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Abstract

A mathematical model based on Tlusty’s topological deconstruction
suggests that multiple punctuated ecosystem shifts in available metabolic
free energy, broadly akin to the ‘aerobic’ transition, enabled a punctuated
sequence of increasingly complex genetic codes and protein translators
under mechanisms similar to the Serial Endosymbiosis effecting the Eu-
karyotic transition. These evolved until the ancestor of the present narrow
spectrum of nearly maximally robust codes became locked-in by path de-
pendence.
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1 Introduction

The genetic code that maps 64 codons to 20 amino acids is far from random,
e.g., figure 1 of Koonin and Novozhilov (2009), and the references therein. Typ-
ically, codons that differ by only one nucleotide tend to code for either the same
or two related amino acids, that is, amino acids that are ‘physicochemically
similar’. Koonin and Novozhilov assert that the fundamental question is how
these regularities of the standard code came into being, given that there are

∗Address correspondence to Rodrick Wallace, 549 W. 123 St., Apt. 16F, New York, NY,
10027 USA, email wallace@pi.cpmc.columbia.edu.

1

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
12

0.
2 

: P
os

te
d 

12
 J

an
 2

01
0

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nature Precedings

https://core.ac.uk/display/288979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


more than 1084 possible alternative code tables if each of the 20 amino acids
and the stop signal are assigned to at leasts one codon:

The features... seeming to need special explanation include, but
are not limited to, the block structure of the code, which is thought
to be a necessary condition for... robustness with respect to point
mutations, translational misreading, and translational frame shifts;
the link between the second codon letter and the properties of the
encoded amino acid, so that codons with U in the second position
correspond to hydrophobic amino acids.... the apparent minimiza-
tion of the likelihood of mistranslation and point mutations; and
the near optimality for allowing additional information within pro-
tein coding sequences.

Tlusty (2007) has presented a model for the emergence of the genetic code
as a transition in a noisy information channel, using an approach based on the
Rate Distortion Theorem. In that analysis the optimal code is described by the
minimum of a ‘free energy’-like functional, which leads, in his view, naturally
to the possibility of describing the code’s emergence as a transition akin to
a phase transition in statistical physics. The basis for this is the observation
that a supercritical phase transition is known to take place in noisy information
channels (e.g., Rose, 1998). The noisy channel is controlled by a temperature-
like parameter that determines the balance between the information rate and
the distortion ‘in the same way that physical temperature controls the balance
between energy and entropy’ in a physical system. Following Tlusty’s equation
(2), the ‘free energy’ functional has the form D − TS where D is the average
‘error load’, equivalent to average distortion in a rate distortion problem, S
is the entropy due to random drift, and T measures the strength of random
drift relative to the selection force that pushes towards fitness maximization.
According to Tlusty’s analysis, at high T the channel is totally random and it
conveys zero information. At a certain critical temperature Tc the information
rate starts to increase continuously.

The average distortion D measures the average difference between the ge-
netic ‘message’ send by a complicated codon ‘statement’ and what is actually
expressed by the genetic (and epigenetic) translation machinery in terms of an
amino acid sequence. We give a more complete discussion in the sections to
follow.

Here we will take a different route, one in which the rate distortion func-
tion R(D) between codon pattern and amino acid pattern plays the role of of
a temperature-analog driving phase transitions in a corresponding free-energy
analog constructed from the distribution of possible genetic codes, as measured
by the source uncertainty of the information sources using them. Pettini’s (2007)
‘topological hypothesis’ ensures topological shifts in code structure accompany
these phase transitions. The question then arises as to what drives the dynamics
of R(D). Several models emerge.

In the simplest approach, the dynamics of the system are defined, not by
the minimization of a functional, but by an ‘empirical Onsager relation’ to be
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associated with a particular structure. The rate distortion function is the min-
imum channel capacity needed to keep average distortion at or below D, and
information channel capacity is, following the arguments of Feynman (2000)
and Bennett (1988), measured by the free energy needed to erase the sent mes-
sage. Dynamics are then driven by the gradient of an entropy-analog, the rate
distortion disorder SR at distortion D, defined as

SR ≡ R(D)−DdR(D)/dD.

(1)

Most simply, the dynamics will be given by a generalized empirical Onsager
equation of the form

dD/dt = −µdSR(D)/dD + F (D, t),

(2)

under the important constraint that the Rate Distortion Function R(D) is al-
ways a convex function of D (Cover and Thomas, 1991, Lemma 13.4.1).

We extend these considerations both downward and upward in scale, exam-
ining the effects of changes in R(D) on internal structure within the genetic
code, and studying the effect of available metabolic free energy on R(D) it-
self, and treat more complicated models as well, recognizing that evolutionary
process does not always seem to instantiate Occam’s Razor.

Phase transitions in physical systems characterized by free energy are ubiqui-
tous, following Landau’s symmetry breaking arguments (Landau and Lifshitz,
2007; Pettini, 2007): Higher temperatures enable higher system symmetries,
and, as temperature declines, punctuated shifts to lesser symmetry states occur
in characteristic manners. Extension of this argument seems direct, particularly
to groupoid structures. A full-bore mathematical treatment of these and related
matters can be found in Glazebrook and Wallace (2009a, b).

1.1 The Topological Hypothesis and the topology of the
genetic code

The relation between phase transitions in physical systems and topological
changes has again become a central topic of research. Franzosi and Pettini
(2004) and Pettini (2007), for example, argue that the standard way of studying
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phase transition in physical systems is to consider how the values of thermody-
namic observables, obtained in laboratory experiments, vary with temperature,
volume, or an external field, and then to associate the experimentally observed
discontinuities at a phase transition to the appearance of some kind of singu-
larity entailing a loss of analyticity. However, they wonder whether this is the
ultimate level of mathematical understanding of phase transition phenomena,
or if some reduction to a more basic level is possible. Their theorem says that
nonanalyticity is the ‘shadow’ of a more fundamental phenomenon occurring in
configuration space: a topology change. Their theorem means that a topology
change in a particular energy manifold is a necessary condition for a phase tran-
sition to take place. The topology changes are described within the framework
of Morse theory through Morse-theoretic attachment handles. The converse of
the Franzosi/Pettini theorem is not true. There is not a one-to-one correspon-
dence between phase transitions and topology changes, and an open problem
is that of sufficiency conditions, that is, to determine which kinds of topology
changes can entail the appearance of a phase transition. A summary of stan-
dard material on Morse Theory is presented in a mathematical appendix to R.
Wallace and R.G. Wallace, (2008).

Tlusty (2007) employs something of the kind in his analysis of the genetic
code. He assumes that two codons are most likely to be confused if all their
letters except for one agree. He then constructs a graph having an edge between
codons if and only if they fit this confusion criterion. The resulting graph, he
claims, is natural for considering the impact of translation errors or mutations
because such errors almost always involve a single letter difference, hence a
movement along an edge to a neighboring vertex:

The topology of a graph is characterized by its genus γ, the
minimal number of holes required for a surface to embed the graph
such that no two edges cross. The more connected that a graph
is the more holes are required for its minimal embedding... [T]he
highly interconnected 64-codon graph is embedded in a holey, γ = 41
surface. The genus is somewhat reduced to γ = 25 if we consider
only 48 effective codons.

From the perspective of Pettini (2007), a free energy construct serves as a
Morse function whose critical points characterize just such a topology.

Tlusty (2007) concludes, similarly, that the topology of the code sets an
upper limit to the number of low modes – critical points – of his free energy-
analog functional, which is also the number of amino acids. The low modes
define a partition of the codon surface into domains, and in each domain a
single amino acid is encoded. The partition optimizes the average distortion
by minimizing the boundaries between the domains as well as the dissimilarity
between neighboring amino acids. This, Tlusty points out, is precisely the well-
known topological coloring problem, determined by Heawood’s formula (Ringel
and Young, 1968):
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chr(γ) = int(
1

2
(7 +

√
1 + 48γ)),

(3)

where chr(γ) is the number of color domains of a surface with genus γ, and
int(x) is the integer value of x. We reproduce part of Tlusty’s Table 1 that
shows the topological limit to the number of amino acids for different codes.

Code Number of Codons Maximal # of amino acids

4-base singlets 4 4

3-base doublets 9 7

4-base doublets 16 11

16 codons 32 16

48 codons 48 20

4-base triplets 64 25

It is important to recognize that this is a fundamental topological decompo-
sition, to which ‘free energy’ functionals are to be fit.

Tlusty concludes

[This] suggests a pathway for the evolution of the present-day
code from simpler codes, driven by the increasing accuracy of im-
proving translation machinery. Early translation machinery corre-
sponds to smaller graphs since indiscernible codons are described by
the same vertex. As the accuracy improves these codons become
discernible and the corresponding vertex splits. This gives rise to a
larger graph that can accommodate more amino acids... [P]resent-
day translation machinery with a four-letter code and 48-64 codons
(no discrimination between U and C in the third position) gave rise
to 20-25 amino acids. One may think of future improvement that will
remove the ambiguity in the third position (64 discernible codons).
This is predicted to enable stable expansion of the code up to 25
amino acids.

From the perspective of Glazebrook and Wallace (2009b), similar results can
probably be obtained by using ideas of network holonomy applied to simplicial
complexes and triangulations, that is, network phase transitions on graphs via
connections and groupoids.

Here we will reconsider the evolutionary trajectories of codes in the context
of available metabolic free energy, taking the perspective of Wallace (2009) and
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Wallace and Wallace (2008) that punctuated ecosystem resilience transitions
(e.g., Holling, 1973; Gunderson, 2000) can entrain evolutionary process, and that
the availability of metabolic free energy is central to the evolution of complex
phenomena of biological communication.

We begin with a restatement of a few central ideas from information theory,
in particular the essential details of the Rate Distortion Theorem.

2 Some facts from information theory

The existence of a code implies the existence of an information source using
that code, and the behavior of such sources is constrained by the asymptotic
limit theorems of information theory. That is, the interaction between biological
subsystems associated with a code can be formally restated in communication
theory terms. Wallace and Wallace (2008, 2009) use an elaborate cognitive
paradigm for gene expression to infer such information sources, i.e., cognition
implies ‘language’, in a large sense, but our focus here on codes neatly finesses
the argument.

Here we think of the machinery listing a sequence of codons as communi-
cating with machinery that produces amino acids, and suppose we can compare
what we is actually produced with what should have been produced, perhaps
by a simple survival of the fittest selection mechanism, perhaps via some more
sophisticated error-correcting systems.

Suppose a sequence of signals is generated by a biological information source
Y having output yn = y1, y2, ... – codons. This is ‘digitized’ in terms of the
observed behavior of the system with which it communicates, say a sequence
of observed behaviors bn = b1, b2, ...– amino acids. Assume each bn is then
deterministically retranslated back into a reproduction of the original biological
signal,

bn → ŷn = ŷ1, ŷ2, ....

Define a distortion measure d(y, ŷ) which compares the original to the re-
translated path. Many distortion measures are possible. The Hamming distor-
tion is defined simply as

d(y, ŷ) = 1, y 6= ŷ

d(y, ŷ) = 0, y = ŷ

For continuous variates the squared error distortion is just

d(y, ŷ) = (y − ŷ)2.

There are many such possibilities. The distortion between paths yn and ŷn

is defined as
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d(yn, ŷn) ≡ 1

n

n∑
j=1

d(yj , ŷj).

A remarkable fact of the Rate Distortion Theorem is that the basic result is
independent of the exact distortion measure chosen (Cover and Thomas, 1991;
Dembo and Zeitouni, 1998).

Suppose that with each path yn and bn-path retranslation into the y-language,
denoted ŷn, there are associated individual, joint, and conditional probability
distributions

p(yn), p(ŷn), p(yn, ŷn), p(yn|ŷn).

The average distortion is defined as

D ≡
∑
yn

p(yn)d(yn, ŷn).

(4)

It is possible, using the distributions given above, to define the information
transmitted from the Y to the Ŷ process using the Shannon source uncertainty
of the strings:

I(Y, Ŷ ) ≡ H(Y )−H(Y |Ŷ ) = H(Y ) +H(Ŷ )−H(Y, Ŷ ),

(5)

where H(..., ...) is the standard joint and H(...|...) the conditional Shannon
uncertainties (Cover and Thomas, 1991; Ash, 1990).

If there is no uncertainty in Y given the retranslation Ŷ , then no information
is lost, and the systems are in perfect synchrony.

In general, of course, this will not be true.
The rate distortion function R(D) for a source Y with a distortion measure

d(y, ŷ) is defined as
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R(D) = min
p(y,ŷ);

∑
(y,ŷ)

p(y)p(y|ŷ)d(y,ŷ)≤D
I(Y, Ŷ ).

(6)

The minimization is over all conditional distributions p(y|ŷ) for which the
joint distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies the average distortion constraint
(i.e., average distortion ≤ D).

The Rate Distortion Theorem states that R(D) is the minimum necessary
rate of information transmission which ensures the communication between the
biological vesicles does not exceed average distortion D. Thus R(D) defines a
minimum necessary channel capacity. Cover and Thomas (1991) or Dembo and
Zeitouni (1998) provide details. The rate distortion function has been calculated
for a number of systems.

We reiterate an absolutely central fact characterizing the rate distortion
function: Cover and Thomas (1991, Lemma 13.4.1) show that R(D) is necessar-
ily a decreasing convex function of D for any reasonable definition of distortion.

That is, R(D) is always a reverse J-shaped curve. This will prove crucial for
the overall argument. Indeed, convexity is an exceedingly powerful mathemati-
cal condition, and permits deep inference (e.g., Rockafellar, 1970). Ellis (1985,
Ch. VI) applies convexity theory to conventional statistical mechanics.

For a Gaussian channel having noise with zero mean and variance σ2 (Cover
and Thomas, 1991),

R(D) = 1/2 log[σ2/D], 0 ≤ D ≤ σ2

R(D) = 0, D > σ2.

(7)

For the ‘natural’ channel that seems to describe compression of real images
(e.g., Sarshar and Wu, 2007)

R(D) =
β

Dα

(8)
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with α ≈ 1.
Recall, now, the relation between information source uncertainty and channel

capacity (e.g., Ash, 1990):

H[X] ≤ C,

(9)

where H is the uncertainty of the source X and C the channel capacity,
defined according to the relation (Ash, 1990)

C ≡ max
P (X)

I(X|Y ),

(10)

where P (X) is chosen so as to maximize the rate of information transmission
along a channel Y .

Finally, recall the analogous definition of the rate distortion function above,
again an extremum over a probability distribution.

Our own work (Wallace and Wallace, 2008) focuses on the homology be-
tween information source uncertainty and free energy density. More formally, if
N(n) is the number of high probability ‘meaningful’ – that is, grammatical and
syntactical – sequences of length n emitted by an information source X, then,
according to the Shannon-McMillan Theorem, the zero-error limit of the Rate
Distortion Theorem (Ash, 1990; Cover and Thomas, 1991; Khinchin, 1957),

H[X] = lim
n→∞

log[N(n)]

n

= lim
n→∞

H(Xn|X0, ..., Xn−1)

= lim
n→∞

H(X0, ..., Xn)

n+ 1
,

(11)
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where, again, H(...|...) is the conditional and H(..., ...) is the joint Shannon
uncertainty.

In the limit of large n, H[X] becomes homologous to the free energy den-
sity of a physical system at the thermodynamic limit of infinite volume. More
explicitly, the free energy density of a physical system having volume V and
partition function Z(β) derived from the system’s Hamiltonian – the energy
function – at inverse temperature β is (e.g., Landau and Lifshitz 2007)

F [K] = lim
V→∞

− 1

β

log[Z(β, V )]

V
≡

lim
V→∞

log[Ẑ(β, V )]

V
,

with Ẑ = Z−1/β . The latter expression is formally similar to the first part
of equation (11), a circumstance having deep implications: Feynman (2000)
describes in great detail how information and free energy have an inherent du-
ality. Feynman, in fact, defines information precisely as the free energy needed
to erase a message. The argument is surprisingly direct (e.g., Bennett, 1988),
and for very simple systems it is easy to design a small (idealized) machine that
turns the information within a message directly into usable work – free energy.
Information is a form of free energy and the construction and transmission of
information within living things consumes metabolic free energy, with nearly
inevitable losses via the second law of thermodynamics. If there are limits on
available metabolic free energy there will necessarily be limits on the ability of
living things to process information.

Conversely, information source uncertainty has an important heuristic inter-
pretation that Ash (1990) describes as follows:

[W]e may regard a portion of text in a particular language as be-
ing produced by an information source. The probabilities P [Xn =
an|X0 = a0, ...Xn−1 = an−1] may be estimated from the available
data about the language; in this way we can estimate the uncer-
tainty associated with the language. A large uncertainty means, by
the [Shannon-McMillan Theorem], a large number of ‘meaningful’
sequences. Thus given two languages with uncertainties H1 and H2

respectively, if H1 > H2, then in the absence of noise it is easier
to communicate in the first language; more can be said in the same
amount of time. On the other hand, it will be easier to reconstruct
a scrambled portion of text in the second language, since fewer of
the possible sequences of length n are meaningful.

In sum, if a biological system characterized by H1 has a richer and more
complicated internal communication structure than one characterized by H2,
then necessarily H1 > H2 and system 1 represents a more energetic process
than system 2.
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3 Internal structure of the genetic code

Ash’s comment leads directly to a model in which the average distortion between
codon stream and amino acid stream becomes a dominant force. This is via the
relation between the Rate Distortion Function and free energy. The simplest
model finds codons generated by a black box information source whose source
uncertainty is constrained by the richness of the coding scheme of Tlusty’s Table
1, summarized above. In general we may expect more complex codes to be
associated with higher information source uncertainties, i.e., the ability to ‘say’
more in less time, using a more complicated coding scheme. Suppose there
are n possible coding schemes. The simplest approach is to assume, that for a
given rate distortion function and distortion measure, R(D) serves much as an
external temperature bath for the possible distribution of information sources,
the set {H1, ...,Hn}. That is, low distortion, represented by a high rate of
transmission of information between codon machine and amino acid machine,
permits more complicated coding schemes according to the classic formula

Pr[Hj ] =
exp[−Hj/κR(D)]∑n
i=1 exp[−Hi/κR(D)]

,

(12)

where Pr[Hj ] is the probability of coding scheme j having information source
uncertainty Hj .

The free energy Morse Function associated with this probability is

FR = −κR(D) log[

n∑
i=1

exp[−Hi/κR(D)]].

(13)

Applying Pettini’s topological hypothesis to the Morse Function FR gener-
ates topological transitions in codon graph structure as the ‘temperature’ R(D)
increases, i.e., as the average distortion D decreases, via the inherent convexity
of the Rate Distortion Function. That is, as channel capacity connecting codon
machines with amino acid machines increases, more complex coding schemes
can emerge in a punctuated manner.

What, then, drives R(D), as this drives, in turn, punctuated changes in the
genetic code? We present a series of three increasingly complicated perspectives.
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4 Rate Distortion Dynamics

4.1 A crude model

The direct approach is to impose the nonequilibrium generalized Onsager model
of the Introduction: Living biological structures are nonequilibrium systems,
and the flow of metabolic free energy is required for physiological function.
Since R(D) is a free energy analog, then, defining SR = R(D) −DdR(D)/dD
as an entropy-analog leads to

dD/dt = −µdSR/dD + F (D, t).

Taking F (D, t) as proportional to the available metabolic energy density M ,
for a Gaussian channel gives

dD/dt = µ/2D − κM,

(14)

having the equilibrium value, at dD/dt = 0,

Deq =
µ

2κM
.

That is,

R ∝ log[M ]

Thus, in this model, the internal temperature affecting codon topology –
the Rate Distortion Function – grows as the log of the available metabolic free
energy density.

For the ‘natural’ channel, taking α = 1,

R ∝
√
M.

4.2 A less crude model

A more subtle analysis is to suppose there may be a spectrum of possible evo-
lutionary or other machineries imposing penalties for high distortion in the
translation of codons to amino acids, or, inversely, that there may be a distri-
bution of possible channel capacities enabling accurate translation. We iterate
the model of equation (13), supposing that the probability of a particular Rate
Distortion value is determined by something like equation (12), so that we may
define a Rate Distortion partition function as
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ZR[M ] ≡
∫ Dmax

Dmin

exp[−R(D)/κM ]dD,

(15)

where M is the available metabolic free energy density, a function of the em-
bedding environment. Then the ‘Rate Distortion Free energy’ becomes

FR[M ] = −κM log[ZR[M ]],

(16)

and we can apply Pettini’s topological hypothesis for punctuated changes in the
topology underlying Morse Function FR. These entrain punctuated changes in
codon topology through a cascade mechanism, a double phase change, driven
by punctuated ecosystem resilience transitions in available metabolic energy
density. That is, sudden shifts in ecosystem availability of metabolic energy
trigger, first, transitions in FR, and then, through changes in R, punctuated
changes in codon topology.

While Occam’s Razor may seem to favor the simple model of Section 4.1,
one need only remember the more recondite parasite life cycles for a class of
evolutionary counterexamples. Fitness is contingent and context-driven, and
path-dependent evolutionary process need not conform to our cultural aesthet-
ics.

Indeed, the image of complicated parasite life cycle dynamics leads to a more
detailed examination of the transition mechanism.

4.3 Coevolution

R. Wallace and R.G. Wallace (2008) used information theory methods to re-
consider Eigen’s paradox, and in particular the interaction between two prebi-
otic vesicles under mutual recursion similar to Van Valen’s (1973) famous Red
Queen. Application to the dynamics of the Rate Distortion function driving
punctuated changes in the genetic code is surprisingly direct.

Here the two ‘vesicles’ are the machinery of the genetic code and that of
the epigenetic regulatory machinery that translates the gene to protein. Figure
1, adapted from figure 1.8 of Smulevich and Dougherty (2007), shows the two
systems intersecting, at the point where messenger RNA carries a gene codon to
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Figure 1: Where the DNA World meets the RNA World in modern protein
synthesis: The anticodon at one end of a tRNA molecule binds to its comple-
mentary codon in mRNA derived directly from the genome. Adapted from fig.
1.8 of Shmulevich and Dougherty, (2007).
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meet the anticodon of translational RNA, that carries, on its back, the precursor
to the appropriate amino acid.

Recall that the Rate Distortion Function is defined by the minimization of
a mutual information

I(Y, Ŷ ) = H(Y ) +H(Ŷ )−H(Y, Ŷ ) ≡ HY +HŶ −HY,Ŷ .

We are particularly interested in the magnitudes of H(Y ) and H(Ŷ ), sup-
posing that increases in both will, generally, lead to increases in R(D), in spite
of the negative joint uncertainty term.

The essential point is to view the genetic and translational (and, in another
context, epigenetic) machinery as being each other’s principal environments,
similar to, or, indeed, taken as, prebiotic interacting vesicles. Then we write

HY = HY [K],K = 1/HŶ ,

(17)

and similarly for HŶ . That is, both HY and HŶ are parameterized by the
other’s inverse. That is, increase or decline in the source uncertainty of one
system leads to increase or decline in the source uncertainty of the other. The
richness of the two information sources is closely linked.

Start at the right of the lower graph for H in figure 2, the source uncertainty
of one system, but to the left of the critical point KC that indicates collapse
of the interaction between the ‘vesicles’ analogous to Eigen’s error catastrophe,
following the model of R. Wallace and R.G. Wallace (2008). Assume HŶ in-
creases, so K declines., and thus HY increases, walking up the lower curve of
figure 2 from the right, so that the richness of the first vesicle’s internal language
increases.

Increase in HY leads, in turn, to a decline in KY = 1/HY , and triggers an
increase of HŶ , whose increase leads to a further increase of HY , and vice versa.
This is the Red Queen, taking the system from the right of figure 2 to the left,
up the lower curve as the two vesicles interact.

Now recognize the possibility of a reverse dynamic as well, driven by the
gradient of the disorder S = H−KdH/dK that, in the absence of a Red Queen,
would simply drive the system toward the minimum energy critical point for this
system.

Thus the system has two quasi-stable limit points, a low energy solution near
the error limit phase transition point, analogous to Eigen’s error threshold, and
a high energy solution near to, but never at, the zero error limit, depending on
the availability of sufficient metabolic energy to the system. Absent a relatively
energetic metabolic source, low error rate translation of the genetic code would
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Figure 2: A general curve for source uncertainty H[Y ] – measuring genetic
code language richness – as a function of an inverse temperature parameter
K = 1/H[Ŷ ]. To the right of the critical point KC the system collapses in an
analog to Eigen’s error catastrophe. Since K is an inverse source uncertainty
for the epigenetic information source Ŷ , a Red Queen dynamic can become
enabled, driving the system strongly to the left. No intermediate points are
asymptotically stable. To the right of the critical point KC the system fails
catastrophically. Thus there are two quasi-stable points, a low energy solution
near the error limit phase transition point, and a high energy state nearer to,
but never at, the zero error limit, determined by the availability of metabolic
free energy.
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be impossible, according to the model. Adapting the arguments of R. Wallace
and R.G. Wallace (2008), this suggests that some major, large scale, ecosystem
transformation in metabolic energy availability was a necessary condition for
low error rate genetic code translation to protein structures.

5 Discussion and conclusions

Several points emerge from this analysis. Not only have the codons undergone
evolutionary process, but so too has the translational machinery, as logically
implied by the complementary anticodon structure: Recently Sun and Caetano-
Anolles (2008) claimed evidence for deep evolutionary patterns embedded in
tRNA phylogenies, calculated from trees reconstructed from analyses of data
from several hundred tRNA molecules. They argue that an observed lack of
correlation between ancestries of amino acid charging and encoding indicates
the separate discoveries of these functions reflects independent histories of re-
cruitment. These histories were, in their view, probably curbed by co-options
and important take-overs during early diversification of the living world. That
is, disjoint evolutionary patterns were associated with evolution of amino acid
specificity and codon identity, indicating that co-options and take-overs em-
bedded perhaps in horizontal gene transfer affected differently the amino acid
charging and codon identity functions. These results, they claim, support a
strand symmetric ancient world in which tRNA had both a genetic and a func-
tional role (Rodin and Rodin, 2008).

Clearly, ‘co-options’ and ‘take-overs’ are, perhaps, most easily explained as
products of a prebiotic serial endosymbiosis, in our model instantiated by a
Red Queen between significantly, perhaps radically, different precursor chemical
systems.

Thus our coevolution argument in this context is not new, although the
particular mathematical approach is innovative.

Indeed, Witzany (2009) also takes a broadly similar ‘language’ perspective.
In that paper he reviews a massive literature, arguing that not only rRNA, but
also tRNA and the processing of the primary transcript into the pre-mRNA and
the mature mRNA seem to be remnants of viral infection events that did not kill
their host, but transferred phenotypic competences to their host and changed
both the genetic identity of the host organism and the identity of the former
infectious viral swarms. His ‘biocommunication’ viewpoint investigates both
communication within and among cells, tissues, organs and organisms as sign-
mediated interactions, and nucleotide sequences as code, that is, language-like
text. Thus editing genetic text sequences requires, similar to the signaling codes
between cells, tissues, and organs, biotic agents that are competent in correct
sign use. Otherwise, neither communication processes nor nucleotide sequence
generation or recombination can function. From his perspective, DNA is not
only an information storing archive, but a life habitat for nucleic acid language-
using RNA agents of viral or subviral descent able to carry out almost error-free
editing of nucleotide sequences according to systematic rules of grammar and
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syntax.
Here we have outlined a formal modeling strategy for this process, using the

asymptotic limit theorems of information theory.
In sum, the punctuated topology of the genetic code, as examined by Tlusty

(2007), implies, in turn, the possibility of a number of punctuated shifts in the
availability of metabolic free energy that may have been as fundamental as the
transition from anaerobic to aerobic metabolism (e.g., Wallace, 2009). Each such
transition would have enabled higher channel capacities in the communication
between interacting biological vesicles, in a large sense, and each would probably
have initiated new rounds of serial endosymbiosis (e.g., Villarreal and Witzany,
2009; Witzany, 2009), among other things. Tables 1 and 2 of Canfield et al.
(2006) display a considerable range of feasible electron donors and receptors
available to early anaerobic metabolisms, and the ecosystems that could have
been based on them. Other possibilities include the development of systems for
the storage of energy to be released during reproduction: think ‘seeds’. In any
event, transitions to higher energy metabolic systems would have, according
to our model, been associated with punctuated transitions to more complex
genetic codes. By the time of the aerobic transition, however, the code may,
after reaching a near-maximal error robustness, have become nearly locked-in
by path dependence, although some 20 subsequent slight variants have been
recognized (Koonin and Novozhilov, 2009, and references therein).

The search for evidence of such a sequence of ‘preaerobic’ metabolic free
energy transitions is, of course, fraught with difficulties.
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