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The detection and quantitation of exogenously administered biological 

macromolecules (e.g. vaccines, peptide and protein therapeutics) and their 

metabolites is frequently complicated by the presence of a complex endogenous 

mixture of closely related compounds. We describe a method that incorporates 

stable isotope labeling of the compound of interest allowing the selective 

screening of the intact molecule and all metabolites using a modified precursor 

ion scan. This method involves monitoring the low molecular weight fragment 

ions produced during MS/MS that distinguish isotopically labelled material from 

related endogenous compounds. All isotopically labelled substances can be 

selected using this scanning technique for further analysis whilst other 

unlabelled and irrelevant substances are ignored. The potential for this 

technique to be used in metabolism and pharmacokinetic experiments is 
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discussed with specific examples looking at the metabolism of α-synuclein in 

serum and the brain. 

 

It is often necessary to distinguish a target peptide from a mixture of other closely 

related species within a wide range of analyte concentrations. Mass spectrometry is 

frequently the method of choice for such analyses as it can selectively identify 

peptides by their nominal (precursor ion) mass and/or by using their fragment ion 

(product ion) spectra1. However the complexity of many biological samples often 

results in the simultaneous production of multiple precursors, even with on-line 

separation techniques such as during LC-MS. Most modern instruments can readily 

manage this situation and given sufficient time can systematically attempt to 

characterize one ion after another until all the available components are sampled.  The 

disadvantage of this technique is the time taken to analyse each precursor, which in 

the case of very complex samples may be longer than the analyte is available (e.g. 

during the duration of a chromatographic peak in which the analyte(s) are contained 

during an LC-MS experiment). 

 

There are two targeted mass spectrometry techniques to more specifically detect 

specific peptides from a mixture. The first is “single ion monitoring" (SIM) or 

"multiple reaction monitoring" (MRM) where the mass spectrometer is configured to 

only detect molecules of a defined precursor m/z (mass), ignoring or excluding all 

others, allowing molecules of known mass to be identified with very high sensitivity2. 

In complex mixtures it is particularly desirable to use additional information about the 

targeted molecule to identify it from closely related species of similar or identical 

mass. Thus the mass spectrometer is configured to monitor for the presence of a 

specific product ion that is formed by the fragmentation of a targeted precursor ion; 

for example monitoring the intensity of a specific b ion formed by the fragmentation 

of a known peptide precursor.  

 

The second technique for detection of target compounds in a complex mixture is 

called "precursor ion scanning" or "parent ion scan". In this instance prior knowledge 

of the molecule may not extend to knowledge of the precursor mass, but the molecule 

may be known to contain a certain component that would result in the presence of a 



diagnostic product ion. For example, Wilm et al.3 report the detection of peptides at 

low femtomole levels using precursor ion scans by monitoring for the presence of the 

Leucine/Isoleucine immonium ions. They also demonstrated the selective detection of 

different subsets of tryptic peptides by using the y1 ion corresponding to respective 

Arginine or Lysine C-terminal residues, and the selective detection of 

phosphopeptides from a mixture by targeting the ion corresponding to PO3
- fragment 

(m/z -79). These examples highlight the utility of this well established technique4-7 to 

perform targeted proteomic analysis on classes of peptides based on their generation 

of a unique fragment ion during MS/MS. 

 

Both precursor scanning and SIM/MRM are limited by the necessity to have 

knowledge of the target precursor mass and/or the product ion mass for the class of 

molecules or the molecule of interest1. In a complex biological system often it is 

impossible to predict the mass of the natural form of a target peptide. This may be due 

to post-translational modification of the peptide, natural proteolytic processing or 

metabolism of the peptide from the parent biomolecule. This problem can be 

overcome to some extent by performing multiple precursor scans or MRM transitions, 

however the peptides "discovered" will always be limited by the assumptions 

regarding precursor m/z or product ion masses monitored in the respective 

experiments. Also, in many instances the total number of potential metabolites is so 

large that it becomes impractical to monitor all the possible MRM transitions to cover 

the candidate metabolites. It is therefore desirable to have an analytical technique 

which can selectively screen out target peptides from a complex mixture, in real time, 

that does not require the same assumptions as an MRM or precursor scan.  

   

One approach to overcoming this problem has involved the use stable isotope 

labelling to enable the identification of naturally processed forms of proteins in 

complex biological mixtures. For example the identification of peptide epitopes 

derived from isotopically labelled protein antigens8. In this approach a search engine 

is used to retrospectively interrogate the data to identify isotopically labelled (i.e. 

antigen derived) peptides that were observed in the first analytical run and then a 

second experiment is used to sequence the target peptides using an inclusion list for 

MS\MS analysis. The necessity to use multiple LC runs for the same sample makes 

this approach cumbersome and restricts identification of low abundance peptides. For 



very complex samples there is also the complication of co-eluting isobaric peptides 

that would interfere with the identification process.  

 

Here we describe a variation of a precursor ion scan in conjunction with stable isotope 

labelling that allows real time discrimination of isotopically labelled material and 

triggers further MS/MS analysis for the identification and characterisation of these 

species.  In this instance we assume that a target peptide derived from a uniformly 15N 

labelled protein will produce one or more characteristic fragment ions, such as 15N 

containing immonium ions, in the low mass region of the product ion spectra9, 10. 

These ions can be used as the diagnostic ions for a precursor scan. We have termed 

this technique NIIPe, 15N Immonium Ion Precursor scanning. We have shown that 

using this technique we can successfully screen 15N labelled peptides from a complex 

mixture of more abundant unlabelled peptides. This technique will have application in 

any mass spectrometry experiment where the prerequisite knowledge for an MRM or 

precursor scan cannot be met. The technique also has the further advantage that 

peptides from the original protein can still be identified irrespective of what types of 

processing or modification the peptide underwent affording new levels of coverage in 

DMPK and other monitoring technologies.  

 

Results 

The principal of precursor ion scanning is very useful as it screens out those ions that 

do not meet the selection criteria. All that is required is a suitable diagnostic ion that 

can be used to define the presence of the target compound or class of compounds. We 

and others3, 11 have shown that the low mass region of the product ion spectrum 

contains ions that could be used to distinguish different classes of peptides. We 

further elaborate on this idea by introducing the concept that for 15N labelled peptides, 

diagnostic low mass ions can be used to distinguish these isotopically labelled species 

from endogenous peptides. In particular, all immonium ions9 contain at least one 

nitrogen and hence all immonium ions formed from a 15N labelled peptide will display 

a mass shift of at least 1amu. A calculation of the mass of all the 15N immonium ions 

compared to all the unlabelled immonium ions revealed that, with the exception of 
15N Leu/Ile overlapping with unlabelled Asn, they produced unique fragment ions 

(Table 1). Moreover, we have also empirically observed and validated several 

immonium ion related species that produce distinctive reporter ions for multiple 15N-



labelled amino acid residues (Table 1). Indeed, MS\MS of 15N labelled peptides 

produced distinctive product ion species (Fig. 1) and highlight the potential use of one 

or more 15N immonium or related ions as targets for a precursor scan that would 

selectively screen out 15N peptides from endogenous peptides. 

 

A 15N precursor ion scan can be performed using any triple quadrupole mass 

spectrometer which is able to target a single fragment ion and then scan for precursor 

masses that give rise to the target ion. Thus 15N peptides could be screened from a 

mixture by using, for example, the mass of the 15N immonium ion of valine at m/z 73. 

As shown in Figure 2, a series of 15N targeted precursor scans successfully screened 
15N labelled α−synuclein peptides from a mixture also containing unlabelled BSA 

tryptic peptides. The full complexity of the peptide mixture is revealed by the base 

peak chromatogram representation of the LC-MS experiment (Fig 2A). As expected 

each of the three scans screened out a different subset of α−synuclein peptides and 

ignored most of the BSA peptides (Fig. 2B-D). The precursor scan of 73 detected 

peptides that generated a 15N-Valine immonium ion (L3-5, L8, L10, L12: supplementary 

Table 1), representing all but two valine containing peptides present in the sample. 

The peak marked with an asterisk most likely represents the L1 fragment however 

MS/MS verification was not possible. An L13 fragment was not visualised using the 

73 precursor ion scan presumably as a result of context dependent valine immonium 

ion formation9 and the failure of this fragment to produce an intense 73 amu 

diagnostic ion.  The precursor scan for m/z 103 (Fig 2C) selected peptides containing 

glutamate, glutamine and lysine due to the overlap between the immonium ions 

derived from Glu and Gln and a Lysine derived related low mass ion. This overlap in 

diagnostic ions allowed identification of all anticipated Lys C peptides derived from 

α-synuclein (i.e. peptides >5aa in length and not including the large C-terminal 

fragment which is outside the mass range in these experiments – see Supplementary 

Table 1) and as such was the best scanning functionality for this particular example. 

Finally a precursor scan of 131 representing the Lysine immonium ion for which all 

Lys C peptides should generate a peak identified all but one anticipated peptide (L6) 

again presumably due to failure of this peptide to yield a 131 immonium ion due to 

sequence context. Of note this peptide generated a strong 103 precursor scan signal. 

An example of the MS/MS characterisation of the L4 peptide is shown in Fig 2E. 



Importantly any falsely selected BSA peptides were readily discriminated once the 

inappropriately triggered MS/MS spectrum was interrogated due to the unique nature 

of 15N-fragment ions. Across the three individual precursor scans only 8 BSA peptides 

triggered an MS/MS experiment while there were 26 α−synuclein selections that 

covered all of the expected peptides. These data highlight the utility of using more 

than one precursor scan despite known sequence elements of the peptides, for instance 

the combination of 131 and 103 identified all anticipated α-synuclein Lys C peptides. 

 

In the example above 15N labelled peptides were screened out using a single precursor 

scan. However, not all naturally processed peptides will contain the specific amino 

acid used in the precursor ion scan even when overlapping reporter ions, such as the 

m/z 103 ion, are used. In addition to the 103 reporter ion, several other low mass ions 

have been observed in the fragmentation spectra of 15N-labelled peptides that are 

shared between more than one amino acid residue allowing further potential coverage 

of peptides in a single experiment (Table 1). Therefore by combining highly specific 

immonium ions and related ions it is possible to obtain high sequence coverage in a 

precursor scan experiment. Moreover, using an AB SCIEX 4000 QTRAP mass 

spectrometer, which can simultaneously monitor a maximum of 4 precursors, we 

designed multiple precursor scan experiments using low mass target ions that 

corresponded to amino acids that were known to produce immonium or related low 

mass ions9 and were distributed as regularly as possible throughout the target protein 

sequence.  

 

In order to fully assess the feasibility of using multiple precursor scans the complexity 

of the sample was increased by combining 10 pmol of a dual trypsin and V8 protease 

digest of 15N labelled dihydropicolinate synthase (DHDPS) with an unlabelled sample 

containing > 5000 peptides at varying concentrations. This unlabelled sample was 

prepared by acid extraction of cell surface peptides from murine splenocytes, 

equivalent to 40ug of total peptide.  In this experiment unlabelled peptide was 

deliberately added in order to try and make it more difficult to specifically select 15N 

peptides over the background noise of the unlabelled peptides. A multiple precursor 

scan targeting m/z 71 (P, D, N), 73 (V, I), 85 and 103 (K,E,Q) was used. As shown in 

Figure 3, precursors of m/z 491 (red Proline immonium ion, Aspartic acid and 



Asparagine immonium related ions) and 681.2 (green Valine immonium ion, 

Isoleucine immonium related ion) identified DHDPS peptides that were not readily 

detectable by regular MS, whilst the third precursor identified at 735.5 was abundant 

in both normal MS and in the NIIPe scan. Another abundant species at 603.1 was 

manually selected for MS/MS and shown to represent an unlabelled peptide. Thus, the 

multiple precursor scan was able to selectively filter out labelled peptides in 

preference to the unlabelled peptides. 

 

The data presented in Figures 1-3 collectively highlight the selectivity of NIIPe and its 

ability to identify isotopically labelled peptides from complex mixtures even when 

effectively undetectable by conventional untargeted LC-MS/MS. We next sought to 

compare NIIPe to direct LC-MS/MS analysis of a complex mixture. A small amount 

(5 pmol) of 15N DHDPS trypsin digest was added to a peptide extract from murine 

splenocytes (as above) in order to create a mixture in which the peptides of interest 

were at concentrations that prevented untargeted LC-MS/MS detection. This mixture 

was then divided into aliquots which were run as either NIIPe scans or regular 

MS/MS acquisitions with identical LC methodologies on a 4000 QTRAP instrument. 

Analysis of this mixture using normal LC-MS/MS only identified three peptides 

originating from the labelled DHDPS following exhaustive manual interrogation of 

the raw MS/MS data. In contrast in the precursor scanning experiments DHDPS 

peptides were detected and selected for MS/MS based sequencing without manual 

intervention, allowing highly specific and rapid identification of the target peptides. 

Thus five peptides derived from the labelled DHDPS peptides were specifically 

detected and sequenced in the multiple precursor scan. In order to eliminate the 

impact of the relatively long cycle time (>20s) for the multiple precursor scan, the 

same sample was analysed in individual precursor scan experiments. This allowed up 

to nine DHDPS peptides to be identified (Table 2). This time penalty was partially 

overcome in some experiments by selecting low mass target ions that cover more than 

one amino acid due to overlap between classical immonium ions and related low mass 

ions from other amino acids9, 10 (Table 1). 

 

Potential applications for this methodology include protein metabolism, 

bioequivalence and DMPK analyses12-15. In order to demonstrate the ability of NIIPe 

to facilitate such analyses we examined the metabolism of exogenously administered 



15N-labelled α-synuclein in serum and in murine brain extracts. In these experiments, 

5 nmol of 15N α-synuclein was added to an equal volume of mouse serum or crude 

murine brain homogenate. Proteins were precipitated and the remaining soluble 

peptides analysed by mass spectrometry. As demonstrated in Figure 4, NIIPe not only 

demonstrated differences in metabolism of α-synuclein in the brain and serum it 

allowed the identification of novel peptides derived from this protein as a result of 

tissue specific endo- and exopeptidase activities (Reilly et al., manuscript in 

preparation). This differential production of peptide metabolites included differences 

in the generation of predominantly C-terminal peptides; with KNEEGAPQEGILED 

and EGYQDYEP found uniquely in the brain extract and IAAAT and 

VTGVTAVAQK peptides found uniquely in serum. Significantly no endogenous α-

synuclein peptides were observed despite its high abundance in the brain extract. 

 

Discussion 

We have demonstrated that the use of 15N immonium ions as targets for a precursor 

scan can be used to selectively screen out 15N labelled peptides from a mixture of 

other unlabelled peptides. Although some 15N-labelled peptides can be detected using 

standard LC-MS/MS experiments, they were only identified following exhaustive 

manual interrogation of the several thousand MS/MS spectra recorded in the 

untargeted analysis of a complex mixture. In contrast the NIIPe scan experiment 

selected far fewer precursors for subsequent MS/MS analysis. Thus NIIPe 

demonstrated superior sensitivity and specificity (Figure 3 and Table 2) both in 

precursor selection and validation, since MS/MS of 15N-labelled material is easily 

distinguished from inadvertently triggered MS/MS spectrum of unlabelled material 

post data acquisition. Simultaneous monitoring of multiple diagnostic low mass ions 

allowed the detection of peptides in complex mixtures that would otherwise be hidden 

by the complexity of the sample. As the technology and instrumentation continues to 

develop, we anticipate the capacity to monitor the entire low mass region (50-300 

AMU) for all possible diagnostic ions for the isotopically labelled material. Such 

analysis will allow the detection of all 15N precursors for subsequent MS/MS 

characterisation. This ability to broadly scan the low mass region would also allow 

multiplexing of the experiment to encompass other stable isotope labels. An 

additional benefit of this would be that by using multiple target ions you reduce the 



possibility of false selection due to chemical noise, difference in peptide 

concentrations in the sample, or other contaminants in the sample. The technique is 

also not simply restricted to immonium ions since other low mass ions that display a 

diagnostic change in mass for a labelled peptide can be used, for example y1. 

Moreover the addition of any stable isotope (13C, 2H, etc) will produce diagnostic 

fragment ions allowing additional scrutiny of other classes of compounds including 

RNA and DNA and artificially introduced chemical entities such as spacer groups or 

PEG. 

 

The technique is particularly useful for the analyses of unanticipated species where 

other techniques such as MRM or targeted analyses are not feasible. The workflow 

provides new avenues for ADME and DMPK studies16-21 allowing deeper coverage of 

metabolites and the capacity to monitor rare species directly ex vivo. Thus, this 

method does not replace MRM or precursor scanning techniques; instead it is a 

method that can be used when the assumptions required for the former two techniques 

cannot be met, providing unparalleled depth of metabolite identification. In the 

example shown in this manuscript several differentially processed peptides derived 

from α-synuclein were identified in brain and serum extracts. α-synuclein is a small 

heat stable protein found associated with amyloid deposits in neurodegenerative 

diseases such as Parkinson’s disease22 and Alzheimer’s disease23. Of interest one of 

the peptides identified in serum VTGTAVAQK is derived from the fibrillogenic 

hydrophobic core of α-synuclein that has been shown to facilitate fibril formation in 

other studies24. Several other applications are also under investigation in our 

laboratories. These include the identification and characterisation of peptide epitopes 

derived from an exogenous isotope labeled antigen after processing by antigen 

presenting cells25 and protein shedding from transplanted tissues and tumor grafts as 

sources of biomarkers and therapeutic targets. Once results from the NIIPe scan are 

determined further inroads into sensitivity and throughput can be afforded by linking 

the NIIPe discovery data back to create a set of MRM’s for quantitation or further 

high throughput analysis using workflows such as scheduled MRMs26-28 on labelled 

or unlabelled species.  

 

 



Methods 

Sample preparation.  15N α−synuclein was a gift from Dr Roberto Cappai, 

Department of Pathology, University of Melbourne. 15N DHDPS was a gift from Dr 

Renwick Dobson, Department of Biochemistry and Molecular Biology, University of 

Melbourne. BSA was from Sigma-Aldrich (St. Louis, MO). Proteins were 

resuspended in 50 mM TEAB and digested for 24hr at 37°C, using proteomics grade 

Trypsin, LysC or endoprotease GluC at a ratio of 50:1 by mass. The mouse thymus 

MHC peptide mixture was prepared by acid extraction as described elsewhere25, 29. 

Trypsin digested 15N DHDPS was spiked into 40μg of mouse thymus MHC peptide 

lysate. For α-synuclein experiments 5 nmol of 15N α-synuclein was added to 1ml of 

neat serum or 1ml of crude brain homogenate (1 mouse brain homogenised [mortar 

and pestle] in TBS to a volume of 1 ml). Proteins were precipitated by the addition of 

4 volumes of 20% trichloroacetic acid on ice. Protein precipitate was removed by 

benchtop centrifugation at 16000×g and the remaining supernatant analysed by mass 

spectrometry. 

Mass Spectrometry; QTOF analysis of the low mass region for 15N α−synuclein was 

carried out using an AB SCIEX QSTAR Elite Hybrid LC-MS/MS coupled with an 

Eksigent Tempo™ nanoflow LC. 10 pmol of 15N α−synuclein LysC digest was 

loaded onto a 300μm C18 trap column and further separated by a 75μm x 10cm C18 

column (SGE Australia) using a 45 min, 2-60% Acetonitrile/ 0.1% Formic acid 

gradient. Data dependent acquisition was performed on ions between the mass range 

of 370 - 1400 Da with an intensity threshold of >20 cps and product ion scans that 

covered the mass range of 68 -1800 Da 

 

4000 QTRAP experiments.  Samples were loaded onto a 300μm x 10mm C18 trap 

column and further separated by a 300μm x 10cm C18 column (SGE Australia) using 

a 75 min, linear 2-60% Acetonitrile/0.1% Formic acid gradient delivered by a Dionex 

UltiMate 3000 capillary HPLC system at 8μl/min. Eluting peptides were analysed 

using an AB SCIEX 4000 QTRAP instrument fitted with a Turbo V ion source. For 

the immonium ion precursor scans, multiple 6 second precursor scans were performed 

using a collision energy ramp of 25 to 50 eV for a mass range of 400-1000 Da with a 

step size of 1.0 amu. Q1 resolution was set to low and Q3 was set to unit resolution. 

Automated MS/MS selection was performed with an intensity threshold of 1.00 cps 



and triggered three enhanced product ion scans. These were performed using Q0 

trapping and rolling collision energy, scanning the mass range of 69-1500 Da with a 

LIT fill time of 40ms. A single MS scan was also looped into the method to provide 

more information for later analysis of the precursors available for selection. Total 

cycle time was ~28s for 4 precursor or ~20s for a triple precursor and ~15s for a 

double precursor scan. Conventional LC-MS/MS experiments using the 4000 Q 

TRAP were performed using the same chromatographic and ion source parameters as 

the precursor scan. A survey scan monitored masses from m/z 400 to 1600 and 

automated MS/MS was employed to target the top 2 precursors per scan, using rolling 

collision energy, Q0 trapping, intensity threshold 1,000 cps, excluding former target 

ions for 60s, LIT fill time 50ms. 

 

Data analysis. All the mass spectrometry data sets were analysed manually and 

peptides sequenced by de novo techniques. This was because of the inability of the 

available software tools to reliably work with 15N labelled peptides.  
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Figure legends. 

 

Figure 1: The low mass product ions for unlabelled and 15N labelled peptides. (A) 

spectrum for the low mass product ions for the α−synuclein peptide EGVLYVGSK. 

When the same peptide is 15N labelled there is a distinct shift in the low mass product 

ions as shown in (B) 

 

Figure 2: Precursor ion scanning for 15N immonium ions. A 1mg per /ml BSA trypsin 

digest was spiked with and equal volume of 1mg/ml 15N α-synuclein LysC digest. A) 

The base peak chromatogram for the mixture indicating a complex mix of the two sets 

of peptides. The automated data acquisition software selected ions from both BSA and 

a-synuclein for MS/MS analysis. Using the same sample three separate precursor ion 

scan experiments were used to specifically target 15N labeled peptides via low mass 

ions characteristic of a 15N labeled amino acid. The masses selected were m/z 73 for 
15N Valine; 103 corresponding to ions for 15N Glutamate, Glutamine and Lysine; and 

131 corresponding to 15N Lysine. B), C), and D) show the TIC of the product ion 

scans for each experiment. Peptides derived from 15N α-synuclein are indicated as Ln 

where n is the LysC peptide number (see Supplementary Table 1). Falsely selected 

peaks are indicated with an asterisk. Small peaks with no annotation could not be 

identified due to poor fragmentation spectra. As expected, each of the three precursor 

scans identified different subsets of the 15N α-synuclein peptides demonstrating that a 

standard precursor ion scan would not identify all of the possible peptides in the mix. 

Hence it is necessary to monitor as many 15N immonium ions as possible to ensure the 

best chance of identifying all of the target peptides. E) The MS/MS spectrum of the 

fourth 15N α-synuclein LysC peptide (L4, EGVVAAAEK) as captured by the m/z 131 

precursor scan    

 

Figure 3: Scanning 15N labelled peptides out of a complex mixture. Approximately 10 

pmol of 15N DHDPS was digested with trypsin and added to a very complex mixture 

of unlabelled peptides (~40μg of MHC peptide preparation). Half of this sample was 

then analysed by regular LC-MS/MS and the other half by a multi precursor ion scan. 

(A) Shows the mass spectrum of all peptides entering the mass spectrometer for the 



time point 53.4 min, indicating the presence of several abundant peptides. This 

enhanced mass spectral survey scan was looped into the precursor ion scan 

experiment to provide detailed untargeted information about the peptide mixture (B) 

Shows the precursor scan results corresponding to the same time point. Overlayed are 

the intensity of ions for the 15N masses 71 (red), 73 (green), 85 (blue) and 103 (black). 

The three major peaks in the precursor profile each correspond to 15N DHDPS 

peptides that were consequently selected by the precursor scan for further MSMS 

analysis as shown in C) 15N SDFHHHD, D) 15N HWDJHSKLG, and E) 15N 

KMFJDSFGS. The final panel F) shows the ms/ms spectrum for the unlabelled 

peptide SDJSFGDGHK. This peptide with a precursor mass of 603.1 is observed in 

panel A) however it was ignored by the precursor scan experiment. The data shown in 

F) was extracted from the previous LC-MS/MS run on the same sample.   

 

Figure 4: Using NIIPe to search for peptides of 15N α-synuclein after incubation for 5 

min in serum or brain extract. 5 nmol of 15N α-synuclein was added to 1ml of neat 

serum or 1ml of crude brain homogenate (1 mouse brain homogenised in TBS to a 

volume of 1 ml). Proteins were precipitated by TCA and then 5μl of the remaining 

soluble fraction was analysed using m/z 85 and 73 as target ions for a dual precursor 

scan. The TIC for the precursor scan for m/z 85 is shown for the brain (blue) and the 

serum sample (red). A number of 15N labelled peptides were screened from the 

samples including the two peptides shown in the inset. A) is the 15N labelled peptide 

IAAAT while B) the second peptide is VTGVTAVAQK.  
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Residue 3-letter code  1-letter code Immonium ion* Related ions* 15N Immonium ion* Observed 15N Related ions* 
Alanine, Ala A 44  45  
Arginine, Arg R 129 59, 70, 73, 87, 100, 112 133  
Asparagine, Asn N 87 70 89 71 
Aspartic acid, Asp D 88 70 89 71 
Cysteine, Cys C 76  77  
Glutamic acid, Glu E 102  103  
Glutamine, Gln Q 101 56, 84, 129 103 85,131 
Glycine, Gly G 30  30  
Histidine, His H 110 82, 121, 123, 138, 166 113  
Isoleucine, Ile I 86 44, 72 87 73,45 
Phenylalanine, Phe F 120 91 121  
Proline, Pro P 70  71  
Leucine, Leu L 86 44, 72 87 45,73 
Lysine, Lys K 101 70, 84, 112, 129 103 131, 85 
Methionine, Met M 104 61, 70 105  
Serine, Ser S 60  61  
Threonine, Thr T 74  75  
Tryptophan, Trp W 159 77, 117 , 130, 132, 170, 171 161  
Tyrosine, Tyr Y 136 91, 107 137  
Valine, Val V 72 41, 55, 69 73  
 
Table 1   List of immonium ions and the corresponding 15N labeled immonium ions.  As per Fallick et. al. 1993 and Hohmann 2008.  The 
column for the observed 15N related ions only displays those related ions that we have experimentally observed.   
 



Table 2. 15N DHDPS peptides screened from complex mixture by LC\MS\MS or NIIPe scan 

DHDPS Peptides m/z LC- 
MS/MS 

Triple Pre 
 (71,85,87) Pre 71 Pre 85 Pre 87 

AHVNFLLENNAQAIIVNGTTAESPTLTTDEKELILK 
 990 √   √  

ALGADAIMLITPYYNK 
 592  √ √ √  

EFQALYDAQQSGLDIQDQFKPIGTLLSALSVDINPIPIK 1447 √     

GGQGVISVIANVIPK 
 736    √  

LPLVSLEDTDTK 
 672   √   

LPVVLYNVPSR 
 636  √    

MTHLFEGVGVALTTPFTNNK 
 735   √ √ √ 

PIGTLLSALSVDINPIPIK 
 661  √ √ √ √ 

SALSVDINPIPIK 
 691     √ 

TNMTIEPETVEILSQHPYIVALK 
 885 √ √ √ √ √ 

TNNKINIEALK 
 636  √ √   

Total 3 5 6 6 4 

Total by summation of singles 9 
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