

Introduction: C₄ photosynthesis is an important example of convergent evolution in plants, having arisen in eudicots, monocots and diatoms¹. Comparisons between such diverse groups are confounded by phylogenetic and ecological differences, so that only broad generalisations can be made about the role of C₄ photosynthesis in determining ecophysiological traits. However, 60% of C_4 species occur in the grasses (Poaceae) and molecular phylogenetic techniques confirm that there are between 8 and 17 independent origins of C₄ photosynthesis in the Poaceae². In a screening experiment, we compared leaf physiology and growth traits across several major independent $C_3 \& C_4$ groups within the Poaceae, asking 1) which traits differ consistently between photosynthetic types and 2) which traits differ consistently between clades within each photosynthetic type.

Leaf physiology: C₄ photosynthesis is characterised by CO₂ uptake at low concentrations (via PEPc) and saturation of Rubisco with CO₂, minimizing photorespiration and leading to improvements in Rubisco carboxylation efficiency. C_4 plants are thus expected to show higher net CO_2 assimilation rates (A), lower stomatal conductance (g_s) , lower leaf nitrogen (N_{mass} , N_{area}) and improved photosynthetic nitrogen and intrinsic water use efficiencies (PNUE = A/N_{area} , and *iWUE* = A/g_s respectively) under a range of conditions³.

• Unexpectedly, N_{mass} showed no significant patterns (Fig. 2a). Paniceae had lower N_{area} within each type (Fig. 2b), indicating that leaf area per unit leaf mass is high in this group. N_{area} was similar between C₃ and C₄ NAD-me. We found convergence.

Figure 2. Foliar nitrogen, mean ± s.e., for key see 'Design'. (a) N per unit mass, (b) N per unit leaf area

Ecophysiological traits of grasses: resolving the effects of photosynthetic pathway and phylogeny Samuel. H. Taylor¹, Mark Rees¹, Stephen P. Hulme¹, Rob. P. Freckleton¹, Brad S. Ripley², F. Ian Woodward¹, Colin P. Osborne¹

 Contrasts between C₃ and C₄ photosynthetic types in A, g_s , $\Delta \Psi_{leaf}$, *iWUE* and *PNUE* (Fig.

1a - e). Within either type, g_s and *iWUE* showed strong

• PNUE showed divergence between clades and $\Delta \Psi_{leaf}$ showed divergence between Paniceae and other clades.

Growth analysis: Improved resource use efficiency is expected to correlate with differences in growth allocation between $C_3 \& C_4$ plants³. If higher A is translated into improved growth rate per unit canopy area (unit leaf rate, ULR), C_4 plants may show either higher relative growth rates per unit total mass (RGR), or a greater range of allocation strategies mediated via changes in the leaf mass ratio (LMR) and root mass ratio (RMR)³. The resulting effect on canopy leaf area ratio (LAR) is influenced by the specific leaf area (SLA) (LAR = SLA \times LMR).

Figure 3. Growth efficiency, mean ± s.e., for key see 'Design'. (a) growth per whole plant mass, (b) growth per leaf area

Conclusions:

• Some traits associated with C_3 and C_4 photosynthesis show strong convergence across independent lineages (low g_s , high *iWUE*), whilst others vary substantially between lineages (high A, high PNUE). C₃ and C₄ photosynthesis were not distinguished by leaf N, but low g_s in C_4 types relative to C_3 was associated with reduced diurnal water potential gradients.

• Within photosynthetic types, clades differed in allocation of resources at the leaf (SLA, PNUE & N_{area}) and whole plant (LAR, LMR) levels (esp. between Paniceae and others); there was some evidence that this divergence was most extreme in the C_4 NADP-me type.

Ecophysiological traits linked to C₄ photosynthesis in grasses are influenced by phylogeny and may show substantial divergence between independent C_4 lineages.

We found

 No increase in ULR and RGR in C₄ type 	S
(Fig. 3a & b), despite higher A and greater	-
resource use efficiencies at the leaf level.	

 Consistent, significant effects on growth rates and biomass allocation due to:

1) Classification as perennial vs. annual/ weak perennial (annuals showed greater SLA, LAR and LMR, data not shown).

2) Paniceae, which showed increased RGR, LAR & LMR, and reduced RMR & ULR (Figs. 3 & 4).

• SLA (Fig. 4a) was the only growth trait to show a random effect of clade, indicating divergence between phylogenetic groups.

 The C₄ NADP-me subtype was associated 	
with more extreme differences in allocation.	

(c) Leaf Mass Ratio, (d) Root Mass Ratio

Design: Species were picked a random from C₃, C₄ NAD-me and C₄ NADP-me clades (left). Plants were grown in 4 I. pots in a glasshouse, kept well-watered & unfertilised (right) Gas exchange and water potentials were measured. For a subset of species, sequential destructive harvests and curvefitting were used to estimate growth traits at a common, small size.

