
Do not log-transform count data 

O'Hara R.B.1,3 & Kotze, D.J.2

1 Biodiversity and Climate Research Centre, Senckenberganlage 25, D-

60325 Frankfurt am Main, Germany. Email: bohara@senckenberg.de

 

2 Department of Biological and Environmental Sciences, PO Box 65, FI-

00014, University of Helsinki, Finland. Email: johan.kotze@helsinki.fi

3 Corresponding auther:  Biodiversity and Climate Research Centre, 

Senckenberganlage 25, D-60325 Frankfurt am Main, Germany. 

Email: bohara@senckenberg.de, 

tel: +49 69 798 40216, 

fax: +49 69 798 40169.

Word Count: 2672

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
13

6.
1 

: P
os

te
d 

6 
Ja

n 
20

10
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nature Precedings

https://core.ac.uk/display/288969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:johan.kotze@helsinki.fi
mailto:bohara@senckenberg.de


Abstract 

1. Ecological count data (e.g., number of individuals or species) are 

often log-transformed to satisfy parametric test assumptions.

2. Apart from the fact that generalized linear models are better suited 

in dealing with count data, a log-transformation of counts has the 

additional quandary in how to deal with zero observations. With just 

one zero observation (if this observation represents a sampling 

unit), the whole dataset needs to be fudged by adding a value 

(usually 1) before transformation. 

3. Simulating data from a negative binomial distribution, we compared 

the outcome of fitting models that were transformed in various ways 

(log, square-root) with results from fitting models using Poisson and 

negative binomial models to untransformed count data. 

4. We found that the transformations performed poorly, except when 

the dispersion was small and the mean counts were large.  The 

Poisson and negative binomial models consistently performed well, 

with little bias.

Keywords: transformation, Poisson, overdispersion, linear models, 

generalized linear models,
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Introduction 

Ecological data are often discrete counts - the number of individuals or 

species in a trap, quadrat, habitat patch, on an island, in a nature reserve, 

on a host plant or animal, the number of offspring, the number of 

colonies, or the number of segments on an insect antenna. Even though 

textbooks on statistical methods in ecology (e.g., Sokal & Rohlf 1995; Zar 

1999; Crawley 2003; Maindonald & Braun 2007) recommend the use of 

the square root transformation to normalise count data, such data are 

often log-transformed for subsequent analysis with parametric test 

procedures (e.g., Gebeyehu & Samways 2002; Magura, Tóthmérész & 

Elek 2005; Cuesta et al. 2008). The reasons for this (log-transforming 

count data) are not clear but perhaps has to do with the common use of 

log transformations on all kinds of data, and the fact that textbooks 

usually deal with the log-transformation first, before evaluating other 

transformation techniques.

The main purpose of a transformation is to get the sampled data in line 

with the assumptions of parametric statistics (such as ANOVA, t-test, 

linear regression) or to deal with outliers (see Zuur, Ieno & Smith 2007; 

Zuur, Ieno & Elphick 2009). These assumptions include that the residuals 

from a model fit are normally distributed with a homogeneous variance. In 

addition, regression assumes that the relationship between the covariate 

and the expected value of the observation is linear. Classical parametric 
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methods deal with continuous response variables (weights, lengths, 

concentrations, volumes, rates) with few "zero" observations. As such, a 

log-transformation may successfully 'normalise' such continuous data for 

use in parametric statistics.

Discrete response variables, such as counts data, on the other hand, often 

contain many "zero" observations (see Sileshi, Hailu & Nyadzi 2009) and 

are unlikely to have a normally distributed error structure. The question 

arises; can, or should, count data that include zeroes be transformed to 

approximate normality to be subject to parametric statistics? Maindonald 

& Braun (2007) argued that generalized linear models have largely 

removed the need for transforming count data, yet the practice is still 

widespread in the ecological literature (see above).

Classically, response variables are transformed to improve two aspects of 

the fit: linearity of the response and homogeneity of the variance 

("homoscedasticity"). This can be done in an exploratory manner (e.g., 

Box & Cox 1964) but transformations often have sensible interpretations, 

e.g. the log transformation implies that the mechanisms are multiplicative 

on the scale of the raw data. Clearly, there is no reason to expect that a 

single transformation will behave optimally for both linearity and 

homoscedasticity, so some compromise is often needed.

More recently, generalized linear models have been developed (McCullagh 
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& Nelder 1989). These allow the analyst to specify the distribution that the 

data are assumed to have come from, which implicitly defines the 

relationship between the mean and variance. They can be chosen based 

on an understanding of the underlying process that is assumed to have 

generated the data, e.g. a constant rate of capture of individual members 

of a large population implies a Poisson distribution. If the capture rate 

varies randomly the data look clumped, with more zeroes but also more 

sites with large counts. In generalized linear modelling terminlogy this is 

"overdispersion", which can be handled in several ways, the most popular 

of which are by specifying the response as coming from a quasi-Poisson or 

negative binomial distribution.

Here we are interested in comparing how well the two approaches work 

when analysing count data. An additional wrinkle with the traditional 

approach of log transforming is that log(0) = -∞, so a value (usually 1) is 

added to the count before transformation. We are not aware of any 

justification for adding 1, rather than any other value, and this may bias 

the fit of the model. Zeroes do not present any problems in generalized 

linear models, as there it is the expected value that is log-transformed.

Zeroes can also be handled by using zero inflated models (e.g. Sileshi, 

Hailu & Nyadzi 2009; Zuur, Ieno & Elphick 2009). When modeling small 

counts, both zero inflated models and over-dispersed models can account 

for a large number of zero counts, and there may be little advantage in 
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fitting the zero inflated model. The choice of whether to use these models 

will thus often depend on an understanding of the biology of the system - 

the assumption is that there are two types of site, where the species 

occurs and where it does not. The species may not be caught where it 

occurs, hence the zero counts can be of two classes (i.e. true absence and 

present but not sampled). This sort of extension of a model can be an 

important consideration when modelling count data (for an extreme 

example, the zero-truncated one-inflated negative binomial, see Kotze et 

al. 2003), but is beyond the scope of this paper.

To address this problem of data transformation we simulated data from a 

negative binomial distribution (since count data in ecology are often 

clumped, producing an expected variance that is greater than the mean 

(see McCullagh & Nelder 1989; White & Bennetts 1996; Dalthorp 2004)), 

which we then subjected to various transformations (square root, log 

(y+n)). The transformed data were analysed using parametric statistics 

and compared to an analysis of untransformed data in which the response 

variable was defined as following either a Poisson distribution with 

overdispersion or a negative binomial error distribution.

Methods 

Data sets were simulated from a negative binomial distribution, with 

different values of θ (θ = 0.5, 1, 2, 5, 10, 100). Low θ (also termed k, see 
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fig. 2 in Wright (1991)) indicates greater variance in the data, i.e. 

stronger clumping. For each simulation, 100 data points were simulated at 

each of 20 means, μ (μ=1,...,20). 500 replicate simulations were carried 

out for each value of θ.

The data were analysed assuming that the mean was a factor, with each 

mean being a different level. Models were fitted making the following 

assumptions about the response, y:

1. y follows a negative binomial distribution

2. y follows a Poisson distribution with overdispersion

3. sqrt(y) transformation follows a normal distribution

4. log10(y+0.001) transformation follows a normal distribution

5. log10(y+0.1) transformation follows a normal distribution

6. log10(y+0.5) transformation follows a normal distribution

7. log10(y+1) transformation follows a normal distribution

The simulations were compared by calculating the mean bias, B:

B=1
S∑i=1

S

− ,

and root mean squared error (RMSE):

RMSE= 1
S∑i=1

S

 −2

for the simulations, where  is the estimated parameter, µ is the true 

value (known from the simulations), and S is the number of simulations.

7

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
13

6.
1 

: P
os

te
d 

6 
Ja

n 
20

10



Simulations and analyses were carried out in the R statistical programme 

(R Development Core Team 2009), using the MASS (Vernables & Ripley 

2002) package.  The code that was used is available as an online 

supplement.

Results 

The proportion of counts that were zero are shown in Fig. 1. Naturally, the 

proportion decreases as the mean increases, and it also decreases as the 

variance (controlled by θ) decreases.

The biases for the different estimation methods are plotted in Fig. 2. The 

negative binomial model has negligible bias, whereas the models based on 

a normal distribution are all biased, particularly at low means and high 

variances.

The amount of bias also depends on the transformation used. With little 

clumping (i.e. high θ), the square root transformation has little bias, as 

does the log transformation when the mean is high, i.e. there are few 

zeroes (compare to Fig. 1).

The root mean square error shows a similar pattern, with the negative 

binomial distribution consistently having a low RMSE, and a high value 

added to the log transformation being better (Fig. 3). The behaviour of the 
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log+1 transformation is a result of a change in sign of the bias, with the 

minimum at the point where the mean bias is zero (compare to Fig. 2).

The difference between the negative binomial and quasi-Poisson 

distribution models is insignificant. The largest absolute difference in bias 

was 2.4 x 10-8, and the largest RMSE was only 1.1 x 10-8, both of which 

are much smaller than the scales in Figs 2 & 3.

Discussion 

When the error structure of data is simple, a transformation (usually a log 

or power-transformation) can be quite useful to improve the ability of a 

model to fit to the data by stabilising variances or by making relationships 

linear (Miller 1997; Piepho 2009) before applying simple linear regression. 

But a transformation is not guaranteed to solve these problems: there 

may be a trade-off between homoscedasticity and linearity, or the family 

of transformations used may not be able to correct one or both of these 

problems. Different models may therefore need to be applied, and there is 

now a wide variety of possibilities, of which generalized linear models and 

their derivatives (McCullagh & Nelder 1989) are the most popular.

For count data, our results suggest that transformations perform poorly 

and instead statistical procedures designed to deal with counts should be 

used, i.e. methods for fitting Poisson or negative binomial models to data. 
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The development of statistical and computational methods over the last 

40 years has made it easier to fit these sorts of models, and the 

procedures for doing this are available in any serious statistics package.

It is perhaps not surprising that fitting the correct model to the data (i.e. 

the same model that was used to simulate the data) gives the best result; 

what is more interesting is that there is a difference in performance of the 

models (see also Jiao et al. 2004). This suggests that the choice of model 

does make a difference, and we would suggest that a model based on 

counts is more sensible, as it is easier to interpret and avoids the 

problems of deciding which transformation to use. The model is also more 

explicit, in the sense that the process that leads to a Poisson distribution 

of counts is clear (i.e. sampling with a uniform rate of capture), and is 

likely to provide a more accurate foundation for the model. The extra 

variability that can be added can be chosen according to the the way it 

affects the relationship between the mean and variance (Ver Hoef & 

Boveng 2007).

In our simulations, the Poisson and negative binomial models gave almost 

identical estimates. This suggests that the models are robust to a mis-

specification of the relationship between the mean and variance. In 

contrast, Ver Hoef & Boveng (2007) gave an example from a real dataset 

where they differed in their predictions. Whilst their data set is unusual 

(as they acknowledge), it does serve as a warning that our result may not 
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generalize to real data, which rarely has as balanced a design as our 

simulations. However, even though the choice of which type of 

generalized linear model to use depends on many things (O'Hara 2009; 

Zuur, Ieno & Elphick 2009), we do recommend that count data not be 

transformed to be used in parametric tests. For such data, GLMs and their 

derivatives are more appropriate.
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Figure 1. Proportion of values equal to zero in simulations from a 

negative binomial distribution. θ controls the dispersion (”clumping”) in 

the data: a larger value of θ means lower dispersion.
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Figure 2. Estimated mean biases from 6 different models, applied to data 

simulated from a negative binomial distrbution. A low bias means that the 

method will, on average, return the "true" value.
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Figure 3. Estimated root mean square error from 6 different models, 

applied to data simulated from a negative binomial distrbution.
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