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Abstract

Mechanistic ‘physics’ models of protein folding fail to account
for the observed spectrum of protein folding and aggrega-
tion disorders, suggesting that a more appropriately biological
paradigm will be needed for understanding the etiology, pre-
vention, and treatment of these diseases. Here, a spontaneous
symmetry breaking argument is first applied to the problem,
via a rate distortion analysis of the relation between genome
coding and the final condensation of the protein molten glob-
ule analogous to Tlusty’s (2007) exploration of the evolution
of the genetic code. In the ‘energy’ picture, the average dis-
tortion between codon message and final protein structure,
under constraints driven by evolutionary selection, serves as
a temperature analog, so that low values limit the possible
distribution of protein forms, producing the canonical folding
funnel. A dual ‘developmental’ perspective sees the rate dis-
tortion function itself as the temperature analog, and permits
incorporation of chaperones or external factors as catalysts,
driving the system to different possible outcomes or affect-
ing the rate of convergence. The developmental formalism
is then generalized to a more biologically relevant cognitive
paradigm describing the interaction of protein folding with
both local cellular machinery and embedding epigenetic and
environmental signals. A nonequilibrium empirical Onsager
treatment provides an adaptable statistical model for pro-
tein folding, in the same manner as a regression equation.
This produces quasi-equilibrium ‘resilience’ states represent-
ing normal, corrected, eliminated, and pathological states of
protein folding. A straightforward eneralization to long time
scales produces diffusion models for the onset of protein fold-
ing disorders in which epigenetic or life history factors deter-
mine the diffusion coefficient or affect the efficiency of chap-
erone processes.
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1 Introduction

1.1 Protein folding disorders

The existence of ‘global’ protein folding and aggregation dis-
eases, in conjunction with the elaborate cellular folding reg-
ulatory apparatus associated with the endoplasmic reticulum
and other structures (e.g., Scheuner and Kaufman, 2008; Dob-
son, 2003), makes clear that simple physical ‘folding funnel’
free energy mechanisms are not fully adequate to describe
the process, to understate the matter. This suggests that
a more biologically-based model is needed, analogous to At-
lan and Cohen’s (1998) cognitive paradigm for the immune
system. That is, the intractable set of disorders related to
protein aggregation and misfolding belies simple mechanistic
approaches, although free energy landscape pictures surely
capture part of the process. The diseases range from prion
illnesses like Creutzfeld-Jakob disease, to amyloid-related dys-
functions like Alzheimer’s, Huntington’s and Parkinson’s dis-
eases, and type 2 diabetes. Misfolding disorders include em-
physema and cystic fibrosis. A deeper understanding of pro-
tein folding mechanisms, in particular of epigenetic, social,
and environmental influences, might contribute to prevention
and treatment of these debilitating conditions.

More particularly, the role of epigenetic and environmental
factors in type 2 diabetes has long been known (e.g., Zhang
et al., 2009; Wallach and Rey, 2009). Haataja et al. (2008),
for example, conclude that the islet in type 2 diabetes shows
much in common with neuropathology in neurodegenerative
diseases where interest is now focused on protein misfolding
and aggregation and the diseases are now often referred to as
unfolded protein diseases.

Scheuner and Kaufman (2008) likewise examine the un-
folded protein response in β cell failure and diabetes. Indeed,
their opening paragraph raises the fundamental questions re-
garding the adequacy of simple energy landscape models of
protein folding:

In eukaryotic cells, protein synthesis and secre-
tion are precisely coupled with the capacity of the
endoplasmic reticulum (ER) to fold, process, and
traffic proteins to the cell surface. These processes
are coupled through several signal transduction
pathways collectively known as the unfolded protein
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response [that] functions to reduce the amount of
nascent protein that enters the ER lumen, to in-
crease the ER capacity to fold protein through tran-
scriptional up-regulation of ER chaperones and fold-
ing catalysts, and to induce degradation of misfolded
and aggregated protein.

Qiu et al. (2009) address Alzheimer’s disease in much the
same fashion:

Alzheimer’s dementia is a multifactorial disease
in which older age is the strongest risk factor... [that]
may partially reflect the cumulative effects of dif-
ferent risk and protective factors over the lifespan,
including the complex interactions of genetic suscep-
tibility, psychosocial factors, biological factors, and
environmental exposures experienced over the lifes-
pan.

Qiu et al. (2009) explain that mutation effects account for
only a small fraction of observed cases, and that the APOE ε4
allele – the only established genetic factor for both early and
late onset disease – is a susceptibility gene, neither necessary
nor sufficient for disease onset. They further describe how
many of the same factors implicated in diabetes and cardio-
vascular disease predict onset of Alzheimer’s as well: tobacco
use, high blood pressure, high serum cholesterol, chronic in-
flammation, as indexed by a higher level of serum C-reactive
protein, and diabetes itself. Highly significant protective fac-
tors include high educational and socioeconomic status, regu-
lar physical exercise, mentally demanding activities, and sig-
nificant social engagement.

Similarly, Fillit et al. (2008) find that lifestyle risk factors
for cardiovascular disease, such as obesity, lack of exercise,
smoking, and certain psychosocial factors, have been associ-
ated with an increased risk for cognitive decline and dementia,
concluding that current evidence indicates an association be-
tween hypertension, dyslipidemia and diabetes and cognitive
decline and dementia.

Goldschmidt et al. (2010) describe pathological protein fib-
rillation as follows:

We found that [protein segments with high fibril-
lation propensity] tend to be buried or twisted into
unfavorable conformations for forming beta sheets...
For some proteins a delicate balance between pro-
tein folding and misfolding exists that can be tipped
by changes in environment, destabilizing mutations,
or even protein concentration...

In addition to the self-chaperoning effects de-
scribed above, proteins are also protected from fib-
rillation during the process of folding by molecular
chaperones...

Our genome-wide analysis revealed that self-
complementary segments are found in almost all pro-
teins, yet not all proteins are amyloids. The implica-
tion is that chaperoning effects have evolved to con-
strain self-complementary segments from interaction
with each other.

These processes and mechanisms seem no less examples of
chemical cognition than the immune/inflammatory responses
that Atlan and Cohen (1998) describe in terms of an explicit
cognitive paradigm, or that characterizes well-studied neural
processes. Our own work (Wallace and Wallace, 2008, 2009)
introduces a similar, and highly formal, cognitive paradigm
for gene expression whose machinery permits the natural in-
corporation of epigenetic and environmental signals via cat-
alytic mechanisms similar to those of Section 5.3 below. The
implication is that progress in understanding, preventing, and
treating protein folding and aggregation disorders now re-
quires introduction of a biologically-based cognitive paradigm
for the folding process itself.

1.2 The ‘standard model’ of protein folding

The symmetries and dynamics of protein folding are striking
and, in a local sense, fairly well understood (Dill et al. 2007;
Wolynes, 1996; Onuchic and Wolynes, 2004). Figure 1, from
Goodsell and Olson (2000), shows several typical examples.
More general, but less overtly ‘symmetric’, conformations,
however, involve finite tilings of helices, sheets, and attach-
ment loops that would seem better described using groupoid
methods, following the arguments of Weinstein (1996): As
Wolynes (1996) put the matter, “It is the inexact symmetries
of biological molecules that are most striking”.

Anfinsen’s (1973) thermodynamic hypothesis has strongly
dominated thinking on the subject: the native state of a pro-
tein has the lowest Gibbs free energy, determined by the in-
teraction of the amino acid sequence and the embedding en-
vironment (Wolynes, 1996), with hydrophobic amino acids
driven into the center of the ‘native’ folded protein structure.
More recent work (e.g., summarized in Lei and Huang, 2010)
suggests that large, complex proteins may have native config-
urations representing kinetically accessible, rather than ther-
modynamically minimal, states. Andre et al. (2008) explore
the central insight that “...selection is only likely to operate on
primordial complexes with sufficient initial interaction energy
to at least partially overcome the entropic costs of association
of the monomers; evolution can only optimize a complex that
is populated sufficiently to confer a benefit on the organism”.

Here we will attempt to finesse this general perspective by
invoking a rate distortion argument applied to the transmit-
ted signal represented by the translation of the genome into
the final, evolutionarily driven, condensation of the molten
globule of the resulting amino acid string. The argument,
an adaptation of Tlusty’s (2007) insights regarding the role
of rate distortion constraints in evolutionary process, seems
fairly direct. It is based on standard material from statistical
physics and information theory, using, respectively, average
distortion and the rate distortion function itself, as tempera-
ture analogs to produce mirror image ‘energy’ and ‘develop-
ment’ pictures of protein folding.

The final step is to mathematically ‘weaken’, i.e., general-
ize, the development perspective, using information sources
formally dual to the several chemical cognitive processes in-
volved in protein folding. These then, in a sense, engage in a

2

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
34

4.
1 

: P
os

te
d 

12
 A

pr
 2

01
0



Figure 1: From Godsell and Olson, (2000). Proteins with
each of the crystallographic point group symmetries have been
found. Point group symbols are included below each protein
structure (e.g., C1 and D2), and the number of identical sub-
units in each group is included below and to the right of the
structure. One subunit is shaded in each example. Other,
noncrystallographic, point groups are consistent with the en-
tantiomorphic nature of proteins, including complicated cyclic
and dihedral symmetries. The more ubiquitous tilings of he-
lices, sheets, and loops can probably be best described using
groupoids, most directly seen as disjoint unions of groups,
for which a ‘product’ is only locally defined (e.g., Weinstein,
1996).

local, multifactorial, coevolutionary interaction whose quasi-
stable dynamic states generate products that are, respectively,
correct, repaired, eliminated, or misfolded/aggregated pro-
teins. This set of processes is analogous to quasi-stable ecosys-
tem resilience modes, in the sense of Holling (1973) or Gunder-
son (2000), and apparently subject to punctuated transitions
between them consequent on epigenetic or environmental per-
turbations.

The argument generates a new class of statistical models
based on the asymptotic limit theorems of information, in the
same sense that regression and other parametric models are
based on the Central Limit Theorem, and these should prove
useful in data analysis as well as providing a new conceptual
approach.

We begin with a restatement of some standard material
from statistical physics that provides the basis for a subse-
quent argument-by-abduction.

2 Spontaneous symmetry breaking

Landau’s theory of phase transitions (Landau and Lifshitz,
2007) assumes that the free energy of a system near criticality
can be expanded in a power series of some ‘order parameter’
φ representing a fundamental measurable quantity, that is, a
symmetry invariant. One writes

F0 =
∑p(>m)
k=m Akφ

k,
(1)

with A2 ≈ α(T − Tc) sufficiently close to the critical temper-
ature Tc. This mean field approach can be used to describe
a variety of second-order effects for p = 4 or p = 6, A3 = 0
and A4 > 0, and first order phase transitions (requiring latent
heat) for either p = 6, A3 = 0, A4 < 0 or p = 4 and A3 6= 0.
These can be both temperature induced (for m = 2) and field
induced (for m = 1).

Minimization of F0 with respect to the order parameter
yields the average value of φ, < φ >, which is zero above the
critical temperature and non-zero below it. In the absence of
external fields, the second-order transition occurs at T = Tc,
while the first-order, needing latent heat, occurs at T ∗c = Tc+
A2

4/4αA6. In the latter case thermal hysteresis arises between
Ts ≡ Tc + A2

4/3αA6 and Tc. A more accurate approximation
involves an expression that recognizes the effect of coarse-
graining, adding a term in ∇2φ and integrating over space
rather than summing. Regimes dominated by this gradient
will show behaviors analogous to those described using the
one dimensional Landau-Ginzburg equation, which, among
other things, characterizes superconductivity.

The Landau formalism quickly enters deep topological wa-
ters (Pettini, 2007, pp. 42-43; Landau and Lifshitz, 2007,
pp. 459-466). The essence of Landau’s insight was that phase
transitions without latent heat – second order transitions –
were usually in the context of a significant symmetry change
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in the physical states of a system, with one phase, at higher
temperature, being far more symmetric than the other. A
symmetry is lost in the transition, a phenomenon called spon-
taneous symmetry breaking. The greatest possible set of sym-
metries in a physical system is that of the Hamiltonian de-
scribing its energy states. Usually states accessible at lower
temperatures will lack symmetries available at higher temper-
atures, so that the lower temperature phase is the less sym-
metric: The randomization of higher temperatures ensures
that higher symmetry/energy states will then be accessible to
the system.

At the lower temperature an order parameter must be in-
troduced to describe the system’s physical states – some ex-
tensive quantity like magnetization. The order parameter
will vanish at higher temperatures, involving more symmetric
states, and will be different from zero in the less symmetric
lower temperature phase.

This can be formalized, following Pettini (2007), as fol-
lows. Consider a thermodynamic system having a free en-
ergy F which is a function of temperature T , pressure P ,
and some other extensive macroscopic parameters mi, so that
F = F (P, T,mi). The mi all vanish in the most symmetric
phase, so that, as a function of the mi, F (P, T,mi) is in-
variant with respect to the transformations of the symmetry
group G0 of the most symmetric phase of the system when
all mi ≡ 0.

The state of the system can be represented by a vector
|m >= |m1, ...,mn > in a vector space E . Now, within E ,
construct a linear representation of the group G0 that asso-
ciates with any g ∈ G0 a matrix M(g) having rank n. In gen-
eral, the representation M(g) is reducible, and we can decom-
pose E into invariant irreducible subspaces E1, E2, ..., Ek, hav-

ing basis vectors |e(n)i > with n = 1, 2, ...ni and ni = dimEi.
The state variables mi are transformed into new variables
η
(n)
i =< e

(n)
i |m >, where the bracket represents an inner

product.
In terms of irreducible representations Di(g) induced by

M(g) in Ei we have

M(g) = D1(g)⊕D2(g)⊕, ...,⊕Dk(g).

If at least one of the η
(n)
i is nonzero, then the system no

longer has the symmetry G0. This symmetry has been bro-
ken, and the new symmetry group is Gi, associated with the

representation Di(g) in Ei. The variables η
(n)
i are the new or-

der parameters, and the free energy is now F = F (P, T, η
(n)
i ).

For a physical system the actual values of the η as functions
of P and T can be variationally determined by minimizing
the free energy F .

Two essential features distinguish information systems, like
the translation of a genome into a folded protein, from this
simple physical model.

First, the dynamics of order parameters cannot always be
determined by simplistic minimization procedures in biolog-
ical circumstances (e.g., Levinthal, 1969): embedding envi-
ronments can, within contextual constraints (that particu-
larly include available metabolic free energy), write images of

themselves via evolutionary selection mechanisms, driving the
system toward such structures as the protein folding funnel
(e.g., Levinthal, 1968; Wolynes, 1996).

Second, the essential symmetry of information sources is
quite often driven by groupoid, rather than group, struc-
tures (e.g., Wallace, 2010). One must then engage the full
transitive orbit/isotropy group decomposition, and examine
groupoid representations (e.g., Bos, 2007; Buneci, 2003 ) con-
figured about the irreducible representations of the isotropy
groups. This observation seems particularly relevant given
the usual helix/sheet/connecting loop tilings that character-
ize most elaborate protein conformations (Wolynes, 1996).

A brief summary of standard material on groupoids is in-
cluded as a Mathematical Appendix.

3 A little information theory

Here we think of the machinery listing a sequence of codons
as communicating with machinery that produces amino acids,
folds them in context, and produces the final symmetric pro-
tein. We then suppose it possible to compare what is actually
produced with what should have been produced, perhaps by
a simple evolutionary survival mechanism, perhaps via some
more sophisticated error-correcting systems. This is not a
new idea, and Onuchic and Wolynes (2004), for example, put
the matter fully in evolutionary terms:

Protein folding should be complex... a folding
mechanism must involve a complex network of el-
ementary interactions. However, simple empirical
patterns of protein folding kinetics... have been
shown to exist.

This simplicity is owed to the global organization
of the landscape of the energies of protein conforma-
tions into a funnel...This organization is not charac-
teristic of all polymers with any sequence of amino
acids, but is a result of evolution...

Evolution achieves robustness by selecting for
sequences in which the interactions present in the
functionally useful structure are not in conflict, as
in a random heteropolymer, but instead are mutu-
ally supportive and cooperatively lead to a low en-
ergy structure. The interactions are ‘minimally frus-
trated’... or ‘consistent’...

It is possible to reframe something of this mechanism in
formal information theory terms.

Suppose a sequence of signals is generated by a biological
information source Y having output yn = y1, y2, ... – codons.
This is ‘digitized’ in terms of the observed behavior of the sys-
tem with which it communicates, say a sequence of ‘observed
behaviors’ bn = b1, b2, ... – amino acids and their folded pro-
tein structure. Assume each bn is then deterministically re-
translated back into a reproduction of the original biological
signal, bn → ŷn = ŷ1, ŷ2, ... .

Define a distortion measure d(y, ŷ) which compares the
original to the retranslated path. Many distortion measures
are possible. The Hamming distortion is defined simply as
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d(y, ŷ) = 1, y 6= ŷ

d(y, ŷ) = 0, y = ŷ.

For continuous variates the squared error distortion is just
d(y, ŷ) = (y − ŷ)2.

There are many such possibilities. The distortion between
paths yn and ŷn is defined as d(yn, ŷn) ≡ 1

n

∑n
j=1 d(yj , ŷj).

A remarkable fact of the Rate Distortion Theorem is that
the basic result is independent of the exact distortion mea-
sure chosen (Cover and Thomas, 1991; Dembo and Zeitouni,
1998).

Suppose that with each path yn and bn-path retransla-
tion into the y-language, denoted ŷn, there are associated
individual, joint, and conditional probability distributions
p(yn), p(ŷn), p(yn, ŷn), p(yn|ŷn).

The average distortion is defined as

D ≡
∑
yn p(y

n)d(yn, ŷn).
(2)

It is possible, using the distributions given above, to define
the information transmitted from the Y to the Ŷ process using
the Shannon source uncertainty of the strings:

I(Y, Ŷ ) ≡ H(Y )−H(Y |Ŷ ) = H(Y ) +H(Ŷ )−H(Y, Ŷ ),

where H(..., ...) is the standard joint, and H(...|...) the condi-
tional, Shannon uncertainties (Cover and Thomas, 1991; Ash,
1990).

If there is no uncertainty in Y given the retranslation Ŷ ,
then no information is lost, and the systems are in perfect
synchrony.

In general, of course, this will not be true.
The rate distortion function R(D) for a source Y with a

distortion measure d(y, ŷ) is defined as

R(D) = minp(y,ŷ);
∑

(y,ŷ)
p(y)p(y|ŷ)d(y,ŷ)≤D I(Y, Ŷ ).

(3)

The minimization is over all conditional distributions p(y|ŷ)
for which the joint distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies
the average distortion constraint (i.e., average distortion ≤
D).

The Rate Distortion Theorem states that R(D) is the min-
imum necessary rate of information transmission which en-
sures the communication between the biological vesicles does
not exceed average distortion D. Thus R(D) defines a mini-
mum necessary channel capacity. Cover and Thomas (1991)

or Dembo and Zeitouni (1998) provide details. The rate dis-
tortion function has been calculated for a number of systems.

We reiterate an absolutely central fact characterizing the
rate distortion function: Cover and Thomas (1991, Lemma
13.4.1) show that R(D) is necessarily a decreasing convex
function of D for any reasonable definition of distortion.

That is, R(D) is always a reverse J-shaped curve. This will
prove crucial for the overall argument. Indeed, convexity is
an exceedingly powerful mathematical condition, and permits
deep inference (e.g., Rockafellar, 1970). Ellis (1985, Ch. VI)
applies convexity theory to conventional statistical mechanics.

For a Gaussian channel having noise with zero mean and
variance σ2 (Cover and Thomas, 1991),

R(D) = 1/2 log[σ2/D], 0 ≤ D ≤ σ2

R(D) = 0, D > σ2.
(4)

Recall, now, the relation between information source un-
certainty and channel capacity (e.g., Ash, 1990):

H[X] ≤ C,
(5)

where H is the uncertainty of the source X and C the
channel capacity, defined according to the relation (Ash, 1990)

C ≡ maxP (X) I(X|Y ),
(6)

where P (X) is chosen so as to maximize the rate of infor-
mation transmission along a channel Y .

Note that for a parallel set of noninteracting channels, the
overall channel capacity is the sum of the individual capaci-
ties, providing a powerful ‘consensus average’ that does not
apply in the case of modern molecular coding.

Finally, recall the analogous definition of the rate distor-
tion function above, again an extremum over a probability
distribution.

Our own work (Wallace and Wallace, 2008) focuses on the
homology between information source uncertainty and free
energy density. More formally, if N(n) is the number of high
probability ‘meaningful’ – that is, grammatical and syntacti-
cal – sequences of length n emitted by an information source
X, then, according to the Shannon-McMillan Theorem, the
zero-error limit of the Rate Distortion Theorem (Ash, 1990;
Cover and Thomas, 1991; Khinchin, 1957),
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H[X] = lim
n→∞

log[N(n)]

n

= lim
n→∞

H(Xn|X0, ..., Xn−1)

= lim
n→∞

H(X0, ..., Xn)

n+ 1
,

(7)

where, again, H(...|...) is the conditional and H(..., ...) is the
joint Shannon uncertainty.

In the limit of large n, H[X] becomes homologous to the
free energy density of a physical system at the thermody-
namic limit of infinite volume. More explicitly, the free energy
density of a physical system having volume V and partition
function Z(β) derived from the system’s Hamiltonian – the
energy function – at inverse temperature β is (e.g., Landau
and Lifshitz 2007)

F [K] = lim
V→∞

− 1

β

log[Z(β, V )]

V
≡

lim
V→∞

log[Ẑ(β, V )]

V
,

with Ẑ = Z−1/β . The latter expression is formally similar
to the first part of equation (7), a circumstance having deep
implications: Feynman (2000) describes in great detail how
information and free energy have an inherent duality. Feyn-
man, in fact, defines information precisely as the free energy
needed to erase a message. The argument is surprisingly di-
rect (e.g., Bennett, 1988), and for very simple systems it is
easy to design a small (idealized) machine that turns the in-
formation within a message directly into usable work – free
energy. Information is a form of free energy and the con-
struction and transmission of information within living things
consumes metabolic free energy, with nearly inevitable losses
via the second law of thermodynamics. If there are limits on
available metabolic free energy there will necessarily be limits
on the ability of living things to process information.

Figure 2 presents a schematic of the mechanism: As the
complexity of a dynamic physiological information process
rises, that is, as H increases, its free energy content increases
linearly. The metabolic free energy needed to construct and
maintain the physiological systems that instantiate H should,
however, be expected to increase nonlinearly with it, hence
the ‘translation gap’ of the figure. Section 5 of Wallace (2010)
gives a fairly elementary derivation of such a relation in terms
of rate distortion theory. Figure 2 suggests that H may in-
deed be a good, if highly nonlinear, index of large-scale free
energy dynamics.

Figure 2: Nonlinear increase in metabolic free energy needed
to maintain and generate linear increase in the information
source uncertainty of a complex physiological process. H is
seen to ‘leverage’ metabolic expenditures, parameterizing a
more complicated nonequilibrium thermodynamics. See Wal-
lace (2010) for an explicit calculation in a somewhat different
system.

Conversely, information source uncertainty has an impor-
tant heuristic interpretation that Ash (1990) describes as fol-
lows:

[W]e may regard a portion of text in a partic-
ular language as being produced by an informa-
tion source. The probabilities P [Xn = an|X0 =
a0, ...Xn−1 = an−1] may be estimated from the avail-
able data about the language; in this way we can
estimate the uncertainty associated with the lan-
guage. A large uncertainty means, by the [Shannon-
McMillan Theorem], a large number of ‘meaningful’
sequences. Thus given two languages with uncer-
tainties H1 and H2 respectively, if H1 > H2, then
in the absence of noise it is easier to communicate
in the first language; more can be said in the same
amount of time. On the other hand, it will be easier
to reconstruct a scrambled portion of text in the sec-
ond language, since fewer of the possible sequences
of length n are meaningful.

In sum, if a biological system characterized by H1 has a
richer and more complicated internal communication struc-
ture than one characterized by H2, then necessarily H1 > H2

and system 1 represents a more energetic process than system
2, and by the arguments of figure 2, may trigger even greater
metabolic free energy dynamics.

By equations (5), (6), and (7), the Rate Distortion Func-
tion, R(D) is likewise a free energy measure, constrained by
the availability of metabolic free energy.
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4 The energy picture

Ash’s comment leads directly to a model in which the aver-
age distortion between the initial codon stream and the final
form of the folded amino acid stream, the protein, becomes
a dominant force, particularly in an evolutionary context in
which fidelity of codon expression has survival value. The di-
rect model examines the distortion between the codon stream
and the folded protein structure.

Suppose there are n possible folding schemes. The most fa-
miliar approach, perhaps, is to assume that a given distortion
measure, D, under evolutionary selection constraints, serves
much as an external temperature bath for the possible dis-
tribution of conformation free energies, the set {H1, ...,Hn}.
That is, high distortion, represented by a low rate of trans-
mission of information between codon machine and amino
acid/protein folding machine, permits a larger distribution
of possible symmetries – the big end of the folding funnel –
according to the classic formula

Pr[Hj ] =
exp[−Hj/λD]∑n

i=1
exp[−Hi/λD]

,

(8)

where Pr[Hj ] is the probability of folding scheme j having
conformational free energy Hj .

We are, in essence, assuming that Pr[Hj ] is a one parameter
distribution in the ‘intensive’ quantity D.

The free energy Morse Function associated with this prob-
ability is

FR = −λD log[
∑n
i=1 exp[−Hi/λD]].

(9)

Applying a spontaneous symmetry breaking argument to
FR generates topological transitions in folded protein struc-
ture as the ‘temperature’ D decreases, i.e., as the average
distortion declines. That is, as the channel capacity connect-
ing codon machines with amino acid/protein folding machines
increases, the system is driven to a particular conformation,
according to the ‘protein folding funnel’.

5 The developmental picture

The developmental approach of Wallace and Wallace (2009)
permits a different perspective on protein folding.

We now are concerned with developmental pathways in a
‘phenotype space’ that, in a series of steps, take the amino
acid string S0 at time 0 to the final folded conformation Sf
at some time t in a long series of distinct, sequential, inter-
mediate configurations Si.

Let N(n) be the number of possible paths of length n that
lead from S0 to Sf . The essential assumptions are:

[1] This is a highly systematic process governed by a ‘gram-
mar’ and ‘syntax’ driven by the folding funnel, so that it is
possible to divide all possible paths xn = {S0,S1, ...,Sn} into
two sets, a small, high probability subset that conforms to the
demands of the folding funnel topology, and a much larger
‘nonsense’ subset having vanishingly small probability.

[2] If N(n) is the number of high probability paths of length
n, then the ‘ergodic’ limit

H = limn→∞ log[N(n)]/n
(10)

both exists and is independent of the path x. This is, es-
sentially, a restatement of the Shannon-McMillan Theorem
(Khinchin, 1957).

That is, the folding of a particular protein, from its amino
acid string to its final form, is not a random event, but repre-
sents a highly – evolutionarily – structured (i.e., by the folding
funnel) ‘statement’ by an information source having source
uncertainty H.

5.1 Symmetry arguments

A formal equivalence class algebra can now be constructed by
choosing different origin and end points S0,Sf and defining
equivalence of two states by the existence of a high proba-
bility meaningful path connecting them with the same origin
and end. Disjoint partition by equivalence class, analogous to
orbit equivalence classes for dynamical systems, defines the
vertices of the proposed network of developmental protein
‘languages’. We thus envision a network of metanetworks.
Each vertex then represents a different equivalence class of
developmental information sources. This is an abstract set of
metanetwork ‘languages’.

This structure generates a groupoid, in the sense of We-
instein (1996). States aj , ak in a set A are related by the
groupoid morphism if and only if there exists a high prob-
ability grammatical path connecting them to the same base
and end points, and tuning across the various possible ways
in which that can happen – the different developmental lan-
guages – parameterizes the set of equivalence relations and
creates the (very large) groupoid.

There is an implicit hierarchy. First, there is structure
within the system having the same base and end points. Sec-
ond, there is a complicated groupoid structure defined by sets
of dual information sources surrounding the variation of base
and end points. We do not need to know what that structure
is in any detail, but can show that its existence has profound
implications.

We begin with the simple case, the set of dual informa-
tion sources associated with a fixed pair of beginning and end
states.
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5.1.1 The first level

Taking the serial grammar/syntax model above, we find that
not all high probability meaningful paths from S0 to Sf are
actually the same. They are structured by the uncertainty of
the associated dual information source, and that has a homo-
logical relation with free energy density.

Let us index possible information sources connecting base
and end points by some set A = ∪α. Argument by abduc-
tion from statistical physics is direct. The minimum channel
capacity needed to produce average distortion less than D in
the energy picture above is R(D). We take the probability of
a particular Hα as determined by the standard expression

P [Hβ ] =
exp[−Hβ/µR]∑
α
exp[−Hα/µR]

,

(11)

where the sum may, in fact, be a complicated abstract inte-
gral.

A basic requirement, then, is that the sum/integral always
converges.

Thus, in this formulation, there must be structure within a
(cross sectional) connected component in the base configura-
tion space, determined by R. Some dual information sources
will be ‘richer’/smarter than others, but, conversely, must use
more available channel capacity for their completion.

5.1.2 The second level

While we might simply impose an equivalence class structure
based on equal levels of energy/source uncertainty, producing
a groupoid (and possibly allowing a Morse Theory approach),
we can do more by now allowing both source and end points
to vary, as well as by imposing energy-level equivalence. This
produces a far more highly structured groupoid.

Equivalence classes define groupoids, by standard mecha-
nisms. The basic equivalence classes – here involving both
information source uncertainty level and the variation of S0

and Sf , will define transitive groupoids, and higher order sys-
tems can be constructed by the union of transitive groupoids,
having larger alphabets that allow more complicated state-
ments in the sense of Ash above.

Again, given a minimum necessary channel capacity R, we
propose that the metabolic-energy-constrained probability of
an information source representing equivalence class Gi, HGi ,
will again be given by

P [HGi ] =
exp[−HGi/κR]∑
j
exp[−HGj /κR]

,

(12)

where the sum/integral is over all possible elements of the
largest available symmetry groupoid. By the arguments of
Ash above, compound sources, formed by the union of un-
derlying transitive groupoids, being more complex, generally
having richer alphabets, as it were, will all have higher free-
energy-density-equivalents than those of the base (transitive)
groupoids.

Let

ZG =
∑
j exp[−HGj/κR].

(13)

We now define the Groupoid free energy of the system, a
Morse Function FG, at channel capacity R, as

FG[R] = − 1
κR log[ZG[R]].

(14)

These free energy constructs permit introduction of the
spontaneous symmetry breaking arguments above, but now
an increase in R (with corresponding decrease in average dis-
tortion D) permits richer system dynamics – higher source
uncertainty – resulting in more rapid transmission of the ‘mes-
sage’ constituting convergence from S0 to Sf .

5.2 Folding speed and mechanism

Dill et al. (2007) describe the conundrum of folding speeds as
follows:

...[P]rotein folding speeds – now known to vary
over more than eight orders of magnitude – correlate
with the topology of the native protein: fast folders
usually have mostly local structure, such as helices
and tight turns, whereas slow folders usually have
more non-local structure, such as β sheets (Plaxco
et al., 1998)...

A simple groupoid probability argument reproduces this
result. Assume that protein structure can be characterized
by some groupoid representing, at least, the disjoint union of
the groups describing the symmetries of component secondary
structures – e.g., helices and sheets. Then, in equation 11,
the set A = ∪α grows in size – cardinality – with increasing
structural complexity. If channel capacity is capped by some
mechanism, so that (at least) R grows at a lesser rate than
A, by some measure, then

P [Hβ ] =
exp[−Hβ/µR]∑
α exp[−Hα/µR]
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must decrease with increase in the number of possible states
α, i.e., with increase in the cardinality of R, producing pro-
gressively lower rates of convergence to the final state.

These matters lead to the next central question: How can
folding rates be modulated?

5.3 Catalysis of protein folding

Incorporating the influence of embedding contexts – epige-
netic or chaperone effects, or the effects of (broadly) toxic
exposures – can be done here by invoking the Joint Asymp-
totic Equipartition Theorem (JAEPT)(Cover and Thomas,
1991). For example, given an embedding contextual infor-
mation source, say Z, that affects protein development, then
the developmental source uncertainty HGi is replaced by a
joint uncertainty H(XGi , Z). The objects of interest then be-
come the jointly typical dual sequences yn = (xn, zn), where
x is associated with protein folding development and z with
the embedding context. Restricting consideration of x and z
to those sequences that are in fact jointly typical allows use
of the information transmitted from Z to X as the splitting
criterion.

One important inference is that, from the information
theory ‘chain rule’ (Cover and Thomas, 1991), H(X,Y ) =
H(X) + H(Y |X) ≤ H(X) + H(Y ), while there are approx-
imately exp[nH(X)] typical X sequences, and exp[nH(Z)]
typical Z sequences, and hence exp[n(H(x)+H(Y ))] indepen-
dent joint sequences, there are only about exp[nH(X,Z)] ≤
exp[n(H(X) + H(Y ))] jointly typical sequences, so that the
effect of the embedding context, in this model, is to lower the
relative free energy of a particular protein channel.

Thus the effect of epigenetic/catalytic regulation or toxic
exposure is to channel protein into pathways that might oth-
erwise be inhibited or slowed by an energy barrier. Hence the
epigenetic/catalytic/toxic information source Z acts as a tun-
able catalyst, a kind of second order enzyme, to enable and
direct developmental pathways. This result permits hierar-
chical models similar to those of higher order cognitive neural
function (e.g, Wallace, 2005).

This is indeed a relative energy argument, since, metabol-
ically, two systems must now be supported, i.e., that of the
‘reaction’ itself and that of its catalytic regulator. ‘Program-
ming’ and stabilizing inevitably intertwined, as it were.

Protein folding, in the developmental picture, can be visu-
alized as a series of branching pathways. Each branch point is
a developmental decision, or switch point, governed by some
regulatory apparatus (if only the slope of the folding funnel)
that may include the effects of toxins or epigenetic mecha-
nisms.

A more general picture emerges by allowing a distribution
of possible ‘final’ states Sf . Then the groupoid arguments
merely expand to permit traverse of both initial states and
possible final sets, recognizing that there can now be a possi-
ble overlap in the latter, and the catalytic effects are realized
through the joint uncertainties H(XGi , Z), so that the guid-
ing information source Z serves to direct as well the possible
final states of XGi .

Figure 3: Given an initial state S0 and a critical period cast-
ing a path-dependent developmental shadow, there are two
different directed homotopy equivalence classes of deformable
paths leading, respectively, to the normal folded protein state
Sf and the pathological state Spath. These sets of paths form
equivalence classes defining a topological groupoid.

5.4 Extending the model

The most natural extension of the developmental model of
protein folding would be in terms of the directed homotopy
classification of ontological trajectories, in the sense of Wal-
lace and Wallace (2008, 2009). That is, developmental tra-
jectories themselves can be classified into equivalence classes,
for example those that lead to a normal final state Sf , and
those that lead to pathological aggregations or misfoldings,
say some set {Sipath}, i = 1, 2, .... This produces a dynamic
directed homotopy groupoid topology whose understanding
might be useful across a broad spectrum of diseases.

Figure 3 illustrates the concept. The initial developmental
state S0 can, in this picture, ‘fall’ down two different sets
of developmental pathways, separated by a critical period
‘shadow’ preventing crossover between them. Paths within
one set can be topologically transformed into each other with-
out crossing the filled triangle, and constitute a directed ho-
motopy equivalence classes. The lower apex of the triangle
can, however, start at many possible critical period points
along any path connecting S0 and Sf , following the argu-
ments of Section 12 of Wallace and Wallace (2009).

Onset of a path that converges on the conformation Spath
is, according to the model, driven by a genetic, epigenetic,
or environmental catalysis event, in the sense of Section 5.3.
The topological equivalence classes define a groupoid on the
developmental system.

6 Toward a cognitive paradigm for
protein folding

We now take the developmental perspective as the foundation
for generating an empirically-based statistical model – effec-
tively a cognitive paradigm for protein folding – that incorpo-
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rates the embedding contexts of epigenetic and environmental
signals. Atlan and Cohen (1998), in the context of a study of
the immune system, argue that the essence of cognition is the
comparison of a perceived signal with an internal, learned pic-
ture of the world, and then choice of a single response from a
large repertoire of possible responses. Such choice inherently
involves information and information transmission since it al-
ways generates a reduction in uncertainty, as explained in Ash
(1990, p. 21). Thus structures that process information are
constrained by the asymptotic limit theorems of information
theory, in the same sense that sums of stochastic variables are
constrained by the Central Limit Theorem, allowing the con-
struction of powerful statistical tools useful for data analysis.

More formally, a pattern of incoming input Si describing
the folding status of the protein – starting with the initial
codon stream S0 of equation Section 5 – is mixed in a sys-
tematic algorithmic manner with a pattern of otherwise un-
specified ‘ongoing activity’, including cellular, epigenetic and
environmental signals, Wi, to create a path of combined sig-
nals x = (a0, a1, ..., an, ...). Each ak thus represents some
functional composition of internal and external factors, and
is expressed in terms of the intermediate states as

Si+1 = f([Si,Wi]) = f(ai)
(15)

for some unspecified function f . The ai are seen to be
very complicated composite objects, in this treatment that
we may choose to coarse-grain so as to obtain an appropriate
‘alphabet’.

In a simple spinglass-like model, S would be a vector, W a
matrix, and f would be a function of their product at ‘time’
i.

The path x is fed into a highly nonlinear decision oscillator,
h, a ‘sudden threshold machine’ pattern recognition structure,
in a sense, that generates an output h(x) that is an element
of one of two disjoint sets B0 and B1 of possible system re-
sponses. Let us define the sets Bk as

B0 = {b0, ..., bk},

B1 = {bk+1, ..., bm}.

Assume a graded response, supposing that if h(x) ∈ B0,
the pattern is not recognized, and if h(x) ∈ B1, the pattern
has been recognized, and some action bj , k+ 1 ≤ j ≤ m takes
place. Typically, the set B1 would represent the final state
of the folded protein, either normal or in some pathological
conformation, that is sent on in the biological process or else
subjected to some attempted corrective action. Corrections
may, for example, range from activation of ‘heat shock’ pro-
tein repair to more drastic clean-up attack.

The principal objects of formal interest are paths x trig-
gering pattern recognition-and-response. That is, given a

fixed initial state a0 = [S0,W0], examine all possible sub-
sequent paths x beginning with a0 and leading to the event
h(x) ∈ B1. Thus h(a0, ..., aj) ∈ B0 for all 0 < j < m, but
h(a0, ..., am) ∈ B1. B1 is thus the set of final possible states,
Sf∪{Spath} from figure 3 that includes both the final ‘physics’
state Sf and the set of possible pathological conformations.

Again, for each positive integer n, let N(n) be the num-
ber of high probability grammatical and syntactical paths of
length n which begin with some particular a0 and lead to the
condition h(x) ∈ B1. Call such paths ‘meaningful’, assuming,
not unreasonably, that N(n) will be considerably less than
the number of all possible paths of length n leading from a0
to the condition h(x) ∈ B1.

While the combining algorithm, the form of the nonlinear
oscillator, and the details of grammar and syntax, can all be
unspecified in this model, the critical assumption that per-
mits inference of the necessary conditions constrained by the
asymptotic limit theorems of information theory is that the
finite limit

H = lim
n→∞

log[N(n)

n

(16)

both exists and is independent of the path x.

Call such a pattern recognition-and-response cognitive pro-
cess ergodic. Not all cognitive processes are likely to be er-
godic in this sense, implying that H, if it indeed exists at
all, is path dependent, although extension to nearly ergodic
processes seems possible (e.g., Wallace and Fullilove, 2007).

Invoking the spirit of the Shannon-McMillan Theorem, as
choice involves an inherent reduction in uncertainty, it is
then possible to define an adiabatically, piecewise station-
ary, ergodic (APSE) information source X associated with
stochastic variates Xj having joint and conditional probabili-
ties P (a0, ..., an) and P (an|a0, ..., an−1) such that appropriate
conditional and joint Shannon uncertainties satisfy the classic
relations of equation (7).

This information source is defined as dual to the underlying
ergodic cognitive process.

Adiabatic means that the source has been parameterized ac-
cording to some scheme, and that, over a certain range, along
a particular piece, as the parameters vary, the source remains
as close to stationary and ergodic as needed for information
theory’s central theorems to apply. Stationary means that
the system’s probabilities do not change in time, and ergodic,
roughly, that the cross sectional means approximate long-time
averages. Between pieces it is necessary to invoke various
kinds of phase transition formalisms, as described more fully
in e.g., Wallace (2005).

Structure is now subsumed within the sequential grammar
and syntax of the dual information source rather than within
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the set of developmental paths of figure 3 and the added catal-
ysis arguments of Section 5.3.

This transformation in perspective carries heavy compu-
tational burdens, as well as providing deeper mathematical
insight, as cellular machineries, and phenomena of epigenetic
or environmental catalysis, are now included within a single
model.

The energy and development pictures of Sections 4 and 5
were ‘dual’ as simply different aspects of the convexity of
the rate distortion function with average distortion. This
model seems qualitatively different, as we are now invoking
a ‘black box’ information theory statistical model involving
grammar and syntax driven by an asymptotic limit theorem,
the Shannon-McMillan Theorem. The set of nonequilibrium
empirical generalized Onsager models derived from it, as in
Wallace and Wallace (2008, 2009), is based on the informa-
tion source uncertainty H as a free energy-analog (e.g., Wal-
lace and Wallace, 2009), thus having a significantly different
meaning from those above, and are more similar to regression
models fitted according to the Central Limit Theorem. In a
manner similar to the treatment in Wallace (2005), the sys-
tem becomes subject to ‘biological’ renormalizations at criti-
cal, highly punctuated, transitions.

The most evident assumption at this point is that there
may be more than a single cognitive protein folding process
in operation, e.g., that the action of chaperones and other
corrective mechanisms involve separate cognitive processes
{H1, ...,Hm} that interact via some form of crosstalk. Fol-
lowing the direction of Wallace and Wallace (2009) we in-
voke a complicated version of an internal system of empirical
Onsager relations, assuming that the different cognitive pro-
cesses represented by these dual information sources become
each others primary environments, a broadly, if locally, co-
evolutionary phenomenon, in the sense of Diekmann and Law
(1996). We write

Hk = Hk(K1, ...,Ks, ...,Hj , ...)
(17)

where the Ks represent other relevant parameters and k 6= j.
In a generalization of the statistical model, we would expect
the dynamics of such a system to be driven by an empirical
recursive network of stochastic differential equations. Letting
the Ks and Hj all be represented as parameters Qj , with the
caveat that Hk not depend on itself, we are able to define an
entropy-analog based on the homology of information source
uncertainty with free energy as

Sk = Hk −
∑
iQi∂Hk/∂Qi,

(18)

whose gradients in the Q define local (broadly) chemical
forces. In close analogy with other nonequilibrium phenomena
we obtain a complicated recursive system of phenomenologi-
cal Onsager relation stochastic differential equations:

dQjt =
∑
i[Lj,i(t, ..., Qk, ...)dt+ σj,i(t, ..., Qk, ...)dB

i
t]

(19)

where, again, for notational simplicity, we have expressed
both parameters and information sources in terms of the same
symbols Qk. The dBit represent different kinds of ‘noise’ hav-
ing particular forms of quadratic variation that may represent
a projection of environmental factors under something like a
rate distortion manifold (Glazebrook and Wallace, 2009a, b).

As usual for such systems, there can be multiple quasi-
stable points within a given system’s {..., Hk..., ...,Kj , ...}
representing a class of generalized resilience modes (Holling,
1973; Gunderson, 2000; Wallace and Wallace, 2008) accessible
via punctuation as various possible outcomes of the protein
folding process: normal, repaired, eliminated, and pathologi-
cal. These states can, in theory, be found by setting equation
19 to zero, as the noise terms preclude unstable equilibria. As
described elsewhere (e.g., Diekmann and Law, 1996; Cham-
pagnat et al., 2006; Wallace and Wallace 2009), however, far
more complicated ‘coevolutionary’ behaviors can be expected
that we will not explore further: here we enter deep biological
waters whose exploration will require a significant extension
of our general formal perspective. Glazebrook and Wallace
(2009a, b) provide something of a mathematical roadmap.

The essential point is that, under resilience theory, ‘per-
turbations’ of various sorts can be expected to shift the sys-
tem between different quasi-stable folding modes, and once
shifted, correction may be exceedingly difficult or impossible,
as these are, broadly, developmental processes having signifi-
cant path dependence.

7 Aging and protein folding: extend-
ing the time scale

7.1 Onsager models

The developmental perspective above, although focused on
the relatively short time frames of protein metabolism – in
the range from microseconds to minutes – is suggestive. The
principal ‘risk factor’ for a large array of protein folding dis-
orders is biological age – for humans, in the range of decades
– and a simplified version of the previous section may provide
a life-course perspective, that is, a developmental model over
a far longer timescale.

Equations 3-7 suggest that the rate distortion function,
R(D), is itself a free energy measure, as it represents the
minimum channel capacity needed to assure average distor-
tion equal to or less than D. Let us now consider the principal
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branch in figure 3, the set of paths from S0 to Sf , represent-
ing normal protein folding, taken as a communication channel
having a given rate distortion function. The arguments of the
previous section suggest that there will be an empirical On-
sager relation in the gradient of the rate distortion disorder,
an entropy-analog,

SR ≡ R(D)−DdR(D)/dD
(20)

such that, over a life-history timeline,

dD/dt = f(dSR/dD)
(21)

for some appropriate function f .
For a Gaussian channel, having R(D) = (1/2) log(σ2/D),

SR(D) = (1/2) log(σ2/D)+1/2, the simplest possible Onsager
relation becomes

dD/dt = −µdSRdD = µ/2D
(22)

with the explicit solution

D =
√
µt.

(23)

For an appropriate timescale – necessarily many orders of
magnitude longer than the time of folding itself – the average
distortion, representing the degree of misfolding, simply grows
as a diffusion process in time. This is the simplest possible ag-
ing model, in which µ represents the accumulated impacts of
epigenetic and broadly environmental effects including toxic
exposures, nutrition, the richness of social interaction, and so
on, over a lifetime.

A somewhat less simplistic model takes the Onsager rela-
tion as constrained by the availability of metabolic free energy,
M , that powers active chaperone processes,

dD/dt = −µdSR/dD − κM = µ/2D − κM
(24)

where κ represents the efficiency of use of metabolic energy.
This equation has the equilibrium solution (when dD/dt = 0)

Dequlib = µ/2κM.
(25)

Here aging is represented by a decay in the efficiency of
those chaperone processes, i.e., a slow decline in κ, that
may involve idiosyncratic dynamics, ranging from punctuated
phase transitions to autocatalytic runaway effects, since D, in
equation 8, acts as a temperature analog for a system able to
undergo symmetry breaking.

More complicated models of this nature can be found in
Wallace and Wallace (2010).

7.2 A metabolic model

Again, the ‘dual’ treatment focuses on R(D), assuming that
the probability density function for R(D) at a given intensive
index of embedding metabolic energy, M , can be described
using an approach like equations 8 and 11:

Pr[R(D), κM ] = exp[−R(D)/κM ]∫ Dmax
Dmin

exp[−R(D)/κM ]dD

(26)

where κM represents the synergism between the intensity and
physiological availability of the embedding free energy. At a
fixed value of κM , again taking a life course timeframe as
opposed to a folding timeframe, the mean of R is

< R >=
∫Dmax
Dmin

R(D)Pr[R(D), κM ]dD.

(27)

For the Gaussian channel, R(D) = (1/2) log(σ2/D), 0 ≤
D ≤ σ2, we obtain directly

< R >= κM/(1 + 2κM).
(28)

A decline in κ can, again, trigger complicated phase change
dynamics for this system, as R itself, according to equation
11, can act as a temperature analog in a symmetry breaking
argument, causing sudden, punctuated, changes in the under-
lying protein folding mechanisms.
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Note that solving this equation for R in terms of κM pro-
duces a ‘metabolic singularity’ much like that proposed in
figure 2.

Note also that taking the nonequilibrium Onsager relation

dD/dt = −µdSR/dD − µ
2σ2 exp[ 2κM

1+2κM ]
(29)

instead of dD/dt− µdSRdD − κM as just above, gives

Req = κM/(1 + 2κM),
(30)

so that the two approaces are indeed dual.

8 Discussion and conclusions

The fidelity of the translation between genome and fi-
nal protein conformation, measured by an average distor-
tion measure, or its dual, the minimum channel capacity
needed to limit average distortion to a given level, serve as
evolutionarily-sculpted temperature analogs, in the sense of
Onuchic and Wolynes (2004), to determine the possible phase
transitions defining different degrees of protein symmetry.
The protein folding funnel follows a spontaneous symmetry
breaking mechanism with average distortion as the tempera-
ture analog, or, in the developmental picture, greater chan-
nel capacity leads more directly to the final state Sf . These
symmetries may perhaps be characterized by finite groupoid
tilings as well as by the kinds of structures shown in figure 1.

The various outcomes to the full protein folding process
– normal, corrected, eliminated, pathological – emerge, in
the expanded ‘Onsager relation’ statistical model based on
a cognitive paradigm, as distinct ‘resilience’ modes of a com-
plicated internal cellular ecosystem, subject to punctuated
transitions driven, in some cases, by signals from embedding
epigenetic and ecological structures. Increase in the rate of
folding disorders with age emerges through a long-time gen-
eralization of the Onsager model.

In a sense this work extends Tlusty’s (2007) elegant topo-
logical exploration of the evolution of the genetic code, sug-
gesting that rate distortion considerations are central to a
broad spectrum of molecular biological phenomena, although
different measures may come to the fore under different per-
spectives.

The cognitive paradigm introduced here opens a unified bi-
ological vision of protein folding and its disorders that may
relate the etiology of a large set of misfolding and aggrega-
tion diseases more clearly to both cellular and epigenetic pro-
cesses and environmental stressors. This would be, in the
current reductionist sandstorm, no small thing. A cognitive

paradigm subsumes epigenetic and environmental catalysis of
protein conformation ‘development’ within a single grammar
and syntax, and allows both normal folding and its patholo-
gies to both be viewed as ‘natural’ outcomes, a perspective
more consistent with rates of folding and aggregation disor-
ders observed within an aging population.

Most basically, however, such a cognitive paradigm, as we
have constructed it, will likely serve as the foundation for a
new class of statistical tools – based on the asymptotic limit
theorems of information theory rather than on the Central
Limit Theorem alone – that should be useful in the analysis of
data related to protein misfolding and aggregation disorders.
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10 Mathematical Appendix

10.1 Basic ideas about groupoids

Following Weinstein (1996) closely, a groupoid, G, is defined
by a base set A upon which some mapping – a morphism – can
be defined. Note that not all possible pairs of states (aj , ak)
in the base set A can be connected by such a morphism.
Those that can define the groupoid element, a morphism
g = (aj , ak) having the natural inverse g−1 = (ak, aj). Given
such a pairing, it is possible to define ‘natural’ end-point maps
α(g) = aj , β(g) = ak from the set of morphisms G into A, and
a formally associative product in the groupoid g1g2 provided
α(g1g2) = α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then
the product is defined, and associative, (g1g2)g3 = g1(g2g3).
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In addition, there are natural left and right identity ele-
ments λg, ρg such that λgg = g = gρg (Weinstein, 1996).

An orbit of the groupoid G over A is an equivalence class
for the relation aj ∼ Gak if and only if there is a groupoid
element g with α(g) = aj and β(g) = ak. Following Cannas da
Silva and Weinstein (1999), we note that a groupoid is called
transitive if it has just one orbit. The transitive groupoids
are the building blocks of groupoids in that there is a natural
decomposition of the base space of a general groupoid into
orbits. Over each orbit there is a transitive groupoid, and
the disjoint union of these transitive groupoids is the original
groupoid. Conversely, the disjoint union of groupoids is itself
a groupoid.

The isotropy group of a ∈ X consists of those g in G with
α(g) = a = β(g). These groups prove fundamental to classi-
fying groupoids.

If G is any groupoid over A, the map (α, β) : G→ A×A is
a morphism from G to the pair groupoid of A. The image of
(α, β) is the orbit equivalence relation ∼ G, and the functional
kernel is the union of the isotropy groups. If f : X → Y is a
function, then the kernel of f , ker(f) = [(x1, x2) ∈ X ×X :
f(x1) = f(x2)] defines an equivalence relation.

Groupoids may have additional structure. As Weinstein
(1996) explains, a groupoid G is a topological groupoid over a
base space X if G and X are topological spaces and α, β and
multiplication are continuous maps. A criticism sometimes
applied to groupoid theory is that their classification up to
isomorphism is nothing other than the classification of equiv-
alence relations via the orbit equivalence relation and groups
via the isotropy groups. The imposition of a compatible topo-
logical structure produces a nontrivial interaction between the
two structures. Below we will introduce a metric structure on
manifolds of related information sources, producing such in-
teraction.

In essence, a groupoid is a category in which all morphisms
have an inverse, here defined in terms of connection to a base
point by a meaningful path of an information source dual to
a cognitive process.

As Weinstein (1996) points out, the morphism (α, β) sug-
gests another way of looking at groupoids. A groupoid over
A identifies not only which elements of A are equivalent to
one another (isomorphic), but it also parametizes the different
ways (isomorphisms) in which two elements can be equivalent,
i.e., all possible information sources dual to some cognitive
process. Given the information theoretic characterization of
cognition presented above, this produces a full modular cog-
nitive network in a highly natural manner.

Brown (1987) describes the fundamental structure as fol-
lows:

A groupoid should be thought of as a group with
many objects, or with many identities... A groupoid
with one object is essentially just a group. So the no-
tion of groupoid is an extension of that of groups. It
gives an additional convenience, flexibility and range
of applications...

EXAMPLE 1. A disjoint union [of groups] G =

∪λGλ, λ ∈ Λ, is a groupoid: the product ab is defined
if and only if a, b belong to the same Gλ, and ab is
then just the product in the group Gλ. There is an
identity 1λ for each λ ∈ Λ. The maps α, β coincide
and map Gλ to λ, λ ∈ Λ.

EXAMPLE 2. An equivalence relation R on [a
set] X becomes a groupoid with α, β : R → X the
two projections, and product (x, y)(y, z) = (x, z)
whenever (x, y), (y, z) ∈ R. There is an identity,
namely (x, x), for each x ∈ X...

Weinstein (1996) makes the following fundamental point:

Almost every interesting equivalence relation on
a space B arises in a natural way as the orbit equiv-
alence relation of some groupoid G over B. Instead
of dealing directly with the orbit space B/G as an
object in the category Smap of sets and mappings,
one should consider instead the groupoid G itself as
an object in the category Ghtp of groupoids and ho-
motopy classes of morphisms.

The groupoid approach has become quite popular in the
study of networks of coupled dynamical systems which can
be defined by differential equation models, (e.g., Golubitsky
and Stewart 2006).

10.2 Global and local symmetry groupoids

Here we follow Weinstein (1996) fairly closely, using his ex-
ample of a finite tiling.

Consider a tiling of the euclidean plane R2 by identical 2 by
1 rectangles, specified by the set X (one dimensional) where
the grout between tiles is X = H ∪V , having H = R×Z and
V = 2Z × R, where R is the set of real numbers and Z the
integers. Call each connected component ofR2\X, that is, the
complement of the two dimensional real plane intersecting X,
a tile.

Let Γ be the group of those rigid motions of R2 which leave
X invariant, i.e., the normal subgroup of translations by ele-
ments of the lattice Λ = H ∩ V = 2Z × Z (corresponding to
corner points of the tiles), together with reflections through
each of the points 1/2Λ = Z×1/2Z, and across the horizontal
and vertical lines through those points. As noted by Weinstein
(1996), much is lost in this coarse-graining, in particular the
same symmetry group would arise if we replaced X entirely
by the lattice Λ of corner points. Γ retains no information
about the local structure of the tiled plane. In the case of
a real tiling, restricted to the finite set B = [0, 2m] × [0, n]
the symmetry group shrinks drastically: The subgroup leav-
ing X ∩ B invariant contains just four elements even though
a repetitive pattern is clearly visible. A two-stage groupoid
approach recovers the lost structure.

We define the transformation groupoid of the action of Γ
on R2 to be the set

G(Γ, R2) = {(x, γ, y|x ∈ R2, y ∈ R2, γ ∈ Γ, x = γy},

with the partially defined binary operation
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(x, γ, y)(y, ν, z) = (x, γν, z).

Here α(x, γ, y) = x, and β(x, γ, y) = y, and the inverses are
natural.

We can form the restriction of G to B (or any other subset
of R2) by defining

G(Γ, R2)|B = {g ∈ G(Γ, R2)|α(g), β(g) ∈ B}

[1]. An orbit of the groupoid G over B is an equivalence
class for the relation
x ∼G y if and only if there is a groupoid element g with

α(g) = x and β(g) = y.
Two points are in the same orbit if they are similarly placed

within their tiles or within the grout pattern.
[2]. The isotropy group of x ∈ B consists of those g in G

with α(g) = x = β(g). It is trivial for every point except
those in 1/2Λ∩B, for which it is Z2×Z2, the direct product
of integers modulo two with itself.

By contrast, embedding the tiled structure within a larger
context permits definition of a much richer structure, i.e., the
identification of local symmetries.

We construct a second groupoid as follows. Consider the
plane R2 as being decomposed as the disjoint union of P1 =
B ∩X (the grout), P2 = B\P1 (the complement of P1 in B,
which is the tiles), and P3 = R2\B (the exterior of the tiled
room). Let E be the group of all euclidean motions of the
plane, and define the local symmetry groupoid Gloc as the set
of triples (x, γ, y) in B × E × B for which x = γy, and for
which y has a neighborhood U in R2 such that γ(U ∩Pi) ⊆ Pi
for i = 1, 2, 3. The composition is given by the same formula
as for G(Γ, R2).

For this groupoid-in-context there are only a finite number
of orbits:
O1 = interior points of the tiles.
O2 = interior edges of the tiles.
O3 = interior crossing points of the grout.
O4 = exterior boundary edge points of the tile grout.
O5 = boundary ‘T’ points.
O6 = boundary corner points.
The isotropy group structure is, however, now very rich

indeed:
The isotropy group of a point in O1 is now isomorphic to

the entire rotation group O2.
It is Z2 × Z2 for O2.
For O3 it is the eight-element dihedral group D4.
For O4,O5 and O6 it is simply Z2.
These are the ‘local symmetries’ of the tile-in-context.
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