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Abstract 

Despite extensive research, the details of the metastasis-associated biological mechanisms 
are largely unknown. Here, we analyze data from multiple cancers using a novel 
computational method identifying sets of genes whose coordinated overexpression indicates 
the presence of a particular phenotype. We conclude that there is one shared “core” 
metastasis-associated gene expression signature corresponding to a specific variant of 
desmoplastic reaction, present in a large subset of samples that have exceeded a threshold of 
invasive transition specific to each cancer, indicating that the biological mechanism is 
triggered at that point. For example this threshold is reached at stage IIIc in ovarian cancer 
and at stage II in colorectal cancer.  It has several features, such as coordinated expression of 
particular collagens, mainly COL11A1 and other genes, mainly THBS2 and INHBA. The 
universally prominent presence of INHBA in all cancers strongly suggests a biological 
mechanism centered on activin A induced TGF-β signaling, because activin A is a member of 
the TGF-β superfamily consisting of an INHBA homodimer. It is accompanied by the 
expression of several transcription factors related to epithelial-mesenchymal transition, but 
not of SNAI1, and expression of E-cadherin is not downregulated. It is reversible, as evidenced 
by its absence in many matched metastasized samples, but its presence indicates that 
metastasis has occurred. Therefore, these results can be used for developing high-specificity 
biomarkers, as well as potential multi-cancer metastasis-inhibiting therapeutics targeting the 
corresponding biological mechanism.    
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Introduction 

It has been hypothesized [1,2] that the activation of some form of epithelial-mesenchymal 

transition (EMT) is a critical mechanism for the acquisition of motility and invasiveness in 

epithelial cancers. The version of EMT associated with cancer progression and metastasis has 

recently been labeled “Type 3 EMT” [2]. The details of the mechanisms have remained unclear, 

but it is believed that it involves activated fibroblasts in the desmoplastic stroma of tumors, 

referred to as “carcinoma associated fibroblasts” (CAFs), activation of some type of TGF-β 

signaling and significant involvement of the tumor microenvironment [3]. There is currently 

great interest in identifying the precise metastasis-associated features of type 3 EMT. 

 

A study [4] of serous papillary ovarian carcinomas, comparing the gene expression profiles of  

primary vs. omental metastatic tumors, identified 156 differentially expressed genes. To 

investigate the significance of these genes in an independent rich data set we performed 

hierarchical clustering, using only these genes, on The Cancer Genome Atlas (TCGA) gene 

expression data set consisting of 377 ovarian cancer samples containing staging information. The 

resulting heat map revealed a prominent block of about 100 highly overexpressed genes in 94 

samples (Figure S1, shown in www.ee.columbia.edu/~anastas/Figure_S1.pdf). Remarkably, we 

found that none of the 41 samples from tumors of stages IIIb and below were among the 94 

samples. This cannot be due to chance (P = 4 × 10
-6

), leading to the hypothesis that coordinated 

overexpression of these genes implies that the tumour has metastasized into at least stage IIIc. 

 

To further validate this hypothesis and test if similar versions apply to other cancers, we 

developed a computational technique (see Materials and Methods), which identifies, in an 

unbiased manner, clusters of coordinatedly overexpressed genes associated with a phenotype 

(such as transition to a particular metastatic stage). Our results consistently rediscover the same 

“core” signature of overexpressed genes, confirming the hypothesis. We found that this 

phenomenon occurs in multiple cancers, each of which has its own features involving additional 

genes, but the core signature is common. This common signature points to one particular variant 

of metastasis-associated desmoplastic reaction and to a corresponding particular variant of 

carcinoma associated fibroblasts to which we refer as “metastasis associated fibroblasts” 

(MAFs). Accordingly, in the following we refer to the corresponding gene expression signature 

and biological mechanism as “the MAF signature” and “the MAF mechanism,” respectively. 

 

Results  

Since we focus on the cluster of genes associated with the metastasis binary (“low stage” versus 

“high stage”) phenotype when the genes have their extreme (in most cases, largest) values, but 

not otherwise, we developed a special measure of association between the gene and the 

phenotype, which we call “extreme value association” (EVA), described in Materials and 

Methods. We performed the above algorithm on four rich gene expression data sets, two from 

ovarian cancer, the one from TCGA and another one [5], and two from colorectal cancer [6,7] 

accompanied by staging information. Using various staging transitions, it became clear that, in 

all cases, the MAF threshold can only be defined as exceeding stage IIIb in each of the ovarian 

data sets and stage I in each of the colorectal data sets. Interestingly, the “metastasis-associated 
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genes” identified in [4] as present in omental metastasis of ovarian cancer were also largely 

identified in [5] as belonging to a subtype of ovarian cancer characterized by extensive 

desmoplasia, which contains the MAF signature. 

Remarkably, we found that there were many genes, each of which had Bonferroni-corrected 

P < 10
-3

 in all four data sets. Table 1 shows a list of these genes with average log fold change 

greater than 2. The top ranked gene was COL11A1 (probe 37892_at), followed by COL10A1, 

POSTN, ASPN, THBS2, and FAP. Again, these genes were found purely as a result of their 

association with the staging phenotype in all four cancers. Gene Ontology enrichment testing of 

these genes identified cell adhesion, extracellular matrix and collagen fibril organization.  

We then did an extensive literature search aimed at identifying other studies in which at least 

some of these genes were identified as differentially expressed in various stages of other cancers. 

We even scrutinized studies in which none of the genes were mentioned in the main text, by 

looking at their supplementary data and re-ranking particular columns of genes in terms of their 

fold changes, from genes containing numerous genes. Although most of our results were 

negative, we were able to produce cancer gene lists with striking similarity (Table 2) to our own 

list (Table 1) in three studies of breast [8], gastric [9] and pancreatic [10] cancer.  

Specifically, a breast cancer study [8] comparing ductal carcinomas in situ (DCIS) with invasive 

ductal carcinoma (IDC) had a list of genes upregulated in IDC (Table 2) that had similarities to 

those we had identified, and the top-ranked gene was again COL11A1 (probe 37892_at) with log 

fold change of 6.50, while the next highest (4.08) corresponded to another probe of COL11A1, 

followed by a probe of COL10A1. Second, a study [9] comparing early gastric cancer (EGC) 

with advanced gastric cancer (AGC) – roughly separating stages I and II – also identified a 

similar differentially expressed gene list (Table 2) of which again COL11A1 (probe 37892_at) 

was at the top (log fold change: 4.26) followed by COL10A1 and FAP. Third, a study of 

pancreatic ductal adenocarcinoma [10] identified a list (Table 2) of gene overexpressed in whole 

tumor tissue versus normal pancreatic tissue, in which COL11A1 (probe 37892_at) is again 

prominent and the top entry (log fold change 5.15) was INHBA, supportive of our hypothesis of 

activin induced TGF-β signaling. The presence of the MAF signature in the latter study indicates 

that pancreatic cancer had reached the MAF staging threshold in most cases before the biopsy. 

The prominent desmoplastic reaction in pancreatic cancers (which contains the MAF signature) 

has recently been increasingly recognized  as  a “foe”  [11] that could lead to new therapeutic 

strategies targeting stromal cells to inhibit cancer. Finally, we realized that COL11A1 has been 

identified as a potential metastasis-associated gene in other types of cancer as well, such as in 

lung [12], and oral cavity [13], suggesting that the MAF signature may be present in a subset of 

high stage samples of most if not all epithelial cancers. 

In those cases as well as in our own findings, there was prominent presence of COL11A1 

(probe 37892_at). This remarkable consistent strong association of COL11A1 with the staging 

phenotype (specific to each cancer type) suggests that it could be used as a “proxy” of the MAF 

signature. This, in turn, allowed us to improve on the gene list of Table 1 by making use of 

numerous publicly available gene expression data sets of cancers of many types, even without 

any staging information, as long as the MAF signature is present in a sizeable subset of them, 

aiming at finding the “intersection” of the associated factors in these sets, revealing the “core” of 

the MAF biological mechanism.     
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As a first step for this task, we identified the few genes that are consistently highest associated 

with COL11A1. Table 3 shows a listing of genes in 22 cancer data sets, as well as an aggregate 

list of genes ranked in terms of their association with COL11A1.  The list is very similar to the 

phenotype-based gene ranking (Table 1). In addition to COL10A1 and a few other collagens, the 

top ranked genes are thrombospondin-2 (THBS2), inhibin beta A (INHBA), fibroblast activation 

protein (FAP), leucine rich repeat containing 15 (LRRC15), periostin (POSTN), and a disintegrin 

and metalloproteinase domain-containing protein 12 (ADAM12).  The presence of FAP indicates 

a general desmoplastic reaction and is not, by itself, sufficient for inferring the MAF signature. 

Indeed, FAP is occasionally co-expressed with several other EMT-related genes even in healthy 

tissues. However, COL11A1 was not associated with any of these genes in neither healthy nor 

low-stage cancerous tissues, further supporting the hypothesis that it can be used as a proxy for 

the MAF signature. These results indicate that THBS2 and INHBA, top ranked in Table 3 except 

for collagens, are the most important players in the MAF mechanism. 

As a second step, we identified gene pairs that are highest associated with COL11A1 jointly, but 

not individually, and therefore they would not appear in the previous list. For this task we ranked 

gene pairs according to their synergy [14] with COL11A1, using the computational method in 

[15], which could further facilitate biological discovery. For example, the scatter plots in 

Figure 1 show that genes ECM2 and TCF21 are jointly, but not individually, strongly associated 

with COL11A1 (P < 10
-6

, see Materials and Methods) in the two ovarian cancer data sets. Such 

findings are useful for developing biological hypotheses, e.g. in this particular case they suggest 

that the extracellular matrix protein 2 is associated with the MAF signature only when the 

TCF21 gene (a known mesenchymal-epithelial transition mediator) is downregulated.  

We only had miRNA and methylation data available for the TCGA ovarian data set. Using as 

measure the mutual information with COL11A1, we found many statistically significant 

miRNAs, among them hsa-miR-22 and hsa-miR-152, as well as differentially methylated genes, 

such as SNAI1 and PRAME, suggesting a particularly complex biological mechanism (correlation 

with the MAF phenotype led to essentially the same lists with lower significance). Table 4 

contains a list of the miRNAs, while Table 5 contains a list of the methylated genes (multiple test 

corrected P < 10
-16

 in both cases, see Materials and Methods). SNAI1 (snail) methylation is 

particularly important as the gene is known as one of the most important EMT-related 

transcription factors. Instead, the strongest MAF-associated transcription factor is AEBP1, 

making it a particularly interesting potential target. Many of the other EMT-related transcription 

factors, such as SNAI2, TWIST1, and ZEB1 are often overexpressed in the MAF signature, but 

SNAI1 is not (and, at least in ovarian carcinoma in which we have methylation data, this is due 

to its differentially methylated status). We believe that the lack of SNAI1 expression is a key 

distinguishing feature of the MAF signature, in which we observed neither SNAI1 

overexpression nor CDH1 (E-cadherin) downregulation.  

 

Discussion 

A direct clinical application of these findings is the development of a high-specificity 

metastasis-sensing biomarker product detecting coordinated overexpression of a few top-ranked 

genes, such as THBS2, INHBA and the collagens COL11A1, COL10A. A positive result in 
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seemingly low-stage primary tumors will indicate that the disease has actually already reached a 

higher stage.  

Remarkably, the same product can also be used to predict drug response. Indeed, at least in 

breast cancer, the MAF signature is associated with resistance to neoadjuvant chemotherapy. 

This is demonstrated in [16] where a stromal “metagene” signature of 50 genes was defined 

based on DCN (decorin). Although some of our key genes (such as COL11A1, THBS2) were not 

among these 50, the metagene signature used in that study has a strong intersection with the 

MAF signature. The stromal signature was resistant to neoadjuvant chemotherapy. 

Of course, the most significant clinical application would be to develop metastasis-inhibiting 

therapeutics using targets deduced from the biological knowledge provided by the MAF 

signature. Our top ranked genes strongly suggest that a key feature of the MAF signature is 

fibroblast activation based on an activin A induced version of TGF-β signaling resulting in 

partial EMT lacking SNAI1 expression, and leading to some form of altered proteolysis [17], 

which results in an environment rich in particular collagens, mainly COL11A1 and COL10A1. 

Supporting this hypothesis are the facts that activin A (INHBA homodimer) is a TGF-β 

superfamily member (ligand), THBS2 inhibits activation of TGF-β by THBS1, POSTN is highly 

homologous to the TGF-β induced gene TGFBI, and ADAM12 is known to have both protease 

activity and to contribute to TGF-β signaling [18]. The role of gene LRRC15 (aka LIB) appears 

important but unclear, though it has already been recognized as promoting migration through the 

extracellular matrix [19] . Other related genes often present in the MAF signature that appear to 

be significant players in the mechanism are tissue inhibitor of metalloproteinases-3 (TIMP3), 

stromelysin-3 (MMP11), and cadherin-11 (CDH11). Overexpression of INHBA has been known 

to occur in cancers, occasionally accompanied by concomitant overexpression of the activin A 

receptors [20]. In one of the ovarian cancer data sets [5] we found that the MAF signature was 

accompanied (P < 10
-5

) by concomitant overexpression of genes ACVRL1 aka ALK1 (Activin A 

type “II-like” 1 receptor, ACVR1 aka ALK2 (Activin A Type 1 receptor), and ACVR2A 

(Activin A Type 2A receptor). ACVRL1 also consistently appears overexpressed and associated 

with INHBA expression in all cancers, suggesting that it plays a key role in the corresponding 

signaling mechanism. Remarkably, activin A is already known to facilitate fibroblast-mediated 

collagen gel contraction [21]. 

Although each of the MAF signature molecules could serve as a potential therapeutic target, 

alone or in combination, including miRNAs and methylated genes such as SNAI1, the hypothesis 

that activin A induced TGF-β signaling is at the heart of the MAF mechanism immediately 

suggests that follistatin (activin-binding protein) could serve as a metastasis inhibitor, which is 

exactly what recent research [22] indicates. Specifically, lung cancer cell lines transfected with 

follistatin and injected intravenously into immunodeficient mice markedly inhibited metastasis 

compared with non-transfected cell lines, but the authors of the study recognize that the role of 

follistatin in cancer metastasis is totally unknown [23]. Our work provides an explanation and 

suggests that the same could be true for other cancers as well. Further support is provided by the 

fact that follistatin virtually abolished the fibroblast–mediated collagen gel contraction 

mentioned earlier [21].  

There are several reasons that the core MAF signature has not yet been discovered as a multi-

cancer metastasis-associated signature. First, it is essential to define a precise phenotypic 

threshold recognizing that the signature only exists in a subset of tumors that exceed a particular 
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stage. Indeed, if the threshold in breast cancer was put between stage I and stage II, or between 

stage II and stage III, rather than between in situ and stage I, the signature would not be apparent, 

or it could even be reversed (see below). Second, each cancer type has its own additional features 

accompanying the MAF signature. For example, in ovarian cancer it is accompanied by sharp 

downregulation of genes COLEC11, PEG3 and TSPAN8, which is not the case in other cancers. 

Indeed, the main contribution of our work is the identification of the common multi-cancer 

“core” signature, from which a universal metastasis-associated biological mechanism can be 

identified. Third and most importantly, the MAF signature is sharply reversible through a 

mesenchymal-epithelial transition (MET). For example [24], in a comparison of metastatic 

lymph node samples with their corresponding matched primary breast cancer samples, it was 

found that COL11A1 had a much higher expression in the primary tumor samples. Such reverse 

results can be particularly confusing.  

In fact, there are occasions in which the presence of the MAF signature in high-stage tumor 

samples (not having yet being reversed) can be an indicator of better prognosis, because many of 

the top-ranked genes in the MAF signature (such as thrombospondins, decorin, INHBA itself) 

are known to be potent anti-angiogenesis mediators. The reversal of the MAF signature would 

thus facilitate angiogenesis and further metastatic dissemination to distant sites. In other words, 

(a) the desmoplastic MAF signature and (b) angiogenesis, are two independent biological events. 

The former appears to based on activin A – induced TGF-β signaling (note that the same proteins 

mentioned above: thrombospondins, decorin, INHBA, etc, are also known inhibitors of the 

“standard” TGF-β ligand such as TGFB1. So, the reversal of the MAF signature would allow the 

standard ligand to take over in TGF beta signaling, and may thus facilitate angiogenesis. These 

observations provide explanations for the seemingly contradictory observed roles of TGF-β 

signaling in cancer and metastasis. 

The reversibility of the MAF signature leads to the intriguing hypothesis that it is part of a 

dynamic process and perhaps all metastases have, at some point temporarily been there, which 

explains why we only observe it in a subset of them. It has already been recognized that “it is 

plausible, though hardly proven, that all types of carcinoma cells must undergo a partial or 

complete EMT to become motile and invasive [25] p. 600.” This would be particularly exciting, 

because any metastasis-inhibiting therapeutic intervention targeting the MAF mechanism would 

be widely applicable to low-stage tumors. 

In conclusion, we have shown that, using computational analysis of publicly available biological 

information, systems biology has revealed the core of a multi-cancer metastasis-associated gene 

expression signature. In the near future, a vast amount of additional information will become 

available, including next generation sequencing, miRNA and methylation information for many 

cancers, which will allow additional computational research building on this work and clarifying 

the details of the underlying complex biological process.   
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Materials and Methods  

The gene expression data sets used in this paper are described in Table 6. 

Extreme Value Association (EVA)    

The EVA metric is the minimum P value of biased partitions over all subsets of samples with 

highest expression values of the gene. In other words, suppose that there are totally M samples, 

out of which N are “low stage” and M – N are “high stage,” and we select the m samples with the 

highest gene expression values. Under the assumption that gene expression values are 

uncorrelated with the phenotype, the probability that there will be at most n “low stage” samples 

among the selected m samples is given by the cumulative hypergeometric 

probability ( ; , , )h x n M N m . The EVA metric is then equal to –log10 of the minimum of these 

probabilities over all possible values of n. For example, assume that there are 250 high-stage 

samples and 50 low-stage sample for a total of 300 samples. Furthermore, assume that the 100 

samples with the highest values of a particular gene contain 99 high-stage samples and one 

low-stage sample. In that case, ( 1;300,50,100)h x   can be evaluated using the MATLAB function 

hypercdf(1,300,50,100) = 5×10
-9

, resulting in the EVA metric for that gene of at least                 

–log10(5×10
-9

) = 8.3, e.g. if the 101
th

 sample is also high-stage, then the EVA metric of the gene 

will be even higher.  Note that, once the highest value is reached, the sorting arrangement of the 

remaining samples is irrelevant, reflecting the hypothesis that only the extreme values are 

associated with the phenotype. Figure 2 shows the values of the cumulative hypergeometric 

probability for the COL11A1 gene using the TCGA ovarian cancer data set and the staging 

threshold between IIIb and IIIc: The maximum (8.31) occurs when m = 133. In fact, all 133 

samples with the highest COL11A1 expression are at stage IIIc or IV. 

We then developed a mechanistic unbiased (only dependent on the phenotype) algorithm, which, 

when given a gene expression data set for a number of samples labelled “high stage” or “low 

stage,” leads to a selection of genes that are coordinatedly overexpressed only in high-stage 

samples. We first select the top 100 genes that rank highest according to the EVA metric 

criterion.  Using this set of genes only, we perform k-means clustering with gap statistic [26]. At 

that step, if indeed the genes are coordinately overexpressed, they will align well in the heat map. 

This leads to the selection of the samples belonging to the cluster most associated with the 

high/low stage phenotype – call this the set of “EVA-based samples.” Nearly all samples in that 

cluster have exceeded the MAF staging threshold, and the very few exceptions could be due to 

misdiagnosis. Next, we define a “clean” MAF phenotype, contrasting the samples that are: (a) 

both “EVA-based” and “high-stage” against (b) the samples that are both “non EVA-based” and 

“low stage.” If the number of samples is sufficiently large, this “clean” phenotype provides the 

sharpest way by which we can identify the genes that are most associated with the observed 

phenomenon of metastasis-associated coordinated overexpression. We then rank the genes and 

compute their multiple-test-corrected P values using a heteroscedastic t-test using the “clean” 

phenotype and select the genes for which P < 10
-3

 after Bonferroni correction. Finally, we find 

the intersection of these selected gene sets over all cancer expression data sets and rank them in 

terms of fold change.  

For a data set with n samples and m probe sets, The EVA algorithm computes mn  cumulative 

hypergeometric distribution probabilities. This can be quite computationally intensive, so we 
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devised a low-complexity implementation algorithm to dynamically “build” the cumulative 

hypergeometric distribution for each probe set as the EVA algorithm progresses, as follows: 

 

Given a data set with a high-stage samples and b-low stage samples, the idea is to construct an 

)1()1(  ba  table of the hypergeometric probabilities corresponding to all possible subsets of 

the samples. Then, for each probe set, the samples are sorted according to the expression value of 

the probe set. This ordering results in a path through the table from the bottom left corner to the 

top right corner, moving either up or to the right for each sample. At each step in the path, the 

cumulative probability of encountering the observed number of high stage samples or more is 

computed by summing the entries diagonally down and to the right of the current cell, including 

the current cell itself. The algorithm is best demonstrated with a visual example shown in 

Figure 3, in which the data set has three low stage samples and five high stage samples in total. 

Each probe set results in a path through this table, and an example path is displayed here in gray. 

Letting 1 correspond to a high stage sample and 0 correspond to a low stage sample, this 

example probe set results in the path 111001011. For the cell in blue, corresponding to the sub-

path 111001, the probability of encountering this many high stage samples or more is computed 

by summing the three probabilities diagonally down and to the right of the blue cell (including 

itself). In this case, the probability is quite high (82.2%). This cumulative probability is 

computed for every step along the path, and the minimum of these is the output of the EVA 

algorithm. 

  

The pseudo-code for this algorithm is given below: 

 
 
Input: 

Let n be the number of samples. 

Let a be the number of high stage samples. 

Let b be the number of low stage samples. 

Let s be the array of phenotype labels sorted by this probe set's expression level 

(Note: a + b = n) 

 

Algorithm: 

// Step 1 – Build the table of hypergeometric probabilities. 

// This step need only be run once for the entire data set. 

Define c as an array with (a+1) rows and (b+1) columns. 

For x from 0 to a 

  For y from 0 to b 

    If x = 0 and y = 0 

       c[x][y] = 0 

    Else 

       If (y > 0) 

         c[x][y] = c[x][y] + c[x][y - 1] * (b - y + 1) / ((b - y + 1) + (a - x)) 

       End if 

       If (x > 0) 

         c[x][y] = c[x][y] + c[x - 1][y] * (a - x + 1) / ((a - x + 1) + (b - y)) 

       End If 

    End If 

  End For 

End For 

// Step 2 – Compute the cumulative hypergeometric probability for the given sequence. 

Define x = 0 

Define y = 0 

Define bestP = 1 

For i from 1 to n 

  If (s[i] = 1) 

    x = x + 1 

  Else 

    y = y + 1 
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  End If 

  Define p = 0 

  For j from 0 to y 

    If (x + y - j <= a) 

      p = p + c[x + y - j][j] 

    End If 

  End For 

  If (p < bestP) 

    bestP = p 

  End If 

End For 

 

Output: 

  -log10(bestP) 

 

Mutual Information and Synergy 

Assuming that two variables, such as the expression levels of two genes
1

G and, 
2

G are governed 

by a joint probability density 
12

p with corresponding marginals 
1

p  and 
2

p  and using simplified 

notation, the mutual information 
1 2

( ; )I G G is a general measure of correlation and is defined as 

the expected value 12

1 2

log
p

E
p p

 
 
 

. The synergy of two variables 
1

G ,
2

G  with respect to a third 

variable 
3

G  is [14] equal to  1 2 3 1 3 2 3
( , ; ) ( ; ) ( ; )I G G G I G G I G G  , i.e., the part of the association of 

the pair 
1

G ,
2

G  with 
3

G  that is purely due to a synergistic cooperation between 
1

G  and
2

G  (the 

“whole” minus the sum of the “parts”). 

 

P value evaluation for the significance of miRNA and methylation sites, and for synergistic 

pair ECM2 and TCF21 

We applied a permutation-based approach accounting for multiple test correction: We did 100 

permutation experiments of the class labels, saving the corresponding 100 highest values after 

doing exhaustive search in each permutation experiment. Using the set of these 100 

highest-value scores, we obtained the maximum likelihood estimates of the location parameter 

and the scale parameter of the Gumbel (type-I extreme value) distribution, resulting in a 

cumulative density function F. The P value of an actual score x0 is then 1-F(x0) under the null 

hypothesis of no association with phenotype. Similarly, for the synergistic pair, we found the 

top-scoring synergy in 100 data sets that were identical to the original except that the COL11A1 

probe values were randomly permuted on each, and the top permuted synergy scores were 

modelled, as above, with the Gumbel distribution. 
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Figure Legends and Figures 

 

 

 

 

 

Figure 1: Example of a synergistic pair of genes in two ovarian cancer datasets  
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Figure 2: Evaluation of the EVA metric for gene COL11A1 in the TCGA ovarian cancer 
dataset using phenotypic staging threshold the transition to stage IIIc.  
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Figure 3: Illustration for the low-complexity implementation of the EVA algorithm.  
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Tables  
 
 

Table 1:  Top-ranked genes associated with high carcinoma stage in ovarian and 

colorectal cancers according to the EVA-based algorithm with Bonferroni corrected 

P < 10-3 in all four data sets 

 

Probe Seta Gene Log FC 

37892_at COL11A1 3.94 

217428_s_at COL10A1 3.55 

204320_at COL11A1 3.39 

210809_s_at POSTN 3.14 

219087_at ASPN 2.99 

205941_s_at COL10A1 2.88 

203083_at THBS2 2.81 

209955_s_at FAP 2.73 

215446_s_at LOX 2.63 

213764_s_at MFAP5 2.61 

210511_s_at INHBA 2.52 

215646_s_at VCAN 2.5 

209758_s_at MFAP5 2.42 

221730_at COL5A2 2.34 

211571_s_at VCAN 2.33 

205713_s_at COMP 2.31 

213765_at MFAP5 2.27 

201150_s_at TIMP3 2.25 

221729_at COL5A2 2.24 

212354_at SULF1 2.23 

212489_at COL5A1 2.22 

213790_at ADAM12 2.21 

212488_at COL5A1 2.2 

201147_s_at TIMP3 2.19 

204457_s_at GAS1 2.17 

202952_s_at ADAM12 2.12 

202766_s_at FBN1 2.08 

212344_at SULF1 2.07 
 

a
Affymetrix probe sets 
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Table 2: Gene lists produced from information provided in the corresponding papers for 
breast, gastric and pancreatic cancer. 
 

Breast Cancer, Shuetz et al
a
 Gastric cancer, Vecchi et al

b
 Pancreatic cancer, Badea et al

c
 

Probe Set
d
 Gene Symbol Log FC Probe Set

d
 Gene Symbol  Log FC Probe Set

d
 Gene Symbol  Log FC 

37892_at COL11A1 6.50 37892_at COL11A1 4.26 227140_at  INHBA  5.15 

204320_at COL11A1 4.08 217428_s_at COL10A1 4.15 217428_s_at  COL10A1  5.00 

217428_s_at COL10A1 4.07 209955_s_at FAP 3.40 1555778_a_at  POSTN  4.92 

213764_s_at MFAP5 3.73 235458_at HAVCR2 3.30 212353_at  SULF1  4.63 

213909_at LRRC15 3.61 204320_at COL11A1 3.28 226237_at  COL8A1  4.60 

205941_s_at COL10A1 3.52 205941_s_at COL10A1 3.21 37892_at  COL11A1  4.40 

210511_s_at INHBA 3.44 204052_s_at SFRP4 2.90 225681_at  CTHRC1  4.38 

202766_s_at FBN1 3.43 226930_at FNDC1 2.85 202311_s_at  COL1A1  4.12 

212353_at SULF1 3.35 227140_at INHBA 2.77 203083_at  THBS2  3.97 

218468_s_at GREM1 3.35 209875_s_at SPP1 2.77 227566_at  HNT 3.90 

215446_s_at LOX 3.22 205422_s_at ITGBL1 2.63 204619_s_at  CSPG2  3.87 

221730_at COL5A2 3.22 226311_at --- 2.63  229802_at  WISP1  3.80 

218469_at GREM1 3.20 222288_at --- 2.62 212464_s_at  FN1  3.69 

212489_at COL5A1 3.08 231993_at --- 2.50 205713_s_at  COMP  3.53 

203083_at THBS2 2.99 226237_at COL8A1 2.48 221729_at COL5A2  3.38 

201505_at LAMB1 2.97 223122_s_at SFRP2 2.47 209955_s_at  FAP 3.37 

209955_s_at FAP 2.96 210511_s_at INHBA 2.43 229218_at  COL1A2  3.16 

209758_s_at MFAP5 2.92 203819_s_at IMP-3 2.39 209016_s_at  KRT7  3.13 

202363_at SPOCK 2.91 212464_s_at FN1 2.36 210004_at  OLR1  3.03 

213241_at NY-REN-58 2.90 212353_at SULF1 2.35 219773_at NOX4  3.02 

205479_s_at PLAU 2.89 227995_at --- 2.34 218804_at  TMEM16A  2.90 

206584_at LY96 2.88 225681_at CTHRC1 2.30 238617_at  ---  2.87 

204475_at MMP1 2.83 204457_s_at GAS1 2.27 224694_at  ANTXR1  2.82 

202952_s_at ADAM12 2.83 216442_x_at FN1 2.25 228481_at  COX7A1  2.77 

201792_at AEBP1 2.81 223121_s_at SFRP2 2.23 226311_at  ADAMTS2  2.76 

204114_at NID2 2.81 211719_x_at FN1 2.23 201792_at  AEBP1  2.68 

213790_at ADAM12 2.80 204776_at THBS4 2.18 203021_at  SLPI  2.65 

209156_s_at COL6A2 2.77 210495_x_at FN1 2.15 227314_at  ITGA2  2.58 

219179_at DACT1 2.74 202800_at SLC1A3 2.13 205499_at  SRPX2  2.44 

212488_at COL5A1 2.73 214927_at --- 2.11 226997_at  ---  2.41 

219087_at ASPN 2.73 212354_at SULF1 2.09 219179_at  DACT1  2.36 

204619_s_at CSPG2 2.70 238654_at LOC147645 2.06 203570_at  LOXL1  2.30 

204337_at RGS4 2.69 213943_at TWIST1 2.06 201850_at  CAPG  2.25 

204620_s_at CSPG2 2.69 236028_at IBSP 2.05 222449_at  TMEPAI  2.19 

212354_at SULF1 2.68 228481_at POSTN 2.00 227276_at  PLXDC2  2.16 
 

a
Breast cancer list indicates genes overexpressed in invasive ductal carcinoma vs. ductal carcinoma in situ. 

b
Gastric cancer list indicates genes overexpressed in early gastric cancer vs. advanced gastric cancer. 

c
Pancreatic cancer list indicates genes overexpressed in pancreatic ductal adenocarcinoma vs. normal pancreatic tissue. 

d
Affymetrix probe sets 
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Table 3:   Genes associated with COL11A1 from various cancers 

batch 1 batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8 batch 9 batch 10 batch 11 batch 12 batch 13 batch 14 batch 15 batch 16

COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1 COL11A1

THBS2 FAP COL10A1 COL10A1 COL10A1 COL10A1 COL10A1 COL10A1 COL10A1 COL10A1 COL10A1 COL10A1 COL10A1 COL10A1 COL10A1 COL10A1 COL10A1 COL1A1 COL10A1 COL10A1 COL10A1 COL1A1

COL5A2 POSTN THBS2 ADAM12 MMP11 LRRC15 ADAM12 LRRC15 COL1A1 THBS2 LRRC15 CTHRC1 INHBA LRRC15 COL1A1 COL1A1 ADAMTS12 COL10A1 LRRC15 LRRC15 ADAMTS12 ADAMTS12

INHBA THBS2 ADAM12 HNT COL1A1 COL1A2 ADAMTS12 MXRA5 CTHRC1 COL1A2 ADAM12 COL5A2 COL1A1 COL1A1 LRRC15 FNDC1 COL1A1 COL3A1 ADAMTS12 FNDC1 COL1A1 COL5A2

COL5A1 HNT HNT THBS2 ADAMTS12 MMP11 PPAPDC1A ADAMTS12 COL5A2 FAP COL1A1 LRRC15 ADAMTS12 THBS2 CTHRC1 LRRC15 COL5A2 COL12A1 COL1A1 ADAM12 COL3A1 CTHRC1

POSTN INHBA CTHRC1 RAB31 THBS2 COL1A1 COL12A1 PPAPDC1A COL5A1 COL1A1 COL1A2 FAP THBS2 INHBA INHBA ADAMTS12 INHBA COL5A1 ADAM12 INHBA LRRC15 COL5A1

VCAN EPYC SPOCK1 COL5A2 INHBA COL5A2 CTHRC1 ADAM12 THBS2 INHBA FAP POSTN CTHRC1 COMP COL5A2 COL5A2 LRRC15 ADAMTS12 FN1 ADAMTS12 COL5A2 FNDC1

MMP11 COL5A2 BGN CTHRC1 SULF1 INHBA FNDC1 COL5A2 COL1A2 ADAMTS12 COL5A1 COL5A1 LRRC15 COL1A2 COL1A2 COL5A1 CTHRC1 FNDC1 COL1A2 FAP COL5A1 COL1A2

FAP COL10A1 FAP SPOCK1 CTHRC1 COL5A1 THBS2 FNDC1 MXRA5 COL5A2 ADAMTS12 ADAMTS12 FNDC1 COL5A2 COL5A1 FAP FAP COL5A2 FNDC1 CTHRC1 ITGA11 LRRC15

LRRC15 LRRC15 INHBA SULF1 PPAPDC1A VCAN PLAU COL1A2 LRRC15 LRRC15 COL12A1 COL1A1 COL5A2 CTHRC1 FN1 CTHRC1 POSTN FAP COL5A1 COL5A2 MFAP5 COL3A1

COL3A1 SFRP2 PPAPDC1A INHBA WNT2 THBS2 ANTXR1 COL8A2 ADAMTS12 COL5A1 INHBA THBS2 COL5A1 POSTN FNDC1 POSTN COL5A1 ADAM12 PLAU COL1A1 FAP INHBA

COL1A1 VCAN SULF1 GAS1 COL5A2 COL3A1 COL5A2 COL5A1 FNDC1 POSTN POSTN COL3A1 COL3A1 COL5A1 THBS2 INHBA COL3A1 COL1A2 EPYC POSTN COL1A2 FAM49B

CTSK FN1 COL1A1 AEBP1 C5orf46 ADAM12 ITGA11 CTHRC1 POSTN FNDC1 THBS2 COL1A2 POSTN SFRP2 ADAMTS12 THBS2 THBS2 CTHRC1 COL5A2 THBS2 FNDC1 FAP

LOX ADAMTS12 VCAN SPARC ANTXR1 BGN FAP FAP FAP ADAM12 COL3A1 INHBA COL1A2 COL3A1 FAP COL3A1 CTSK MXRA5 COL3A1 COL3A1 PPAPDC1A THBS2

LUM LOX COL5A2 FBN1 HNT FAP COL1A2 COMP COL3A1 COL3A1 COL5A2 FNDC1 ITGA11 AEBP1 COL3A1 COL1A2 FNDC1 PLAU PPAPDC1A PPAPDC1A INHBA ADAM12

CRISPLD2 ALPK2 ADAMTS12 COL1A2 FN1 AEBP1 NOX4 SFRP2 AEBP1 FN1 COL8A2 COL12A1 FAP MXRA5 POSTN ADAM12 ADAM12 LRRC15 CTHRC1 COL5A1 POSTN COL10A1

COL10A1 COL3A1 POSTN COL5A1 FNDC1 MFAP5 COL5A1 THBS2 COMP CTHRC1 CTHRC1 COL6A3 SFRP2 ADAMTS12 COL12A1 COL12A1 COL1A2 POSTN FAP TPX2 CTHRC1 PLAU

FBN1 GREM1 RAB31 PRRX1 SPHK1 CDH11 SULF1 COL3A1 FBN1 ITGA11 ITGA11 SFRP2 FN1 FAP ITGBL1 COL6A3 TNFSF4 THBS2 FAM49B FN1 MFAP2 PDPN

FN1 COL5A1 AEBP1 COL1A1 KAL1 SULF1 FN1 EPYC COL6A3 PPAPDC1A MXRA5 SULF1 PPAPDC1A COL8A2 COMP COMP EPYC EPYC SULF1 SFRP2 ADAM12 GKAP1

ADAM12 ADAM12 COL1A2 MXRA5 COL1A2 COL6A3 SRPX2 MFAP5 FN1 AEBP1 CDH11 COMP AEBP1 LOXL1 SFRP2 MXRA5 COL8A2 INHBA INHBA CDKN3 THBS2 POSTN

MMP2 COL1A1 PRRX1 FAP NOX4 POSTN COL1A1 COL1A1 COL8A2 SULF1 COL6A3 MXRA5 VCAN ADAM12 COL8A2 CTSK ITGBL1 CTSK IGFL2 HGD HTRA3 KIAA1199

AEBP1 CRISPLD2 COL5A1 BGN CST1 MMP13 MXRA5 LOC401097 SPARC HNT FN1 ADAM12 SULF1 FNDC1 ITGA11 GLT8D2 MXRA5 PDPN POSTN UBE2C ALDH1L2 MMP14

PLAU MMP11 KAL1 POSTN BGN CTSK EPYC COL12A1 SFRP2 COL6A3 FNDC1 PRRX1 MXRA5 COL6A3 SULF1 ITGBL1 COL12A1 SFRP2 SLC12A8 COL1A2 RCN3 SRPX2

ASPN PRRX1 SFRP4 SFRP2 SOX11 LUM COL8A2 ANTXR1 INHBA SPARC COMP AEBP1 CDH11 RCN3 SPARC CDH11 COL6A3 MMP2 C15orf48 ASPM ASPN IGHG1

TMEM158 TMEM158 FBN1 PPAPDC1A ITGA11 PPAP2B WISP1 ITGA11 SULF1 FBN1 ASPN COL16A1 ADAM12 SULF1 TIMP3 FN1 GREM1 SRPX2 THBS2 KIF4A COL6A3 ADA

ECM1 CTSK SFRP2 NOX4 CST4 FN1 THY1 RUNX2 VCAN COL12A1 MFAP2 PPAPDC1A COL12A1 MFAP5 GLT8D2 COL8A2 GLT8D2 SULF1 MXRA5 NUF2 ITGBL1 ADAM19

COL1A2 SPARC ANTXR1 VCAN COL5A1 RCN3 LRRC15 TNFSF4 PPAPDC1A MXRA5 PPAPDC1A MFAP2 COL6A3 VCAN ADAM12 EPYC PDPN RCN3 EPHB2 CENPF SRPX2 BMP1

SPARC FBN1 GAS1 ANTXR1 FAP TPO IGFL2 COL6A3 COL12A1 VCAN AEBP1 CTSK COL8A2 LUM CDH11 VCAN SULF1 COL6A3 DLGAP5 ACADL GREM1 SFRP2

EPYC CTHRC1 COL3A1 FRMD6 MMP14 OLFML2B CDH11 PDGFRL DCN COMP MMP13 COL8A2 BGN PCOLCE MXRA5 SULF1 FN1 MMP1 KIF20A PLAU MXRA5 C11orf52

COL6A3 GJB2 FNDC1 COL3A1 LRRC15 KCNJ16 POSTN ALDH1L2 CTSK COL8A2 SFRP2 SERPINF1 HNT COL12A1 RCN3 SPARC COMP PLAUR MFAP5 DTL FBN1 HPN

SERPINF1 TNFAIP6 HOPX ADAMTS12 SERPINH1 MXRA5 COL3A1 GLT8D2 ITGBL1 WISP1 COL6A2 GLT8D2 SPARC FN1 FBN1 DCN CDH11 GREM1 CDC2 COL12A1 BMP1 TRAM2

OLFML2B NUAK1 NOX4 TIMP2 POSTN NNMT HNT CTSK GLT8D2 GLT8D2 VCAN CDH11 COMP FBN1 AEBP1 LUM WISP1 ALDH1L2 LIMK2 C2orf67 COL12A1 GJB2

DCN ASPN LOX COL12A1 SPP1 PAX8 INHBA FBN1 OLFML2B MRC2 SULF1 PCOLCE TNFSF4 MFAP2 VCAN SFRP2 HNT FBN1 MFAP2 RNF180 MRC2 ECHDC2

ACTA2 AEBP1 CERCAM LOX ADAM12 DUOX2 TNFSF4 TWIST1 ANTXR1 RCN3 ANTXR1 FN1 RCN3 PRRX1 HNT PLAU FBN1 MMP3 LOC401097 BIRC5 COMP ELF4

NTM COL8A1 COL12A1 HTRA1 CLEC5A DCN COL6A3 INHBA TNFAIP6 ANTXR1 CTSK HNT GREM1 PLAU COL8A1 HNT ALDH1L2 CEACAM6 MMP11 CDC20 VCAN CTSK

GREM1 COL1A2 SPARC TWIST1 BMP1 TG PDGFRL FN1 MMP2 CTSK PCOLCE FBN1 EPYC RAB31 LOX IGHG1 RCN3 C11orf24 SLAMF8 CENPA CERCAM C3orf15

CDH11 LUM BCAT1 BCAT1 CAPN6 TNFAIP6 MMP14 ZNF469 CCDC80 SFRP2 SPARC DCN SALL1 MMP11 CERCAM FBN1 PLAU NINJ2 LMNB1 LOC730057 COL8A2 TRIM59

SNAI2 TIMP3 ITGBL1 ISLR VCAN GPX3 SPARC HNT MRC2 ASPN LOXL1 LUM MFAP5 ISLR BGN RCN3 ASPN PPAPDC1A GTSE1 RRM2 CDH11 COL6A3

TIMP3 EDNRA FRMD6 KAL1 ZNF469 LOX RCN3 GAS1 PCOLCE PRRX1 PRRX1 GAS1 LOX CRABP2 THY1 MMP2 SFRP2 KIAA1199 ZWINT CASC5 ISLR FGFR1OP2

PDLIM3 VGLL3 ISLR VGLL3 ADAMTS2 COMP ADAMTS2 LOX MFAP2 LOXL1 MMP11 MMP11 SRPX2 ASPN COL6A3 TNFSF4 VDR RUNX2 SMC4 TOP2A THY1 TTC12

TNFAIP6 COPZ2 FN1 CDH11 COL12A1 MMP2 ISLR THY1 HNT CDH11 SFRP4 IGHG1 GAS1 LGALS1 PCOLCE PPAPDC1A KIAA1199 MFAP2 HGD CDCA8 FN1 C13orf34

COPZ2 OLFML2B TWIST1 ARL4C C1QTNF6 TSHR AEBP1 ITGBL1 COL16A1 RUNX2 GLT8D2 VCAN DPYSL3 THY1 OLFML2B AEBP1 COL8A1 GJB2 BIRC5 DPY19L2 SFRP2 CCRL2

EDNRA ITGBL1 OLR1 HOPX C16orf89 MAOA MMP11 POSTN MFAP5 LUM RCN3 MMP2 TNFAIP6 CTSK MFAP5 MFAP5 MFAP5 IL1RN HNT SLC20A1 ADAMTS2 MKI67

LPPR4 PLAU COL6A3 COL6A3 BCAT1 ID4 C1QTNF6 MRC2 ADAM12 ITGBL1 WISP1 ASPN PLAU TNFAIP6 PPAPDC1A ITGA11 LOC401097 GLT8D2 COL12A1 SMC4 SPARC ACADL

NOTE: The overlapping genes have been indicated with different colors.

* An aggregate list of genes ranked in terms of a weighted average of the mutual information with COL11A1.

**the mutual information was weighted by the sample size of each data set.

Yu 
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Table 4:  Top ranked (multiple-test corrected P < 10-16) differentially expressed miRNAs 
in MAF signature in the TCGA ovarian cancer data set in terms of their association with 
COL11A1. 

 
miRNA MI Up/Down Regulated 

hsa-miR-22 0.204 Up 

hsa-miR-514-1|hsa-miR-514-2|hsa-miR-514-3 0.193 Down 

hsa-miR-152 0.187 Up 

hsa-miR-508 0.168 Down 

hsa-miR-509-1|hsa-miR-509-2|hsa-miR-509-3 0.164 Down 

hsa-miR-507 0.152 Down 

hsa-miR-509-1|hsa-miR-509-2 0.147 Down 

hsa-miR-506 0.146 Down 

hsa-miR-509-3 0.144 Down 

hsa-miR-214 0.128 Up 

hsa-miR-510 0.116 Down 

hsa-miR-199a-1|hsa-miR-199a-2 0.115 Up 

hsa-miR-21 0.112 Up 

hsa-miR-513c 0.108 Down 

hsa-miR-199b 0.103 Up 
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Table 5:  Top ranked (multiple-test corrected P < 10-16) differentially methylated genes 
in MAF signature in the TCGA ovarian cancer data set in terms of their association with 
COL11A1. 

 
Methylation site MI Hyper-/Hypomethylated 

PRAME 0.223 Hyper 

SNAI1 0.183 Hyper 

KRT7 0.158 Hyper 

RASSF5 0.157 Hyper 

FLJ14816 0.155 Hyper 

PPL 0.155 Hyper 

CXCR6 0.153 Hypo 

SLC12A8 0.148 Hyper 

NFATC2 0.148 Hyper 

HOM-TES-103 0.147 Hypo 

ZNF556 0.147 Hyper 

OCIAD2 0.146 Hyper 

APS 0.142 Hyper 

MGC9712 0.139 Hyper 

SLC1A2 0.136 Hyper 

HAK 0.131 Hypo 

C3orf18 0.130 Hyper 

GMPR 0.130 Hyper 

CORO6 0.128 Hyper 
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Table 6:  Data sets that were used in the paper 
 

 
Data set name Source Site GEO Accession Affymetrix platform Sample size 

TCGA ovarian cancer The Cancer Genome Atlas 
 

HT_HG-U133A
a
 377 

CCR ovarian cancer Gene  Expression  Omnibus GSE9891 HG-U133_Plus_2
b 

285 

CCR colon cancer Gene  Expression  Omnibus GSE14333 HG-U133_Plus_2 290 

Moffitt colon cancer Gene  Expression  Omnibus GSE17536 HG-U133_Plus_2 177 

Singapore gastric cancer  Gene  Expression  Omnibus GSE15459 HG-U133_Plus_2 200 

Yu multicancer tumor Gene  Expression  Omnibus GSE5364 HG-U133A
c 

270 [341]
d 

expO batch 1 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 60 

expO batch 2 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 163 

expO batch 3 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 164 

expO batch 4 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 163 

expO batch 5 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 160 

expO batch 6 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 160 

expO batch 7 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 156 

expO batch 8 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 160 

expO batch 9 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 240 

expO batch 10 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 180 

expO batch 11 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 180 

expO batch 12 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 125 

expO batch 13 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 62 

expO batch 14 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 62 

expO batch 15 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 60 

expO batch 16 Gene  Expression  Omnibus GSE2109 HG-U133_Plus_2 63 
 

a
Affymetrix HT Human Genome U133A Array 

b
Affymetrix Human Genome U133 Plus 2.0 

c
Affymetrix Human Genome U133A 

d
270 out of 341 samples are tumor samples. 
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