

JOINT BAYESIAN VARIABLE SELECTION AND GRAPH ESTIMATION FOR

NON-LINEAR SUPPORT VECTOR MACHINE (JBNSVM)

5.1. Introduction

With the advances made in the last few years in microarray technology, we are able to monitor

expression measurements for tens of thousands of genes simultaneously. Several studies using

microarrays to profile colon, breast and other tumors have demonstrated the potential power of

expression profiling for classification (Alon et al., 1999; Hedenfalk et al., 2001). Due to the high

cost, we can afford a very small number of samples, mostly less than hundred, and a key goal is to

perform tumor classification in such a large p (genes), small n (samples) data pattern. In addition,

there is increasing evidence from genomics studies that genes affect phenotypes through complex

molecular networks or pathways, while the expression levels of individual genes in the pathways

have relatively weak signals. However, the grouped signals in the pathways can be considerably

stronger. So accounting for the relationships among the genes has the potential to increase power

to detect true associations and yield biologically more meaningful results. Along with the tumor

classification, an important task is to identify the genes that lie in the networks associated with

tumor progression.

Support vector machine (SVM) (Vapnik and Vapnik, 1998) has been widely used to handle such

large gene expression data sets for accurate classification. Moreover, the penalty based SVM

shrinkage methods can deal with variable selection and classification simultaneously. Bradley and

Mangasarian (1998), Song et al. (2002) and Zhu et al. (2004) applied the LASSO technique (Tibshi-

rani, 1996) into SVM (L1SVM). However, the L1SVM does not take correlations among predictors

into account. In contrast, Wang, Zhu, and Zou (2006) proposed a double regularization SVM,

which combines the L1 and ridge penalties to encourage the selection of correlated features; Zou

and Yuan (2008) suggested the L∞ penalized SVM to encourage all the features in the same group

to be selected simultaneously; Zhang et al. (2005) and Becker et al. (2011) adopted the smoothly

clipped absolute deviation penalty (Fan, 2001) to alleviate biases in estimating nonzero coefficients.

Extending the idea of grouping to gene networks, Zhu, Shen, and Pan (2009) proposed a network-
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based SVM, which considers any two neighboring genes in a network as one group, and integrates

the network information to build classifiers. In addition to frequentist approaches, Bayesian SVM

with variable selection methods have received much attention recently with many successful ap-

plications. The Bayesian methods are natural to incorporate the prior knowledge and make pos-

terior inference on uncertainty of variable selection. Most recently, Sun et al. (2018) proposed a

knowledge-guided Bayesian linear SVM which combines the spike-and-slab with Ising priors to en-

able incorporation of the prior network information among predictors; and Chang, Kundu, and Long

(2018) developed a Bayesian shrinkage prior which smoothed shrinkage parameters of connected

nodes to a similar degree for structural variable selection in the linear regression setting.

Apart from the SVM methods, there are a few penalty based linear formulations using the known

graph or network information describing the relationships between features to guide feature selec-

tion, which leads to improvement in prediction and feature selection. For example, Li and Li (2008)

proposed a network-constrained penalty to encourage smoothness of the connected features with

respect to a graph; Pan, Xie, and Shen (2010) developed a group penalty using the weighted Lγ

norm to realize ”grouped” feature selection; Kim, Pan, and Shen (2013) proposed a nonconvex

penalty without assuming the coefficients for the connected features being similar. In the Bayesian

framework, Li and Zhang (2010) and Stingo and Vannucci (2010) proposed spike and slab priors

combined with the Markov Random Field (MRF) prior to encourage the joint selection of features.

Zhou and Zheng (2013) developed a Bayesian random graph-constrained model to allow uncer-

tainty over the graph.

These network-based approaches have shown that incorporating network or graph information not

only improves predictive performance and reproducibility, but also sheds biological insights into

molecular mechanisms underlying the clinical outcome. However, they have used a linear model to

establish the relationship between the genes and the cancer types, while how the genes finally ex-

plain the tumor behavior often cannot be tracked down by a simple linear structure. To address this

problem, a more general form, the non-linear relationship between genes and tumor progression,

can be formulated in SVM by mapping the original data into some high dimensional feature space

where the data is linearly separable and constructing an optimal hyperplane in this space. This

mapping is performed by a kernel function, which is referred to as ”the kernel trick” (Vapnik and

Vapnik, 1998). Most recently, a graph-guided Non-linear Bayesian SVM which enables incorpora-
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tion of the prior network information among predictors, known as BNSVM, and showed that BNSVM

outperforms a number of penalized linear and non-linear kernel SVM methods in numerical studies

(details can been in Chapter 4).

However, the aforementioned methods assume the prior network is known or given as a priori.

Although there are several available databases storing biological knowledge on pathways/networks

(Ashburner et al., 2000; Nishimura, 2001; Ogata et al., 1999), the available reference networks may

be incomplete or inappropriate for the experimental condition or set of subjects under study. Unlike

the aforementioned approaches incorporating prior knowledge to perform feature selection and

prediction, we are interested in estimating the graph from data, and incorporating the uncertainty

of the graph estimation into the model to improve prediction and features selection. Importantly,

our proposed method can estimate the graph and perform feature selection simultaneously, which

is different from the work using two stage procedure, first estimating the graph and then using the

graph to select relevant features (Kundu et al., 2018).

To estimate the graph from the data at hand, several models have been developed. For exam-

ple, Dobra (2009) proposed estimating a network among relevant predictors by first performing a

stochastic search in the regression setting to identify sets of predictors with high posterior probabil-

ity, then applying a Bayesian model averaging approach to estimate a dependency network given

these results. Liu et al. (2014) propose a Bayesian regularization graph Laplacian approach which

uses the graph Laplacian matrix to specify a prior precision matrix of regression coefficients. Differ-

ent from the aforementioned approaches, we extend the model BNSVM (details can been in Chap-

ter 4) and propose a new joint Bayesian non-linear SVM model (JBNSVM) to infer a sparse network

among the predictors and perform variable selection by incorporating the estimated network simul-

taneously. The predictors are assigned by Gaussian priors through the Gaussian graphical model,

in which the precision matrix is related to the graphical structure. Similar to BNSVM, the non-linear

classifier is assumed to be drawn from a zero mean Gaussian process (Henao, Yuan, and Carin,

2014) with a special covariance matrix. This covariance matrix is constructed by the usual non-

linear kernel function embedded with latent binary variables representing the selection status of

features. Furthermore, Ising priors are assigned to the latent binary variables to incorporate the

graphical structure of the features. The performance of our method is investigated by extensive

simulation studies in comparison with L1SVM, standard linear SVM (L2SVM), the non-linear SVM
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(Kernel-SVM) and BNSVM methods in terms of prediction and feature selection. The proposed

approach not only offers good performance in terms of selection and prediction but also provides

insight into the relationships among important variables and allows the identification of related pre-

dictors that jointly impact the response. In addition, because we take a Bayesian approach to the

problem of joint variable and graphical model selection, we are able to fully account for uncertainty

over both the selection of variables and of the graph.

The remainder of the paper is organized as follows. In Sections 5.2, we describe the proposed joint

Bayesian model and the MCMC algorithm for posterior inference and prediction. In Section 5.3,

we conduct simulation studies to evaluate our approach in comparison with several existing ap-

proaches. In Section 5.4, we apply our approach to a TCGA glioblastoma dataset. We conclude

with a brief discussion and future works in Section 5.5.

5.2. Methods

5.2.1. Proposed joint model

Suppose there are n samples in the training set of data where yi ∈ {−1, 1} are the binary outcome

variables and xi are the p dimensional feature vector. In our modeling approach, we consider both

the response yn×1 and the predictors Xn×p to be random variables, so our likelihood is the joint

distribution π(y, X), which can be factored into the conditional distribution of y given X and the

marginal distribution of X as below:

π(y, X) = π(y|X)× π(X) (5.1)

We re-express π(y|X) as a location-scale mixture of normals Henao, Yuan, and Carin, 2014; Pol-

son and Scott, 2011 by introducing a latent variable ρi, then

π(y|X) =

n∏
i=1

∫ ∞
0

√
κ√

2πρi
exp

(
−κ(ρi + 1− yif(xi))

2

2ρi

)
dρi. (5.2)
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And π(X) is assumed to be a centered multivariate normal distribution as

xi ∼ N (0,Ω−1) (5.3)

where Ω = Σ−1 is the precision matrix.

5.2.2. Prior for the non-linear classifier f(x) in Equation 5.2

A Gaussian process is a collection of random variables, and the joint distribution of any of these

variables is Gaussian. Such a process f(x) is completely determined by its mean function µ(x) =

E(f(x)) and the covariance kernel function k(x,x′) = E[(f(x) − µ(x))(f(x′) − µ(x′))]. We can

assume the mean functions µ(x) to be zero, because it is easy to subtract this off if we know a

priori any deviation from zero. The zero mean assumption implies that there is no preference of

positive or negative values for the mean given no data.

In our case, the random variables are f1, ..., fi, ..., fn corresponds to f(x1), ...,

f(xi), ..., f(xn), which are evaluated at the n data points. The covariance matrix K between

f1, ..., fn is defined as



1 φ
∑p
l=1 γl(x1l−x2l)

2 · · · φ
∑p
l=1 γl(x1l−xnl)2

φ
∑p
l=1 γl(x2l−x1l)

2

1
...

...
. . .

φ
∑p
l=1 γl(xnl−x1l)

2 · · · 1


,

where φ ∈ (0, 1) and γl is the latent binary variable indicating the inclusion or exclusion of the lth

feature of the model. This covariance structure encourages fi and fj to be highly correlated when

xi and xj are close, or uncorrelated if xi and xj are far enough. The parameter φ determines the

sensitivity of correlation to the distance. We assign the uniform distribution as the prior for φ.

5.2.3. Markov Random Field (MRF) priors for γ

In the covariance matrix, γl plays an important role to perform selection of each feature l. Usually,

the iid Bernoulli prior is assigned for γ, which is equivalent to assuming the predictors are inde-

pendently chosen, but ignoring the underlying structure information among predictors. Instead of

an independent prior, we propose a prior to tie the selection of predictors to the presence of edges
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relating them in the graph G. To accomplish this, we rely on an MRF prior favoring the inclusion

of variables that are linked to other predictors in the network. MRF priors have been utilized in the

variable selection context (Li and Zhang, 2010; Stingo and Vannucci, 2010). However, unlike these

authors, who assume that the structure of the network among predictors is known, we incorporate

inference of the network structure from X. Recalling that Gjk ∈ {0, 1} indicates the presence of

edge (j, k) in the graph G, we have the MRF prior distribution over γ taken as

p(γ|G,µ, η) = C1(G,µ, η)−1e−µ
∑
j γj+η

∑
j 6=k Gjkγjγk , (5.4)

where the tuning parameters µ controls the sparsity of γ and η controls the smoothness of γ over E.

C1(G,µ, η) is the constant that normalizes the prior density of γ given G. The prior linking variable

and edge selection reflects a preference for the inclusion of connected predictors in the model by

incorporating an MRF on the variable selection indicators that utilize the estimated network among

predictors. The proposed model is therefore appropriate for datasets where the predictors that

affect the outcome of interest are in fact connected through a network.

5.2.4. Graph selection prior on Ω and G

The goal of the graph selection is to allow inference on the network G among predictors X. The

prior distribution on the precision matrix Ω discussed in (5.3) combines an exponential prior on

the diagonal entries with a mixture of normals on the off-diagonal entries of to allow the entries for

selected edges to have a larger variance than that of non-selected edges:

π(Ω|G, v0, v1, λ) = C2(G, v0, v1, λ)−1
∏
j<k

N (ωjk|0, v2
Gjk

)
∏
j

Exp(ωjj |
λ

2
)I{Ω∈M+} (5.5)

where v0 > 0 is small, v1 > 0 is large, λ > 0 and I{Ω∈M+} is an indicator function that restricts the

prior to the space of symmetric-positive definite matrices. Note that C2(G, v0, v1, λ) is the normal-

izing constant. By choosing v0 to be small, we ensure that ωjk will be close to 0 for non-selected

edges. For selected edges, a large value of v1 allows ωjk to have more substantial magnitude. In

the second level of the hierarchy, we place a prior on the edge inclusion indicators Gjk:

π(G|p0, v0, v1, λ, µ, η) ∝ C2(G, v0, v1, λ)C1(G,µ, η)
∏
j<k

{pgjk0 (1− p0)1−Gjk} (5.6)

65



where p0 reflects the prior probability of edge inclusion and can be fixed.

5.2.5. Posterior Inference

Together with the observed data, prior distributions are converted to posterior distributions through

the use of Bayes theorem. The joint posterior distribution for the set of all parameters θ = (ν,ρ,γ, φ, f ,Ω, G)

is written as

π(θ|y, X) ∝ π(y|f , ν,ρ)π(ρ)π(f |X,γ, φ)π(X|Ω)π(γ|G)p(Ω|G)π(G)π(ν)

∝
n∏
i=1

√
ν√

2πρi
e
− ν(ρi+1−yif(xi))

2

2ρi × |K|− 1
2 e−

1
2 f
TK−1f

× |Ω|n2 e− 1
2X
′ΩX × e−µ

∑
j γj+η

∑
j 6=k Gjkγjγk

×
∏
j<k

N (ωjk|0, v2
Gjk

)
∏
j

Exp(ωjj |
λ

2
)I{Ω∈M+}

×
∏
j<k

p
Gjk
0 (1− p0)1−Gjk × νaν−1e−bνν .

MCMC is implemented by Metropolis Hastings within Gibbs algorithm. Most of the conditional

distributions can be easily sampled. We have

ν|f , X,y,ρ ∼ G

(
aν +

3n

2
, bν +

n∑
i=1

(ρi + 1− yif(xi))
2

2ρi

)
, (5.7)

and we have

ρi|f ,y, ν ∼ GIN (1/2, ν, ν(1− yifi)2),

where GIN (p, a, b) stands for the Generalized Inverse Gaussian distribution. Alternatively, the

conditional distribution of ρ−1
i is an inverse Gaussian distribution, denoted by IN .

ρ−1
i |f ,y, ν ∼ IN (|1− yifi|−1, ν), (5.8)
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where the density function of IN (µ, λ) is defined as below:

f(x;µ, λ) =

√
λ√

2πx3
e
−λ(x−µ)2

2µ2x .

The conditional distribution of γj follows the Bernoulli distribution which is given by

γj |γ−j , φ,G, f , X ∼ Ber
(

Πj(γj = 1,γ−j)

Πj(γj = 1,γ−j) + Πj(γj = 0,γ−j)

)
, (5.9)

where γ−j = (γ1, . . . , γj−1, γj+1, . . . , γp) and Πj(γ) = |K(γ)|−
1
2

e−
1
2 f
TK(γ)−1fe−µγj+ηγj

∑
k gjkγk .

The conditional distribution of φ is given by

π(φ|f ,γ, X) ∝ |K|−
1
2 e−

1
2 f
TK−1f (5.10)

We use the Metropolis-Hasting algorithm to draw samples from π(φ|f ,γ, X). Since φ ∈ (0, 1), the

logit normal distribution q(x;µ, τ2) = 1
τ
√

2π
1

x(1−x)e
− (logit(x)−µ)2

2τ2 is chosen as the proposed distribu-

tion. Assume the last state is φt−1, we draw a sample φ∗ from q(x;φt−1, τ2), where τ2 is set to a

value that keeps the acceptance rate around 40%. We accept or reject the current proposed φ∗

with probability αt.

αt = min
(

1,
π(φ∗|f ,γ, X)φ∗(1− φ∗)

π(φt−1|f ,γ, X)φt−1(1− φt−1)

)

LetDρ = diag(ρ1, . . . , ρn) and z be a vector with entries zi = (1+ρ−1
i )yi. The conditional distribution

for f is a multivariate Gaussian:

f |y, ν,ρ,K ∼ N (ν(νD−1
ρ +K−1)−1z, (νD−1

ρ +K−1)−1). (5.11)

The conditional distribution of G is given by

π(G|γ, v0, v1, λ, p0) ∝
∏
j<k

N (ωjk|0, v2
Gjk

)p
Gjk
0 (1− p0)1−GjkeηGjkγjγk , (5.12)

67



and each entry Gjk of G follows the Bernoulli distribution with

π(Gjk = 1|γ, v0, v1, λ, p0) =
N (ωjk|0, v2

1)p0e
ηγjγk

N (ωjk|0, v2
1)p0eηγjγk +N (ωjk|0, v2

0)(1− p0)
. (5.13)

The full conditionals for Ω is given as

p(Ω|G, v0, v1, λ,y, X) ∝ |Ω|n2 exp{−tr(
1

2
X ′XΩ)}

∏
j<k

N (ωjk|0, v2
Gjk

)
∏
j

Exp(ωjj |
λ

2
)I{Ω∈M+}.

(5.14)

We can use the block Gibbs sampler (Wang, 2015) to sample Ω. The details are provided in

Appendix. The Metropolis-Hastings within Gibbs sampling approach is provided in Algorithm 4.

1 for t = 1 to T do
2 Sample ν ∼ G

(
aν + 3n

2 , bν +
∑n
i=1

(ρi+1−yifi)2
2ρi

)
;

3 for i = 1 to n do
4 Sample ρ−1

i ∼ IN (|1− yif(xi)|−1, ν);
5 end
6 for i = 1 to p do
7 Sample γj ∼ Ber

(
Πj(γj=1,γ−j)

Πj(γj=1,γ−j)+Πj(γj=0,γ−j)

)
;

8 end
9 for i = 1 to p do

10 Sample gjk ∼ Ber
(

N (ωjk|0,v21)p0e
ηγjγk

N (ωjk|0,v21)p0e
ηγjγk+N (ωjk|0,v20)(1−p0)

)
;

11 Sample (ω−j,j , ωjj) ∼ N (−Cjs−j,j , Cj)G(n2 + 1,
sjj+λ

2 );
12 end
13 Generate a proposal φ∗ ∼ q(φ;φt−1, τ2);
14 Generate u ∼ U(0, 1);

15 if u < min
(

1, π(φ∗|f ,γ,X)φ∗(1−φ∗)
π(φt−1|f ,γ,X)φt−1(1−φt−1)

)
then

16 φt ← φ∗;
17 else
18 φt ← φt−1;
19 end
20 Sample f ∼ N (ν(νD−1

ρ +K−1)−1z, (νD−1
ρ +K−1)−1);

21 end
Algorithm 4: MCMC algorithm for JBNSVM.

5.2.6. Prediction

To predict the label for a new testing case, the inference is divided into two steps: first computing the

distribution of the latent non-linear function f∗ corresponding to the test case; second computing

the predictive label probabilities of the test case.
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Let θ = (γ, ν,ρ, φ)T denote the vector of model parameters. The predictive distribution of f∗ for a

new testing data vector x∗p×1 given the training dataset X, y and θ can be written as

f∗|x∗, X,y,θ ∼ N (µ, σ2), (5.15)

where

k∗ = (k(x∗,x1), . . . , k(x∗,xn))T ,

k∗ = k(x∗,x∗),

Σ = (K + ν−1Dρ)
−1,

µ = k∗TΣDρz,

σ2 = k∗ − k∗TΣk∗.

Then, we can use the probit link to compute the conditional predictive class probabilities.

π(y∗ = 1|x∗, X,y,θ) =

∫
Φ(f∗)π(f∗|x∗, X,y,θ)df∗

= Φ

(
k∗TΣDρz√

1 + k∗ − k∗TΣk∗

)
. (5.16)

To estimate the marginal predictive probability π(y∗ = 1|x∗, X,y), the MCMC samples of θ are

used.

p̂ =
1

M

M∑
m=1

p(y∗ = 1|x∗, X,y,θm), (5.17)

where θ1, . . . , θM are the MCMC samples of θ.

The prediction error can be measured by the cross-entropy between the predictive probabilities and

the actual class.

CE = −
N∑
i=1

I(y∗i = 1) log p̂i −
N∑
i=1

I(y∗i = −1) log(1− p̂i),

where N is the sample size of testing data. The decision can be made by ŷi = sign(p̂i − 0.5) and
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the associated prediction error can be reported as follows.

PE =
1

N

N∑
i=1

I(ŷi 6= y∗i ). (5.18)

5.3. Simulation studies

5.3.1. Design of Experiment

In this section, we study the performance of our JBNSVM method through the simulated addi-

tive models and compare with the following existing methods: L1SVM, L2SVM, Kernel-SVM and

BNSVM. Of note, Chapter 4 showed that BNSVM outperforms several penalized linear SVM meth-

ods such as L1SVM and L2SVM, and non-linear kernel SVM. The reason we compare the proposed

JBNSVM with BNSVM is that when the prior knowledge is partially correct or incorrectly specified,

the prediction accuracy for BNSVM may be deteriorated while JBNSVM doesn’t subject to the prior

knowledge and should produce a stable performance.

Following the settings in Chapter 4, we simulate the additive model: x ∼ N (0,Ω−1
p×p), f(x) =

x2
1 + x2

2 + ..+ x2
q, where x1, ..., xq are the first q dimensions of x and f is only relevant with the first

q features. The binary response y is determined by a cut-off value of f(x), which divides the two

classes almost equally. We simulate the examples for both the graph-related covariance structure

and independent covariance structure for the input features. The precision matrix Ω and covariance

matrix Σ are generated from a simulated graph G.

In each experimental setting, we generate 100 datasets, each with a training sample for fitting, a

validation sample for tuning and an independent test sample. The sample size for training, validation

and testing data is 200, and the feature dimension p is set at 20, 100. The performance metrics:

the prediction error (PE), prediction sensitivity (PSEN), prediction specificity (PSPEC), Matthews

Correlation Coefficients (MCC), feature selection true positive (FSTP) and feature selection false

positive (FSFP). For comparision, prediction errors are reported by (5.18) as not all methods

provide probabilistic prediction. The prediction sensitivity is calculated as the proportion of positives

(y = 1) that are correctly identified and the prediction specificity is calculated as the proportion of
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negatives (y = −1) that are correctly identified. MCC is defined as

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(5.19)

where TP is the number of true positives, TN is the number of true negatives, FP is the number

of false positives and FN is the number of false negatives. FSTP is the percentage of important

features selected by the model among the total important features and FSFP is the percentage of

unimportant features selected by the model among the total unimportant features.

5.3.2. Parameter Tuning

For L1SVM, L2SVM and Kernel-SVM, we use the penalizedSVM R-package (Becker et al., 2009) to

tune the parameters in the validation datasets. For BNSVM, there are four settings: BNSVM(η = 0),

representing no graph incorporated, only µ needs to be tuned. When η 6= 0, three settings includes

BNSVM(G∗ = nG), representing the noisy graph guided model; BNSVM(G∗ = pG), representing

a partial graph guided model; BNSVM(G∗ = G), representing a true graph guided model. Since

there working graphs are incorporated into the model, two parameters (µ, η) need to be tuned to

achieve the best performance in terms of PE.

5.3.3. Simulation Results

Table 5.1 and Table 5.2 summarize the results for two linear SVM (L1SVM and L2SVM) and three

non-linear SVM (Kernel-SVM, BNSVM and JBNSVM) under different data covariance structure. We

report the mean and standard error over 100 datasets for each metric we choose to compare in the

result table. Obviously, all the non-linear methods work much better than the linear methods due to

the simulated non-linear data structure. In most settings, the BNSVM approach with incorporating

the true graphG has the best performance regarding to PE, MCC and FSFP. However, if the working

graph is not correctly specified, our proposed method JBNSVM outperforms other methods such

as BNSVM(η = 0), BNSVM(G∗ = nG) and BNSVM(G∗ = pG). These facts show that in most

conditions, our prior knowledge may be not fully completed or certain, instead of incorporating

such uncertain knowledge, we should infer the network structure from data and incorporate the

inference to guide feature selection and prediction. In addition, the proposed model JBNSVM is

able to estimate the structure among between predictors with high accuracy which provides insight
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into the relationships among important predictors. The true graphs and the estimated graphs for

p = 20, 100 are illustrated in Figure 5.1.

Figure 5.1: The true graphs and estimated graphs.

5.4. Data Analysis

In the real data application, we use the TCGA glioblastoma cancer gene expression dataset with

286 subjects and 12,999 genes in the network. The response variable we consider here is the one

year survival status. In this section, we apply our methods and other existing methods to classify
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Table 5.1: Simulation results for correlated structure among features. – indicates no feature selec-
tion for the corresponding method.

Method PE (%) PSen (%) PSpec(%) MCC (%) FSTP (%) FSFP (%)
p = 20, q = 10

L1SVM 48.30 (1.15) 43.41 (3.61) 59.80 (4.67) 4.15 (2.80) 53.00 (11.35) 61.00 (11.81)
L2SVM 49.20 (0.86) 46.55 (2.30) 54.93 (2.75) 1.56 (1.72) – –
Kernel-SVM 17.35 (0.62) 79.90 (0.98) 85.31 (1.41) 65.49 (1.27) – –
BNSVM(η = 0) 16.00 (0.73) 67.04 (2.49) 91.73 (1.17) 60.85 (2.92) 95.00 (2.52) 11.00 (1.68)
BNSVM(G∗ = nG) 17.80 (0.83) 70.15 (1.10) 93.11 (1.33) 66.01 (1.74) 95.00 (3.20) 10.00 (1.98)
BNSVM(G∗ = pG) 16.35 (0.89) 72.73 (1.43) 94.29 (0.83) 68.83 (1.70) 98.00 (1.25) 11.00 (2.19)
BNSVM(G∗ = G) 15.50 (0.52) 73.54 (1.06) 94.18 (1.01) 69.42 (1.50) 100.00 (0.00) 7.00 (2.00)
JBNSVM 15.85 (0.60) 76.12 (1.13) 91.98 (1.07) 69.19 (1.21) 99.00 (0.94) 25.00 (3.45)

p = 100, q = 20
L1-SVM 46.60 (0.81) 53.75 (1.60) 53.01 (2.14) 6.79 (1.61) 59.50 (9.01) 62.00 (7.98)
L2-SVM 48.75 (0.83) 46.43 (0.94) 51.00 (1.54) 1.15 (1.82) – –
Kernel-SVM 34.75 (1.01) 63.42 (2.62) 66.81 (1.99) 30.55 (2.07) – –
BNSVM(η = 0) 30.95 (1.36) 55.31 (3.47) 78.67 (6.96) 42.13 (3.16) 62.00 (11.84) 8.25 (6.96)
BNSVM(G∗ = nG) 35.10 (1.90) 43.00 (4.37) 75.16 (2.91) 34.94 (3.75) 56.00 (8.43) 12.25 (3.86)
BNSVM(G∗ = pG) 32.50 (1.12) 52.83 (2.30) 85.15 (3.40) 37.19 (3.09) 64.50 (8.99) 5.75 (1.33)
BNSVM(G∗ = G) 27.50 (0.94) 74.05 (3.78) 71.01 (3.79) 46.32 (1.66) 66.50 (6.78) 5.13 (1.32)
JBNSVM 27.60 (1.54) 70.78 (1.67) 73.96 (1.50) 44.77 (3.09) 54.50 (4.10) 2.88 (0.58)

Table 5.2: Simulation results for independent structure among features. – indicates no feature
selection for the corresponding method.

Method PE (%) PSen (%) PSpec(%) MCC (%) FSTP (%) FSFP (%)
p = 20, q = 10

L1-SVM 47.89 (0.71) 41.12 (3.24) 63.98 (3.64) 4.22 (1.00) 42.22 (9.97) 41.11 (8.65)
L2-SVM 48.55 (1.04) 41.06 (1.94) 56.21 (2.87) 3.12 (2.12) – –
KBSVM 45.55 (0.73) 33.79 (4.20) 74.83 (3.43) 9.58 (1.35) 28.00 (7.23) 19.00 (9.63)
Kernel-SVM 20.20 (0.68) 79.30 (1.02) 80.29 (1.48) 50.74 (1.35) – –
BNSVM, G∗ = nG 21.60 (2.49) 84.30 (1.32) 72.58 (5.05) 57.50 (4.71) 90.00 (8.39) 25.00 (6.13)
BNSVM, G = I 20.95 (1.06) 86.00 (2.41) 72.11 (3.00) 59.43 (2.02) 97.00 (2.00) 20 (5.76)
JBNSVM 20.00 (0.52) 78.49 (1.43) 81.51 (1.29) 60.21 (1.02) 99.00 (0.94) 49.00 (10.12)

p = 100, q = 20
L1SVM 47.70 (0.92) 51.38 (1.70) 54.96 (1.06) 4.55 (1.84) 69.00 (7.38) 70.62 (6.56)
L2SVM 50.00 (1.22) 47.18 (1.50) 52.39 (1.61) 3.18 (2.22) – –
KBSVM, 46.20 (0.74) 48.42 (4.19) 57.02 (3.63) 5.47 (2.25) 43.00 (11.57) 44.12 (11.67)
Kernel-SVM 38.95 (1.33) 65.91 (4.68) 55.77 (3.01) 22.86 (3.14) – –
BNSVM, G∗ = nG 35.88 (0.88) 43.83 (4.13) 71.99 (4.44) 29.28 (3.79) 54.50 (12.74) 22.63 (12.18)
BNSVM, G = I 31.38 (0.74) 61.91 (3.06) 60.58 (2.21) 35.15 (1.41) 68.90 (10.01) 11.11 (4.23)
JBNSVM 31.65 (1.22) 60.34 (1.11) 66.37 (1.89) 36.79 (2.41) 60.50 (3.83) 8.25 (1.99)

the survival status of the glioblastoma patients. Because our proposed model JBNSVM can only

perform on small number of genes so we screen the top important genes and the steps are provides

as follows: First, we fit an univariate logistic regression model for each gene x:

log
p(x)

1− p(x)
= β0 + β1x (5.20)

We calculate the p value from the logistic regression and create a list of ascend ordered p-value as

well as the corresponding genes. Second, we use the gene-ranking methods to select important

genes, for example, we select the top 100 genes in the list and generate the new feature inputs from

73



Table 5.3: Results of the analysis of TCGA data. n = 286, p = 100.
PE (%) PSen (%) PSpec (%) MCC (%)

L1SVM 33.33 47.50 80.36 29.63
L2SVM 38.69 39.57 67.90 20.43
Kernel-SVM 29.17 55.00 82.14 38.84
BNSVM(η = 0) 32.29 57.50 75.00 32.92
BNSVM(G∗) 32.29 55.00 76.79 32.56
JBNSVM 28.13 62.50 78.57 41.60

the gene expression levels.

Second, we create a graph G for all the 12, 999 genes from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database, and we use an algorithm to retrieve the connections within the top 100

genes, and then map them to the working graph G∗. Of note, the working G∗ is very sparse with

only two edges detected. It is almost equivalent to no graph guided when we apply the BNSVM

method. This is also the main reason for us to develop JBNSVM to apply the conditions when no

prior knowledge is available.

Third, we split the total samples of n = 286 into training and testing datasets. The sample size

for training is 190. During the training procedure, we choose five pairs of (v0, v1) as the tuning

parameters resulting in different levels of sparsity of graph. The optimal tuning parameters for each

methods are chosen by the minimum 5-fold cross-validation error.

The testing error are summarized in Table 5.3. L1SVM and L2SVM have the larger prediction error,

which may suggest that the linear separation is not suitable for the real gene expression data.

BNSVM(G∗) has very similar performance to and BNSVM(η = 0) due to the sparse graph extracted

from KEGG with only two connections. Kernel-SVM achieves a lower cross-validation error, which

may suggest that the non-linear classifier is more plausible. JBNSVM gives the best performance

with the smallest PE and the highest MCC.

5.5. Discussions

In this work, we have developed a novel-modeling strategy to simultaneously select graph-related

features and learn the structure among them. Our approach is fully Bayesian and therefore allow

us to account for uncertainty over both feature and graph selections. Through simulations, we

have demonstrated that this approach can achieve improved selection and prediction accuracy over

74



competing existing methods. We have illustrated this method with an application to the glioblastoma

survival studies. We have found our method to provide satisfactory results in settings with p < n

cases. As more computationally efficient approaches for Bayesian estimation of Gaussian graphical

models are developed, these can easily be merged into our framework, enabling the analysis of a

much larger number of predictors.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1. Summary

In this dissertation, I have developed novel Bayesian SVM methods that enable simultaneous pa-

rameter estimation and feature selection guided by the graphical structure among predictors. In the

first study, the proposed method uses the spike-and-slab prior for feature selection, combined with

the Ising prior that encourages group-wise selection of the predictors adjacent to each other on the

known graph. In the second study, the proposed method assigns Laplace priors to the regression

coefficients and incorporates the underlying graph information via a hyper-prior for the shrinkage

parameters in the Laplace priors. This enables smoothing of shrinkage parameters for connected

variables in the graph and conditional independence between shrinkage parameters for discon-

nected variables. In the third study, we extend the linear SVM to the non-linear SVM by inserting

a special covariance matrix, which is constructed by a non-linear kernel function embedded with

latent binary variables representing the selection status of features. The graphical structure among

features is incorporated using again the Ising prior. Unlike the aforementioned studies that assume

the prior graph information is fully known, the fourth study develops a new joint Bayesian non-linear

SVM model to infer a sparse graph among the predictors and perform variable selection by incorpo-

rating the estimated graph simultaneously. This joint model is useful when the available reference

graphs are inaccurate or inappropriate for the experimental condition, which is often the case in

practice. The performance of all the proposed methods is evaluated in comparison with existing

SVM methods in terms of prediction and feature selection in extensive simulations. These methods

are also illustrated in analysis of genomic data from cancer studies, demonstrating their advantage

in generating biologically meaningful results and identifying potentially important features.

6.2. Future work

In addition to the aforementioned work that we have done, future work may include extending the

current approach to more general types of outcomes such as categorical or continuous variables

although the complexity of the optimization problem may increase.
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APPENDIX

NOTATION

A.1. Taylor’s expansion in Chapter 3 MH algorithm

MH algorithm uses as proposal function a multivariate Gaussian fitted locally to the distribution

being sampled. This Gaussian fit is based on the following Taylors series expansion to approximate

the log density of α

logπ(α) ∝ f(α) =

p+1∑
i

(αj −
τj
2
e2αj )− 1

2ν
(α− µ)′Ω(α− µ) (A.1)

≈ f(α0) + g′(α0)(α−α0) +
1

2
(α−α0)

′
cH(α0)(α−α0)

where g and H stand for the gradient vector and Hessian matrix for f , respectively. The constant

c is controlling the step of the hessian matrix, when c is 1, it is the ordinary Taylor’s expansion.

If we assume that f represents the logarithm of a concave probability distribution function (PDF),

then the above approximation is equivalent to fitting the PDF (which we call F) with a multivariate

Gaussian:

F (α) =
1

(2π)
k/2|Σ |1/2

e−
1
2 (α−θ)TΣ−1(α−θ) (A.2)

From comparing equations A.1 and A.2 it is obvious that the precision matrix is the same as the

negative Hessian: Σ−1 = −cH(α0) . To find the mean of the fitted Gaussian, we observe that

Gaussian mean maximizes the PDF (and its log). Therefore, finding the mean is equivalent to

maximizing equation A.2. After some calculus, we arrive at:

θ = α0 −H−1(α0)g(α0)/c (A.3)
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Let J be the vector of 1 and T =


τ1e

2α1

. . .

τp+1e
2αp+1

, then

g(α0) = (I − T0)J − Ω

ν
(α0 − µ), H(α0) = −2T0 −

Ω

ν

where g and H stand for the gradient vector and Hessian matrix for f , respectively. T0 represents

the T matrix evaluated at α0. If we assume that f is the logarithm of π(α), then π(α) is equivalent

to a multivariate Gaussian

π(α) ∝ exp{f(α0) + ((I − T0)J − Ω

ν
(α0 − µ))(α− α0)− 1

2
(α− α0)′(2cT0 +

cΩ

ν
)(α− α0)}

∝ exp{−α′(cT0 +
cΩ

2ν
)α+ α′0(2cT0 +

(c− 1)Ω

ν
)α+ (J ′ − J ′T0 + J ′

µ

ν
)α)}

A.2. The prediction formula for new testing point x∗ in (4.11)

Consider a new testing data vector x∗, the corresponding f∗ is the value of non-linear function f(x)

evaluated at x∗. The joint joint prior distribution of the training outputs f , and the test outputs f∗

according to the prior is  f

f∗

 ∼ N
0,

 K k∗

k∗T k∗


 (A.4)

The the conditional distribution of f∗ given f follows

f∗|x∗, X,θ, f ∼ N (k∗TK−1f , k∗ − k∗TK−1k∗). (A.5)

Since the conditional distribution for f is given by (4.10), we have

f∗|x∗, X,y,θ ∼ N (k∗TΣDρz, k
∗ − k∗TΣk∗). (A.6)

Hence, (4.11) holds.

Note that the first equality in (4.12) implies that π(y∗ = 1|x∗, X,y,θ) = P (u < f∗) where u ∼
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N (0, 1), f∗ follows , and u and f∗ are independent. Since

f∗ − u ∼ N (k∗TΣDρz, 1 + k∗ − k∗TΣk∗),

the second equality in (4.12) follows.

A.3. Fast block Gibbs sampler for Ω in Chapter 5 (5.14)

We define V = (v2
zij ) as a p× p symmetric matrix with zeros in the diagonal entries and (v2

zij )i<j in

the upper diagonal entries. S = X ′X. Partition Ω, S and V as follows:

Ω =

Ω11 ω12

ω′12 ω22

 , S =

S11 s12

s′12 s22

 , V =

V11 v12

v′12 v22

 (A.7)

where (ω12, ω22), (s12, s22), (v12, v22) are the last column of Ω, S and V respectively. The conditional

distribution of (ω12, ω22) in Ω is

p(ω12, ω22|Ω11, X,G) ∝ (ω22 − ω′12Ω−1
11 ω12)

n
2 exp[−1

2
{ω′12D

−1ω12 + 2s′12ω12 + (s22 + λ)ω22}]

where D = diag(v12). Consider a change of variables (ω12, ω22) → (µ = ω12, v = ω22 −

ω′12Ω−1
11 ω12), whose Jacobian is a constant not involving (µ, v). So

p(µ, v|Ω11, X,G) ∝ v n2 exp(−s22 + λ

2
v) exp(−1

2
[µ′{D−1 + (s22 + λ)Ω−1

11 }µ+ 2s′12µ]) (A.8)

This implies that:

(µ, v)|(Ω11, X,G) ∝ N (−Cs12, C)G(
n

2
+ 1,

s22 + λ

2
) (A.9)

where C = {(s22 + λ)Ω−1
11 +D−1}−1. Using this method, we can permute any column to attain the

full conditional used to generate Ω|X,G.

79



BIBLIOGRAPHY

Alon, U, Barkai, N, Notterman, DA, Gish, K, Ybarra, S, Mack, D, and Levine, AJ (1999). Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues
probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences 96.12,
6745–6750.

Ashburner, M, Ball, CA, Blake, JA, Botstein, D, Butler, H, Cherry, JM, Davis, AP, Dolinski, K, Dwight,
SS, Eppig, JT, et al. (2000). Gene ontology: tool for the unification of biology. Nature genetics
25.1, 25.

Becker, N, Werft, W, Toedt, G, Lichter, P, and Benner, A (2009). penalizedSVM: a R-package for
feature selection SVM classification. Bioinformatics 25.13, 1711–1712.

Becker, N, Toedt, G, Lichter, P, and Benner, A (2011). Elastic SCAD as a novel penalization method
for SVM classification tasks in high-dimensional data. BMC bioinformatics 12.1, 138.

Bertsekas, DP (1999). Nonlinear programming. Athena scientific Belmont.

Bhosale, D and Ade, R (2014). Feature Selection based Classification using Naive Bayes, J48 and
Support Vector Machine. International Journal of Computer Applications (0975- 8887) Volume
99.

Bradley, PS and Mangasarian, OL (1998). “Feature selection via concave minimization and support
vector machines.” In: ICML. Vol. 98, 82–90.

Chakraborty, S (2009). Bayesian binary kernel probit model for microarray based cancer classifica-
tion and gene selection. Computational Statistics & Data Analysis 53.12, 4198–4209.

Chang, C, Kundu, S, and Long, Q (2018). Scalable Bayesian variable selection for structured high-
dimensional data. Biometrics, in press.

Chapelle, O and Schölkopf, B (2002). “Incorporating invariances in non-linear support vector ma-
chines”. In: Advances in neural information processing systems, 609–616.

Chen, J, Bardes, EE, Aronow, BJ, and Jegga, AG (2009). ToppGene Suite for gene list enrichment
analysis and candidate gene prioritization. Nucleic acids research 37.suppl 2, W305–W311.

Chuang, HY, Lee, E, Liu, YT, Lee, D, and Ideker, T (2007). Network-based classification of breast
cancer metastasis. Molecular systems biology 3.1, 140.

Chung, FR and Graham, FC (1997). Spectral graph theory. 92. American Mathematical Soc.

Clarke, HJ, Chambers, JE, Liniker, E, and Marciniak, SJ (2014). Endoplasmic reticulum stress in
malignancy. Cancer cell 25.5, 563–573.

Cristianini, N (2001). Support vector and kernel machines. Tutorial at ICML.

Decoste, D and Schölkopf, B (2002). Training invariant support vector machines. Machine learning
46.1, 161–190.

80



Dempster, AP (1972). Covariance selection. Biometrics, 157–175.

Dobra, A (2009). Variable selection and dependency networks for genomewide data. Biostatistics
10.4, 621–639.

F., SC. Pathway Databases. Annals of the New York Academy of Sciences 1020.1 (), 77–91.

Fan, J (2001). Runze Li Variable selection via penalized likelihood. J. Amer. Stat. Assoc.

Fung, GM, Mangasarian, OL, and Shavlik, JW (2003). Knowledge-based nonlinear kernel classi-
fiers. In: Learning Theory and Kernel Machines. Springer, 102–113.

Gelfand, AE and Smith, AF (1990). Sampling-based approaches to calculating marginal densities.
Journal of the American statistical association 85.410, 398–409.

George, EI and McCulloch, RE (1993). Variable selection via Gibbs sampling. Journal of the Amer-
ican Statistical Association 88.423, 881–889.

Gilks, WR, Richardson, S, and Spiegelhalter, DJ (1996). Introducing markov chain monte carlo.
Markov chain Monte Carlo in practice 1, 19.

Graepel, T and Herbrich, R (2004). “Invariant pattern recognition by semi-definite programming
machines”. In: Advances in neural information processing systems, 33–40.

Grantham, NS, Reich, BJ, Borer, ET, and Gross, K (2017). MIMIX: a Bayesian Mixed-Effects Model
for Microbiome Data from Designed Experiments. arXiv preprint arXiv:1703.07747.

Guyon, I, Weston, J, Barnhill, S, and Vapnik, V (2002). Gene selection for cancer classification
using support vector machines. Machine learning 46.1-3, 389–422.

Hedenfalk, I, Duggan, D, Chen, Y, Radmacher, M, Bittner, M, Simon, R, Meltzer, P, Gusterson, B,
Esteller, M, Raffeld, M, et al. (2001). Gene-expression profiles in hereditary breast cancer. New
England Journal of Medicine 344.8, 539–548.

Henao, R, Yuan, X, and Carin, L (2014). “Bayesian nonlinear support vector machines and discrim-
inative factor modeling”. In: Advances in Neural Information Processing Systems, 1754–1762.

Hiramatsu, N, Joseph, VT, and Lin, JH (2011). Monitoring and manipulating mammalian unfolded
protein response. In: Methods in enzymology. Vol. 491. Elsevier, 183–198.

Hofmann, T, Schölkopf, B, and Smola, AJ (2008). Kernel methods in machine learning. The annals
of statistics, 1171–1220.

Ising, E (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik 31.1, 253–258.

Kim, S, Pan, W, and Shen, X (2013). Network-based penalized regression with application to ge-
nomic data. Biometrics 69.3, 582–593.

Koh, I, Cha, J, Park, J, Choi, J, Kang, SG, and Kim, P (2018). The mode and dynamics of glioblas-
toma cell invasion into a decellularized tissue-derived extracellular matrix-based three-dimensional
tumor model. Scientific reports 8.1, 4608.

81



Kundu, S, Cheng, Y, Shin, M, Manyam, G, Mallick, BK, and Baladandayuthapani, V (2018). Bayesian
variable selection with graphical structure learning: Applications in integrative genomics. PloS
one 13.7, e0195070.

Kurtoglu, M, Gao, N, Shang, J, Maher, JC, Lehrman, MA, Wangpaichitr, M, Savaraj, N, Lane, AN,
and Lampidis, TJ (2007). Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor
types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Molecular can-
cer therapeutics 6.11, 3049–3058.

Lauer, F and Bloch, G (2008). Incorporating prior knowledge in support vector machines for classi-
fication: A review. Neurocomputing 71.7, 1578–1594.

Li, C and Li, H (2008). Network-constrained regularization and variable selection for analysis of
genomic data. Bioinformatics 24.9, 1175–1182.

Li, F and Zhang, NR (2010). Bayesian variable selection in structured high-dimensional covariate
spaces with applications in genomics. Journal of the American statistical association 105.491,
1202–1214.

Liu, F, Chakraborty, S, Li, F, Liu, Y, Lozano, AC, et al. (2014). Bayesian regularization via graph
Laplacian. Bayesian Analysis 9.2, 449–474.

Luts, J and Ormerod, JT (2014). Mean field variational Bayesian inference for support vector ma-
chine classification. Computational Statistics & Data Analysis 73, 163–176.

Mallick, BK, Ghosh, D, and Ghosh, M (2005). Bayesian classification of tumours by using gene
expression data. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
67.2, 219–234.

Mangasarian, OL and Kou, G (2007). “Feature selection for nonlinear kernel support vector ma-
chines”. In: Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International
Conference on. IEEE, 231–236.

Marchiori, E and Sebag, M (2005). “Bayesian learning with local support vector machines for can-
cer classification with gene expression data”. In: Workshops on Applications of Evolutionary
Computation. Springer, 74–83.

Metropolis, N, Rosenbluth, AW, Rosenbluth, MN, Teller, AH, and Teller, E (1953). Equation of state
calculations by fast computing machines. The journal of chemical physics 21.6, 1087–1092.

Mitchell, TJ and Beauchamp, JJ (1988). Bayesian variable selection in linear regression. Journal of
the American Statistical Association 83.404, 1023–1032.

Mukherjee, S, Tamayo, P, Slonim, D, Verri, A, Golub, T, Mesirov, J, and Poggio, T (1999). Sup-
port vector machine classification of microarray data. Tech. rep. AI Memo 1677, Massachusetts
Institute of Technology.

Nayak, J, Naik, B, and Behera, H (2015). A comprehensive survey on support vector machine in
data mining tasks: applications & challenges. International Journal of Database Theory and
Application 8.1, 169–186.

82



Nishimura, D (2001). BioCarta. Biotech Software & Internet Report: The Computer Software Jour-
nal for Scient 2.3, 117–120.

Ogata, H, Goto, S, Sato, K, Fujibuchi, W, Bono, H, and Kanehisa, M (1999). KEGG: Kyoto encyclo-
pedia of genes and genomes. Nucleic acids research 27.1, 29–34.

Pan, W, Xie, B, and Shen, X (2010). Incorporating predictor network in penalized regression with
application to microarray data. Biometrics 66.2, 474–484.

Pointer, KB, Clark, PA, Schroeder, AB, Salamat, MS, Eliceiri, KW, and Kuo, JS (2016). Associa-
tion of collagen architecture with glioblastoma patient survival. Journal of neurosurgery 126.6,
1812–1821.

Polson, NG, Scott, SL, et al. (2011). Data augmentation for support vector machines. Bayesian
Analysis 6.1, 1–23.
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