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Introduction 

Kinesin family proteins are motor proteins that are 

able to use chemical energy to translocate on 

microtubules. They are essential to many cellular 

processes such as cell reproduction and axonal 

transport (1; 2; 3). A technique that has proven very 

valuable to studying kinesin’s physical properties is 

the gliding motility assay (GMA) (4). In the GMA, the 

kinesin tail is fixed to a slide with the motor domains 

exposed to the solution. A solution of microtubule 

with buffer and ATP are then added to the flow cell. 

This allows the microtubules to be propelled by the 

kinesin motor domains as depicted in Figure 1. Often the microtubules are labeled with dye molecules 

that allow them to be seen through fluorescence microscopy (5). GMAs enable the study of many kinetic 

properties of wild type and mutant kinesins, such as gliding speed, microtubule polarity, and force 

induction in the kinetic process (6; 7; 8; 9). 

To extract information from these experiments, it is often imperative to track the moving microtubules 

through a series of images, obtaining the position versus time of the microtubules. However, manual 

tracking means going through hundreds of images and recording the position of the microtubule by 

hand. This is a tedious and exhausting process, though it certainly has proven useful (10). The data are 

also potentially more prone to selection bias and systematic and random errors than automated 

tracking. Because of this several groups have developed microtubule tracking software (11; 12) (23). To 

test the effectiveness of these tracking programs, many laboratories will track a stationary object. This 

however is not ideal since it does not match experimental conditions well. To characterize the 

systematic and random errors in the tracking algorithms, it is best to test them on a moving object. One 

way this can be achieved is by moving a fixed microtubule with a piezoelectric stage. However, even in 

that case it is difficult to completely eliminate drift and other effects. A simulated image series can 

eliminate those problems and is often ideal for testing tracking algorithms (13). For this purpose we 

developed an application that can generate microtubule images that mimic those captured from a 

typical gliding motility assay. A simulated image is 

shown in Figure 2A next to an actual gliding 

motility assay image shown in Figure 2B. 
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The application was written in National Instruments LABVIEW 7.1. The user interface can be seen in the 

Figure 3 with user inputs on the left and top and outputs on the right and bottom. 

This paper is demarcated into two sections. Section 1 describes the process implemented to produce the 

simulated image, the controls that the user can change, and the method for storing images and settings. 

Section 2 provides instructions on how to obtain the open source code, the compiled application, and a 

video tutorial. 

SECTION 1 

Algorithm Overview 

Figure 4 shows a simplified diagram of the overall algorithm. This paper will go into detail of how each 

step of the algorithm works. There is a main while loop seen in the diagram (see Reference (14) for a 

LABVIEW video tutorial). In each iteration a frame is constructed and saved. Before the while loop is 

entered, three initialization tasks are completed shown as subVIs I, II, III in the figure. (I) First the user 

must create the trajectory the microtubule will follow in the image series that will be created. This is 

done in the trajectory sub.vi. (II) Next using the settings in the “Physical Parameters” control the 

program randomly sets the locations of the dye molecules along the microtubule length. (III) The third 

task is to create a prototype Airy Disk from the “Airy Disk Parameters.” Each one of these subVIs is 

completed only once for each set of images, prior to execution of the while loop that generates each of 

the individual images. 

In the while loop, first the absolute coordinates of the dye molecules are set in the subVI labeled “A” in 

Figure 4. This VI, “Find Coord of Dyes.vi” has inputs of the microtubule trajectory, the index of the start 

of the microtubule, speed, and length of the microtubule. SubVI A has three outputs: “Coordinates of 

Dye Locations” (bundle of two double precision numbers), the “Index of Start of Microtubule for next 

frame” (int32) and the “Index of End of Microtubule” (int32). The dye location coordinates determine 

the locations of the centers of the airy disks in the simulated images. These are absolute coordinates 

(relative to the top left of the image) instead of the relative coordinates with respect to the microtubule 

end that the “Pick sites at random” subVI outputs. The second output, “Index of Start of Microtubule for 

next frame,” goes into a shift register and replaces the previous iteration’s index for the start of the 

microtubule. The distance the microtubule moves between frames is calculated from the speed inside of 

this subVI. This is used to find the index along the trajectory the microtubule will start in the next frame. 

The index of the end of the microtubule is calculated using the length of the microtubule value similar to 

calculating the index for the next starting index. 

After subVI A finishes, it passes parameters to subVI B, “Create high res image” including the 

coordinates of the dye locations, a pointer to an image location and the user inputs “Photon 

Parameters” and “Image Size.” Inside subVI B are the probability distribution function and the Monte 

Carlo algorithm to randomly select the photon locations. 

Next is subVI C, “Create low res noisy image,” with the inputs of “Image Size,” “Background Noise” and 

the “High Res Image.” SubVI C resamples the high resolution image to create a lower resolution image 
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that matches experimental resolution, dictated by the user input. If selected, Gaussian noise is added to 

the background. The output of subVI C is the final image. 

SubVI D saves the image in a directory the user has chosen, and named after the frame number which is 

the iteration number, such as 1.png. When the end of the microtubule index has reached the end of the 

trajectory array, the while loop stops. 

This section will be broken up into four segments to provide details of the above subVIs: Microtubule 

Construction, Resampling and Noise Addition, Trajectory, and Saving. In each of these segments the 

necessary user input is highlighted as well as a simplified version of the code. 

Microtubule Construction 

User Input: 

 

This section will go into detail of how a single image of a microtubule is constructed. The coordinates for 

the dyes need to be randomly selected along the length of the microtubule. The user can set the 

microtubule length via the “Length of Microtubule” control. This control is in units of high resolution 

pixels. This algorithm produces two images; a high resolution image and a lower resolution image. The 

final image is the low resolution image. This allows for more accurate numerical estimation of the airy 

disk probability density function which is implemented in the Monte Carlo algorithm. The “high res pix 

per site” control dictates how many fluorescent dyes are theoretically possible to be found in each pixel. 

For a typical fluorescent tubulin preparation (15), the molecules are attached to surface lysine residues 

on the alpha/beta tubulin dimer. There is one dimer per 8 nm on a single protofilament. For a 13-

protofilament microtubule, there are thus approximately 1.5 dimers per nanometer. There also could be 

multiple dye molecules on a single dimer, which would further reduce the number of high resolution 

pixels per dye site. This control will change depending on the users desired nm/pixel ratio. 
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The first two controls thus dictate the microtubule length and the maximum number of dyes that can be 

attached. In the example shown in the figure, there can be a maximum of 10,000 dyes. However in 

practice, fluorescently labeled tubulin is mixed with unlabeled tubulin resulting in partially labeled 

microtubules after polymerization. To mimic this, the program uses a Monte Carlo method to determine 

if a given site will be labeled dependent on the fraction of dye control. A uniform random number from 

0 to 1 is selected for each site. If that random number is lower than the user-set labeling fraction, the 

site is deemed as labeled. If not the site is left as unlabeled. This code can be seen in Figure 6. There is 

an indicator on the front panel seen to the right of the dynamic adjust control in Figure 3 which specifies 

the number of dye molecules on the microtubule. 

If the site is selected to be labeled, an airy disk is centered at that location. An airy disk represents the 

fluorescent dye in the image plane since the dye emits light that is captured by the circular aperture of 

the objective (16). Mathematically an airy disk is described with the following equation: 

 

where  is the maximum intensity of the airy disk center,  is the Bessel function of the first kind in 

circular coordinates, r is the radius in high res pixels, and k is what we have named the prefactor. It can 

be calculated by 

 

NA is the numerical aperture of the objective, and  is the wavelength in nanometers. C is the 

conversion factor from high resolution pixels to nanometers because we represent r in pixels. The first 

zero for the airy disk can be calculated in nanometers using 

 

where r0 is the distance to the first zero (17). 
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Since the microtubule is narrow compared to the airy disk radius, we treat it as a one-dimensional 

object. So each airy disk location is recorded as a distance from the end of the microtubule, and these 

relative distances along the contour remain fixed while the microtubule moves or curves during the 

simulation. 

This method of labeling dyes randomly along the microtubule is supported by prior experimental work. 

A microtubule in a solution with a low concentration of fluorescent dyes looks speckled. Waterman-

Storer and Salmon studied this phenomenon and showed that this is caused by a non-uniform 

distribution of the fluorescent dyes along the microtubule proto-filament in a purely stochastic process 

(18). 

User Input: 

 

Since the airy disk intensity falls quickly, it is not necessary to calculate the airy disk over large values. 

The numerical aperture and wavelength determines how quickly the airy disk reaches zero. A higher 

numerical aperture or shorter wavelength means fewer pixels need to be calculated to get an accurate 

representation than a higher numerical aperture and longer wavelength. This is illustrated in Figure 8. It 

is obvious that the airy disk in 8A with a radius of 5.67 high res pixels (522.86 nm) needs fewer pixels 

than 8B whose radius is 19.84 high res pixels (1,830 nm) to approximate the dye molecule. In the user 

input image above, a square of -6 to 6 for both x and y values was chosen. This means that a 12 pixels x 

12 pixel box centered at the airy disk’s center was used for each airy disk in the simulation which has the 

same radius as Figure 8A. This is 

done to ensure a shorter processing 

time for the software. The radius of 

the airy disk is calculated in both 

nanometers and high res pixels. This 

can be seen on the front panel in 

Figure 3 below the number of dye 

molecules indicator. 
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User Input: 

 

Generating the total probability density function for photon arrival in the image plane 

 

After all the coordinates of all airy disks have been determined, the functions are added together. This is 

shown in the equation below. 

 

Here  is the total intensity of all M airy disks added together.  is the intensity profile of a single airy 

disk. Its center is shifted inside the image by .  is then normalized by numerical integration to 

produce the probability density function (PDF) for photon arrival. Each pixel coordinate now represents 

the probability of a given photon landing there. 

Generating images based on PDF for photon arrival 

Photon locations are randomly selected using a Monte Carlo method and the total photon PDF. To 

minimize the number of random numbers needed for each photon arrival, all values in the two 

dimensional PDF is flattened into a one-dimensional cumulative probability array. This is seen in Figure 

10. Because the PDF was normalized, the last element in the cumulative probability array is 1. Each 

element in the cumulative array has a corresponding pixel coordinate. For a given random number, the 

index of the cumulative array element closest to that value (without exceeding it) is found by a binary 

search algorithm. The value of pixel corresponding to that element is increased by an amount set by 

“intensity per random number.” This method requires only one random number for each photon (19). 

This code is shown in Figure 11. 
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The user chooses how many random numbers, or photons, used 

for each image. Figure 12 represents what an image from this step 

in the process looks like. The image produced is a floating point 

image to allow for any number of photons per pixel. The image is 

next cast to an 8-bit image, with a maximum pixel value of 255. 

The user is given the option of dynamically adjusting the image so 

that the maximum pixel value in the floating point image set to 

255. If the user chooses not to do this, the image can mimic either 

under- or over-exposure. The latter case will show saturated 

pixels. 

Resampling and Noise Addition 

User Input: 

 

After float image is cast into an 8 bit image, the image is then resampled into a lower resolution image 

to match experimental resolution. The user inputs the x and y resolution of the higher resolution image 

in “High Res X Image Size” and “High Res Y Image Size.” The user can then control how much the lower 

resolution image will be in “X Resolution” and “Y Resolution.” This resampling into a lower resolution 

image is done to allow for a more precise numerical integration to create the probability density 

function. 

User Input: 

 

Finally, background noise can be added to the image depending on user settings. We add background 

noise to the 8-bit resampled image. The user chooses the mean value and standard deviation of the 
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background noise Random noise is added to every pixel. The resulting image with its higher resolution 

counterpart can be seen in Figure 15.  

Because there are many parameters it is useful to view test images before creating the entire sequence 

of images. This option is available to the user along with the additional ability to see what a single airy 

disk looks like given the current relevant user settings. This allows the user to minimize the box 

surrounding the airy disk and thus speed up subsequent simulations. Pressing “Test this set up” 

produces a microtubule while “see this Airy Disk” shows what a single airy disk looks like. The maximum 

intensity of the airy disk can be controlled with the “I0.” This only works with “See this Airy Disk” since 

the sum of all the airy disks is normalized when constructing the microtubule image. These buttons can 

be seen in Figure 3 below the “Let’s Make Some Magic” button. 

Trajectory 

The ultimate goal of this software is to produce a series of images that mimic microtubule motion in 

gliding motility assays. This software contains a subVI that allows the user to create a trajectory that the 

microtubule will follow throughout the frames. The trajectory can be composed of four different base 

trajectories; a horizontal line, a vertical line, a sloped line, and a circle. The user can manipulate these 

simpler paths to create elementary or more complicated trajectories as seen in the front panel image of 

this subVI in Figure 16. 
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The simplest paths are the horizontal and the vertical line. For the horizontal line, the user inputs the 

starting point coordinate (x,y) and the ending x coordinate. The vertical line is very similar in that it 

needs the user to input the starting point coordinate (x,y), but it needs the ending y coordinate instead 

of x. The sloped line needs both the x and y coordinates for the starting and ending points. It will output 

the slope of the line for reference. For a circular arc, the user specifies the origin, radius, and angles to 

start and end the arc. These angles can vary from -2  to 2 . 

To make creating more complicated trajectories easier, each one of these paths have an option to 

automatically link to the existing path. For the horizontal and vertical line this only means that the 

starting point is set automatically to be the last point of the semi-completed path. For the sloped line, 

the starting point is set just like the horizontal line, but the slope is also set to the slope of the incoming 

path. It won’t set the slope automatically if the incoming slope is horizontal or vertical. To best attach a 

circle to the trajectory, the program can set the starting point on the circle so the incoming trajectory 

has the same slope as the tangential line to the circle. This ensures a smooth transition into the circle. 

Since there are two points on the circle with the same slope, the user can choose which point to use. 

This trajectory subVI also allows the user to load a trajectory previously made and edit that path. The 

user can also save the completed trajectory as a .dat file in a chosen directory. The main program will 

automatically save the trajectory in the same directory as the images. 

Speed 

User Input: 

See Figure 5 

The microtubule will have a fixed speed (see “Updates” section at end of manuscript), defined by the 

user in units of high res pixel/frame. In the case shown in Figure 5 the user has chosen a speed of 2 high 

res pixels/frame. The amount of resampling will determine the speed in the final, lower resolution 

images. With the settings shown earlier in Figure 5, the tracked speed is 1 low res pixels/frame.  

In each image frame, the microtubule dye molecules coordinates will be moved along the trajectory a 

distance specified by the speed. Since the airy disks are labeled by their distance from the start of the 

microtubule and not from a location on the image, their relative distances remain unchanged despite 

curves along the trajectory. The program calculates the distances between adjacent points on the 

trajectory. Using this array of distances it is able to set the front of the microtubule and quickly search 

for points that are certain distances away from the start. The code is shown in Figure 17. 

Finally, when satisfied with the settings and trajectory, the user presses the “Let’s Make Some Magic” 

button which can be seen in Figure 3 to the right of Image Size parameters. The program runs and saves 

images until it reaches the end of the trajectory. Currently the user cannot stop the simulations early. 

Pressing the stop button will stop the entire program but will only be responsive after all the images 

have been created. 
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Saving images and user settings 

User Input: 

 

This software saves the images in a directory that is specified in “Directory for Storing Images.” The 

images are .pngs and are named after the frame number. The parameters used to create the 

microtubule as well as the trajectory are saved. The parameters are saved in an .ini file while the 

trajectory is saved as a .dat file. 

This speed of this software is dependent on the user parameters. For example a higher number of 

photons will slow down the algorithm proportionally. A larger box around the center of the airy disk will 

also slow down the simulation. With the settings shown in this paper, the software creates an image in 

about 350 milliseconds on our Intel Core 2 Duo CPU running Windows XP. 

Section 2 

How to obtain code and a video tutorial 

This code is available from sourceforge at https://sourceforge.net/projects/simulatingimage/files/. The 

VIs used to create this program are available for download in the Simulating Images folder. LabVIEW and 

the Vision Development Module are required to view and edit the source code. An executable version of 

this program is also available in Executable Folder found in the Simulating Images directory. A $420 “NI 

Vision Development Module Run-Time License” is required to run the executable. 

http://sine.ni.com/nips/cds/view/p/lang/en/nid/207700 

A video tutorial created by CamStudio is also available in the Tutorial Folder in the same directory. The 

.ini file that saved the settings used to create the images found in this paper and the trajectory shown 

above are located in Settings for Paper folder inside this directory. 

Prior Attempts 

This report describes our second attempt to create images of microtubules. The first attempt followed 

more closely to the steps taken in the Cheezum paper (13). We found the stochastic method we report 

here more satisfying as far as mimicking our experimental data. However the other process, based on 

convolutions of a line or rectangle with an airy disk worked well. We do not describe those methods 

here, but out work can be seen in LJH’s open notebook, dates 11/12/2009 through 11/18/2009. 
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Updates 

Since writing this pre-print, we have added features to this software. For example, the ability to pause or 

switch speeds. Also, the ability for speed to vary according to Poisson stepping. The updates may be 

reflected in the code and thus some figures may be slightly outdated. 

Conclusion 

This software can create a series of images of a microtubule moving along a user specified trajectory. 

This can be used to test tracking software designed for gliding motility assays or other microtubule 

assays. It is possible to adapt this software to create images of other polymeric protein structures such 

as f-actin and some cytoskeletal proteins (20; 21). However it is not equipped to handle these yet. The 

code is freely are available at SourceForge  under an MIT license for reuse and adaptation. 
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