

Practical experiences in concurrent, collaborative ontology building using
Collaborative Protégé

Daniel Schober1,2, James Malone2, Robert Stevens3
1Institute for Medical Biometry and Medical Informatics, University Clinic, Freiburg,
Germany, 2European Bioinformatics Institute, Cambridge, UK, 3Manchester School of

Computer Sciences, Manchester, UK

Abstract
Creation of an ontology according to some common
plan is best accomplished collaboratively. This is
sometimes contradicted by the distribution of the
ontology’s developers. An obvious solution therefore
is to build collaboration into ontology development
tools. Such support necessarily includes both the
technical means to perform editing operations upon
an ontology, but also support for the communication
that makes collaboration such a vital part of much
ontology development. To investigate the distributed,
collaborative ontology engineering process and the
corresponding capabilities of the Collaborative
Protege 3 (CP) tool, members of the OntoGenesis
network came together and enriched the Ontology of
Biomedical Investigations (OBI) with new content.
The communications and interactions of the
participants with each other, directly or through the
tool, were tracked and analyzed. Our initial analysis
of the degree to which this new tool fulfills the
practical requirements of collaborative ontology
engineering suggests the approach is promising. We
present some observations and recommendations for
CP based upon this experience.

Introduction
Engineering ontologies that are representative of a
community consensus is of great interest to those
working in bioinformatics and often requires close
collaboration. Yet, the process of developing such
ontologies often requires collaboration by many
people in distributed geographical regions. There are
a number of important requirements for ontology
development tools that cope with the contradiction of
the need for close collaboration and the distribution
of developers [1]. Firstly, concurrent ontology
editing, the ability for multiple edits to be made to the
ontology at a single time and from different
computers. Secondly, tracking annotations (called
'notes' in CP) associated with corresponding
representational units (RUs). Thirdly, tracking
annotations associated with actions of ontology
change, such as deletions, axiom edits and annotation
edits. Fourthly, a manageable mechanism for
discussion threads and instant messaging for online
editors that satisfy the need for communication

between ontology developers that makes
collaborative ontology building so useful.

The new Collaborative Protégé (CP) plugin [2] for
the widely used open-source ontology editing tool
Protégé 3, claims to support the above features. CP
enables concurrent editing of a single OWL file. The
tool also features notes on RUs, a change tracking log
for RUs (such as class edits), a discussion thread and
an instant messaging client for real time chat. The
tool captures changes, notes and discussions as
instances of an integrated Change and Annotation
Ontology (ChAO), thereby providing an audit trail of
edits and decision making. This tool, therefore
appears an appropriate choice for an evaluation of
collaborative ontology engineering and we present an
initial investigation into its use.

Materials and Methods
Thirteen members of the OntoGenesis Network came
together at the European Bioinformatics Institute
(EBI) for the 7th OntoGenesis Meeting (website:
http://ontogenesis.ontonet.org/moin/NetworkMeeting
7). The instrument branch of the ontology of
biomedical investigation (OBI,
http://obi.sourceforge.net), an OWL-DL ontology for
the annotation of the biomedical laboratory
workflow, was enriched with new classes and
relations needed to describe instruments. The
instrument branch was chosen because it represents
an area of daily experience upon which a broad range
of biologists, such as is present in the OntoGenesis
Network, have something valid to contribute. The
Obi.owl file was populated with new device classes
and functions a) coming from the domains of the
OntoGenesis members and b) as taken from a list
provided by the Metabolomics Standard Initiative
(http://msi-ontology.sourceforge.net/). The
development followed the methodology adopted by
the OBI developers
(http://obi.sourceforge.net/ontologyInformation/index
.php#designPrinciples).

Our methodology involved the following set of tasks:

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nature Precedings

https://core.ac.uk/display/288647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Familiarization: Users had an initial familiarization
with Collaborative Protégé 3.4, its GUI and
collaborative features.

Ad hoc additions: Development of attendee's own
lists of devices and concomitant functions. This
essentially required the addition of new classes as
children of the OBI device class and the OBI function
class. This also meant that there was a possibility of
duplication, i.e. addition of the same device by 2
different editors, as the edits were made concurrently.

Controlled additions: Placement of selected device
classes from the MSI term list into OBI. The
appropriate metadata required by OBI were also
added.

'Agent Provocateur': During a specified time period
known only to organizer, an Agent Provocateur
added conflicting and deliberately incorrect content
to the ontology. This was used to assess the
transparency of the changes occurring to the other
online editors.

Controlled Communication: Communication was
restricted to specified channels during each editing
session in order to evaluate CPs ability to foster
communication, i.e. via notes, discussion threads and
chat

Initially, development occurred in a single group but
was then divided into two groups. Ad hoc additions
were made, where editors were able to add and edit
classes as they saw appropriate. Participants were
then further divided in 4 pairs of 2, which then
tackled different subsets of the MSI device term list.
Each pair picked new terms from the list and added
them to OBI with discussion. Then the results of the
pairs were reviewed and commented by other pairs
adding annotations. After more MSI terms were
added by the whole group, first the chat was used to
comment, annotate and discuss these additions. Then
they were discussed by voice only and after that by
chat and voice together. During the latter stages of
this session, the Agent Provocateur user was
deployed.

Results
Editing the ontology

The complete editing metrics, together with tables,
diagrams and deeper discussions, can be found in the
supplementary material accessible from the 7th
OntoGenesis Meeting website.

 The OBI file grew 4.3% over the meeting course,
whereby the increase in added defined classes
(10.2%) was nearly double that of primitive classes
(4.8%). Three new object properties were created

during the meeting. These were used in a total of 68
new existential restrictions (9.7% increase). By
inspection, increased chat indicates increased editing
activity (see Table 2 of the supplementary
information). The data also show different users
working on different parts of the ontology and on
different RU types. Apparent roles of users differed,
e.g. 'moderators' creating tasks for others, which
showed up in the metrics.

The lack of a RU and module locking mechanism
meant there was no way to temporarily prevent others
from altering classes that have a logical impact on the
class under current definition. If a highly nested class
description is created, it is difficult to get it right,
unless others are prevented from changing something
higher up in the hierarchy that will contradict the
definition currently worked upon. Another method
would be to just highlight areas that are currently
worked on according to a colour scheme identifying
the users, which then could resolve this by chat.

Checking for duplicate class and property labels and
notification of the users would be useful. If two users
added the same class concurrently, there was no
notification after the duplication had occurred.

Priority has to be the undoing of deleted classes,
because this can occur accidentally very easily in
Protégé, e.g. by a single wrong click on the delete
button or by accidentally moving classes. A roll back
function would aid in conflict resolution and would
lead to a safer editing. Undo/redo functionalities
would be another feature to help users to prevent
conflicts. Some non-deprecated properties were
found to be sub-properties of deprecated properties,
which seemed odd. Since currently there is also no
global change list, it is impossible to see changes and
annotations on deleted entities. If a parent class is
deleted, all it's annotations disappear, including all
children. The annotations will still be there, but since
the association to the annotated RU is done via the ID
only, without the label it is difficult to know what
was annotated.

Subscription and Notification of changes was
requested, where users subscribe to certain areas of
interest within the ontology and are then notified of
any changes that occur to those areas. Getting
notified on changes chosen by a user, such as
discussion threads or certain RUs, would help to stay
up to date and proceed faster in conflict resolution.
For example warnings and alerts could be passed to
subsets of users to prevent duplicate or contradicting
editings. A 'change view' on selected items that are
on a watch list would help users to keep track on
recent developments in their interest or
responsibility-domain. A feed of all classes could be

used to notify developers to subscribed classes. For
the annotation flag in the class hierarchy it would be
practical to see when someone added some new
annotation, e.g. the annotation flag should then get an
exclamation mark, or blink, or should display an
analog bar that indicates the amount of attached
annotations (a measure of topic-hotness).

Versioning

A side benefit of using a real time collaborative
approach is that complicated versioning strategies are
not needed: SVN change track and diff functions are
not feasible for OWL files. Using SVN the threshold
to do minor changes can be increased on the user
side, because a complicated merge back and conflict
resolution needs to be carried out on the whole
artifact level, even when logically non-conflicting
changes were made. However, even when SVN is
used, the change track captured in the ChAO
knowledge base (KB), can be copied and distributed
in some SVN log after updating owl files. One
drawback here is that small changes result in a textual
information overkill: For a human readable change
history, the tool should just state ‘class x was moved
from A to B’, instead of listing all involved quantum
changes, e.g. 'class x was deleted from A', 'class x
was created under B', …. Users would like the
changes to be described in a high level abstraction,
rather than overly granular.

Annotations on RUs with entity notes

Due to its abundant connotation with owl annotation
properties, the term "annotations" as used in the CP
GUI caused some initial confusion. Consequently,
the "Annotations Tab" has now been re-labeled to
"Entity Notes" which is clearer and more specific.
"Discussion Threads" has been renamed to "Ontology
notes" correspondingly. Unfortunately these name
changes are now out of sync with the nomenclature
used in the ChAO ontology.

Each annotation has a freetext subject field to fill in
as well as its freetext value. For the majority of small
annotations, it turned out that people did not use the
subject heading, potentially because they felt to
provide an annotation type, subject heading and value
for small annotations is overkill. Seeing the
annotations in a table view, e.g. sorted according to
type, subject and value would make viewing easier.
Axiom annotations, as being currently investigated
for OWL2, were requested by some users as well.

The group observed that, to avoid information
overload and to keep quality up, users should be
allowed to remove their unintended annotations e.g.
for the first 5 min of their creation.

Detailed statistics on numbers and kinds of
annotations made during the sessions are available in
a spreadsheet and diagrams in the supplementary
material.

We positively note that in cases where the present
(meta-) annotations are not sufficiently granular, the
annotation types in CP’s underlying ChAO can be
expanded with new annotation types that suit special
projects needs and evaluation approaches.

Search and filtering of user annotations: It is possible
to filter by author, annotation text, annotation type or
by creation date, alone or in logical combinations.
Own metadata schemes, e.g. certain obi annotation
properties like has_curation_status or
definition_source, can be queried for by the
queries tab.

Communication

In the beginning, threads and notes were misused for
chats and vice versa, the latter due to the chats'
instant visibility and notification. Once a topic had
started, it seemed to be difficult to find a cut off,
when to move from a chat into an RU note or thread
and vice versa. A good example of the consequence
of not using the right modality for annotations was,
when a participant warned the group about an
obsolete property (is_device_for) in the threads
and not in the more appropriate entity note for the
object property RU. As a consequence it was found
that nonetheless a warning had been issued, people
used this obsolete property.

Chats were used for general acute issues and
planning, e.g. "vote being held on
@'http://purl.obofoundry.org/obo/Class_44'. Chats
were requested to be linked with specific RUs and
axioms to aid a more immediate and direct conflict
resolution and not overload the (persistent) entity
notes. A closed 'retreat room' was desired as well as a
filter function on user names to enable to see only the
chats of certain people or on particular ontology
fragments.

The integration of emoticons in text fields could
increase transmittance of pragmatic aspects of
communications and would aid in the prevention of
tensions on a sociologic level, i.e. allowing irony to
be expressed.

Integrated voting on change issues, proved to be not
fully implemented, but was needed by users. A
mechanism that changes the ontology automatically
could increase KB development time and could be
implemented using ChAO information and
formalized voting outcomes.

Issue tracker functions were requested, i.e. a scratch
pad or todo list that can be worked through and
'checked', e.g. indicating a proposed plan and what
has been already realized at a certain time point. E.g.
when people add new classes from a spreadsheet they
should have a checklist that indicates which class has
already been taken care of.

Performance

Overall, the performance of CP was very usable and
much can be done with configuration to optimize it
further. In large artifacts, expanding the full class
hierarchy at once for the first time in one client can
take its time (ca. 20 sec in our setup). Also opening a
class with many direct subclasses for the first time
will slow down and impair performance initially.

Discussion and annotation update throughout the
clients was so slow, that it led people to use the chat
functionality, which was updated and immediately
visible. To see an Annotation update, people needed
to change a frame and only then was the GUI
updated. This bug has since been rectified by the
protégé team.

Conclusion
In this investigation, a realistic collaborative ontology
building session was created using CP and its
features were thoroughly tested. Areas where user
requirements were not fulfilled have been
highlighted. Although some caveats persist and some
requirements could not be fulfilled at this time, it
became clear that the CP tool is now in an advanced
stage and can be used in practice with sufficient
stability. It copes with complicated setups and is
flexible enough to allow for corresponding
adjustments.

From an overall technical point of view, collaborative
ontology building was relatively trouble free. The
main area for improvement comes from the need for
more sophisticated communication mechanisms. In
editing, a mechanism for conflict resolution, e.g.
'undo/redo' is needed, as well as some transaction
management. Although crucial to editing in a
collaborative, concurrent, real-time fashion, this is
not presently available in CP. Some enhancement of
editing functionality and the addition of notifications
on changes to notes and threads was deemed
necessary. The addition of chats to specific RUs and
for specific groups would enhance annotation
traceability of the tool further. In all, CP as it stands
now is already usable as a collaborative tool that we
can recommend. Our analysis provoked much
feedback to the CP developers, and will be valuable
for the CP version of P4, which is currently in
preparation. Further use of CP in controlled settings

will enable us to acquire further insights into the
process of tool-based collaborative ontology building
and such findings will be fed back to tool
development in the future.

Acknowledgements
Thanks go to Tania Tudorache, Timothy Redmond
and Natasha Noy from the Stanford Protégé team
and James Watson from the EBI teaching facilities.
Further thanks go to all the ontogenesis network
participants, and to Melanie Courtot, Alan
Ruttenberg and the OBI Consortium for providing the
merged OBI.owl file. DS is funded by the DebugIT
project of the EU 7th FP (ICT-2007.5.2-217139). He
was supported by EBI's NET-project funds
(www.ebi.ac.uk/net-projects) during some initial
work leading to this paper. DS likes to thank his
former and current employers Susanna Sansone and
Stefan Schulz for making this work possible in-
between affiliation change. JM is funded by the
EMERALD EU project number LSHG-CT-2006-
037686. The OntoGenesis Network is funded by
EPSRC grant EP/E021352/1.

References
[1] Noy N, Chugh A, Alani H, The CKC
Challenge: Exploring Tools for Collaborative
Knowledge Construction. BMIR-2007; p. 1260.
[2] Tudorache T, Noy NF, Tu SW, Musen MA,
Supporting collaborative ontology development in
Protege, Seventh International Semantic Web
Conference, 2008, Karlsruhe, Springer, Germany

