Drosophila and human transcriptomic data mining provides evidence for therapeutic

mechanism of pentylenetetrazole in Down syndrome

Author

Abhay Sharma

Institute of Genomics and Integrative Biology

Council of Scientific and Industrial Research

Delhi University Campus, Mall Road

Delhi 110007, India

Tel: +91-11-27666156, Fax: +91-11-27662407

Email: abhaysharma@igib.res.in

Running head: Pentylenetetrazole mechanism in Down syndrome

Pentylenetetrazole (PTZ) has recently been found to ameliorate cognitive impairment in rodent models of Down syndrome (DS). The mechanism underlying PTZ's therapeutic effect is however not clear. Microarray profiling has previously reported differential expression of genes in DS. No mammalian transcriptomic data on PTZ treatment however exists. Nevertheless, a Drosophila model inspired by rodent models of PTZ induced kindling plasticity has recently been described. Microarray profiling has shown PTZ's downregulatory effect on gene expression in fly heads. In a comparative transcriptomics approach, I have analyzed the available microarray data in order to identify potential mechanism of PTZ action in DS. I find that transcriptomic correlates of chronic PTZ in Drosophila and DS counteract each other. A significant enrichment is observed between PTZ downregulated and DS upregulated genes, and a significant depletion between PTZ downregulated and DS dowwnregulated genes. Further, the common genes in PTZ downregulated and DS upregulated sets show enrichment for MAP kinase pathway. My analysis suggests that downregulation of MAP kinase pathway may mediate therapeutic effect of PTZ in DS. Existing evidence implicating MAP kinase pathway in DS supports this observation.

Introduction

Chronic treatment with nonconvulsive dosage of PTZ has recently been found to ameliorate cognitive impairment in rodent models of DS (*1*, *2*, *3*, *4*). The mechanism underlying PTZ's potential therapeutic effect in DS is however unclear. Genome scale expression analysis offers a promising approach to identify genes and pathways relevant in pathophysiological and therapeutic mechanisms in complex CNS disorders (*5*). Microarray gene expression profiling has previously been reported in the analysis of control versus DS astrocyte cell line and cerebrum or apical frontal pole (*6*), prefrontal cortex (*7*), and neural progenitor cells (*8*). However, transcriptomic analysis of PTZ treatment effect in mammalian system has not been undertaken yet. This precludes understanding drug's potential mechanism using functional genomic data.

A *Drosophila* model inspired by rodent models of chronic subconvulsive PTZ induced kindling plasticity has recently been developed (9). In this model PTZ causes a decreased speed in startle-induced climbing in flies. Antiepileptic drugs, used in treating epilepsy and other neurological and psychiatric disorders, suppress development of this behavioral deficit. Microarray profiling has shown PTZ's downregulatory effect on gene expression in fly heads. This effect has been found to mimic transcriptome and proteome scale changes reported previously in human epilepsy patients and mammalian models of epileptogenesis.

The fly model thus provides a systems level framework for understanding potential disease and drug mechanisms (9). In a comparative transcriptomics approach, I examine here if mining of the available fly (9) and human (6, 7, 8) microarray data could uncover potential mechanism of PTZ action in DS.

Results

I first examined if PTZ regulated genes in Drosophila (9) counteract differentially expressed genes in DS (6, 7, 8). The three diverse DS studies reported differentially expressed genes with insignificant overlap. Genes in DS studies were thus pooled together for matching with human homologs of PTZ regulated genes (Table S1 supporting material). Strikingly, a significant enrichment was found between PTZ downregulated and DS upregulated genes, and a significant depletion between PTZ downregulated and DS dowwnregulated genes (Fig. 1). Enrichment for MAP kinase pathway in DS upregulated genes has previously been reported (8). In contrast, downregulated genes in Drosophila, the only regulated genes in the PTZ model, have been found to enrich MAP kinase pathway (9). Thus, I next predicted that significant overlap between PTZ downregulated and DS upregulated genes may result from counteracting effect on MAP kinase signaling. Remarkably, the counteracting commonality genes between PTZ downregulated and DS upregulated sets were found to enrich the MAP kinase pathway (Fig. 2). Together, my unbiased transcriptomic analysis provided evidence for the involvement of MAP kinase pathway in the mechanism of action of PTZ.

Discussion

The present functional genomic analysis suggests that potential therapeutic effect of PTZ in DS may be mediated by downregulation of MAP kinase signaling pathway. This is supported by existing evidence from diverse studies. For example, protein analysis of fetal brain cortex has previously identified dysregulation of MAP kinase pathway related components in DS (10). Also, comparative genomics analysis has predicted perturbation in MAP kinase pathway in DS (11). Further, biochemical analysis has suggested a role of activated MAP kinase signaling in brain pathogenesis in mouse DS model (12). Besides, bioinformatic analysis of genes located in the candidate DS region in chromosome 21 has implicated MAP kinase pathway in the disease (13). Biochemical, genomic and computational evidence thus exist to support the plausibility of MAP kinase signaling as PTZ's therapeutic target in DS.

Materials and Methods

Chronic PTZ regulated *Drosophila* genes, all downregulated, listed in additional file (9) were used in the analysis. Literature on relevant microarray profiling in DS was searched

in PubMed (http://www.ncbi.nlm.nih.gov/pubmed). For DS versus control microarrays, list of differentially expressed genes provided in the supplementary tables or data (3, 7, 8) was used. Overlap between gene sets and pathway enrichment was examined using hypergeometric distribution probability. Human homologs (gene symbols) of Drosophila Homologene retrieved using option in FLIGHT genes were (http://www.flight.licr.org/search/batch homology.jsp). Gene IDs described in human studies symbols using DAVID were converted to gene (http://david.abcc.ncifcrf.gov/summary.jsp), NCBI (http://www.ncbi.nlm.nih.gov/unigene/) and SOURCE (http://smd.stanford.edu/cgi-bin/source/sourceBatchSearch). Genes were depicted KEGG in the pathway for Homo sapiens (http://www.genome.jp/kegg/tool/color_pathway.html).

References

- Buckley F, Sacks B (2007) Drug treatment improves memory in mice. Downs Syndr Res Pract 12: 20-21.
- Fernandez F, Garner CC (2007) Over-inhibition: a model for developmental intellectual disability. Trends Neurosci 30: 497-503.

- Fernandez F, Morishita W, Zuniga E, Nguyen J, Blank M, Malenka RC, Garner CC (2007) Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 10: 411-413.
- 4. Rueda N, Flórez J, Martínez-Cué C (2008) Chronic pentylenetetrazole but not donepezil treatment rescues spatial cognition in Ts65Dn mice, a model for Down syndrome. Neurosci Lett 433: 22-27.
- Altar CA, Vawter MP, Ginsberg SD (2009) Target identification for CNS diseases by transcriptional profiling. Neuropsychopharmacology 34: 18-54.
- Mao R, Zielke CL, Zielke HR, Pevsner J (2003) Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics 81: 457-467.
- Lockstone HE, Harris LW, Swatton JE, Wayland MT, Holland AJ, Bahn S (2007) Gene expression profiling in the adult Down syndrome brain. Genomics 90: 647-660.
- 8. Esposito G, Imitola J, Lu J, Filippis DDi, Scuderi C, Ganesh VS, Folkerth R, Hecht J, Shin S, Iuvone T, Chesnut J, Steardo L, Sheen V (2008) Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury. Hum Mol Genet 17: 440-457.
- Mohammad F, Singh P, Sharma A (2009) A Drosophila systems model of pentylenetetrazole induced locomotor plasticity responsive to antiepileptic drugs, BMC Syst Biol 3: 11.

- Peyrl A, Weitzdoerfer R, Gulesserian T, Fountoulakis M, Lubec G (2002) Aberrant expression of signaling-related proteins 14-3-3 gamma and RACK1 in fetal Down syndrome brain (trisomy 21). Electrophoresis 23: 152-157.
- Gardiner K (2003) Predicting pathway perturbations in Down syndrome. J Neural Transm Suppl.: 21-37.
- 12. Shukkur EA, Shimohata A, Akagi T, Yu W, Yamaguchi M, Murayama M, Chui D, Takeuchi T, Amano K, Subramhanya KH, Hashikawa T, Sago H, Epstein CJ (2006) A. Takashima, K. Yamakawa, Mitochondrial dysfunction and tau hyperphosphorylation in Ts1Cje, a mouse model for Down syndrome. Hum Mol Genet 15: 2752-2762.
- Pellegrini-Calace M, Tramontano A (2006) Identification of a novel putative mitogenactivated kinase cascade on human chromosome 21 by computational approaches. Bioinformatics 22: 775-778.

Figure legends

Figure 1.

Venn diagram showing overlaps among PTZ and DS genes. Of the 716 total up- and downregulated genes in DS, 56 are common to the PTZ downregulated set. Of the 419 upregulated DS genes, 41 are common to the PTZ set. Of the 301 downregulated DS genes, 16 are common to the PTZ set. Note significant enrichment in PTZ and DS total versus PTZ and DS upregulated (hypergeometric distribution, p = 0.011) and depletion in PTZ and DS total versus PTZ and DS downregulated (hypergeometric distribution, p = 0.008).

Figure 2.

MAP kinase pathway showing counteracting commonality genes. Of the 419 DS upregulated genes, 9 mapped on to the pathway. Of the 41 counteracting commonality genes, i.e., genes common between PTZ downregulated and DS upregulated sets, 3 figured in the pathway map (BRAF, PAK1 and PRKCA; represented by the three orange color boxes). Note significant enrichment of MAP kinase pathway in counteracting commonality genes (p = 0.041).

Figure 1

Figure 2

al.	Esposito et al. Lockstone et		e et al.	al. Mao et al.		
Downregulated	Up	Dn	Up	Dn	Up	Dn
6-Sep	ABCA2	ABCB4	ACTR3	CLTC	ABI1	ABR
ABCC1	ABCC1	AMFR	ALDH4A1	DNM1	ACVR1	ADAM17
ABCC4	ACTC	ANGPTL1	ALDH7A1		ADFP	ADAM22
ABCF2	ACTR8	APXL2	CAP1		AIM2	ADRA1A
ABCG1	ADCK4	ATP8B1	CAPG		AKAP8	AIP
ABHD2	ADCY2	ATPAF2	CNTN1		AKR1C3	ALOX12B
SABI1	AGPAT3	B3GALT3	DNM2		ALDH2	AOF2
a BLIM1	AHCYL1	B3GAT2	EEF1G		APP	API5
SACAA2	ALS2CR8	BANP	ENO1		AQP3	APOBEC1
ACADSB	ANKFY1	BCAT1	GFAP		ASAH1	AQP9
ACE	ANKRD10	BCAT2	GLUD1		ASB4	ARAF
ACO2	AP3B1	C11orf2	GLUL		ATP5J	ARHGEF1
ÄCPP	APP	C14orf2	MSN		ATP5O	ARNT
ACSBG2	APTX	C1QTNF5	VIL2		B3GALT2	ASNA1
ACSS2	AQP4	C20orf58			BLVRA	ATP10B
ĕACTA1	ARFIP1	C20orf64			BMP6	BAZ2B
ACTA2	ARHGAP18	C2orf3			BRP44	BRCA1
EACTG1	ARHGDIA	C3orf6			BTG3	CALCOCO2
ÅCTN1	ARHU	C6orf194			C21ORF33	CALR
ACTR1A	ATF2	C6orf66			CASK	CCL25
ŽACTR2	ATP11A	CCNB1			CAV1	CCND2
ACTR3	ATP6V1A	CGI-09			CCR1	CD44
ACTR6	ATRX	CGI-112			CCT8	CDC2L1
ACVR2A	BAIAP3	CHST11			CD200	CDH18
ADAM9	BBP	CPT1B			CD6	CHMP2A
ADAR	BC022889	CYP2R1			CDC23	CLCN6
ADARB1	BCAT2	Cab45			CDC2L6	COLEC10
ADCY2	BM-009	D2S448			CDK10	CYP2A13
ADCY5	BRAF	DAZAP1			CENTB2	CYP2D6
ADCY6	BRD4	DBC-1			CHMP2B	DKFZP547J0410
ADD1	C14orf2	DKFZP727G051			COX11	DNASE2
ADHFE1	C14orf44	DKFZP761M1511			CREB3L2	DSG1

 Table S1. Differentially expressed genes reported in *Drosophila* model and DS studies.

 Mohammad et

ADRM1	C21orf33	DKFZp434C1714	CROCC	EEA1
ADSSL1	C21orf4	DKFZp547B1713	CSPG5	EFNB1
AGR2	C21orf66	DKFZp727G131	CSTB	EIF5AL1
AKAP1	C21orf86	DPP9	CYLD	FANCG
ALDH3B1	C3orf6	DUSP16	CYP1B1	FARSA
ALDH6A1	C6orf69	E2F3	DCTD	FAS
AMMECR1	CACNA2D2	ECGP	DDT	FMO2
AMPD2	CBX5	EPHA2	DLEU2	FMO3
AMPH	CBX7	EPOR	DLGAP2	FMO6P
ANAPC2	CDC14B	ETV4	DOK1	GAPDH
ANK3	CDC42EP3	ETV5	DSCR3	GCDH
ANKH	CHD4	FBXO10	DYRK1A	GCN5L2
€ANKRD13B	CITED2	FEM1A	EED	HLF
ANKRD39	CKMT1	FKBP1B	EIF4H	IFI35
₹ ¥ANP32A	COL6A1	FKBP5	ETF1	INPP4A
AP1M1	COLEC12	FLJ10359	EXT2	KANK1
AP2A2	CPE	FLJ10378	FBLN1	KIAA0753
ÄP2S1	CPEB1	FLJ10904	GCNT1	KIAA1024
ÅPC	CRYZL1	FLJ14494	GLT8D1	KIAA1539
APC2	CSNK1A1	FLJ20189	GPATCH8	KIAA2013
APEX1	CSTB	FLJ20485	GPR31	KLF1
APOD	CTNNA2	FLJ22021	GSTT1	KLK10
APPBP1	CUGBP1	FLJ22729	GSTT2	LHX1
ÅRC	DIP2	FLJ23476	HAPLN1	LOC283079
ARF1	DJ159A19.3	FLJ23749	HEMK1	MAGEA12
⊾ ≇ARIH1	DKFZP586A0522	FLJ23765	HSPA13	MAP2
art ARL4A	DKFZP586L151	FLJ32356	IFI44	MAPK10
ARL6IP2	DKFZP586N0721	FLJ37078	IFNAR2	MAPK8
ARL8B	DLK1	FLJ38464	IL10RB	MAPKAPK2
ARMET	DPYSL3	FOXM1	IL7R	MAST1
ARNTL	DRCTNNB1A	FTH1	INPP5E	MCRS1
ARS2	DTNBP1	FTHFSDC1	INTS10	MYH2
ASAH3L	DTX1	FZD8	ITGA6	NCDN
ASIP	ECM2	GCLM	IVNS1ABP	NCK2
ASPH	EDNRA	GGH	KCNJ15	NENF
ATAD3A	EGLN1	GMNN	KCTD7	NFATC2IP
ATAD3B	EIF4G1	GPX6	KIAA0152	NKX3-2
ATF6	EIF5A	GRB10	KIAA0355	NPPA
ATG5	ELMO2	GTF3C3	LAMP2	NPPB

ATM	ENTPD1	HADI	HA LIN	1K2	NPTX2
ATP13A3	EPRS	HCA1	27 LOC	C100288372	NRL
ATP1A3	FAM13C1	HCAF	P-G LTA	\ 4H	OVOL2
ATP2A1	FGD3	HM13	3 MA	TR3	PAX8
ATP2B3	FGF1	HSPC	023 MF	GE8	PCDH17
ATP5A1	FGF12	HSPC	MO	AP1	PDE3B
ATP5G3	FHOD2	HSPC	128 MT	ERFD1	PDE5A
ATP5H	FLJ10074	HTAT	TIP2 NAI	E1	PDGFRB
ATP5L	FLJ11467	IDI1	NEI	K9	PIGO
ATP6V0A1	FLJ20097	IHPK	2 NK	X2-2	PLIN
ATP6V0A4	FLJ21924	IMPA	2 NO'	TCH4	POLD2
ATP6V0C	FLJ23451	IRAK	1 NPF	FF	POLR2J
ATP6V0D1	FLJ23861	KAPP	PA-200 NRI	IP1	POLR2J3
ATP6V1C1	FLJ25082	KCNJ	74 NU	PL1	PPP3R1
∡ ATP6V1D	FLJ30973	KHK	OCI	RL	PRKACA
TP6V1E1	FLJ32499	KIAA	0117 OT(OR	PTPN1
ATP6V1G1	FLJ32535	KIAA	0173 PD2	XK	RAD23A
ATP6V1H	FLJ32569	KIAA	0469 PEN	٧K	RASA4
ÄTP7A	FLJ32731	KIAA	1951 PFL	DN1	RCE1
ATP8A1	FLJ33215	KLF1	5 PH0	OX2B	RGS10
ATXN2	FNBP3	KRT1	0 PIA	S 2	RIF1
B4GALT1	G3BP2	L3ME	BTL2 PLC	DD2	RIMS1
B4GALT2	GABPA	LGN	POI	LR2B	RND2
BAG2	GALNT7	LIG3	POM	MZP3	RP1-127D3.2
BAIAP3	GAP43	LOC1	14971 POI	25	RPL21P4
BCAS3	GART	LOC1	26295 PPP	'6C	SBF1
a BCDIN3	GLS	LOC1	44997 PT1	ſG1IP	SCAPER
BCR	GLUL	LOC3	48094 PVI	RIG	SERPINH1
BEST1	GNAI3	LOC5	6901 PYC	GL	SH3BGRL
BEST2	GOLGIN-67	LOC9	1942 RAI	B5A	SLC27A2
BIN3	GRIA3	LYSA	L1 RAI	P1A	SLC28A2
BIRC3	H-plk	LZIC	RNI	F103	SMARCC2
BLCAP	HIBADH	MAP2	2K2 RP1	1-540L11.1	SNX26
BLM	HIPK3	MBD	1 RSU	J1	SPTB
BLVRB	HLA-DMB	MCA	M SCC	35	SPTBN2
BMPR1A	HLA-DOA	MFNO	G SDF	F 2	ST20
BOLL	HMGCS1	MGC	22793 SEF	P1	STOML2
BRAF	HNLF	MGC	24039 SEF	RP1	TACSTD1
BSG	HOXA3	MGC	24381 SET	ſD4	TAF6L

C10orf9	HOXB7	MGC25062	SGMS1	TFDP2
C11orf54	HRB2	MGC26885	SH3BGR	TIMP2
C13orf21	HRMT1L1	MGC9850	SLC11A2	TMCC2
C14orf111	HSF1	MGST1	SLC16A1	TNPO3
C14orf122	HSPA4	MMD	SLC4A8	TPM3
C14orf130	HSPH1	MPPE1	SNRPB2	USP52
C14orf4	HT036	MRPS34	SOD1	VAT1
C16orf5	HTATSF1	MSH5	SP100	VCP
C1QBP	HTR2A	MYBL2	SSTR1	ZRSR1
Clorf55	JAK1	NAGA	TAF4B	
C2	JAM2	NDE1	TLR6	
C20orf20	JMJD2	NDST1	TMEM5	
£200rf45	KIAA0217	NDUFB10	TMPO	
220orf59	KIAA0241	NETO1	TP53AP1	
₹ ⊈C22orf5	KIAA0318	NFX1	TPM1	
C3orf21	KIAA0367	NICE-3	TTC3	
C 60rf166	KIAA0551	NICE-4	U2AF1	
Corf20	KIAA0570	NID	UBE2E4P	
EAB39L	KIAA0841	NR2F6	UCHL3	
CACNA1A	KIAA0888	NT5C2	YAP1	
EACNA1D	KIAA1006	NXT1	ZEB1	
CACNA2D3	KIAA1041	OPN3	ZFYVE9	
CADPS	KIAA1107	OSAP	ZNF294	
ScALB2	KIAA1685	PACSIN3		
CALM2	KIF3A	PAO		
⊈ ⊈CAMK2D	KLF7	PCTK1		
TAMSAP1L1	LANCL1	PDCD2		
CAP1	LEAP-2	PEX14		
CAPN9	LHX3	PIP3-E		
CAPS	LIMK2	PLAB		
CASK	LOC114987	POLG		
CAT	LOC151242	PPP1R15A		
CCDC109A	LOC201191	PRPF4		
CCDC12	LOC283177	PSPHL		
CCK	LOC284121	PX19		
CCT3	LOC284723	RFC4		
CD74	LOC285103	RNF123		
CDAN1	LOC340481	RPL12		
CDC20	LOC57795	RPL31		

CDC27	LOC90624	SBBI26
CDC73	LOC91947	SCARB1
CDK10	LRP1	SDCBP2
CDK5RAP1	LSS	SDK1
CDKN2B	MADHIP	SHANK3
CDON	MAP6	SNAPC5
CELSR1	MAPK1	SNRPA
CENTG2	MARCKS	SNRPA1
CHAT	MASP2	SNRPG
CHD4	MBNL1	STK6
CHD7	MBNL2	SURF1
CHEK1	MCM3AP	TAF9
€CHEK2	MEF2A	TAGLN2
EHIC2	MFAP3	TM4SF11
⊈ ⊈CHMP4B	MGC10198	TOP3A
снмр5	MGC20255	TRAF2
CHRD	MGC20446	TRIM35
achrna4	MGC20553	TReP-132
ÈHST11	MGC24180	TTYH1
gCIB1	MGC34032	TUBB-5
₹KAP5	MGC43306	TUBGCP3
CLASP1	MGC4730	U5-200KD
CLGN	MLL	UMPK
ÉLK2	MLLT3	UXT
Č LOCK	MYH11	VGLL2
CLSTN1	MYL4	VIP32
Č LTA	MYO1B	VRK1
CNIH	NCKAP1	WDR20
CNN3	NDRG3	WFS1
CNO	NEBL	ZNF259
CNOT1	NFE2L2	p30
CNOT2	NFIB	
CNOT3	NMNAT2	
CNOT7	NPAS2	
COL18A1	NXP2	
COL4A5	OSF-2	
COQ7	OXR1	
COX4I2	P2RY1	
СР	PAK1	

CPD	PANK2
CPEB4	PCDH18
CPSF6	PDE4DIP
CREBL2	PENK
CRK	PFTK1
CRKL	PGPEP1
CRP	PICALM
CRYAB	PIGO
CS	PKD1
CSAD	PLXN3
CSK	PLXNA4
CSNK1A1	PNN
€CSNK1E	PPP1R12B
ÇSNK2A1	PRDM1
STF2T	PRDX3
CTBP1	PRKAA1
C TSB	PRKCA
acugbp1	PRODH
EXYorf3	PSMB2
CXorf9	PURA
₹YB5A	PURB
<u><u></u></u> <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	PWCR1
CYFIP2	RAB11B
EYP3A4	RAB27A
DAD1	RDH10
P AP	RNF38
DARS2	RPS21
DAXX	RPS6KB1
DAZAP1	RUNX2
DBF4	SCAMP1
DBT	SCDGF-B
DCHS1	SDC3
DCK	SEC14L1
DCST2	SEC22L3
DDC	SEC8
DDEF2	SERPINB8
DDOST	SFRP4
DDX3X	SGCD
DDX54	SH3BP5

DEADC1	SIX1
DEK	SLC16A1
DENND4A	SLC4A7
DEPDC5	SLC7A8
DGAT1	SMARCA2
DGCR6L	SMT3H1
DGKI	SNAP25
DHFR	SNRP70
DHX35	SOD2
DIAPH2	SP1
DIP2C	SP4
DKC1	SPTBN1
DMAP1	SRC
DNAI1	SRRM2
∯NAJA4	SSBP3
DNAJB4	SSTR2
DNAJB6	STAT2
ဆ္ဆီNAJC12	STAT3
DNAJC13	STAT5B
DNAJC17	STC1
ÐNAJC5	STXBP6
DNALI1	SULF1
DNHD3	TA-WDRP
∰NM1	TACC1
DOCK1	TAF15
POHH	TAP1
aDPF2	TBC1D4
DRAP1	TCF8
DSC1	TCP10L
DSCAM	TDRKH
DSCAML1	TGOLN2
DTNB	TIA1
DUSP10	TMEM1
DUSP7	TNRC6
DYNC1I2	TPR
DYNC1LI1	TRAP1
DYNLL2	TRIO
DYNLT1	TRIP11
E2F1	TTC11

E2F5	TTC3
EBF2	TUB
ECE2	U2AF65
EEF1A1	VIK
EEF1B2	VIL2
EEF1D	VPS35
EHD1	WDR4
EHMT2	WSB1
EIF1	WTAP
EIF2AK3	ZNF185
EIF2C1	ZNF216
EIF2C2	ZNF229
ÆIF2S3	ZNF75
EIF3S1	ZNF90
⊈ ⊈IF3S7	
EIF4A2	
EIF4E	
aeiff4G3	
EIF5A	
EIF5B	
至TT	
ELL2	
ELOVL5	
ELOVL6	
EMR1	
ENTPD5	
₹PHB1	
EPN1	
EPRS	
ERO1L	
ETF1	
ETFA	
EXOC3	
EXOSC10	
EXOSC5	
EXT1	
FADD	
FAM20C	
FAM39B	

FAM49B FAM57B FAM76A FARP2 FASN FBLN2 FBXL14 FCHO2 FCHSD2 FEN1 FEZ2 FHL2 FIP1L1 FKBP14 FLJ20254 arcsing arcsin FLJ36951 ₹LOT1 FOS FOXF2 FOXO3A ¶FSCN1 a a a FST FTS FUT10 FXR1 FZD1 GABARAP GABRB3 GAD1 GAD2 GALNT1 GALNT7 GAP43 GAPDH

GAS8
GATAD1
GATAD2B
GBE1
GCH1
GDF8
GFM2
GFPT1
GFPT2
GGA1
GIP
GLA
gGLRA3
Ğ LRB
ĞLUD1
ğılul
GMFB
GNAO1
F INAQ
gNB1
ईGNL2
₹GOLGB1
GOLPH3
ङ्कीOSR1
قGPC4
gGPD1
Ž GPI
GPIAP1
GPR179
GPR52
GPSN2
GRIK3
GRLF1
GRP
GRWD1
GSTA1
GTF2A2
GTF2F1
GUCY1A2

GUF1 GULP1 H2AFV HADHA HAO1 HARS HBLD1 HCCA2 HCFC1 HD HDC HDLBP HEATR2 HHAT HIP2 HK1 ä́HK2 HMGB2 JHNF4A HNRPDL HNRPF HNRPL HNRPR HNRPUL1 HPCAL1 HR HSF2 HSPA1A HSPA1B HSPA2 HSPA8 HSPB1 HTATIP HTR1D HTR2B HTR4 HTRA2

HYI HYPK IDH3A IFT80 IGF2BP1 IMPDH2 INSR INTS7 **IPMK** IPO4 IPO7 IPP aQSEC1 TPKB AK2 JPH2 aKCNA2 KCNB1 茶CNJ5 KCNK6 KCNMA1 KCNN3 KCTD5 KIAA0020 KIAA0258 **KIAA0430 KIAA0913 KIAA0953 KIAA1008 KIAA1086** KIF2B KIF3B KIF5A KIF5B KIN KPNA2 **KRAS**

LAMB1 LARS2 LASS5 LCP1 LDB2 LEF1 LHX2 LIN7C LLGL1 LMAN1 LMX1A LOC51035 **£**OC642658 LOC642969 4.OC645296 2.OC645899 LOC646195 aLOC653214 EOC653232 ਙੈ.OC653653 \$LOC727765 LOC728198 .g.OC728318 JOC728860 JOC730077 a.OC92154 LONP1 LRIG3 LRP1 LRP4 LRP8 LRRC15 LRRC2 LRRC29 LYPLA1 MAB21L1 MACF1 MAFK

MAGOH MAP2K7 MAP4K3 MAP7 MAPK11 MAPK15 MAPT MARK1 MARK3 MAX MBNL1 MCM3 MCM3AP MCM6 MCM7 ME1 ME3 **MECR** MED18 MED19 MED6 MEF2D MEGF11 MET111 METT11D1 METTL4 MFI2 MGAT1 MGAT2 MGC10433 MGC14327 MGC15523 MGC5139 MIDN MINPP1 MKI67IP MKRN1 MLC1

MLCK MLLT4 MMS19L MNAT1 MNT MOCS1 MON2 MPP5 MRAS MRPL37 MRPL45 MRPS11 MRPS18B MRPS9 MSI2 MSL3L1 MSN ∰MTA1 MIAI MTCH2 MTHFS MTP18 MYBL1 SMYC MYL6 MYL6B MYL6B MYST3 Magmas NAGLU NANP NAPG NAT1 NCAPG NCBP1 NDE1 NDFIP2 NDRG3 NDUFA5

NEK2 NELF NEU1 NF1 NIPSNAP1 NMD3 NME1-NME2 NOS1 NOTCH1 NOVA1 NP NPC1 NPY1R NR1D1 NR1H3 NR2F1 NR5A2 a NRCAM NUP98 NUPL1 OGDH OS9 OTX1 OXSR1 P11 P4HA1 PA2G4 PABPC1 PACS2 PAFAH1B2 PAIP2 PAK1

PAK2 PAPOLA PARD3 PARD6G PARP1 PB1 PC PCBP3 PCK2 PCNA PCSK2 PCYT1A PDE4D PDE8B PDF PDHA1 app DK3 PDSS1 PEX19 ₹EX6 PFDN2 PFDN4 FKM GA5 **₽**GAM1 ₫ GAM2 PGM1 PHACTR3 PHF10 PHKG2 PIGO PIGS PIGT PIK3C3 PIP5K1C PIR PITPNB PITPNM2

PLCB4 PLCG1 PLD1 PLEKHC1 PLEKHF2 PLS3 PLSCR1 **PNPO** POFUT1 POLD2 POLR2A POLR2I POLR3E POMT1 POMT2 POPDC2 appendix and a second s PAP2A **₽**PARBP PPAT PPCS PEF2 PIA PIA PIF ₹ PIL1 PPIL4 PPM1A PPM1L **PPP1CB** PPP1CC PPP1R16A PPP1R3D PPP1R7 PPP2R1A PPP2R5D PPP5C PPP6C

PPT1 PRDX5 PRKAG1 PRKAR1B PRKAR2A PRKCA PRKCE PRKG1 PRL PRODH PROM1 PROX1 PRPF39 PRUNE PSENEN PSMA6 appendix SMB3 [₹] SMB7 SMC2 ₹SMD1 PTER TK2 PTP4A1 PTPLAD1 TPN11 **PTPRN** PTS PUS7 QKI QPCT QRSL1 RAB10 RAB14 RAB18 RAB2 RAB26 RAB27A

RAB35 RAB37 RAB3C RAB3GAP1 RAB3GAP2 RAB5C RAB7 RAB8A RABIF RAC1 RAC2 RAC3 RAD50 RAD54L RAD9A RAF1 RAG1AP1 **RAN** RAP1GAP AP1GDS1 ₹APH1 RBM28 RBM39 RBM9 RBMS3 RBP1 RBP2 RBP3 RBP4 RBP7 **RBPSUH** RBX1 **RDBP** RECQL5 REG3A REG3G RGS12 RHEB RHO

RHOA RHOB RHOT1 RICTOR RIN2 RNF11 **RNF139** RNF25 RNF40 RNGTT RP11-311P8.3 RPA2 RPL22 RPL23 ⊈ gRPL27 RPL28 RPL32 RPLP2 Ξ̄́́́́́RPN2 RPS10 RPS12 RPS13 RPS24 RPS27 TRPS28 RPS29 RPUSD2 RQCD1 RRAS2 RRM1 RRM2 RSF1 RSHL3 RSN RUVBL1 SALL1 SARS2

SAS10 SBK1 SCAMP1 SCARB1 SCN1A SCP2 **SCRIB** SCYL3 SDF4 SEC14L5 SEC15L2 SEC22B SELS SEMA3A SEMA6A SERBP1 SERPINI1 sesn3 F3A1 F3B4 F7B4 SFRS1 SFRS12 SFRS3 SFRS6 SFRS8 SFXN1 SH3BP1 SHCBP1 SHOC2 SIAHBP1 SIN3A SIP1 SIRT1 SKIV2L2 SLC12A6 SLC13A2 SLC18A2 SLC18A3

SLC1A2 SLC1A3 SLC24A2 SLC24A5 SLC25A25 SLC25A32 SLC25A37 SLC25A4 SLC29A1 SLC4A3 SLC9A3 SLC9A8 SLITRK3 SMAD1 SMAD2 SMAD3 SMAD6 [.] ₿MG1 MG6 MO MOX SMPD1 SMPDL3B MTN NAP25 SNAP29 NRK **SNRPA1 SNRPC SNRPD2** SNTG1 SNX27 SNX6 SOD1 SP4 SPAG7 SPCS3 **SPEN SPIN**

SPIN1 SPN SPO11 SPON1 SPOP SPTAN1 SPTLC2 SRA1 SRP54 SRP68 SRPK2 SRRM2 SRY SSB SSRP1 SSU72 ST13 § Satar Sat STAU2 STIM1 STIP1 STK38L STOM STUB1 STUB1 STX7 STXBP5 SUMO3 SUPT16H SUPT4H1 SUV39H1 SV2B SYAP1 SYN2 SYNE1 SYNGR1 SYNJ1 SYT1 **SYT11** SYT4 TAF3

TAF4 TAF6L TAF9 TAF9B TAGLN3 TAOK1 TASP1 TBC1D10B TBC1D24 TBRG4 TCBA1 TCEB1 arcerg1 TDP1 TDRKH TEAD4 TERF2 **TETRAN** FAP2A TIMM10 TIMM9 TIMM9 TITF1 ärll1 TLN2 TMEM142A TMEM16H TMEM33 TMEM35 TMPIT TNRC6C TOB1 TOMM20 TOP3B TPI1 TPM2

TPM3 TPP2 **TPST1** TRAF3 TRAF6 TREH TRIM71 TRIO TSPAN17 TSPAN18 TSPAN33 **TSPAN5** aTK TTN JUBG2 JUBGCP2 JUBGCP3 aTUFM TXNDC10 TXNRD2 TYMS UBA2 UBE2D2 JBE2D3 JBE2G2 UBE2H UBE2N UBE2V1 **UBE2W** UBE3A UBP1 UCHL3 UCKL1 UGT2B7 ULK2 UMPS UNC119

UNC13A UNC93A UPF3B UQCRFS1 USP31 USP47 USP9X VAMP2 VAPB VAV1 VDAC2 VEGF WEPH1 WLDLR WASF3 WBSCR1 awd WDR7 WDR70 WIPF2 WNT3 WNT4 WN14 WNT5A WNT9A WNT9A WBP1 XPC XPNPEP1 XPO1 XPO5 XPO7 XRCC3 XRN2 YBX1 YIF1B YRDC YWHAZ ZBED1 ZC3H14

ZCD2
ZFAND6
ZFHX4
ZFP90
ZMIZ1
ZMYM4
ZNF593
ZNF84
ZNRD1
ZRANB1
ZUBR1