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Ecophysiological traits of grasses: resolving the effects of photosynthetic pathway and phylogeny
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Leaf physiology: C,photosynthesis is characterised by CO, uptake at Growth analysis: Improved resource use efficiency is expected to correlate with differences in growth allocation
low concentrations (via PEPc) and saturation of Rubisco with CO,, minimizing between C; & C, plants®. If higher A is translated into improved growth rate per unit canopy area (unit leaf rate, ULR), C,
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efficiency. C,4 plants are thus expected to show higher net CO, assimilation mediated via changes in the leaf mass ratio (LMR) and root mass ratio (RMR)°. The resulting effect on canopy leaf area ratio
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