

1	High energy-charged cell factory for heterologous protein synthesis.
2	
3	Yeong Deok Kwon ¹ , Hye Jung Kim ¹ , Sang Yup Lee ² , and Pil Kim ¹
4	
5	¹ Department of Biotechnology, Catholic University of Korea, Bucheon, Gyunggi 420-
6	743, Korea;
7	² Department of Chemical and Biomolecular Engineering, KAIST, Daejon 305-701,
8	Korea.
9	
10	
11	Correspondence to
12	Pil Kim, Ph.D., Asso. Prof.
13	
14	Department of Biotechnology
15	Catholic University of Korea,
16	Bucheon, Gyunggi 420-743, Korea
17	
18	T. +82-2-2164-4922
19	F. +82-2-2164-4865
20	E. kimp@catholic.ac.kr
21	
22	

23	Overexpression of gluconeogenic phosphoenolpyruvate carboxykinase (PCK)
24	under glycolytic conditions enables Escherichia coli to maintain a greater
25	intracellular ATP concentration and, consequently, to up-regulate genes for amino
26	acid and nucleotide biosynthesis. To investigate the effect of a high intracellular
27	ATP concentration on heterologous protein synthesis, we studied the expression of
28	a foreign gene product, enhanced green fluorescence protein (eGFP), under control
29	of the T7 promoter in <i>E. coli</i> BL21(DE3) strain overexpressing PCK. This strain
30	was able to maintain twice as much intracellular ATP and to express two times
31	more foreign protein than the control strain. These results indicate that a high
32	energy-charged cell can be beneficial as a protein-synthesizing cell factory. The
33	potential uses of such a cell factory are discussed.

37 Introduction

Adenosine triphosphate (ATP) is the universal energy currency of the cell, transferring 38 the chemical energy from metabolism to various biological activities in all life forms on 39 earth¹. ATP is produced during the processes of photosynthesis, fermentation, and 40 41 respiration, and it is consumed by many processes, such as biosynthesis, motility, cell 42 signaling, and cell division. ATP consists of adenosine and three phosphates and chemical energy is released by cleavage of a phosphate to produce adenosine 43 diphosphate (ADP) + phosphate. Since ATP is an unstable molecule, it is hydrolyzed 44 spontaneously and therefore is continuously recycled in living organisms; i.e., a human 45 turns over the equivalent of its body weight in ATP every day^2 . It is well known that the 46 47intracellular ATP concentration is one of the most important factors for cellular physiology, since it regulates many cellular events, such as growth³, ribosomal RNA 48 synthesis⁴, and cellular metabolic pathways⁵. 49

Biomaterial synthesis is an age-old knowledge involved in the manufacturing of bread, beer, wine, and cheese. The recent concept of biomaterial synthesis, however, is the use of live cells as factories for manufacturing highly valued biomaterials, such as proteins, amino acids, alcohols, organic acids, solvents, as well as bioplastics used in molecular biology and bioinformatics⁶. Many living cell factory models have been studied for the

synthesis of a variety of biomaterials: Escherichia coli⁷, Bacillus subtilis⁸, 55 Corynebacterium glutamicum⁹, yeast¹⁰, lactic acid bacteria¹¹, thermophile¹², 56 actinomycetes¹³, filamentous fungi¹⁴, plant cells¹⁵, and mammian cells¹⁶. 57 Some reports have described reduced macromolecular synthesis in the presence of a 58 lower intracellular concentration of ATP¹⁷. Conversely, one might expect that a higher 59 than normal intracellular ATP level would be beneficial for biomaterial synthesis in cell 60 factories. Enhanced production of intracellular ATP by overexpression of gluconeogenic 61 phosphoenolpyruvate carboxykinase (PCK) under glycolytic conditions enables E. coli 62 to up-regulate genes for amino acid and nucleotide synthesis as well as flagella 63 components¹⁸ (Fig. 1), a finding which strengthens the above hypothesis. A mouse 64 65 whose cell constitutively express PCK has been reported to be super athlete since it ran over 6 km when control mouse only ran 0.2 km¹⁹. Therefore, a verification of the high 66 energy-charged single cell as a factory works better for human purposed biomolecule 67 synthesis is required. 68 69 In this paper, we artificially expressed heterologous enhanced green fluorescence 70 protein (eGFP) in E. coli BL21(DE3) that maintain a high intracellular ATP to 71determine whether this strain is eligible for use as a powerful, protein-synthesizing cell

factory. The potential uses of such a high energy-charged cell factory are also discussed.

73 Results

74	To estimate heterologous protein expression in a high energy-charged cell, enhanced
75	green fluorescence protein (eGFP) was expressed under control of the T7 promoter in
76	an E. coli BL21(DE3) host (Table 1). Strain BL21(DE3) was the control host while
77	BL21(DE3) expressing phosphoenolpyruvate carboxykinase (PCK) was the high
78	energy-charged host. Strain BL21(DE3)/pEGFP (BL21[DE3] expressing eGFP by the
79	T7 promoter) and BL21[DE3]/pEcPCK/pEGFP (BL21[DE3] co-expressing eGFP by the
80	T7 promoter and PCK by the trc promoter) were inoculated in LB-glucose medium
81	containing 50 μ g/mL of antibiotics. An isopropyl- β -D-thiogalactopyranoside (IPTG, 1
82	mM) was supplemented in the log phase (optical density; $O.D. = 0.6$) to induce eGFP
83	expressions. The intracellular ATP concentrations after 6 h induction was 43.1 nmol/mg-
84	protein for the BL21(DE3)/pEGFP and 84.5 nmol/mg-protein for the
85	BL21(DE3)/pEcPCK/pEGFP, which harbored 2-times greater [ATP]. The BL21(DE3)
86	expressing PCK showed same pattern of greater [ATP] than that of BL21(DE3) (42.3 vs.
87	78.4 nmol/mg-protein). The total protein contents of BL21(DE3)/pEGFP was 0.60
88	mg/mL and that of the BL21(DE3)/pEcPCK/pEGFP was 0.55 mg/mL. The amount of
89	eGFP expression in BL21(DE3) overexpressing PCK was 957.8 RF(relative
90	fluorescence)/mL, which is more than 2-times greater than that observed for the control

91	strain (443.5 RF/mL) (Fig 2). The specific amount of eGFP produced by the unit cell of
92	high energy-charged E. coli (1741.5 RF/mg-protein) was 2.4-times greater than that
93	produced by the control (739 RF/mg-protein).

95 Discussion

The high energy-charged E. coli was beneficial for the expression of foreign protein 96 (Table 1, Fig. 2, Suppl. 1). One explanation for this result could be that these high 97 energy-charged cells up-regulate the genes for biosynthesis of amino acids¹⁸, thus 98 increasing amino acid biosynthesis turnover. An increase in the rate of production of 99 ribosomes by cells at a higher energy state has been reported⁴ and it is another potential 100 explanation for the observed enhancement of foreign protein synthesis (Suppl. 2). The 101 decreased growth rate observed for the high energy-charged cells were found in the LB-102 glucose and the minimal glucose medium (data not shown) and that is reasonable 103 considering that a high energy charge has been reported to limit the cellular growth by 104 restriction of the glycolytic flux²⁰, under such conditions, the carbon would be re-105 106 directed to foreign protein synthesis rather than to growth. E. coli BL21(DE3) has been 107 widely used for production of recombinant proteins and the whole genome sequence of 108 BL21(DE3) was reported lacks of genes for the motility (21 *fli* genes) as well as Lon

109	protease ²¹ . The amount eGFP from the high energy-charged BL21(DE3) host (957.8
110	RF/mL) was found to be about 57% more than that from the high energy-charged
111	W3110(DE3) host (610.1 RF/mL, Spuppl. 3). Lacks of motility in BL21(DE3) would
112	have saved energy for movement and produced more proteins than that in flagella
113	moving W3110(DE3) strain, which also supports that the more [ATP] contributes more
114	foreign protein expression hypothesis. Aminoacyl-tRNA synthetase requires ATP to
115	mediate amino acid-charged tRNA synthesis. The mRNA concentrations of alanyl-
116	tRNA synthetase and glutaminyl-tRNA synthetase in the high energy-charged
117	BL21(DE3)/pEcPCK was 1.5-times higher than those in BL21(DE3) control (Suppl. 4),
118	which implying greater intracellular [ATP] might have contributed the enhanced protein
119	synthesis by providing more AA-charged tRNA during translation process. In
120	combination, reduction in growth rate, the increase in the size of the amino acids
121	turnover, the enhanced production of ribosomes, and the more charged tRNA would
122	have a synergistic effect on foreign protein synthesis.
123	The use of high energy-charged cells could be beneficial to other cell factory
124	applications in addition to foreign protein synthesis. For instance, high energy-charged
125	cells might be able to enhance the production of a metabolite such as succinic acid, a
126	widely used specialty chemical ²² . When a recombinant cell directs its metabolism

127	toward production of a target metabolite, it tends to restrict its metabolic pathways by
128	way of feedback control. If the target metabolite remains inside the cell factory, and
129	accumulates to a high concentration, it would eventually inhibit its own synthesis.
130	Active transport the of target metabolite using the energy of the high-powered cell
131	factory could prevent feedback control from occurring, thereby enabling synthesis via
132	the desired pathways to continue unabated ²³ . In addition to the export of products, the
133	high-level intracellular energy could be useful for the import of raw materials into the
134	cell factory; one could expect to increase the rate of biomaterial synthesis once the
135	regulation of the carbon influx by the high energy-charged cells is understood. Secretion
136	and surface display of proteins might also be enhanced by the availability of high-level
137	intracellular energy ²⁴ .
138	It is not clear whether high energy-charged cells other than E. coli would be better
139	suited as cell factories for foreign protein synthesis. Studies on the engineering and use
140	of other types of cells (i.e., yeast, mammalian cell) as high energy-charged cell factories
141	are therefore needed.

143 Methods

144 Strain and plasmids

145	All strains, plasmids, and oligonucleotides are summarized in Table 2. The gene for
146	eGFP was amplified by PCR using the oligonucleotides of gaattcatggtgagcaagggcgagga
147	(EcoRI site underlined; forward I primer) and ctcgagcttgtacagctcgtccatgcc (XhoI site
148	underlined; reverse primer) based on pMEGFP as a template. The resulting DNA
149	fragment (0.7 kb) was sub-cloned into an expression vector (pET41a, Novagen,
150	Darmstadt, Germany) after sub-cloning into a PCR-cloning vector (pGEM-T easy
151	vector, Promega, Madison, WI, USA), verification by DNA sequencing (Bioneer Co.,
152	Daejon, Korea), and double digestion with EcoRI and XhoI, resulting pEGFP for eGFP
153	expression. The constructed vectors were transformed into the BL21(DE3) and
154	BL21(DE3)/pEcPCK strains by electrophoration (BTX ECM, Harvard Apparatus,
155	Holliston, MS, USA).
156	

157 *Media and culture*

Luria-Bertani medium was used for routine DNA manipulations. The LB-glucose medium contained glucose (9 g/L), NaHCO₃ (10 g/L), yeast extract (5 g/L), tryptone (10 g/L), NaCl (10 g/L), and antibiotics (ampicillin and kanamycin, 50 μ g/mL)²⁵. Single colony was inoculated into a 15-mL tube containing 4 mL medium and maintained at 37°C and 250 rpm for 12h. Four hundred microliter of culture was transferred into a

163	250-mL Erlenmeyer flask containing 50 mL medium and maintained at 37°C and 250
164	rpm. When the optical density (O.D.) of culture reached 0.6, isopropyl- β -D-
165	thiogalactopyranoside (IPTG, 1 mM) was supplemented to allow eGFP expression.
166	After 6 h after IPTG induction, culture was withdrawn for the analysis.
167	
168	Analysis

169	Biomass was estimated by measuring O.D. at 600 nm. Intracellular [ATP] and PCK
170	enzyme activity were determined as described previously ²⁶ . The protein concentration
171	of the enzyme solution was determined using a protein assay kit (Bio-Rad, La Jolla, CA,
172	USA) with bovine serum albumin as a standard after the sonic disruption of the sample
173	for 5 min at 140 W on ice using a UP200S ultrasonic processor (Hielscher Ultrasonics
174	Co., Teltow, Germany). To estimate the amount of eGFP expression, a 700 μ L-sample
175	was subjected to fluorescence spectroscopy (RF-5301PC, Shimadzu, Kyoto, Japan) with
176	excitation at 395 nm and emission at 509 nm. Cells were observed using phase contrast
177	and fluorescence microscopy (AX-70, Olympus Co, Tokyo, Japan).
178	

Acknowledgement 179

This work was supported by the Korean Ministry of Education, Science, and 180

181	Techn	ology (M01-2008-2003464, R01-2007-00020231-0, R01-2009-0070677).
182 183		
184	Refer	ences
185		
186	1	J. R. Knowles, Annual review of biochemistry 49, 877 (1980).
187	2	S. Tornroth-Horsefield and R. Neutze, Proceedings of the National Academy of
188		Sciences of the United States of America 105 (50), 19565 (2008).
189	3	C. Petersen and L. B. Moller, The Journal of biological chemistry 275 (6), 3931
190		(2000).
191	4	T. Gaal, M. S. Bartlett, W. Ross et al., Science (New York, N.Y 278 (5346), 2092
192		(1997).
193	5	J. M. Rohwer, P. R. Jensen, Y. Shinohara et al., European journal of
194		biochemistry / FEBS 235 (1-2), 225 (1996); A. Kayser, J. Weber, V. Hecht et al.,
195		Microbiology (Reading, England) 151 (Pt 3), 693 (2005).
196	6	A. Danchin, Microbial cell factories 3 (1), 13 (2004).
197	7	C. P. Chou, <i>Applied microbiology and biotechnology</i> 76 (3), 521 (2007).
198	8	L. Westers, H. Westers, and W. J. Quax, Biochimica et biophysica acta 1694 (1-
199		3), 299 (2004).
200	9	O. Kirchner and A. Tauch, Journal of biotechnology 104 (1-3), 287 (2003).

- ¹⁰ R. E. Spier, *Enzyme and microbial technology* **26** (9-10), 639 (2000).
- J. Hugenholtz, M. Kleerebezem, M. Starrenburg et al., *Appl Environ Microbiol*66 (9), 4112 (2000).
- ¹² A. Hidalgo, L. Betancor, R. Moreno et al., *Appl Environ Microbiol* **70** (7), 3839
 (2004).
- ¹³ T. J. Oh, S. J. Mo, Y. J. Yoon et al., *J Microbiol Biotechnol* **17** (12), 1909 (2007).
- ¹⁴ D. B. Archer, *Current opinion in biotechnology* **11** (5), 478 (2000).
- R. Verpoorte, R. van der Heijden, and J. Memelink, *Transgenic research* 9 (4-5),
 323 (2000).
- ¹⁶ K. Sainio and A. Raatikainen-Ahokas, *The International journal of* 211 *developmental biology* 43 (5), 435 (1999).
- ¹⁷ N. J. Snoeij, H. J. van Rooijen, A. H. Penninks et al., *Biochimica et biophysica*
- 213 acta 852 (2-3), 244 (1986); C. Oliveras-Ferraros, A. Vazquez-Martin, J. M.
- 214 Fernandez-Real et al., Biochemical and biophysical research communications
- **378** (3), 488 (2009).
- ¹⁸ Y. D. Kwon, S. Y. Lee, and P. Kim, *Bioscience, biotechnology, and biochemistry*
- **72 (4), 1138 (2008).**
- ¹⁹ R. W. Hanson and P. Hakimi, *Biochimie* **90** (6), 838 (2008).

- ²⁰ B. J. Koebmann, H. V. Westerhoff, J. L. Snoep et al., *Journal of bacteriology*184 (14), 3909 (2002).
- ²¹ H. Jeong, V. Barbe, C. H. Lee et al., *Journal of molecular biology* (2009).
- ²² I. J. Oh, H. W. Lee, C. H. Park et al., *J Microbiol Biotechnol* **18** (5), 908 (2008).
- 223 ²³ R. M. Zelle, E. de Hulster, W. A. van Winden et al., *Appl Environ Microbiol* 74
 224 (9), 2766 (2008).
- 225 ²⁴ T. J. Park, S. K. Choi, H. C. Jung et al., *J Microbiol Biotechnol* 19 (5), 495
 226 (2009).
- 227 ²⁵ Y. D. Kwon, O. H. Kwon, H. S. Lee et al., *J Appl Microbiol* 103 (6), 2340
 228 (2007).
- 229 ²⁶ Y. D. Kwon, S. Y. Lee, and P. Kim, *J Microbiol Biotechnol* **16** (
- ²⁶ Y. D. Kwon, S. Y. Lee, and P. Kim, *J Microbiol Biotechnol* **16** (9), 1448 (2006).
- 230
- 231
- 232

233	List of Table
234	Table 1. Effect of intracellular ATP level on eGFP expression.
235	Table 2. Strains and plasmids
236	
237	
238	List of Figures
239	
240	Figure 1. Biochemical reactions between PEP and OAA in high energy-charged E.
241	coli.
242	Biochemical reactions under glycolytic and gluconeogenic conditions occurring in
243	BL21(DE3) and high energy-charged BL21(DE3).
244	pck: PEP carboxykinase, ppc: PEP carboxylase. Superscripts p and c indicate promoter-
245	origin and chromosome-origin, respectively.
246	
247	Figure 2. Microscopic images of <i>E. coli</i> BL21(DE3) expressing eGFP.
248	
940	

Table 2. Effect of intracellular energy level on eGFP expression^a.

251

Strain	Biomass		Intracellular	Volumetric	Specific eGFP
	O.D.600nm	Total	[ATP]	eGFP	expression ^d
		protein	(nmol/mg-	expression ^b	(fluorescence
		(mg/mL)	protein)	(fluorescence	intensity/mg-
				intensity/mL)	protein)
BL21(DE3)	$1.98 \scriptstyle \pm 0.01$	$0.62 \scriptstyle \pm 0.01$	42.3 ±1.5	-	-
BL21(DE3)/pEcPck	$2.06{\scriptstyle~\pm 0.03}$	$0.64_{\ \pm 0.05}$	$78.4 _{\pm 6.3}$	-	-
BL21(DE3)/pTGFP	$1.98 \scriptstyle \pm 0.01$	$0.60{\scriptstyle~\pm 0.03}$	$43.1 \scriptscriptstyle \pm 4.6$	443.5 ±21.9	$739.2_{\pm 36.5}$
BL21(DE3)/pEcPck/pEGFP	$1.77 \scriptstyle \pm 0.09$	$0.55 \scriptstyle \pm 0.01$	$84.5 _{\pm 4.7}$	$957.8_{\pm 30.3}$	1741.5 ±55.1

252

^aAll experiments were repeated at least 5 times. Samples were harvested at 6 h of IPTG

induction. Cells were cultured in a 250-mL Erlenmeyer flask containing 5 mL medium
at 250 rpm, and 37°C.

^bA culture sample was directly subjected to fluorescence spectrophotometry (excitation at 395 nm, emission at 509 nm) for estimation of eGFP expression.

258

Table 2. Strains and plasmids

Strains	Description	Source
Oligonucleotides		
Forward eGFP	gaattcatggtgagcaagggcgagga (EcoRI site underlined)	This study
Reverse eGFP	ctgcagcttgtacagctcgtccatgcc (XhoI site underlined)	This study
Plasmids		
pGEM-T	T&A cloning vector, Ap ^R	Promega
pET41a	Expression vector, p _{T7} , Km ^R	Novagen
pMEGFP	eGFP expression vector, p _{tac} , Ap ^R	Donated by Dr.
		Seong Goo
		Lee, (KRIBB)
pEcPck	pTrc99A containing PCK gene	26
pEGFP	pET41a containing eGFP at <i>Eco</i> RI- <i>Xho</i> I sites	This study
Strains		
DH5a	F- $\Phi 80 \ dlacZ \ \Delta M15 \ \Delta \ (lacZYA-argF) \ U169 \ endA$	l Invitrogen
	recA1 hsdR17 (rK-mK+) deoR thi-1 phoA supE44 λ	
	gyrA96 relA1	
BL21(DE3)	F omp T gal dcm lon hsd S_B ($r_B m_B$; $E. coli B$ strain)),
	with DE3, a λ prophage carrying the T7 RNA <i>pol</i> generation	e

BL21(DE3) Glucose
$$\xrightarrow{\text{glycolytic condition}}$$
 PEP $\xrightarrow{\text{CO}_2}$ $\xrightarrow{\text{Pi}}$ OAA

gluconeogenic condition CO_2 +ADP pck^c ATP Glucose \leftarrow PEP \leftarrow OAA

BL21(DE3)/pEcPCK
Glucose
$$\xrightarrow{\text{glycolytic condition}}$$
 $PEP \xrightarrow{\text{CO}_2 + \text{ADP}}_{\text{CO}_2} \xrightarrow{ppc^c}_{Pi} OAA$

267

268

Figure 1. Biochemical reactions between PEP and OAA in high energy-charged *E*. *coli*.

Biochemical reactions under glycolytic and gluconeogenic conditions occurring in
 BL21(DE3) and high energy-charged BL21(DE3).

273 *pck*: PEP carboxykinase, *ppc*: PEP carboxylase. Superscripts *p* and *c* indicate promoter-

274 origin and chromosome-origin, respectively.

- Figure 2. Microscopic images of *E. coli* BL21(DE3) expressing eGFP.