
New methods for analyzing serological data with applications to influenza 

surveillance 

Wilfred Ndifon*

Serological data on circulating influenza viruses generally contain evolutionarily 

important information about functional (antigenic) variation in the B cell antigens of those 

 
Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544 

October 1, 2009 
 

Abstract 

Two important challenges to the use of serological assays for influenza surveillance 

include the substantial amount of experimental effort involved, and the inherent noisiness of 

serological data. Here, informed by the observation that log-transformed serological data 

(obtained from the hemagglutination-inhibition assay) exist in an effectively one-dimensional 

space, computational methods are developed for accurately and efficiently recovering 

unmeasured serological data from a sample of measured data, and systematically minimizing 

noise found in the measured data. Careful application of these methods would enable the 

collection of better-quality serological data on a greater number of circulating influenza viruses 

than is currently possible, and improve the ability to identify potential epidemic/pandemic 

viruses before they become widespread. Although the focus here is on influenza surveillance, the 

described methods are more widely applicable. 

 

Introduction 
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viruses [1,2]. Because natural selection acts on antigenic variation, serological data can provide 

important insights into patterns, causes, and epidemiological consequences of influenza viral 

evolution [2-6]. Nevertheless, there are important challenges to the use of serological data. In 

particular, serological assays require considerable amounts of time and effort to perform, and this 

limits the number of viruses on which serological data can be routinely collected [7]. In addition, 

serological data are often contaminated by measurement noise (e.g., resulting from the serial 

dilution of sera), which may cause independently measured data for the same virus and serum 

sample to vary greatly. Furthermore, serological data depend on non-antigenic variables such as 

the red cell avidity and the antibody-inducing capacity of viruses [1,8], which can make it 

difficult to extract from the data accurate information about the antigenic variation of influenza 

viruses. 

Smith et al. [2] recently made great progress towards addressing the above challenges, 

focusing on data obtained from the widely-used hemagglutination-inhibition assay. Those data 

are typically reported in the form of an m by n table (or matrix) H, with m the number of assayed 

viruses and n the number of sera used in the assay. Each Hij in H (called the HI titer of virus i 

relative to serum j) is the reciprocal of the maximum dilution of serum j that can effectively 

neutralize virus i, i=1,…,m, j=1,…,n. Smith et al. used titers from multiple tables to construct 

low-dimensional embeddings (“antigenic” maps) of viruses and sera in which the Euclidean 

distance between virus i and serum j was approximated by Nij=log2(hj/Hij), where hj is the 

maximum titer found in the jth column of table H. (Use of base 2 in the log-transformation of 

hj/Hij reflects the fact that titers are typically measured using 2-fold dilutions of sera. Base 2 is 

also used here when log-transforming titers). The constructed antigenic maps allowed 

unavailable values of Nij to be accurately predicted from distances measured on the maps, 
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increasing the amount of available data. Because the maps were constructed using data from 

multiple tables, data recovered from the maps are, in principle, less noisy than data obtained 

from individual tables. 

Here, computational methods that extend the above antigenic-map approach into novel 

directions are introduced. More precisely, for a given m by n table H of titers, the methods enable 

accurate and efficient recovery of unmeasured values of Hij, as well as the computation of 

confidence intervals (CIs) for measured values of Hij, i=1,…,m, j=1,…,n. The methods can, in 

principle, also be used to directly recover suitably normalized titers, including Nij (Ref. 2) and 

Hij/Hjj (Ref. 7), as well as other measures of antigenic differences between viruses. In addition, 

the methods allow the minimization of both measurement noise and other types of non-antigenic 

variation found in titers, as well as the quantification of antigenic differences using such “noise-

filtered” titers. The methods were partly motivated by remarkable recent work on the 

recoverability, from incomplete data samples, of data that exist in a low-dimensional space [9]. 

 

Results and discussion 

Let H denote an m by n table of titers, with m≥n. Because it is tedious to measure the mn 

titers found in H, it will be very helpful if only s<mn titers can be measured and used to recover 

the unmeasured titers. The results of Candès and Recht [9] suggest that if the measured titers are 

selected randomly with uniform probability and s≥Crm1.2log(m), then the unmeasured titers can 

be recovered exactly if (i) r≤m1/5 and (ii) H has a low coherence (e.g., on the order of 1), where 

C>0 and r is the rank of H (see Methods for definitions). The unmeasured titers are recovered by 

finding an m by n table X that has minimal nuclear norm subject to the constraint that Xij=Hij, for 

all measured titers Hij (Methods). To investigate the applicability of this method for recovering 
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titers, both the rank and the coherence of published tables of empirical titers [10] were computed 

(Methods). (Because missing titers can artificially lower the rank of a table, only complete tables 

were analyzed; see Supplementary Table 1). When the titers found in each table are log-

transformed, on average ~99% of the variation in those titers is explained by the largest singular 

value of the considered table (Fig. 1a), suggesting that the analyzed tables have an effective rank 

of ~1. In addition, the tables have an average coherence of 1.36±0.12. These results suggest that 

unmeasured titers can be recovered exactly by the above method. Note, however, that because 

measured titers are likely to contain noise, exact recovery of unmeasured titers may not be 

possible. Also, recovery is not possible if entire rows/columns of H do not contain any measured 

titer. Furthermore, accurate (not necessarily exact) recovery is only possible if s is not smaller 

than the number of degrees of freedom of H, which equals r(m+n-r) [9]. 

The above method for recovering unmeasured titers was applied to tables of empirical 

titers (Supplementary Table 1). The titers found in each table were log-transformed, and 90% of 

those titers were randomly selected and used to recover the unselected (“unmeasured”) titers 

(Methods). This procedure was repeated 100 times for each table. [Note that it was necessary to 

limit this analysis to m by n tables for which 0.9mn≥m1.2log(m)]. Both the mean absolute 

difference (0.66±0.68) and the relative mean absolute difference (0.08±0.10) between the 

recovered and the unselected titers were small, suggesting that the recovery of unmeasured titers 

was accurate, albeit not exact. The correlation between the recovered and the unselected titers 

was high (R2=0.77). A closer look at the results reveals that the mean absolute difference varies 

across the analyzed tables, ranging from 0.15 to 2.50. This may reflect the differing amounts of 

noise found in titers from different tables. To minimize such noise, a method was developed for 

computing noise-free estimates and CIs for titers (Methods). The method was tested using 
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1020×  rank-1 tables consisting of simulated, log-transformed titers. Each table was constructed 

as the product of two matrices (of dimensions 120×  and 101× , respectively), the entries of 

which were independently drawn from a truncated normal distribution with support (1.5, 4); this 

support was chosen to simulate the dynamic range of log-transformed, empirical titers, (3.32, 

13.32). [Note that because empirical titers are measured on a geometric scale, it is reasonable to 

approximate their distribution by a lognormal distribution (e.g., Ref. 11)]. 

To simulate noise found in empirical titers, for each constructed table M, another table 

M* was obtained by adding a perturbation (independently drawn from a normal distribution with 

mean 0 and standard deviation δ) to each entry of M. M* was then used to compute estimates of 

and 95% CIs for the noise-free titers in M (Methods), for δ=0,0.1,0.2,…,1. Representative results 

obtained using one of the constructed tables are shown in Figure 1. The results show that the 

computed CIs have excellent coverage properties; they contain their corresponding noise-free 

titers in >99% of cases and they also have small relative widths (Fig. 1b & c). Remarkably, 

although estimates for the noise-free titers were computed using noisy titers the mean absolute 

difference between those estimates and the noise-free titers is much smaller than between the 

estimated and noisy titers, and between the noisy and noise-free titers (Fig. 1d). Indeed, the mean 

absolute difference between the estimated and noise-free titers grows much more slowly with δ 

than does the mean absolute difference between the estimated and noisy titers (Fig. 1d). These 

results suggest that the developed method can, in principle, be used to systematically minimize 

noise found in tables of empirical titers. 

[Insert Figure 1] 

In addition to measurement noise, it is also important to minimize other types of non-

antigenic variation found in titers. This is currently not possible due to limited understanding of 
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the fundamental nature of titers. To shed light on the nature of titers, a mechanistic model of 

hemagglutination inhibition was developed and used to derive the first explicit mathematical 

equation for the titer of virus i relative to serum j: 

iijjij JKAH = ,          (1) 

where Aj denotes the concentration of antibodies found in serum j, Kij
 the average affinity of 

those antibodies for virus i, and Ji a dimensionless quantity that depends on such non-antigenic 

variables as the avidity of virus i for red cell, the concentration of virus i, etc (see Supplementary 

Text for additional details). Aj depends on non-antigenic variables, including the antibody-

inducing capacity of the virus against which serum j was raised, the immune status of the 

organisms in which serum j was raised, etc [8]. The derived equation predicts that the normalized 

titer Hjj/Hij, a commonly used measure of antigenic difference (e.g., Ref. 7), is approximately 

independent of Aj, but it depends on both Ji and Jj. In contrast, a measure of antigenic difference 

introduced by Archetti and Horsfall [12] – [HiiHjj/(HijHji)]1/2 – is predicted to be approximately 

independent of the non-antigenic variables Aj, Ji, and Jj, suggesting that it may be more accurate. 

This is consistent with previous empirical results [10]. Importantly, the derived equation predicts 

that by mean-centering each row and column of a table of log-transformed, normalized titers the 

dependence of those titers on non-antigenic variables would be minimized. A method for 

quantifying and visualizing antigenic differences between viruses using such mean-centered 

tables is described in Methods.  

 In summary, the computational methods presented in this paper suggest new possibilities 

for improving the use of HI titers (and serological data in general) for influenza surveillance. In 

particular, the method for computing estimates and CIs for noise-free titers would allow 

uncertainties associated with titers to be taken into account, for example, when selecting viruses 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.3
82

0.
1 

: P
os

te
d 

1 
O

ct
 2

00
9



for use in influenza vaccines. Also, the method for minimizing non-antigenic variation found in 

titers may help to improve the estimation of antigenic differences between viruses. In addition, 

the method for recovering unmeasured titers may help to reduce the experimental effort required 

to collect titers; for example, only 201.2log(20)≈109 titers may need to be measured in order to 

accurately determine all 200 possible titers for 20 viruses relative to 10 sera. The additional 

experimental capacity made available by this method would increase the number of viruses, 

circulating in humans and other organisms, for which titers can be routinely collected, and 

thereby improve the likelihood that potential epidemic and pandemic viruses will be identified 

before they become widespread (e.g., Ref. 7). This is important in light of the ongoing pandemic 

spread of an influenza virus whose initial circulation in humans may have gone undetected for 

several months [13]. 

Note that the observation, reported here, that tables of empirical titers have an effective 

rank of ~1 – titers exist in a space that has only one effective dimension – suggests that the 

effective number of independent variables that determine titers is very small. In other words, 

while titers depend on many variables [see Equation (1)] some of which may be mutually 

independent, variation in titers may be dominated by one or more co-dependent variables. In so 

far as titers are determined by and contain information about viral phenotypes, the demonstrated 

low dimensionality of the space of titers and the consequent recoverability of unknown titers 

suggests that it may be possible to predict biophysically accessible viral phenotypes from 

information about extant viral phenotypes. Well-designed theoretical and experimental tests of 

this idea may yield important new insights, and also shed light on questions concerning the 

evolutionary accessibility of epidemic variants of influenza viruses (see, e.g., Ref. 14). In 

addition to influenza surveillance, the new methods presented in this paper can be used in the 
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surveillance of other pathogens and in the investigation of basic questions concerning pathogen 

evolution and dynamics. As should be the case for existing methods (e.g., recently developed 

methods for elucidating the antigenic structure [2,15] and the adaptation potential [16] of 

pathogen populations), continued empirical/experimental assessment of the new methods is 

necessary to ensure that they will remain useful. 

 

Acknowledgements: The author thanks Jonathan Dushoff for very helpful comments on a 

previous version of this manuscript; Leonid Kruglyak, Sergey Kryazhimskiy, Simon Levin, and 

Ned Wingreen for very helpful discussions; and the U.S. Centers for Disease Control and 

Prevention for making public the serological data used in this study. 

 

Methods 

Computing the effective rank and the coherence of a table of titers. Let TVSUH ∗∗=  be 

the singular value decomposition (SVD) of an m by n table H of log-transformed titers. The 

columns (called eigenvectors) of U (V) are orthonormal bases for the column (row) space of H, 

whereas the diagonal entries of S are the n singular values of H, nii ,,1, =λ , sorted in 

decreasing order of magnitude. (“T” denotes matrix transpose, and “*” denotes matrix 

multiplication). The fraction of the variation in titers that is explained by the r largest singular 

values of H is given by: 

( )
( )∑

∑ =
=

=
r

i
in

i i
rF

1

2

1
2

1 λ
λ

.         (2) 

The rank of H is defined as the number of its non-zero singular values. Because some non-zero 

singular values may make negligible contributions to the variation in titers, the rank of H may be 
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larger than its effective rank, defined here as the smallest value of r for which Fr≈Fr+1, r=1,…,n-

1 (the effective rank is set to n if this condition is not satisfied for any r<n). 

Let PU (PV) be the orthogonal projection of H onto the first r columns of U (V). The 

“coherence” of H (more precisely, the maximum coherence of U and V) with respect to the 

standard bases in Rm and Rn is given by [9]: 

( ) 












=

≤≤
≤≤

2

1
1

2 max,maxmax
ni

iV

mi

iU eP
r
neP

r
mHµ .       (3) 

 

Recovering titers. Let H denote an m by n table of log-transformed titers of rank r, m≥n, and let 

Ω denote a subset of Crm1.2log(m) titers randomly selected from H with uniform probability, 

C>0. (C=r=1 is used in this study). The unselected (or “unmeasured”) titers are recovered by 

finding an m by n matrix X that minimizes: 

( )∑
Ω∈

∗
−+

ijH

ijij XHX 2
ηµ ,         (4) 

where µ  and η  are Lagrange multipliers. 
∗

X  denotes the nuclear norm of X, that is, the sum of 

the singular values of X. When r is known (it is not approximated by the effective rank of H), 

∗
X  is replaced by the sum of the r largest singular values of X. Note that (4) is convex, so its 

optimal solution can usually be found efficiently [see Supplementary Text for details on the 

algorithm used to solve (4)]. 

Because titers recovered by the above method are theoretically exactly equal to their 

“noise-free” values when the selected titers are free of noise [9], discrepancies between the 

recovered and the noise-free titers are necessarily due to noise found in the selected titers. If 

there is no systematic bias in the way that noise found in the selected titers induces variation in 
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the recovered titers, then the recovered titers would be randomly distributed about the 

corresponding noise-free titers. The distribution of the recovered titers can therefore be used to 

compute CIs for the noise-free titers. This is the rationale for the following procedure for 

computing CIs for titers found in H: 1. Randomly select m1.2log(m) titers from H. 2. Recover the 

unselected titers (see above). 3. Repeat steps 1 and 2 until each titer found in H is recovered at 

least N (=1000) times (on average it will take nN/[n-m0.2log(m)] repetitions of steps 1 and 2 for 

this to happen). Let Li be a list of the k≥N values recovered for the ith titer, which are sorted in 

increasing order. Then, the lower (upper) 95% CI for the ith titer is given by the  k025. th 

(  k975. th) element of Li, where  x  (  x ) denotes the largest (smallest) integer smaller (larger) 

than x. The mean of the recovered values for each titer are used as a noise-free estimate for that 

titer. 

 

Quantifying and visualizing antigenic differences between viruses. Let TVSUH ∗∗=  be the 

SVD of a table H of log-transformed titers. To quantify antigenic differences between viruses 

found in H, H is projected onto an r-dimensional subspace of its row space: TT
r

T HVW *= , 

where Vr denotes the first r columns of V. The antigenic difference between viruses i and j is 

defined as the Euclidean norm of the difference between the ith and jth rows of W. If r≤3, then 

antigenic differences can be visualized by plotting the rows of W. Antigenic differences 

computed using titers from different tables can be embedded in a common r-dimensional space 

by means of probabilistic multidimensional scaling (Supplementary Text). Note that the above 

SVD decomposition of H is only feasible when there are no missing titers in H (see 

Supplementary Text for a more generally applicable SVD approach). 
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Figure legend 

Figure 1. Evidence for unidimensionality and high recoverability of titers. The dimensionality of 

each of 23 tables of empirical titers (Supplementary Table 1) was investigated by determining 

the fraction of the variation in (log-transformed) titers found in each table (denoted Fr) that is 

explained by the r largest singular values of that table (Methods), for r=1,…,5. To investigate the 

recoverability of titers, noise (independently drawn from a normal distribution with mean 0 and 

standard deviation δ) was added to each entry of a table consisting of simulated titers. The noisy 

titers were then used to compute estimates of and 95% CIs for the corresponding noise-free titers 

(Methods). (a) Fr (averaged over all 23 empirical tables) is plotted against r.  (b) The fraction of 

noise-free titers that occurred within their computed CIs is plotted against δ. (c) The mean ratio 

of the width of the CI for a particular noise-free titer to the absolute value of that titer is plotted 

against δ.  (d) The mean absolute difference between the estimated and noise-free titers, between 

the estimated and noisy titers, and between the noisy and noise-free titers, are plotted against δ. 

Bars denote standard deviations. 
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