
An open source LABVIEW platform for simulating image series of fluorescent microtubules in

gliding assays

Lawrence J. Herskowitz (lherskow@unm.edu), Steven J. Koch (sjkoch@unm.edu)

University of New Mexico, Center for High Technology Materials and

Department of Physics and Astronomy

Introduction

Kinesin family proteins are motor proteins that are

able to use chemical energy to translocate on

microtubules. They are essential to many cellular

processes such as cell reproduction and axonal

transport (1; 2; 3). A technique that has proven very

valuable to studying kinesin’s physical properties is

the gliding motility assay (GMA) (4). In the GMA, the

kinesin tail is fixed to a slide with the motor domains

exposed to the solution. A solution of microtubule

with buffer and ATP are then added to the flow cell.

This allows the microtubules to be propelled by the

kinesin motor domains as depicted in Figure 1. Often the microtubules are labeled with dye molecules

that allow them to be seen through fluorescence microscopy (5). GMAs enable the study of many kinetic

properties of wild type and mutant kinesins, such as gliding speed, microtubule polarity, and force

induction in the kinetic process (6; 7; 8; 9).

To extract information from these experiments, it is often imperative to track the moving microtubules

through a series of images, obtaining the position versus time of the microtubules. However, manual

tracking means going through hundreds of images and recording the position of the microtubule by

hand. This is a tedious and exhausting process, though it certainly has proven useful (10). The data are

also potentially more prone to selection bias and systematic and random errors than automated

tracking. Because of this several groups have developed microtubule tracking software (11; 12) (23). To

test the effectiveness of these tracking programs, many laboratories will track a stationary object. This

however is not ideal since it does not match experimental conditions well. To characterize the

systematic and random errors in the tracking algorithms, it is best to test them on a moving object. One

way this can be achieved is by moving a fixed microtubule with a piezoelectric stage. However, even in

that case it is difficult to completely eliminate drift and other effects. A simulated image series can

eliminate those problems and is often ideal for testing tracking algorithms (13). For this purpose we

developed an application that can generate microtubule images that mimic those captured from a

typical gliding motility assay. A simulated image is

shown in Figure 2A next to an actual gliding

motility assay image shown in Figure 2B.

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nature Precedings

https://core.ac.uk/display/289101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

The application was written in National Instruments LABVIEW 7.1. The user interface can be seen in the

Figure 3 with user inputs on the left and top and outputs on the right and bottom.

This paper is demarcated into two sections. Section 1 describes the process implemented to produce the

simulated image, the controls that the user can change, and the method for storing images and settings.

Section 2 provides instructions on how to obtain the open source code, the compiled application, and a

video tutorial.

SECTION 1

Algorithm Overview

Figure 4 shows a simplified diagram of the overall algorithm. This paper will go into detail of how each

step of the algorithm works. There is a main while loop seen in the diagram (see Reference (14) for a

LABVIEW video tutorial). In each iteration a frame is constructed and saved. Before the while loop is

entered, three initialization tasks are completed shown as subVIs I, II, III in the figure. (I) First the user

must create the trajectory the microtubule will follow in the image series that will be created. This is

done in the trajectory sub.vi. (II) Next using the settings in the “Physical Parameters” control the

program randomly sets the locations of the dye molecules along the microtubule length. (III) The third

task is to create a prototype Airy Disk from the “Airy Disk Parameters.” Each one of these subVIs is

completed only once for each set of images, prior to execution of the while loop that generates each of

the individual images.

In the while loop, first the absolute coordinates of the dye molecules are set in the subVI labeled “A” in

Figure 4. This VI, “Find Coord of Dyes.vi” has inputs of the microtubule trajectory, the index of the start

of the microtubule, speed, and length of the microtubule. SubVI A has three outputs: “Coordinates of

Dye Locations” (bundle of two double precision numbers), the “Index of Start of Microtubule for next

frame” (int32) and the “Index of End of Microtubule” (int32). The dye location coordinates determine

the locations of the centers of the airy disks in the simulated images. These are absolute coordinates

(relative to the top left of the image) instead of the relative coordinates with respect to the microtubule

end that the “Pick sites at random” subVI outputs. The second output, “Index of Start of Microtubule for

next frame,” goes into a shift register and replaces the previous iteration’s index for the start of the

microtubule. The distance the microtubule moves between frames is calculated from the speed inside of

this subVI. This is used to find the index along the trajectory the microtubule will start in the next frame.

The index of the end of the microtubule is calculated using the length of the microtubule value similar to

calculating the index for the next starting index.

After subVI A finishes, it passes parameters to subVI B, “Create high res image” including the

coordinates of the dye locations, a pointer to an image location and the user inputs “Photon

Parameters” and “Image Size.” Inside subVI B are the probability distribution function and the Monte

Carlo algorithm to randomly select the photon locations.

Next is subVI C, “Create low res noisy image,” with the inputs of “Image Size,” “Background Noise” and

the “High Res Image.” SubVI C resamples the high resolution image to create a lower resolution image

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

that matches experimental resolution, dictated by the user input. If selected, Gaussian noise is added to

the background. The output of subVI C is the final image.

SubVI D saves the image in a directory the user has chosen, and named after the frame number which is

the iteration number, such as 1.png. When the end of the microtubule index has reached the end of the

trajectory array, the while loop stops.

This section will be broken up into four segments to provide details of the above subVIs: Microtubule

Construction, Resampling and Noise Addition, Trajectory, and Saving. In each of these segments the

necessary user input is highlighted as well as a simplified version of the code.

Microtubule Construction

User Input:

This section will go into detail of how a single image of a microtubule is constructed. The coordinates for

the dyes need to be randomly selected along the length of the microtubule. The user can set the

microtubule length via the “Length of Microtubule” control. This control is in units of high resolution

pixels. This algorithm produces two images; a high resolution image and a lower resolution image. The

final image is the low resolution image. This allows for more accurate numerical estimation of the airy

disk probability density function which is implemented in the Monte Carlo algorithm. The “high res pix

per site” control dictates how many fluorescent dyes are theoretically possible to be found in each pixel.

For a typical fluorescent tubulin preparation (15), the molecules are attached to surface lysine residues

on the alpha/beta tubulin dimer. There is one dimer per 8 nm on a single protofilament. For a 13-

protofilament microtubule, there are thus approximately 1.5 dimers per nanometer. There also could be

multiple dye molecules on a single dimer, which would further reduce the number of high resolution

pixels per dye site. This control will change depending on the users desired nm/pixel ratio.

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

The first two controls thus dictate the microtubule length and the maximum number of dyes that can be

attached. In the example shown in the figure, there can be a maximum of 10,000 dyes. However in

practice, fluorescently labeled tubulin is mixed with unlabeled tubulin resulting in partially labeled

microtubules after polymerization. To mimic this, the program uses a Monte Carlo method to determine

if a given site will be labeled dependent on the fraction of dye control. A uniform random number from

0 to 1 is selected for each site. If that random number is lower than the user-set labeling fraction, the

site is deemed as labeled. If not the site is left as unlabeled. This code can be seen in Figure 6. There is

an indicator on the front panel seen to the right of the dynamic adjust control in Figure 3 which specifies

the number of dye molecules on the microtubule.

If the site is selected to be labeled, an airy disk is centered at that location. An airy disk represents the

fluorescent dye in the image plane since the dye emits light that is captured by the circular aperture of

the objective (16). Mathematically an airy disk is described with the following equation:

where is the maximum intensity of the airy disk center, is the Bessel function of the first kind in

circular coordinates, r is the radius in high res pixels, and k is what we have named the prefactor. It can

be calculated by

NA is the numerical aperture of the objective, and is the wavelength in nanometers. C is the

conversion factor from high resolution pixels to nanometers because we represent r in pixels. The first

zero for the airy disk can be calculated in nanometers using

where r0 is the distance to the first zero (17).

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

Since the microtubule is narrow compared to the airy disk radius, we treat it as a one-dimensional

object. So each airy disk location is recorded as a distance from the end of the microtubule, and these

relative distances along the contour remain fixed while the microtubule moves or curves during the

simulation.

This method of labeling dyes randomly along the microtubule is supported by prior experimental work.

A microtubule in a solution with a low concentration of fluorescent dyes looks speckled. Waterman-

Storer and Salmon studied this phenomenon and showed that this is caused by a non-uniform

distribution of the fluorescent dyes along the microtubule proto-filament in a purely stochastic process

(18).

User Input:

Since the airy disk intensity falls quickly, it is not necessary to calculate the airy disk over large values.

The numerical aperture and wavelength determines how quickly the airy disk reaches zero. A higher

numerical aperture or shorter wavelength means fewer pixels need to be calculated to get an accurate

representation than a higher numerical aperture and longer wavelength. This is illustrated in Figure 8. It

is obvious that the airy disk in 8A with a radius of 5.67 high res pixels (522.86 nm) needs fewer pixels

than 8B whose radius is 19.84 high res pixels (1,830 nm) to approximate the dye molecule. In the user

input image above, a square of -6 to 6 for both x and y values was chosen. This means that a 12 pixels x

12 pixel box centered at the airy disk’s center was used for each airy disk in the simulation which has the

same radius as Figure 8A. This is

done to ensure a shorter processing

time for the software. The radius of

the airy disk is calculated in both

nanometers and high res pixels. This

can be seen on the front panel in

Figure 3 below the number of dye

molecules indicator.

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

User Input:

Generating the total probability density function for photon arrival in the image plane

After all the coordinates of all airy disks have been determined, the functions are added together. This is

shown in the equation below.

Here is the total intensity of all M airy disks added together. is the intensity profile of a single airy

disk. Its center is shifted inside the image by . is then normalized by numerical integration to

produce the probability density function (PDF) for photon arrival. Each pixel coordinate now represents

the probability of a given photon landing there.

Generating images based on PDF for photon arrival

Photon locations are randomly selected using a Monte Carlo method and the total photon PDF. To

minimize the number of random numbers needed for each photon arrival, all values in the two

dimensional PDF is flattened into a one-dimensional cumulative probability array. This is seen in Figure

10. Because the PDF was normalized, the last element in the cumulative probability array is 1. Each

element in the cumulative array has a corresponding pixel coordinate. For a given random number, the

index of the cumulative array element closest to that value (without exceeding it) is found by a binary

search algorithm. The value of pixel corresponding to that element is increased by an amount set by

“intensity per random number.” This method requires only one random number for each photon (19).

This code is shown in Figure 11.

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

The user chooses how many random numbers, or photons, used

for each image. Figure 12 represents what an image from this step

in the process looks like. The image produced is a floating point

image to allow for any number of photons per pixel. The image is

next cast to an 8-bit image, with a maximum pixel value of 255.

The user is given the option of dynamically adjusting the image so

that the maximum pixel value in the floating point image set to

255. If the user chooses not to do this, the image can mimic either

under- or over-exposure. The latter case will show saturated

pixels.

Resampling and Noise Addition

User Input:

After float image is cast into an 8 bit image, the image is then resampled into a lower resolution image

to match experimental resolution. The user inputs the x and y resolution of the higher resolution image

in “High Res X Image Size” and “High Res Y Image Size.” The user can then control how much the lower

resolution image will be in “X Resolution” and “Y Resolution.” This resampling into a lower resolution

image is done to allow for a more precise numerical integration to create the probability density

function.

User Input:

Finally, background noise can be added to the image depending on user settings. We add background

noise to the 8-bit resampled image. The user chooses the mean value and standard deviation of the

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

background noise Random noise is added to every pixel. The resulting image with its higher resolution

counterpart can be seen in Figure 15.

Because there are many parameters it is useful to view test images before creating the entire sequence

of images. This option is available to the user along with the additional ability to see what a single airy

disk looks like given the current relevant user settings. This allows the user to minimize the box

surrounding the airy disk and thus speed up subsequent simulations. Pressing “Test this set up”

produces a microtubule while “see this Airy Disk” shows what a single airy disk looks like. The maximum

intensity of the airy disk can be controlled with the “I0.” This only works with “See this Airy Disk” since

the sum of all the airy disks is normalized when constructing the microtubule image. These buttons can

be seen in Figure 3 below the “Let’s Make Some Magic” button.

Trajectory

The ultimate goal of this software is to produce a series of images that mimic microtubule motion in

gliding motility assays. This software contains a subVI that allows the user to create a trajectory that the

microtubule will follow throughout the frames. The trajectory can be composed of four different base

trajectories; a horizontal line, a vertical line, a sloped line, and a circle. The user can manipulate these

simpler paths to create elementary or more complicated trajectories as seen in the front panel image of

this subVI in Figure 16.

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

The simplest paths are the horizontal and the vertical line. For the horizontal line, the user inputs the

starting point coordinate (x,y) and the ending x coordinate. The vertical line is very similar in that it

needs the user to input the starting point coordinate (x,y), but it needs the ending y coordinate instead

of x. The sloped line needs both the x and y coordinates for the starting and ending points. It will output

the slope of the line for reference. For a circular arc, the user specifies the origin, radius, and angles to

start and end the arc. These angles can vary from -2 to 2 .

To make creating more complicated trajectories easier, each one of these paths have an option to

automatically link to the existing path. For the horizontal and vertical line this only means that the

starting point is set automatically to be the last point of the semi-completed path. For the sloped line,

the starting point is set just like the horizontal line, but the slope is also set to the slope of the incoming

path. It won’t set the slope automatically if the incoming slope is horizontal or vertical. To best attach a

circle to the trajectory, the program can set the starting point on the circle so the incoming trajectory

has the same slope as the tangential line to the circle. This ensures a smooth transition into the circle.

Since there are two points on the circle with the same slope, the user can choose which point to use.

This trajectory subVI also allows the user to load a trajectory previously made and edit that path. The

user can also save the completed trajectory as a .dat file in a chosen directory. The main program will

automatically save the trajectory in the same directory as the images.

Speed

User Input:

See Figure 5

The microtubule will have a fixed speed (see “Updates” section at end of manuscript), defined by the

user in units of high res pixel/frame. In the case shown in Figure 5 the user has chosen a speed of 2 high

res pixels/frame. The amount of resampling will determine the speed in the final, lower resolution

images. With the settings shown earlier in Figure 5, the tracked speed is 1 low res pixels/frame.

In each image frame, the microtubule dye molecules coordinates will be moved along the trajectory a

distance specified by the speed. Since the airy disks are labeled by their distance from the start of the

microtubule and not from a location on the image, their relative distances remain unchanged despite

curves along the trajectory. The program calculates the distances between adjacent points on the

trajectory. Using this array of distances it is able to set the front of the microtubule and quickly search

for points that are certain distances away from the start. The code is shown in Figure 17.

Finally, when satisfied with the settings and trajectory, the user presses the “Let’s Make Some Magic”

button which can be seen in Figure 3 to the right of Image Size parameters. The program runs and saves

images until it reaches the end of the trajectory. Currently the user cannot stop the simulations early.

Pressing the stop button will stop the entire program but will only be responsive after all the images

have been created.

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

Saving images and user settings

User Input:

This software saves the images in a directory that is specified in “Directory for Storing Images.” The

images are .pngs and are named after the frame number. The parameters used to create the

microtubule as well as the trajectory are saved. The parameters are saved in an .ini file while the

trajectory is saved as a .dat file.

This speed of this software is dependent on the user parameters. For example a higher number of

photons will slow down the algorithm proportionally. A larger box around the center of the airy disk will

also slow down the simulation. With the settings shown in this paper, the software creates an image in

about 350 milliseconds on our Intel Core 2 Duo CPU running Windows XP.

Section 2

How to obtain code and a video tutorial

This code is available from sourceforge at https://sourceforge.net/projects/simulatingimage/files/. The

VIs used to create this program are available for download in the Simulating Images folder. LabVIEW and

the Vision Development Module are required to view and edit the source code. An executable version of

this program is also available in Executable Folder found in the Simulating Images directory. A $420 “NI

Vision Development Module Run-Time License” is required to run the executable.

http://sine.ni.com/nips/cds/view/p/lang/en/nid/207700

A video tutorial created by CamStudio is also available in the Tutorial Folder in the same directory. The

.ini file that saved the settings used to create the images found in this paper and the trajectory shown

above are located in Settings for Paper folder inside this directory.

Prior Attempts

This report describes our second attempt to create images of microtubules. The first attempt followed

more closely to the steps taken in the Cheezum paper (13). We found the stochastic method we report

here more satisfying as far as mimicking our experimental data. However the other process, based on

convolutions of a line or rectangle with an airy disk worked well. We do not describe those methods

here, but out work can be seen in LJH’s open notebook, dates 11/12/2009 through 11/18/2009.

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

https://sourceforge.net/projects/simulatingimage/files/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/207700

Updates

Since writing this pre-print, we have added features to this software. For example, the ability to pause or

switch speeds. Also, the ability for speed to vary according to Poisson stepping. The updates may be

reflected in the code and thus some figures may be slightly outdated.

Conclusion

This software can create a series of images of a microtubule moving along a user specified trajectory.

This can be used to test tracking software designed for gliding motility assays or other microtubule

assays. It is possible to adapt this software to create images of other polymeric protein structures such

as f-actin and some cytoskeletal proteins (20; 21). However it is not equipped to handle these yet. The

code is freely are available at SourceForge under an MIT license for reuse and adaptation.

1. Goldstein L, Yang Z. Microtubule-based transport systems in neurons: the roles of kinesins and
dyneins [Internet]. Annual review of neuroscience. 2000 ;23(1):39–71.Available from:
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.neuro.23.1.39

2. Vale RD, Fletterick RJ. The design plan of kinesin motors. [Internet]. Annual review of cell and
developmental biology. 1997 ;13745-77.Available from:
http://www.ncbi.nlm.nih.gov/pubmed/9442886

3. Wittmann T, Hyman a, Desai a. The spindle: a dynamic assembly of microtubules and motors.
[Internet]. Nature cell biology. 2001 ;3(1):E28-34.Available from:
http://www.ncbi.nlm.nih.gov/pubmed/11146647

4. Vale RD, Reese TS, Sheetz MP. Identification of a novel force-generating protein, kinesin,
involved in microtubule-based motility. [Internet]. Cell. 1985 ;42(1):39-50.Available from:
http://www.ncbi.nlm.nih.gov/pubmed/3926325

5. Greene L, Henikoff S. Kinesin Home Page [Internet]. Available from:
http://www.cellbio.duke.edu/kinesin/

6. Clemmens J, Hess H, Lipscomb R, Hanein Y, Böhringer KF, Matzke CM, et al. Mechanisms of
Microtubule Guiding on Microfabricated Kinesin-Coated Surfaces: Chemical and Topographic
Surface Patterns [Internet]. Langmuir. 2003 ;19(26):10967-10974.Available from:
http://pubs.acs.org/doi/abs/10.1021/la035519y

7. Dennis JR, Howard J, Vogel V. Molecular shuttles : directed motion of microtubules along
nanoscale kinesin tracks. Nanotechnology. 1999 ;232

8. Hess H, Clemmens J, Matzke C, Bachand G, Bunker B, Vogel V. Ratchet patterns sort molecular
shuttles [Internet]. Applied Physics A: Materials Science & Processing. 2002 ;75(2):309-
313.Available from:
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s003390201339

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

9. Hess H, Howard J, Vogel V. A Piconewton Forcemeter Assembled from Microtubules and Kinesins
[Internet]. Nano Letters. 2002 ;2(10):1113-1115.Available from:
http://pubs.acs.org/doi/abs/10.1021/nl025724i

10. Howard J. The movement of kinesin along microtubules [Internet]. Annual review of physiology.
1996 ;58(1):703–729.Available from:
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.ph.58.030196.003415

11. Sturrman N. MTrack2 [Internet]. 2009 ;Available from:
http://valelab.ucsf.edu/~nico/IJplugins/MTrack2.html

12. Chisena EN, Wall RA, Macosko JC, Holzwarth G. Speckled microtubules improve tracking in
motor-protein gliding assays. [Internet]. Physical biology. 2007 ;4(1):10-5.Available from:
http://www.ncbi.nlm.nih.gov/pubmed/17406081

13. Cheezum MK, Walker WF, Guilford WH. Quantitative comparison of algorithms for tracking
single fluorescent particles. [Internet]. Biophysical journal. 2001 ;81(4):2378-88.Available from:
http://www.ncbi.nlm.nih.gov/pubmed/11566807

14. Labview Tutorial 1 [Internet]. 2010 ;Available from:
http://www.youtube.com/watch?v=Em5R_RM8E08

15. About Tubulin [Internet]. 2010 ;Available from:
http://www.cytoskeleton.com/products/tubulins/abouttub.html

16. Wolf E. The diffraction theory of aberrations [Internet]. Reports on progress in physics. 1951
;14(1):95–120.Available from: http://www.iop.org/EJ/abstract/0034-4885/14/1/304

17. Davidson MW. Numerical Aperture and Image Resolution [Internet]. 2010 ;Available from:
http://www.microscopyu.com/tutorials/java/imageformation/airyna/

18. Watermanstorer C, Salmon E. How Microtubules Get Fluorescent Speckles [Internet]. Biophysical
Journal. 1998 ;75(4):2059-2069.Available from:
http://linkinghub.elsevier.com/retrieve/pii/S0006349598776489

19. Voter A. Introduction to the kinetic Monte Carlo method [Internet]. In: Radiation Effects in
Solids. Citeseer; 2007. p. 1568–2609.Available from:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.3560&rep=rep1&type=pdf

20. Danuser G, Waterman-Storer C. Quantitative fluorescent speckle microscopy: where it came
from and where it is going [Internet]. Journal of Microscopy. 2003 ;211(October 2002):191–
207.Available from: http://www3.interscience.wiley.com/journal/118870697/abstract

21. Vallotton P, Ponti A, Salmon ED, Waterman-storer CM, Danuser G. Recovery, visualization, and
analysis of actin and tubulin polymer flow in live cells: a fluorescent speckle microscopy study.
Biophys. J. 2003 ;851289-1306.

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

22. Binary Search 1D Array Function for Labview [Internet]. Available from:

http://zone.ni.com/devzone/cda/epd/p/id/220.

23. Herskowitz, L., Maloney, A., Koch, S. Open Source Microtubule Tracking Algorithm. In

preperation

N
at

ur
e

P
re

ce
di

ng
s

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.4

37
4.

1
: P

os
te

d
22

 A
pr

 2
01

0

http://zone.ni.com/devzone/cda/epd/p/id/220

