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Immune cell function crucially depends
on mitochondrial bioenergetics.

Mitochondrial function is controlled by
their dynamics where coordinated
forces of fission and fusion shape mito-
chondrial morphologies.

Genetic deletion of fission and fusion
proteins impacts on immune cell meta-
bolism and function.

The regulatory network of mitochon-
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Immune cell differentiation and function are crucially dependent on specific
metabolic programs dictated by mitochondria, including the generation of ATP
from the oxidation of nutrients and supplying precursors for the synthesis of
macromolecules and post-translational modifications. The many processes
that occur in mitochondria are intimately linked to their morphology that is
shaped by opposing fusion and fission events. Exciting evidence is now
emerging that demonstrates reciprocal crosstalk between mitochondrial
dynamics and metabolism. Metabolic cues can control the mitochondrial fis-
sion and fusion machinery to acquire specific morphologies that shape their
activity. We review the dynamic properties of mitochondria and discuss how
these organelles interlace with immune cell metabolism and function.
drial fusion/fusion responds rapidly to
metabolic cues, supporting reciprocal
crosstalk between mitochondrial
dynamics and immunometabolism.

Given the additional non-mitochondrial
functions of the fission/fusion machin-
ery, and the formation of functional
interactions between mitochondria
and other organelles, experimental
data on mitochondrial dynamics
require careful interpretation.
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Metabolic Shifts during Immune Responses
For an immune response to proceed, specialized cells of the immune system morph from a
state of relative quiescence to one of high activity. A prime example of a cell type that
undergoes this transformation is the T lymphocyte. Initially patrolling our body as quiescent
naïve T cells, these cells become rapidly activated upon antigen detection to T effector (Teff)
cells that proliferate, secrete cytokines, and migrate to the sites of infection. Once the antigen
load is reduced, and supportive signals wane, the vast majority of Teff cells die, while a small
number of long-lived memory T (Tmem) cells persist over time, maintaining a state of relative
quiescence. It is now well established that T cells, as well as several other immune cell types
such as B cells, macrophages, and dendritic cells, must reprogram their cellular metabolism
to acquire their different phenotypic and functional states (reviewed in [1,2]). Cells such as
Tmem cells, regulatory T cells, and alternatively activated (M2) macrophages rely on catabolic
metabolism where nutrients are fully degraded and shuttled toward energy-generating path-
ways. As such, they rely on mitochondrial activity driven, for example, by pyruvate- or fatty
acid-driven oxidative phosphorylation (OXPHOS; see Glossary). By contrast, the anabolic
metabolism of activated cells is directed at balancing sufficient energy production with the
synthesis of macromolecules that are necessary for cell division as well as DNA and protein
synthesis. Metabolically this is often achieved by commitment to aerobic glycolysis, where
high rates of glycolysis allow cells to sustain their ATP production. Under such conditions,
mitochondrially generated tricarboxylic acid (TCA) cycle metabolites are used to build
macromolecules, provide substrates for posttranslational modifications (PTMs), and change
the epigenetic landscape. Anabolic states have been linked to the function of Teff cells, the
activation of dendritic cells and proinflammatory (M1) macrophages, and the degranulation of
mast cells [1–3].
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Glossary
Apoptosis: programmed cell death.
Autophagy: a process that depends
on the de novo formation of a
double-membrane enclosed
organelle, the autophagosome, that
is able to engulf cytosolic material
and target it for lysosomal
degradation.
Cristae: the folds of the inner
mitochondrial membrane.
Electron transport chain (ETC): at
the inner mitochondrial membrane
(IMM) four complexes (I–IV) transfer
electrons from electron donors to
acceptors to produce an
electrochemical proton gradient
across the IMM.
Endoplasmic reticulum (ER): a
single-membrane enclosed organelle
important for protein secretion,
calcium homeostasis, and lipid
metabolism.
Lipid droplet: a monolayer-confined
organelle functioning as a storage
site for intracellular fatty acids and
cholesterol.
Lysosome: a single-membrane
enclosed acidic organelle that drives
the degradation of proteins, lipids,
and carbohydrates in a pH-
dependent manner.
Mitochondrial DNA (mtDNA):
circular DNA localized in the
mitochondrial matrix, encoding 37
mitochondrial genes, including two
rRNAs, 22 tRNAs, and 13
polypeptides.
Mitochondrial ROS (mtROS): as a
result of ETC leakage, electrons are
transferred to oxygen, producing
superoxides and eventually hydrogen
peroxide.
Mitochondrial unfolded protein
response (mtUPR): a conserved
stress program involved in
mitochondrial chaperone and
protease gene expression, metabolic
adaptation, and immune responses.
Mitophagy: the autophagosomal
removal of damaged mitochondria.
Several pathways exist, the most
prominent being driven by
Pink1/parkin. Loss of mitochondrial
membrane potential induces Pink1
stabilization on the OMM and
recruitment of the E3 ligase parkin,
marking mitochondria as
autophagosomal targets.
Oxidative phosphorylation
(OXPHOS): at the inner
mitochondrial membrane four
complexes (I–IV) transfer electrons
from electron donors to acceptors to
While the bioenergetic role of mitochondria in regulating immune responses is widely appre-
ciated [2,4], only recently has another aspect of mitochondrial biology taken center stage: the
ability of mitochondria to fuse and divide, directly impacting on their functional capacity.
Substantial evidence is emerging to demonstrate reciprocal crosstalk between mitochondrial
dynamics and metabolism, where metabolic cues literally shape mitochondria via fission/fusion
events, and these morphological changes dictate the bioenergetic capacity of the organelle. In
this review we summarize recent exciting findings on how mitochondrial dynamics and
metabolism are interlinked to shape immune cell metabolism and fate. We discuss these
novel insights into immunometabolism in the light of our more detailed understanding of
mitochondrial dynamics in non-immune cells.

Mitochondrial Metabolism and Its Cellular Function
Mitochondria are characterized by a complex architecture and high degree of compartmentali-
zation that are crucial for their function. They are composed of an outer mitochondrial
membrane (OMM), and a heavily folded inner mitochondrial membrane (IMM), the site of
the electron transport chain (ETC). Historically, the major role of mitochondria was thought
to be to the efficient coupling of substrate oxidation through the TCA cycle to ATP production
by the ETC. In fact, mitochondria produce up to 36 ATP from one molecule of glucose,
compared to two ATP from glycolysis [5], and are thus a more efficient source of cellular ATP. In
addition to pyruvate derived from glucose, mitochondria can utilize fatty acids or amino acids
and oxidize them in the TCA cycle. The substrate-driven fueling of the TCA cycle generates the
reducing equivalents NADH and FADH2 that provide electrons to the ETC. By transferring
electrons to molecular oxygen, the ETC pumps protons across the inner mitochondrial
membrane, resulting in the generation of the proton-motive force that is utilized to produce
ATP by the ATP synthase. While ATP production is the major role of the ETC, it can also
produce mitochondrial reactive oxygen species (mtROS) that, depending on the gener-
ated amount, can either function as cellular signaling cue or lead to cell damage [2]. In addition
to the production of ATP, an equally important function of mitochondria is the utilization of TCA
cycle intermediates in anabolic or regulatory reactions. For example, citrate can be transported
into the cytosol where acetyl-CoA is generated to drive fatty acid synthesis and protein
acetylation [6]. Similarly, the TCA cycle intermediate a-ketoglutarate is required for function
of the a-ketoglutarate-dependent dioxygenase family of proteins, which include prolyl hydrox-
ylases (PHDs) and Jumonji domain-containing histone demethylase (JHDM), while fumarate
and succinate are inhibitors of these proteins [7]. Given the widespread functions this organelle
regulates through its metabolic modes, it is clear that mitochondrial activity needs to be finely
tuned. In the following sections we discuss how the ability of mitochondria to fuse and divide
contributes to this control by both integrating and instructing cell metabolism.

Mitochondrial Fission and Fusion Dynamics
For a long time mitochondria were viewed as isolated and static organelles, until advances in
live cell imaging and genetic screening revealed that mitochondria are highly dynamic. Not only
can mitochondria, driven by cytoskeletal transport, change their position inside cells but their
architecture is also continuously modulated by fission and fusion reactions. In recent years
these mitochondrial shape-changes, referred here to as ‘mitochondrial dynamics’, have gained
substantial attention because they are essential to ensure the segregation of mitochondrial
DNA (mtDNA) and regulate mtROS levels, calcium homeostasis, and oxidative phosphorylation
[8]. Of particular interest were studies highlighting that such mitochondrial dynamics and
cellular metabolism are coupled. In fact, in particular metabolic states, mitochondria were
shown to acquire specific morphologies. For example, in cultured cell lines, elongated mito-
chondria are observed in conditions associated with increased ATP requirements [9–11].
Similarly, in cultured cells grown under nutrient-restricted conditions or in livers of starved
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produce an electrochemical proton
gradient across the IMM. This is
used by the ATP synthase (complex
V) to synthesize ATP from ADP and
inorganic phosphate.
Peroxisome: a single-membrane
enclosed organelle driving non-
mitochondrial fatty acid oxidation,
lipid synthesis, and ROS production.
Reactive oxygen species (ROS):
superoxides and hydrogen peroxide
that are produced from different
cellular sources.
Spare respiratory capacity: the
difference between OXPHOS at
basal and at maximal activity.
Supercomplexes: supramolecular
structures comprising OXPHOS
enzymes in the IMM.
Tricarboxylic acid (TCA) cycle: the
stepwise oxidation of acetyl-CoA in
the mitochondrial matrix, generating
reducing equivalents NADH and
FADH2.
Vacuole: the equivalent of the
lysosome in Saccharomyces
cerevisiae.
animals, unopposed fusion drives mitochondria into large interconnected networks [12–14].
These hyperfused states are essential to sustain intramitochondrial exchange of fatty acids,
mitochondrial respiration, and cell survival [12–15]. By contrast, nutrient excess and cellular
damage induce mitochondrial fragmentation [16] and promote their degradation through
mitophagy (reviewed in [17]). Together, these data reveal a picture that mitochondrial dynam-
ics represent a metabolic nodal point bidirectionally integrating metabolic supply and output
(Figure 1, Key Figure). In the following section we first introduce the basic principles of the
mitochondrial fission and fusion machinery (Figure 2) before discussing how their functions are
intertwined with immune cell metabolism and function.

The Mitochondrial Fission Machinery
Mitochondrial fission is regulated by the GTPase dynamin-related protein 1 (Drp1) that drives
division at specific points along mitochondria. These sites are pre-marked by the endoplasmic
reticulum (ER) [18] and actin [19,20], allowing Drp1 to assemble into oligomeric spirals that
constrict and finally pinch the mitochondrion apart. The final separation step proceeds via
cooperation between Drp1 and dynamin 2 [21]. Because most cellular Drp1 is not constitutively
associated with mitochondrial membranes, its recruitment requires specific adaptor proteins.
To date, the mitochondrial fission factor (Mff), Fis1, and Mid49-51 [22] have been described to
regulate Drp1 recruitment, with partially overlapping functions.

In addition to influencing mitochondrial morphology, fission has been ascribed multiple other
functions including facilitating mitochondrial transport along the cytoskeletal network, mitoph-
agy, apoptosis, and calcium homeostasis [23,24]. Furthermore, Drp1 also regulates fission of
the peroxisome [25]. In line with these multiple effects, loss of Drp1 function leads to severe
physiological consequences. Two clinical studies have linked human Drp1 mutations to
microcephaly, neonatal lethality [26], and refractory epilepsy [27], and another has linked
Mff mutation to two cases of developmental delay with neuromuscular dysfunction [28–31].

The Mitochondrial Fusion Machinery
Mitochondrial fusion is a two-step process where OMM fusion is followed by fusion of the IMM.
The mitochondrial fusion machinery consists of three dynamin family GTPases, mitofusin (Mfn)
1 and 2 on the OMM and optic atrophy protein 1 (Opa1) on the IMM [29–31]. The exact
mechanism of how Mfns mediate the fusion of the OMM is not clear, but several lines of
evidence support a mechanism whereby Mfn1 and Mfn2 interact with their C-termini in trans
between neighboring mitochondria, thus promoting tethering and subsequent fusion of the
OMM [32]. In addition to its localization at the OMM, Mfn2 has also been found at the ER where
it promotes ER–mitochondria interactions and Ca2+ transfer between the two organelles [33].
Very recent data further implicate Mfn2 as a mediator of mitochondria and lipid droplet
interactions, influencing lipolytic processes in brown adipose tissue [34].

Cooperating with Mfn1, Opa1 drives the fusion of the IMM [35]. Opa1 is localized to the
mitochondrial intermembrane space and the mitochondrial inner membrane. There are different
forms of Opa1, and long forms (L-Opa1) are proteolytically cleaved by two IMM peptidases to
generate S-Opa1 [36,37]. While the exact mechanism of how Opa1 mediates mitochondrial
fusion is still unknown, it is clear that the relative levels of the long and short forms dictate the
fusion-competence of mitochondria. In fact, a recent study elegantly demonstrated that L-
Opa1 is sufficient to mediate fusion, while S-Opa1 induces mitochondrial fission [37]. Beyond
regulating mitochondrial fusion, Opa1 also controls cristae morphology, mtDNA maintenance,
and supercomplex assembly [23,38]. For this reason, in many Opa1-depletion or -over-
expression models it remains to be determined whether the fusion activity or other functions of
Opa1 are responsible for the reported effects.
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Key Figure

Mitochondrial Morphology Is Linked to the Cellular Metabolic State
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Figure 2. Regulation of Fission and Fusion. (Left) Mitochondrial fusion on the OMM is driven by homotypic and
heterotypic interactions of Mfn1 and Mfn2, thus tethering and subsequently fusing two opposing mitochondrial mem-
branes. Fusion of the IMM is driven by L-Opa1. (Right) Mitochondrial fission is induced at sites marked by the ER and actin.
The mitochondrial adaptor protein Mff recruits Drp1 to the mitochondrial membrane, where it forms spirals that contract
and finally pinch the mitochondrion apart. Recruitment of Drp1 can further be mediated by MiD49/51 and Fis1 (not
depicted). Abbreviations: Drp1, dynamin-related protein1; ER, endoplasmic reticulum; IMM, inner mitochondrial mem-
brane; Mfn, mitofusin; Mff, mitochondrial fission factor; OMM, outer mitochondrial membrane; Opa1, optic atrophy 1.
These core components of the fission/fusion machinery are ubiquitously expressed across cell
types. Furthermore, research over the past decade has directly established that alterations in
this machinery alter mitochondrial dynamics and with it function, leading to defects ranging
from slower dynamics to complete mitochondrial dysfunction [29,30]. This observation holds
true across various tissues, including the immune system. Nevertheless, there are cell type-
specific differences in expression levels or splice variants. For example, immune cells primarily
contain a specific Drp1 splice variant that associates with the cytoskeleton and is selectively
mobilized by cyclin-dependent kinase signaling [39]. Cell type-specific differences need to be
kept in mind when addressing the impact of fission/fusion proteins.

Mitochondrial Dynamics as a Driver for Metabolic Cell States
In several immune cells, including T cells, macrophages, and mast cells, mitochondria have
been shown to adapt specific mitochondrial morphologies according to the cellular activation
state [40–42]. Emerging evidence now also highlights that the ablation of fission and fusion
proteins impacts on immune cell metabolism and function. These findings complement studies
in metabolic tissues, such as the liver and the nervous system, where altered fission/fusion
dynamics cause defects in cell metabolism (Box 1), supporting the close relationship between
mitochondrial dynamics and metabolism.

Mitochondrial Dynamics Drive T Cell Metabolism and Function
Morphometric analysis revealed that mitochondria adopt specific shapes during the differenti-
ation of T cells, reaching fragmented and hyperfused end-stages in Teff and Tmem cells,
respectively [40] (Figure 1). Inhibiting mitochondrial fusion by the T cell-specific ablation of
Figure 1. Driven by fission and fusion reactions, mitochondria can display a wide spectrum of morphologies. Cultured
cells acquire specific mitochondrial morphologies in response to changes in nutrient availability and energy requirements
(e.g., in mouse embryonic fibroblasts; see also [14]). Similar adaptations have been found to occur in T cells with selective
metabolic states (left, glycolytic CD8+ Teff cells; right, OXPHOS-dependent CD8+ Tmem cells), as recently shown [40]. The
figure contains original images contributed by Angelika Rambold that are representative of the phenotypes observed in the
studies cited. Abbreviation, OXPHOS, oxidative phosphorylation.
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Box 1. Mitochondrial Dynamics Control Metabolism Outside the Immune System

Several studies performed outside the immune system have linked defects in mitochondrial fission/fusion dynamics to
tissue dysfunction and altered metabolic homeostasis. Liver specific-ablation of Mfn2 induced mitochondrial fragmen-
tation, elevated ROS levels, glucose intolerance, and impaired insulin signaling [88]. While limiting ROS production
ameliorated the observed metabolic defects, mitochondrial fragmentation could not be reversed [89]. Thus, it remains
unclear whether the observed metabolic changes in Mfn2-depleted hepatocytes result from impaired OMM fusion or
from Mfn2-driven ER–mitochondria tethering. Supporting evidence for the latter stems from several studies demon-
strating that changes in ER–mitochondria interactions regulate glucose homeostasis and insulin signaling [90]. How-
ever, a recent study also supports a role for mitochondrial dynamics in regulating liver metabolism. Deletion of Drp1 in
hepatocytes impairs mitochondrial fission and increases the expression of ATF4, CHOP, and FGF21 [91]. Importantly,
FGF21 functions as a hepatokine that regulates the intake of both sugar and non-caloric sweeteners [92], thus providing
an attractive explanation for the metabolic protection conferred by Drp1 ablation.

Another important tissue regulated by mitochondrial fission/fusion dynamics is the nervous system. Dramatic changes
in mitochondrial shape were reported in specialized neurons that orchestrate appetite in mice [93]. Agouti-related
peptide (AgRP) and pro-opiomelanocortin (POMC) neurons regulate feeding behavior in a positive and negative manner,
respectively [93]. During feeding AgRP neuronal activity normally increases. However, altering mitochondrial size by
depletion of Mfn1 or Mfn2 impaired their neuronal activity and mice gained less weight. Conversely, in POMC neurons,
ablation of Mfn2 caused severe obesity characterized by overeating, reduced energy expenditure, and endocrine
dysregulation [94]. This was specific to Mfn2 because Mfn1 POMC deletion did not disrupt energy homeostasis. While it
remains unclear which Mfn2 function underlies the feeding behavior directed by those neurons, a recent study also
supports a role for mitochondrial fission in this process. Drp1 depletion in POMC neurons, and with it mitochondrial
elongation, improves leptin sensitivity and glucose responsiveness during feeding [95], thus supporting a role of
mitochondrial fusion in driving whole-body energy homeostasis.
Opa1 led to reduced mitochondrial respiration and altered cristae structure. This proved
detrimental to the survival and differentiation of Tmem cells, while Teff cell differentiation was
not compromised. In contrast to Teff cells, Tmem cells heavily rely on fatty acid-driven mito-
chondrial respiration and contain increased spare respiratory capacity and mitochondrial
content [40,43,44], suggesting that Opa1 might be particularly important in cells with a high
mitochondrial demand. Given that depletion of either Mfn1 or Mfn2 does not have the same
consequences for Tmem cells, it is likely that non-fusion functions of Opa1 are necessary to
reach the Tmem state. However, it cannot be ruled out that mitochondrial fusion additionally
benefits mitochondrial respiration, a process mainly driven by fatty acid oxidation in Tmem cells.
Elongated mitochondrial states have been suggested to facilitate the distribution of fatty acids
across the mitochondrial network, and with it their oxidation, in cultured cell lines [13]. Similarly,
fusion could alter the mitochondrial membrane composition or fluidity [45], and with it the
activity of nutrient transporters or enzymes. Additional studies manipulating Drp1 activity or
using Mfn1/2 double-knockout cells to prevent potential compensatory functions between
these OMM fusion proteins will be necessary to provide more insight into which mitochondrial
functions are required for the differentiation of Tmem cells.

In contrast to Tmem cells, Teff cells are generally in an anabolic state driven by increased nutrient
uptake of amino acids and glucose and engagement of glycolysis [46,47]. They also have been
shown to mainly contain fragmented mitochondria [40]. While it remains unclear if this frag-
mentation benefits the anabolic state, separated mitochondria might regulate other central Teff
cell functions. In Jurkat T cells, fission facilitates mitochondrial transport to the immunological
synapse (IS) where the organelle functions as a calcium buffer to regulate T cell receptor signal
strength [48]. The localized uptake of Ca2+ at the IS prevents the premature closure of the
calcium channel CRAC/ORAI, and thus sustains Ca2+ influx and increases signaling strength
[49]. Furthermore, Drp1-driven positioning has also been shown to locally control ATP fueling in
Jurkat T cells. One example of this is the promotion of myosin-driven cell contraction at the rear
end of the cell [50]. Similarly, Baixauli et al. showed that fragmented mitochondria are essential
to fuel the actomyosin-driven formation of the supramolecular activation cluster (cSMAC).
Given the role of mitochondrial fission in facilitating apoptosis [24], retaining mitochondria in a
Trends in Immunology, January 2018, Vol. 39, No. 1 11



fragmented state might also enhance the elimination of Teff cells when limited antigen induces
the resolution phase of the immune response. Such a mechanism could also be involved during
positive and negative selection in the thymus.

Mitochondrial Dynamics Drive Macrophage Metabolism and Function
Part of the innate immune system, macrophages respond to a multitude of local immune- and/
or pathogen-derived signals. Macrophages reprogram their metabolism to acquire particular
activation states. For example, macrophages fully commit to glycolysis to achieve polarization
into a proinflammatory M1 state, while M2 macrophages, which are important for tissue repair
and wound healing, rely on a mixed state driven by enhanced glucose utilization and OXPHOS
[51–53]. Inhibition of mitochondrial fission through the Drp1 inhibitor Mdivi-1 was recently
shown to reduce glycolytic reprogramming of lipopolysaccharide (LPS)-activated macro-
phages [40]. While this provides an intriguing link between mitochondrial dynamics and
metabolism, Mdivi-1 might also accomplish this by altering complex I activity and mtROS
production independently of preventing fission [54]. The role of mitochondrial fission/fusion for
the metabolic reprogramming of macrophages clearly awaits further research.

Mitochondrial Dynamics Shape a Cellular Signaling Platform
Apart from its impact on metabolism, most evidence supporting a role for mitochondrial
dynamics in innate immunity stems from studies highlighting mitochondrial membranes as
an assembly and signaling platform [55]. The mitochondria antiviral signaling protein, MAVS, is
located on the OMM and undergoes a prion-like aggregation step that induces downstream
antiviral signaling by inducing type I interferons [55,56]. Depletion of Mfn1/2 or Opa1 reduced
MAVS-driven innate antiviral signaling in a mitochondrial membrane potential-dependent
manner [55,57,58]. Because only a limited number of MAVS molecules are present in each
mitochondrion, it was suggested that fusion facilitates MAVS aggregation by supplying new
molecules from different mitochondria. Mitochondria also serve as a crucial signaling platform
for the NLRP3 inflammasome by altering mtROS, lipids, and membrane potential [42,59].
Mitochondrial fragmentation, by depletion of Mfn2, reduces NLRP3 activity [60]. By contrast,
Drp1 ablation can increase or decrease NLRP3 activity, depending on its initiating stimulus
[61,62]. With the overall emerging picture that mitochondria are vital signaling platforms tuned
by mitochondrial dynamics, this raises the question of whether mitochondria are used in a
Box 2. Signal Integration Through Mitochondrial Proteins with Nuclear Function

An increasing number of proteins with dual localization in the mitochondrion and nucleus have been reported over the
years, providing a striking functional mito-nuclear integration point. Because this has been comprehensively reviewed
elsewhere [96], we only highlight two pathways with known immunomodulatory function. The mammalian nuclear factor
erythroid 2-related factor 2 (Nrf2) is critical for optimal NF-kB activation and regulates the expression of genes
associated with a proinflammatory innate immune response [97]. Nrf2 is normally sequestered in a protein complex
on the OMM. In response to mtROS and other mitochondrial stress, it translocates to the nucleus, inducing a
transcriptional program regulating cellular redox balance [96]. Given that mtROS is controlled by mitochondrial
dynamics [8], Nrf2 might serve as nodal point in the coordination of mitochondrial dynamics, metabolism, and immune
function. Another example for the functional integration between mitochondria and the nucleus is the Caenorhabditis
elegans transcription factor ATFS-1 (activating transcription factor associated with stress). ATFS-1 regulates the
mitochondrial unfolded protein response (mtUPR), a retrograde nuclear signaling response that is also conserved
in higher eukaryotes [98,99]. ATFS-1 is normally imported into mitochondria, where it undergoes proteolytic degrada-
tion. However, in response to mitochondrial dysfunction or infection, de novo import is reduced and ATFS-1
translocates to the nucleus. Here it induces a transcriptional response, promoting glycolysis [100] and regulating
the expression of innate immune genes [101]. Given that mitochondrial fusion is required to sustain mitochondrial
membrane potential, this mechanism might provide an intriguing immunometabolic integration. To date the direct
homolog for ATFS-1 in mammals has not been identified, but several proteins have been linked to the mammalian
mtUPR, including SIRT3, CHOP, and ATF5 [99,102,103]. In addition, members of the STAT (signal transducer and
activator of transcription) family, STAT3 and STAT6, that are implicated in both immune regulation and metabolism
[104], have been shown to localize to both the nucleus and mitochondria. As such, they might provide another example
integrating immunometabolic regulation under the control of mitochondrial dynamics and function.
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similar manner by other signaling molecules. Of particular interest are proteins that localize to
both mitochondria and the nucleus, and that drive both metabolic and immune-regulatory
processes (Box 2). Coordinated communication between the nucleus and mitochondria would
serve as a clear adaptive advantage when cells need to integrate immune signals and metabolic
reprogramming to rapidly achieve full effector functions.

Metabolism as a Driver for Mitochondrial Fission and Fusion Dynamics
While genetic studies are beginning to reveal mitochondrial dynamics as a crucial regulator of
immune metabolism and function, our insights into the mechanistic regulation of this process
are still developing. In non-immune cells, several regulatory layers control the fission/fusion core
machinery from the transcriptional to the post-translational level [63]. This includes orchestra-
tion of fission/fusion activities by metabolic cues [64,65]. In the next paragraphs we summarize
the evidence for such metabolic regulation of the fission and fusion machinery (Figure 3) and
discuss their relevance for immune cell responses.

Metabolic Cues Driving Mitochondrial Fusion
Several metabolic sensor kinases have been shown to drive mitochondrial elongation during
low nutrient supply [12,14]. Mechanistically this is mostly achieved by inhibiting Drp1 through
phosphorylation at Ser637, close to its GTPase domain. Among the kinases controlling this site
is PKA, a cAMP-dependent enzyme that indirectly responds to alterations in the levels of
Metabolic cues controlling fission/fusion
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Nutrient-rich

Nutrient-low

O-GlcNAc ROSMAPK

Drp1 Drp1

mTOR

Drp1

Ca2+
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Figure 3. Mitochondrial Dynamics Are Regulated by Metabolic Cues. Mitochondrial morphology can adopt
specific morphologies in response to different metabolic cues. (Dark-grey boxes) Metabolic cues directly impacted by
nutrient availability. (Light-grey boxes) Metabolic cues not directly linked to nutrient availability. Abbreviations: AMPK, 5'-
AMP-activated protein kinase; Drp1, dynamin-related protein1; Mff, mitochondrial fission factor; Mfn1, mitofusin 1; mTOR,
mammalian target of rapamycin; ROS, reactive oxygen species.
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cAMP/ATP [12,14,66]. Similarly, AMPK activation and mTOR inhibition, two major energy and
nutrient sensors, have been shown to induce mitochondrial fusion [12,67] and drive mitochon-
dria into a hypertubular state during nutrient depletion in cultured cells [12]. Mitochondrial
elongation can also be induced through Mfn1. In mouse embryonic fibroblasts, low glucose
availability leads to the deacetylation of Mfn1, thus promoting its stability and fusion activity [68].
Mutations that impair this process predispose cells to oxidative damage, albeit without affecting
ATP production. While it is currently unclear whether these mechanisms are used to shape
mitochondrial dynamics in immune cells, it is intriguing that both AMPK and mTOR activities
shape the differentiation and metabolic reprogramming of several immune cell types [69–71],
including Tmem cells that contain fused mitochondria [40].

Metabolic Cues Driving Mitochondrial Fragmentation
Similarly to mitochondrial elongation, several metabolic cues drive mitochondrial fission by
activating Drp1. For example, in cultured cell lines the calcium-regulated kinase calcineurin
dephosphorylates Drp1 at Ser673, thus driving mitochondrial fragmentation [72]. The pro-
fission activity of Drp1 can also be regulated by phosphorylation at Ser616. CDK1/cyclin and
ERK1/2 target this site to ensure proper organelle segregation during mitosis [73], promote
fission in tumor models [74], and regulate induced pluripotent stem cell reprogramming [75]. It is
noteworthy that there is evidence for regulation by ERK1/2 in effector T cells. Dephosphoryla-
tion of Ser673 has been shown to mediate mitochondrial fission and positioning of mitochon-
dria at the immunological synapse in Jurkat T cells [48]. In addition, Drp1 can be
phosphorylated at Ser616 in primary Teff cells [40]. Interestingly, it was found that Ser616
modification was lost upon further differentiation into Tmem cells, thus coinciding with metabolic
reprogramming to OXPHOS and mitochondrial fusion. Which kinase targets this site during this
differentiation process remains unclear. A further mechanism that might be relevant for immune
cells is the regulation of Drp1 by O-GlcNAcylation [76], a process that is heavily dependent on
sufficient nutrient availability [77]. In cardiac myocytes, Drp1 O-GlcNAcylation led to increased
mitochondrial fission and decreased mitochondrial membrane potential. Importantly, O-
GlcNAcylation levels have been shown to be upregulated in highly glycolytic immune cells,
including Teff cells and activated macrophages [52,78]. Whether O-GlcNAcylation impacts on
mitochondrial dynamics in these cells remains unclear.

Fine-Tuning of Mitochondrial Dynamics by Metabolic Cues
Although the overall emerging picture links mitochondrial fusion and fission to catabolic and
anabolic states, respectively, it must be mentioned that opposing mechanisms have also been
reported. Limited glucose availability was shown to enhance Drp1 activity through AMPK-
induced phosphorylation of Mff, thus leading to enhanced mitochondrial Drp1 recruitment and
mitochondrial fragmentation in U2Os cells and mouse embryonic fibroblasts [79]. Furthermore,
in cultured cells mild oxidative stress has been shown to promote disulfide-mediated dimer-
ization of Mfn molecules, thus driving organelle tethering and subsequently fusion [80], while
excessive ROS signaling leads to mitochondrial fission [81]. It is likely that targeting multiple
steps of the fission/fusion process provides cells with an exquisite level of control to shape their
morphology to the exact metabolic state. In this respect it is worth noting that metabolically
active molecules have also been implicated in other aspects of mitochondrial biology. For
example, in neurons increased GlcNAcylation of milton, part of the mitochondrial adaptor
complex miro/milton associating with the motor protein kinesin-1, reduces mitochondrial
transport in response to high glucose levels [82]. Similarly, high cytosolic Ca2+ levels shave
been shown to halt mitochondrial movement in T cells [49]. At the molecular level this is
mediated by Ca2+ binding to the EF hands of miro. This results in an altered interaction with
kinesin-1, blocking its interaction with microtubules and thus transport [83]. Interestingly, Ca2+

also activates several mitochondrial enzymes, including the pyruvate, a-ketoglutarate, and
isocitrate dehydrogenases [84], and it is thus clear that Ca2+ serves as a mitochondrial master-
14 Trends in Immunology, January 2018, Vol. 39, No. 1



Box 3. Mitochondria as Part of a Functional Organelle Network

Mitochondria are functionally coupled to most other organelles inside the cell (Figure I). Driven by changes in mitochondrial
dynamics, they are known to regulate autophagosomal substrate selectivity. While damaged or fragmented mitochondria
can be degraded by mitophagy, mitochondrial hyperfusion has been shown to spare them from autophagosomal
degradation [12,14,105]. Beyond mitochondrial dynamics, direct membrane contact sites (MCSs) represent another
form of interorganelle communication. The close proximity between the membranes of two organelles facilitates the
exchange of ions and metabolites such as calcium, fatty acids, and amino acids, often coupling organelle function in a
bidirectional manner. Many MCSs between mitochondria and other organelles have been identified. In yeast these include
the vacuole–mitochondria patches (vCLAMPS) [106,107] and the ER–mitochondria encounter sites (ERMES) [108], while
in mammals Mfn2 functions as a mitochondrion–ER tether [33], and Plin5 connects mitochondria with lipid droplets [109].
MCSs have recently received increased attention because they are linked to several human diseases and their functionality
affects apoptosis, immune response, organelle dynamics/function, and ion or lipid homeostasis [55,87,110]. In addition to
such direct contact modes, mitochondria are also indirectly coupled to many other organelles. For example, in aging yeast,
decreased vacuolar acidity and amino acid storage subsequently leads to loss of mitochondrial membrane potential and
mitochondrial fragmentation [111]. Large-scale remodeling of the mitochondrial proteome accompanies this process
[112]. Functional coupling between the lysosome and mitochondria also occurs in mammalian cells. In T cells, defects in
mitochondrial respiration induce lysosomal sphingomyelin accumulation and dysfunction, disrupting the endolysosomal
trafficking pathway and autophagy [113]. The impaired lysosomal function drives T cells towards a proinflammatory state
and exacerbates the in vivo inflammatory response. This study exemplifies the detrimental capacity of this organelle
crosstalk, where defects in one subsystem lead to spreading effects and thus systemic cell failure.

Mitochondrial organelle networks
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Figure I. Mitochondria are Functionally Coupled to Other Organelles. Mitochondria functionally interact with a
multitude of other cellular organelles, leading to often bidirectional and widespread functional interactions. Such
interactions can be of an indirect (left) or direct nature, driven by membrane contact sites (MCSs) (right), and can
be shaped by mitochondrial dynamics.
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Outstanding Questions
Do different immune cell types
respond similarly when mitochondrial
fission and fusion dynamics are
altered, and how do they shape their
metabolism and function?

How are mitochondrial dynamics and
immune metabolism modulated in
response to different inflammatory
microenvironments or infectious set-
tings in vivo?

What are the signals that shape mito-
chondrial dynamics in such different
milieus?

How do mitochondrial interactions
with other organelles contribute to
the regulation of immune cell metabo-
lism and function?

Can the modulation of mitochondrial
dynamics serve as therapeutic strat-
egy to manipulate immunometabolism
and thus immune cell function?
regulator [85]. Insights into the integrative potency of Ca2+ are revealed by studies in Jurkat T
cells, where Ca2+-driven fission and positioning of mitochondria to the IS contributes to the
signaling strength of the T cell receptor in a Ca2+-dependent manner [49]. Further research is
warranted to dissect how Ca2+ and other metabolic cues are used to fine-tune mitochondrial
biology and immune cell function.

Concluding Remarks and Future Directions
In this review we have summarized recent exciting findings on how mitochondrial dynamics and
metabolism are interlinked to shape immune cell function and fate. In recent years a growing
number of studies have highlighted that mitochondria can acquire immune-stage specific
morphologies. Preventing immune cells from reaching such states had dramatic consequen-
ces, impairing their metabolic reprogramming and/or the acquisition of specific functions. While
our insight is still limited to only a few immune cell types, these data provide an exciting model in
which mitochondrial dynamics are used as nodal point to integrate and shape immunome-
tabolism and function. Together with additional studies on other immune cell types, this now
awaits further questions that are inherent to a physiological immune response, such as how do
differences in the cellular environment, substrate availability, and crosstalk with other cell types
affect mitochondrial dynamics and cell function? While this will help us to gain more insight into
the physiological relevance of mitochondrial dynamics, one of the most challenging tasks
ahead will be to identify the molecular mechanisms underlying such processes. Such difficulties
will mostly result from the functional redundancy of the fission/fusion machinery, where their
depletion will not only alter mitochondrial morphology and function but also impact on the
shape or function of other organelles [25,33,86]. Further complicating this issue is the fact that
mitochondria in general are functionally coupled to a multitude of other organelles [87] (Box 3). It
is therefore becoming increasingly clear that mitochondria must be viewed as functional
organelle-networks rather than autonomous entities. Such networks are likely to be advanta-
geous when immune cells are required to quickly adapt to new bioenergetic states across
multiple organelle compartments. However, networks also harbor the danger that, once one of
the compartments fails and cannot be repaired, defects can spread throughout the organelle
interactome, eventually leading to systemic cell failures. Given these facts, it will be important to
not only gain better tools to manipulate specific aspects of mitochondrial dynamics (without
affecting the function of mitochondria), but also to invest in novel systems approaches directed
at identifying mitochondria-driven organelle-communications pathways. Together, these
advances might provide us with more tractable models to decipher mito-metabolic crosstalk
and help to pave the way toward targeting mitochondria (or other organelles) as part of an
immunopathological response.
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