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Abstract 

BACKGROUND: Cognitive dysfunction is one of the most prominent characteristics of psychiatric 

disorders. At present, the neural correlates of cognitive dysfunction across psychiatric disorders are 

poorly understood. The aim of this study was to investigate functional connectivity and structural 

perturbations across psychiatric diagnoses in three neurocognitive networks of interest, including the 

default-mode (DMN), the frontoparietal (FPN) and the salience network (SN).  

METHODS: We performed meta-analyses of resting-state functional MRI (R-fMRI) whole-brain 

seed-based functional connectivity in 8,298 patients (involving 8 disorders) and 8,165 healthy controls 

and a voxel-based morphometry analysis of structural MRI data in 14,027 patients (involving 8 

disorders) and healthy 14,504 controls. To aid the interpretation of the results, we examined 

neurocognitive function in 776 healthy participants from the Human Connectome Project.  

RESULTS: We found that the three neurocognitive networks of interest were characterized by shared 

alterations of functional connectivity architecture across psychiatric disorders. More specifically, 

hypoconnectivity was expressed between the DMN and ventral SN and between the SN and FPN, 

whereas hyperconnectivity was evident between the DMN and FPN and between the DMN and dorsal 

SN. This pattern of network alterations was associated with gray matter reductions in patients, and was 

localized in regions that subserve general cognitive performance.  

CONCLUSIONS: This study is the first to provide meta-analytic evidence of common alterations of 

functional connectivity within and between neurocognitive networks. The findings suggest a shared 

mechanism of network interactions that may associate with the generalized cognitive deficits observed 

in psychiatric disorders. 

Keywords: connectomics, default-mode network, frontoparietal network, salience network, 

meta-analysis, resting-state fMRI 
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Introduction 

Contemporary psychiatry is rooted in the notion that psychiatric disorders are distinct, independent 

categories with unique clinical presentations. However, in everyday clinical practice, psychiatric 

disorders tend to have heterogeneous clinical presentations with high co-occurrence (1-3). A common 

feature of multiple psychiatric disorders is the presence of cognitive deficits, particularly in executive 

control, working memory and salience processing (4-6). Moreover, the presence of cognitive 

dysfunction has been found to have common neurobiological correlates in the dorsolateral prefrontal 

cortex (dlPFC), insula and dorsal anterior cingulate cortex (dACC) across different psychiatric disorders 

(7, 8). Collectively, these findings suggest that cognitive impairment may be a trans-diagnostic feature 

of psychiatric disorders (9). Such cognitive dysfunction cannot be explained by localized changes in a 

small number of regions (10-12); instead, this dysfunction appears to arise from functional alterations 

within and between large-scale neural networks, consistent with the notion of psychiatric disorders as 

“disconnection syndromes”. Thus, studying the pathoconnectome associated with cognitive deficits 

across multiple psychiatric disorders may allow the identification of transdiagnostic neurobiological 

mechanisms that underlie multiple forms of psychopathology (13-15). 

  Among the functional networks identified in the human brain, Menon proposed the existence of 

three “core” neurocognitive networks that may be affected in multiple psychiatric disorders: the 

default-mode network (DMN), the frontoparietal network (FPN) and the salience network (SN) (16). 

The DMN, which is mainly composed of the medial PFC (mPFC), posterior cingulate cortex (PCC) and 

lateral temporal cortex, supports internally oriented attention and self-monitoring, among other functions 

(17). The FPN, including the dlPFC, dorsomedial PFC (dmPFC) and dorsolateral parietal cortex, is 

implicated in executive control (18, 19). Finally, the SN, consisting of the dACC, insula and caudate, is 

involved in orienting toward salient external stimuli and internal events (16, 20). A number of recent 
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studies have demonstrated that functional connectivity within and between these neurocognitive 

networks is closely related to cognitive deficits in most psychiatric disorders (15, 21, 22).  

  Currently, however, our understanding of the pathoconnectomics of cognitive dysfunction across 

psychiatric disorders is hampered by several limitations in the existing literature, such as small sample 

sizes, inconsistent recruitment criteria and heterogeneous results. Meta-analyses can be used to test for 

homogeneous and reliable patterns in the existing literature (23, 24). Our recent meta-connectomic 

analysis across 182 whole-brain resting-state fMRI (R-fMRI) studies, which included 13,375 individuals 

(6,683 patients/6,692 healthy controls), revealed several regions, including the ventromedial PFC, dlPFC 

and motor cortex, with functional alterations across disorders (25). However, this meta-analysis did not 

consider the functional connectivity between large-scale neurocognitive networks, and was therefore 

unable to reveal the neural basis of trans-diagnostic cognitive dysfunction. In addition, this 

meta-analysis utilized R-fMRI data without considering possible alterations in gray matter volume. 

Therefore, whether functional architecture between large-scale neurocognitive networks across disorders 

is associated with structural perturbations remains unclear. Collectively, the identification of 

multi-modal alterations of large-scale neurocognitive networks across disorders could help elucidate 

trans-diagnostic functional and structural mechanisms underlying cognitive dysfunction. 

  To address these issues, we conducted whole-brain meta-analyses of 242 R-fMRI and 363 

structural MRI studies to examine multi-modal alterations of large-scale neurocognitive networks across 

psychiatric diagnoses, followed by graph-based analysis of R-fMRI data in 766 healthy subjects to 

explore the cognitive function of network connectivity. First, we hypothesized altered functional 

connectivity within and between the three neurocognitive networks of interest across psychiatric 

disorders. Second, we hypothesized multi-modal disruption of these neurocognitive networks, with 

regions showing functional alterations also showing gray matter loss. Third, functional connectivity 
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alterations across psychiatric disorders would be localized in regions that subserve distinct aspects of 

cognitive performance in healthy participants. 

 

Material and Methods 

Dataset Overview 

This study included 3 large datasets (Table 1). Dataset 1, which comprised 242 whole-brain seed-based 

functional connectivity (SB-FC) R-fMRI studies, was used to detect common network alterations across 

psychiatric disorders. Dataset 2, which included studies of 363 whole-brain VBM analyses with 

structural MRI data, was used to test for gray matter volumetric changes across psychiatric disorders. 

Dataset 3, which included R-fMRI data from 766 healthy participants from the Human Connectome 

Project, was used to determine whether these network connectivity identified in patients were associated 

with cognitive performance on behavioral tests.  

SB-FC Meta-Analysis (Dataset 1) 

Study Selection  

A step-wise procedure was used to search the relevant studies by adopting the “Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses” (PRISMA) guidelines 

(http://www.prisma-statement.org/). Studies published in English before February 2017 were identified 

by searching five online public datasets, including PubMed (PubMed Central), Neurosynth, 

ScienceDirect, Web of Science and the BrainMap database. Studies including patients with Axis I 

psychiatric diagnoses were selected for further analysis. The selected studies were restricted to 

whole-brain R-fMRI studies using voxel-wise SB-FC to compare differences between patients and 

healthy control groups (see Supplement). These criteria led to the inclusion of 242 SB-FC studies of 8 

psychiatric disorders with 8,298 patients and 8,165 normal controls (Fig. S1, S2 and Table S1).  
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Data Extraction  

To identify alterations in functional connectivity in case-control studies, we extracted information 

reflecting the locations of the seeds and the peak coordinates of significant between-group SB-FC 

differences, which reflect group-level differences between patients and healthy controls. Seeds were 

categorized into three seed networks defined by our previous voxel-wise modular detection (25), 

including the DMN, FPN and SN (Fig. 1A and details in Supplement). The effects of SB-FC were 

categorized into two groups: hypoconnectivity (Patients < Healthy Controls) and hyperconnectivity 

(Patients > Healthy Controls). 

Multilevel Kernel Density Analysis (MKDA) 

SB-FC meta-analysis (26, 27) was performed using the MKDA toolbox (http://wagerlab.colorado.edu). 

We first converted the coordinates reported in Talairach space to Montreal Neurological Institute 

standard space (26, 28). Then, peak coordinates for seed-network comparisons in each study were 

convolved with a proposed spherical kernel between 10 and 15mm (r = 15mm) (29) thresholded at a 

maximum value of 1, resulting in an indicator map (IM) for each study. We repeated this using another 

spherical kernel radius (r = 13mm) to assess the robustness of the findings. In each IM map, a value of 1 

suggested a significant effect in the neighborhood, and a value of 0 indicated the absence of a peak in 

the local vicinity. Subsequently, a weighted average of all the IM maps was computed to assess the 

density of effects. We then performed Monte Carlo simulation (10,000 iterations) with the weighted 

average density maps to establish a familywise error (FWE) threshold for multiple comparisons. Density 

maps can be thresholded by two approaches: height-based (hb) and extent-based (eb) thresholding. The 

former indicates that the density at a given voxel is above the maximum expected over the whole brain 

by chance (p < 0.05), and the latter indicates that the density at that cluster exceeds the maximum 

expected in a cluster of a certain size by chance (p < 0.001) (see Supplement). In this study, we refer to 
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“within-network” and “between-network” alterations to indicate that the effects fall within or beyond the 

functional network where the seeds are located, respectively. 

Post Hoc Analyses 

Four kinds of post hoc analysis were performed to validate the outcomes of our meta-analysis. First, to 

test whether the results were affected by head motion (30, 31) and global signal (32, 33), we separately 

repeated the meta-analysis with studies that did and did not remove head movement or global signal, and 

compared the effect sizes for the different preprocessing strategies. Second, to assess whether the results 

were independent of the inclusion of a specific study, we performed a series of additional meta-analyses 

with leave-one-study-out (“jackknife”) validation (34) (see Supplement). Third, to evaluate whether the 

results for the DMN network were biased by the fact that most of the studies focused on depressive 

disorder and schizophrenia and that altered patterns within the neurocognitive networks were frequently 

reported in both disorders (27, 35), we separately repeated the SB-FC meta-analysis of the DMN 

network after excluding studies on depression and schizophrenia. Finally, Fisher’s exact test was used to 

investigate the moderation of effects by clinical and demographic factors, including comorbidity, 

medication status, age or gender (see Supplement). 

VBM Meta-Analysis (Dataset 2) 

Whole-brain VBM meta-analysis of structural imaging studies was used to determine the structural 

substrates of altered functional connectivity across psychiatric disorders. Consistent with the 

meta-analysis of SB-FC studies, a similar procedure was performed to select studies related to VBM 

analysis. A total of 363 VBM studies of the same psychiatric disorders with 14,027 patients and 14,504 

normal controls were included (Table S2 and Fig. S3, S4). Peak coordinates with decreased and 

increased volumes for each study were separately extracted. VBM meta-analysis was also performed 

with the abovementioned MKDA algorithm. To reduce the effects of varying numbers of studies across 
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disorders, maps of decreased and increased gray matter were separately created by performing a 

meta-analysis of the studies in which an equal number of VBM studies (Decreased: 19, Increased: 3) 

was randomly (N = 100) extracted for each disorder and further pooled. Finally, we separately 

performed cross-voxel Pearson correlation analysis between the average of the hypo- and 

hyperconnectivity maps and gray matter values to examine the structural substrates of altered functional 

connectivity.  

Correlation Analysis between Network Connectivity and Cognitive Performance (Datasets 

1 and 3) 

Next, we used the SB-FC meta-dataset and the HCP dataset to examine which aspects of cognitive 

function are associated with the neural networks that show altered functional connectivity across 

psychiatric disorders. This procedure involved the following 3 steps:  

  i) Using Dataset 1, we separately constructed binary networks of hypo- and hyperconnectivity 

based on the seed regions (SEED nodes) within the neurocognitive networks and the regions showing 

between-group differences (TARGET nodes) in the included studies (Fig. S5). Each seed coordinate 

from an individual study was smoothed with a 1-cm3 sphere and compared with the high-resolution 

1024-region template (36) (see Supplement). In each of the contrasts, an edge was defined as a pair of 

SEED and TARGET nodes. To assess whether a certain edge had a significantly greater frequency than 

expected by chance across the included contrasts, a nonparametric permutation test (N = 10,000) was 

performed with network-based statistic (NBS) correction (37) (Fig. S6 and Supplement). The result was 

a pattern of hypo- and hyperconnectivity that significantly appeared across psychiatric disorders. Next, 

we divided this hypo- and hyperconnectivity pattern into within- and between-network patterns for each 

of our three cognitive networks of interest, namely DMN, FPN and SN. 

  ii) To test whether this pattern of hypo- and hyperconnectivity was associated with cognitive 
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performance on behavioral tests, we used Dataset 3, derived from the R-fMRI and broad cognitive 

assessment data of 766 healthy participants. For each subject, based on a 1,024 high-resolution 

parcellation (36), a symmetric 1024 × 1024 functional connectivity matrix was constructed from the 

Pearson correlations between the time courses of each pair of regions. For each individual, we extracted 

the corresponding behavioral scores of 12 items involved in general cognitive function (see 

Supplement). 

  iii) For each of the 766 healthy subjects and for each group of edges, we computed the average 

correlation coefficients from the correlation matrix. Then, we calculated Spearman correlations between 

the average correlation coefficient of the edges and each of the 12 behavior scores across subjects (see 

Supplement); statistical inferences for each group of edges were made at p < 0.05 after Bonferroni 

correction (i.e., uncorrected p < 0.05/6, where 6 represents the number of groups among network 

connectivity). 

 

Results 

Altered Functional Connectivity within and between Neurocognitive Networks  

The SB-FC meta-analysis revealed common alterations in functional connectivity within and between 

our three neurocognitive networks (the DMN, FPN and SN) (Fig. 1A; Table S3). 

  Within-Network alterations: Psychiatric disorders showed functional alterations between the 

DMN seeds and regions of the mPFC and PCC, between the FPN seeds and the dmPFC, and between 

the SN seeds and regions of the dACC and right insula (Fig. 1B; Table S4). These alterations were not 

moderated by age, gender, comorbidity, or medication status (p > 0.05). 

  Between-Network alterations: For the DMN, psychiatric disorders were characterized by 

functional alterations between the DMN seeds and the orbital frontal cortex in the FPN, as well as 
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regions of the dACC and left insula in the SN (Fig. 1B; Table S4). For the FPN, psychiatric disorders 

were associated with functional alterations between the FPN seeds and the rostromedial PFC (rmPFC) in 

the DMN as well as regions of the right insula and caudate in the SN (Fig. 1B; Table S4). For the SN, 

psychiatric disorders were characterized by functional alterations between the SN seeds and the dlPFC 

in the FPN, as well as regions of the rmPFC and left temporal pole (TP) within the DMN (Fig. 1B; Table 

S4). Moreover, additional meta-analyses of studies that had removed head movement and global signal 

did not change our main findings (Fig. S7 and S8). These alterations were not moderated by age, gender, 

comorbidity, or medication status (p > 0.05). 

Hypo- versus Hyperconnectivity across Psychiatric Disorders 

Network alterations were further characterized in terms of hypo- versus hyperconnectivity in patients 

relative to healthy controls (Table S5). 

  Within- and Between-Network Hypoconnectivity: Hypoconnectivity was observed within both the 

ventral DMN (e.g., the mPFC, vACC and PCC) and the SN (e.g., the dACC and left insula) (Fig. 2; 

Table S6). Moreover, hypoconnectivity was expressed between the DMN seeds and regions of the dACC 

and the ventral insula in the SN as well as between the FPN seeds and the putamen in the SN (Fig. 2A 

and 2B; Table S6). The SN seeds revealed hypoconnectivity with regions of the PCC and left TP in the 

DMN as well as with regions of the dlPFC and temporoparietal junction (TPJ) in the FPN (Fig. 2C; 

Table S6). Thus, the SN showed hypoconnectivity with the DMN as well as the FPN.  

  Within- and Between-Network Hyperconnectivity: Hyperconnectivity was observed within both 

the dorsal DMN (e.g., the rmPFC and precuneus) and the FPN (e.g., the dmPFC) (Fig. 2; Table S6). 

Moreover, the DMN seeds showed hyperconnectivity with the dlPFC in the FPN and with the dorsal 

insula in the SN (Fig. 2A; Table S6). Hyperconnectivity was also expressed between the FPN seeds and 

the mPFC (BA9) in the DMN (Fig. 2B; Table S6) and between the SN seeds and the precentral cortex in 
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the sensorimotor network (SMN) (Fig. 2C; Table S6). Thus, the DMN showed hyperconnectivity with 

the dorsal SN as well as with the FPN. Taken together, these findings indicate that hypo- or 

hyperconnectivity is most evident in regions implicated in executive control, self-monitoring and 

salience orienting (17, 19, 20). Fig. 3 presents a summary of the disrupted neurocognitive networks 

architecture across psychiatric disorders. These functional alterations were not moderated by age, gender, 

comorbidity, or medication status (p > 0.05). 

Common Gray Matter Reductions across Psychiatric Disorders 

To investigate whether a potential common anatomical signature underlies the altered network 

connectivity, we performed a VBM meta-analysis of 363 studies using Dataset 2. This analysis revealed 

decreased gray matter volume in the mPFC, dACC, bilateral insula, dlPFC and TPJ, all of which are 

among the regions showing altered network-level functional connectivity (Fig. 4A; Table S7). No 

significant region with increased volume was found across psychiatric disorders. The structural loss was 

not moderated by age, gender, comorbidity, or medication status (p > 0.05). Moreover, we found 

significant positive correlations between both the regions showing functional hypo- and 

hyperconnectivity and the gray matter values (ps < 1.0 ×10-10, Fig. 4A). These findings indicate 

cross-modality disruptions within the neurocognitive networks. 

Behavioral Correlates of Network Connectivity 

Finally, we examined which aspects of cognitive function are associated with the neural networks that 

show altered functional connectivity across psychiatric disorders. To test this hypothesis, we separately 

identified hypo- and hyperconnectivity that significantly appeared across psychiatric disorders (Fig. S9, 

Table S8). Among those connections showing lower values in patients relative to healthy controls: 

within-network DMN-ventral DMN connectivity was positively associated with performance in spatial 

orientation (r = 0.10, p = 0.006) and inhibition control (r = 0.11, p = 0.002); between-network FPN-SN 
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connectivity was positively correlated with fluid intelligence (r = 0.10, p = 0.008) (Fig. 4B). Among 

those connections showing higher values in patients relative to healthy controls: between-network 

DMN-FPN connectivity was negatively correlated with behavioral performance in spatial orientation (r 

= -0.12, p < 0.001); within-network FPN-FPN connectivity was negatively associated with alertness (r = 

-0.14, p < 0.001) (Fig. 4B).  

 

Discussion 

Our study revealed three main findings: first, psychiatric disorders are associated with common 

alterations of functional connectivity within and between neurocognitive networks; second, common 

gray matter reductions within these neurocognitive networks are tightly associated with functional 

alterations; third, common network alterations appears to be localized in regions that subserve different 

aspects of cognitive performance. To our knowledge, this study is the first to provide meta-analytic 

evidence of shared connectivity alterations within and between networks associated with cognitive 

function. These findings suggest a shared mechanism of network interactions that contribute to the 

generalized cognitive deficits observed in psychiatric disorders. 

Common Connectivity Alterations within and between Neurocognitive Networks 

Consistent with our first hypothesis, our findings revealed disrupted functional connectivity within and 

between neurocognitive networks. There are at least two explanations. One possible explanation is that 

such reduced functional connectivity is the results of heightened genetic susceptibility to psychiatric 

disorders (15, 38). Consistent with this explanation, several studies have reported transdiagnostic genetic 

influences on major psychiatric disorders (39-42). A second possible explanation is that disrupted 

functional connectivity within and between neurocognitive networks is a marker of illness onset and/or 

progression, consistent with the observation that cognitive function deteriorates around the time an 
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individual develops a mental illness (16, 43).  

  During both the resting state and certain cognitive tasks, the SN plays a crucial role in modulating 

shifts between internal attention (which is largely subserved by the DMN) and external executive 

functions (which are largely subserved by the FPN) (16, 44-47). This coordination between executive 

function and internal and external attention is thought to be critically impaired in most psychiatric 

disorders (16, 20). Our findings extend the current literature by revealing that the SN exhibits 

hypoconnectivity with the FPN, which is involved in the processing of executive control and 

goal-directed regulation, and the DMN, which contributes to self-referential processing. In contrast, 

hyperconnectivity is evident between the dorsal SN and the DMN, as well as between the FPN and 

DMN (Fig. 3). This combination of hypo- and hyperconnectivity between the DMN and the SN is 

consistent with previous studies showing that distinct parts of the insula exhibit distinct patterns of 

functional connectivity in healthy subjects (48-50). The dorsal insula (characterized by 

hyperconnectivity with the DMN) is part of the cingulo-opercular subnetwork, which is critical for 

cognitive flexibility (51). In contrast, the ventral insula-dACC subnetwork (characterized by 

hypoconnectivity with the DMN) is part of the SN, which is thought to play a key role in motivational 

engagement (52). Thus, DMN coupling with different parts of the insula could reflect differential 

psychopathological presentations. We also found that the SN seeds were hyperconnected with the SMN, 

which plays a key role in the perception of external stimuli. A previous co-activation meta-analysis 

reported that the posterior insula, a component of the SN, is associated with sensorimotor processes (49), 

which suggests that basic sensory features of the environment have excessive influence on cognitive 

processing in the diseased brain (48). Thus, imbalanced communication between the SN and the SMN 

may help explain sensory processing alterations within a wider psychopathological profile in major 

psychiatric disorders (53-55).  
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Relationship between Functional Connectivity and Structural Perturbations  

Consistent with our second hypothesis, our VBM meta-analysis revealed that common gray matter 

reductions were localized within the neurocognitive networks and tightly associated with functional 

alterations. This provides support to the notion that neurocognitive networks are susceptible to gray 

matter loss across multiple psychiatric disorders; in contrast, we detected no common gray matter 

reductions in regions that were part of other networks (e.g., sensory and visual). Converging 

neuroimaging evidence suggests that the pattern of connectivity dysfunction among neurocognitive 

networks corresponds to structural perturbations across psychiatric disorders (8), which suggests that the 

structural properties of the brain place constraints on functional interactions occurring within and 

between networks. Notably, the previous structural MRI study found the decreased volume in the 

regions of mPFC, dACC and insula, and increased volume in the striatum in the psychiatric disorders (8). 

The pattern of decreased gray matter volumes was similar with our findings, but we did not observe any 

commonly increased volume across psychiatric disorders. This discrepancy might be caused by several 

factors, such as differences in included disorders, meta-analytic algorithms and statistical methods and 

the inclusion of more up-to-date studies in the present meta-analysis. By combining R-fMRI and 

structural MRI data, our study extended the previous findings based on single-modality investigations. 

Relationship between Functional Connectivity and Cognitive Performance  

Consistent with our third hypothesis, functional connectivity within the DMN was correlated with 

performance on tasks involving distinct aspects of cognition, including spatial orientation and inhibition 

control. Owing to the reciprocal relationship between the “task-negative network” (DMN) and 

“task-positive network” (FPN and SN), studies have shown that suppression of the DMN is related to 

improved cognitive control in healthy individuals (56, 57). Hence, the present patterns of within-DMN 

alterations may reflect abnormal communication in internal self-monitoring processing and external 
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cognitive flexibility in psychiatric disorders (16, 35, 58, 59). Next, we observed that the DMN-FPN 

connectivity is associated with orientation. Previous studies have reported that connectivity between the 

DMN and FPN is important for the interplay between attention orientation and default mode processing, 

and that mood disorders are associated with disrupted switching between resting and task-context 

processing (13, 60). These studies support our finding that DMN-FPN connectivity is involved in 

orientation. In contrast, we found that fluid intelligence was associated with FPN-SN connectivity. This 

observation recapitulates the results of previous studies in which reduced connectivity between the 

dlPFC and insula was found during cognitive processing in major depression disorder (58, 61).  

Limitations and Future Work  

Several issues need to be further addressed. First, due to the limited number of studies on specific 

disorders, we were unable to examine diagnosis-specific network alteration. Even though when analyzed 

separately depressive disorder and schizophrenia appear to show distinct connectivity patterns (Fig. S10), 

additional studies will be required to draw robust conclusions about individual disorders. Second, in our 

current paper, differential weights of individual disorders in the number of included studies and sample 

size might have a disproportionate influence on the meta-analytic results. Future work with normalizing 

weights in each disorder might account for the overrepresentation of some disorders on the 

meta-analytic results. Third, given that only 30 studies reported mean head motion, we were unable to 

perform meta-regression analysis to remove the effects of head motion on our meta-analytic findings 

(62). In the future, the availability of more studies will allow the formal evaluation of the effects of head 

motion on connectivity patterns across psychiatric disorders. Fourth, in the seed-based connectivity 

studies, the boundaries of the functional networks are dependent on the choice of seed regions. Thus, in 

our study, anatomical heterogeneity in the seed regions may have an impact on the anatomical 

boundaries of canonical functional networks and the associated delineation of the connectivity patterns 
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across psychiatric disorders. Future studies should therefore test the anatomical effects of seed regions 

on the meta-analytic results. Fifth, although the present study detected differences in functional 

connectivity between patients with various psychiatric disorders and healthy controls, it is unclear 

whether these differences reflected deviation from the “normal range” of functional connectivity; this 

question would require a larger sample size to estimate normal individual variability across different 

ages and genders (63-65). Sixth, the orbitofrontal cortex and temporal lobes showed disrupted 

connectivity with the neurocognitive networks. Although functional image distortions were sensitive in 

these regions (66, 67), the observed gray matter changes in the VBM meta-analysis suggested structural 

substrates underlying the functional alterations across psychiatric disorders. Finally, we found 

statistically significant associations between brain connectivity and behavior. However, these 

associations were relatively modest, and as such can only explain a fraction of the inter-individual 

variance in network connectivity; other possible explanations for such variance might include individual 

differences in cognition and behavior that were not modelled in our meta-analysis.  
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Table 1. Datasets and Demographics Included in This Study. 

 
 

Dataset 1 Dataset 2 Dataset 3 

Patients Controls Patients Controls Healthy 

Subjects (N) 8,298 8,165 14,027 14,504 766 

Gender 
(N,male/female) 

4809/3247a 4594/3328a 8083/5693a 8085/6172a 331/435 

Age (years, mean ± 
std) 

28.89 ± 
11.79b 

28.63 ± 
11.35b 

31.87 ± 
12.42b 

31.12 ± 12.08b 22 - 36+ 

a Gender information was extracted from available 237 and 352 studies by summing up the exact 

numbers in each study of Datasets 1 and 2, respectively. 

b Age information was extracted by averaging the mean and standard deviation values across 235 and 

355 studies in Datasets 1 and 2, respectively. 
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Figure Legends 

Figure 1. Functional Connectivity Differences between Psychiatric Disorders and Healthy 

Controls.  

A. Spatial distribution of our three neurocognitive networks of interest. B. Regions showing functional 

alterations with seeds in the DMN, FPN and SN respectively, with pooling across patients with hypo- 

and hyperconnectivity. The three neurocognitive networks were mapped on the cortical surface using 

BrainNet Viewer(68). Abbreviations: DMN, default-mode network; FPN, frontoparietal network; SN, 

salience network; Cau, caudate; dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal 

cortex; dmPFC, dorsomedial prefrontal cortex; Ins, insula; mPFC, medial prefrontal cortex; OFC, orbital 

frontal cortex; PCC, posterior cingulate cortex; TP, temporal pole; eb, extent-based threshold; hb, 

height-based threshold. 

Figure 2. Hypo- and Hyperconnectivity across Psychiatric Disorders.  

A. Regions showing trans-diagnostic DMN hypo- and hyperconnectivity. B. Regions showing 

trans-diagnostic FPN hypo- and hyperconnectivity. C. Regions showing trans-diagnostic SN hypo- and 

hyperconnectivity. Abbreviations: DMN, default-mode network; FPN, frontoparietal network; SN, 

salience network; Cau, caudate; dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal 

cortex; dmPFC, dorsomedial prefrontal cortex; Ins, insula; mPFC, medial prefrontal cortex; OFC, orbital 

frontal cortex; PCC, posterior cingulate cortex; Put, putamen; SFG, superior frontal gyrus; PSC, 

precentral cortex; TP, temporal pole; TPJ, temporo-parietal junction; eb, extent-based threshold; hb, 

height-based threshold. 

Figure 3. Disrupted Functional Architecture of Neurocognitive Networks across Psychiatric 

Disorders.  
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Visual representation of the disrupted functional architecture of neurocognitive networks across 

psychiatric disorders identified in our investigation. The DMN seeds were hypoconnected with the 

ventral DMN (represented as “V” in the left panel), and hyperconnected with the dorsal DMN 

(represented as “D” in the right panel). In addition, the SN exhibited hypoconnectivity with the FPN and 

DMN. In contrast, hyperconnectivity was evident between the SN and DMN, between the FPN and 

DMN, as well as between the SN and SMN. The blue and red arrows separately indicate hypo- and 

hyperconnectivity; and the circular arrows indicate within-network connectivity alterations. 

Abbreviations: DMN, default-mode network; FPN, frontoparietal network; SN, salience network. 

Figure 4. Structural Substrates of Functional Connectivity Alterations and Its Association with 

Cognitive Performance.  

A. Decreased gray matter volume in patients relative to controls (left panel). Positive correlation 

between the regions showing functional alterations and structural perturbations (right panel). B. 

Relationship between functional connections showing decreases and increases in patients and behavioral 

cognitive test performance in healthy volunteers. Here the left panel shows a spring-embedded layout of 

nodes and edges that significantly decreased (i.e. hypoconnectivity) and increased (i.e. 

hyperconnectivity) within and between the DMN, FPN and SN networks across psychiatric disorders. 

The right panel shows the relationship between the network-connectivity and cognitive performance. 

Abbreviations: vDMN, ventral default-mode network; dDMN, dorsal default-mode network; FPN, 

frontoparietal network; SMN, sensory-motor network; SN, salience network; eb, extent-based threshold; 

hb, height-based threshold. 
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Common Dysfunction of Large-Scale Neurocognitive Networks  
Across Psychiatric Disorders 

 
Supplementary Information 

 

Supplementary Methods 

Study Selection Criteria 

Seed-Based Functional Connectivity (SB-FC) Meta-Analysis  

The selected studies were restricted to original resting-state functional MRI (R-fMRI) studies 

using whole brain seed-based functional connectivity to compare patients with Axis I 

psychiatric diagnoses and controls. The keywords used in the searches were as follows: 1) 

imaging modalities: ‘functional MRI’, ‘fMRI’ or ‘resting state’; 2) analysis strategies: 

‘connectivity’; and 3) disorders: ‘attention deficit hyperactivity’, ‘ADHD’, ‘anorexia 

nervosa’, ‘anxiety disorder’, ‘autism’, ‘Asperger’, ‘ASD’, ‘conduct disorder’, ‘bipolar 

disorder’, ‘unipolar depress*’, ‘dissociative disorder’, ‘dysthymia’, ‘dyslexia’, ‘depress*’, 

‘hallucination’, ‘insomnia’, ‘eating disorder’, ‘manic disorder’, ‘obsessive-compulsive’, 

‘obsessive compulsive’, ‘OCD’, ‘panic disorder’, ‘posttraumatic stress’, ‘post-traumatic 

stress’, ‘post traumatic stress’, ‘PTSD’, ‘personality disorder’, ‘borderline personality’, 

‘phobia’ ‘psychosis’, ‘psychotic’, ‘Rett syndrome’, ‘sleeping disorder’, ‘schizophreni*’, 

‘somatization disorder’, ‘Tourette syndrome’. Every combination of these three categories of 

keywords was searched to identify relevant papers in each database.  

The inclusion criteria were as follows: 

1) Studies which reported the coordinates in standard stereotaxic spaces (i.e., the Talairach or 

Montreal Neurological Institute (MNI) spaces). 

2) The results were reported using a statistical threshold of p < 0.05 (corrected) or p < 0.001 

(uncorrected). 

The exclusion criteria were as follows: 

1) The studies did not include a healthy control group. 

2) There were only high-risk or sibling groups. 

3) The studies reported only the results of task-based fMRI. 
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4) SB-FC analysis was not performed in the whole brain. 

5) The results of the whole-brain analysis did not reach statistical significance. 

6) The studies only included seeds within the cerebellum. 

7) The peak coordinates were not reported. 

8) The articles were not written in English. 

Several rules were subsequently applied to further refine the selection of studies or results as 

follows: 1) If between-group differences were reported at both the baseline and follow-up 

stages, only the differences at baseline were selected. 2) If the results were reported both with 

and without a gray matter correction, the corrected results were selected. 3) If the statistical 

analysis was repeated different parameters (e.g., with and without head motion correction; 

with and without removal of global signal), only the main results were selected. 4) 

Psychiatric disorders investigated in few studies were excluded (N < 5). Following the 

application of these criteria, 242 SB-FC studies of 8 psychiatric disorders with 8,298 patients 

and 8,165 normal controls were included. The 8 psychiatric disorders comprised attention 

deficit hyperactivity disorder (ADHD), anxiety disorders (ANX), autism spectrum disorder 

(ASD), bipolar affective disorder (BD), depressive disorder (DPD), obsessive-compulsive 

disorder (OCD), posttraumatic stress disorder (PTSD) and schizophrenia (SCZ) (Fig. S1 and 

Table S1). 

Voxel-Based Morphometry (VBM) Meta-Analysis  

A similar procedure was followed to select the studies related to VBM analysis. Notably, the 

keywords used in the searches were as follows: 1) imaging modalities: ‘MRI’ or ‘magnetic 

resonance image’; 2) analysis strategies: ‘voxel based morphometry’ or ‘VBM’; and 3) 

disorders: ‘attention deficit hyperactivity’, ‘ADHD’, ‘anorexia nervosa’, ‘anxiety disorder’, 

‘autism’, ‘Asperger’, ‘ASD’, ‘conduct disorder’, ‘bipolar disorder’, ‘unipolar depress*’, 

‘dissociative disorder’, ‘dysthymia’, ‘dyslexia’, ‘depress*’, ‘hallucination’, ‘insomnia’, 

‘eating disorder’, ‘manic disorder’, ‘obsessive-compulsive’, ‘obsessive compulsive’, ‘OCD’, 

‘panic disorder’, ‘posttraumatic stress’, ‘post-traumatic stress’, ‘post traumatic 

stress’, ’PTSD’, ‘personality disorder’, ‘borderline personality’, ‘phobia’ ‘psychosis’, 

‘psychotic’, ‘Rett syndrome’, ‘sleeping disorder’, ‘schizophreni*’, ‘somatization disorder’, 

‘Tourette syndrome’. Every combination of these three categories of keywords was searched 
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to identify relevant papers in each database. The inclusion and exclusion criteria were similar 

to those of the SB-FC meta-analysis described above. Following the application of these 

criteria, 363 VBM studies of the same 8 psychiatric disorders with 14,027 patients and 

14,504 controls were included (Fig. S3 and Table S2). 

 

Data Extraction 

For the SB-FC meta-analysis, based on our previous modular detection in 143 healthy 

subjects (1), we first identified the neurocognitive network parcellations mentioned in 

Menon’s study (2), including the default-mode network (DMN), the frontoparietal network 

(FPN) and the salience networks (SN). Then, seeds were separately categorized into triple 

seed networks. If the seed was a spherical region of interest (ROI) with a peak coordinate, it 

was directly categorized into our voxel-wise brain network on the basis of the location of the 

peak coordinate. If the seed was an anatomical region from the prior template or standard 

brain atlas, the ROI was aligned with the brain network mask, and the overlapping proportion 

between the ROI and each of the network templates was completely calculated. We 

determined the functional network in which the seed ROI was located by checking for an 

overlapping ratio above 40%. 

 

Multilevel Kernel Density Analysis (MKDA) 

In the MKDA analysis, we first extracted the peak coordinates to result in an indicator map 

(IM) for each study. Subsequently, a weighted average of all the IM maps was computed to 

assess the density of effects. We then performed Monte Carlo simulation (10,000 iterations) 

with the weighted average density maps to establish a familywise error (FWE) threshold for 

multiple comparisons. In the simulation, the locations of significant effects from IMs were 

randomized within a gray-matter mask 10,000 times, producing a null hypothesis distribution 

of the density of effects expected by chance. Density maps can be thresholded by two 

approaches: height-based (hb) and extent-based (eb) thresholding. For each stimulation in the 

former threshold, the maximum across-study density statistic (P) over the whole brain is 

saved. The critical Familywise Error Rate (FWER)-controlled threshold is the proportion that 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Sha et al. Supplement 

4 

exceeds the whole-brain maximum in 95% of the Monte Carlo maps — controlling for the 

chance of seeing false positives anywhere in the brain at p < 0.05 corrected. For each 

stimulation in the latter threshold, the largest cluster of contiguous voxels was saved, and a 

cluster extent threshold was set at the 99.999th percentile of these values across iterations — 

controlling for the chance of seeing false positives anywhere in the brain at p < 0.001 

corrected. 

 

Post Hoc Analyses 

In order to assess whether the results were independent of the inclusion of a specific study, 

we performed a series of further meta-analyses with leave-one-study-out (“jackknife”) 

validation. To accomplish this, the density statistic for each significant cluster was iteratively 

recomputed with each of the included studies separately omitted. Pearson correlation analysis 

was then performed between the original density map and each of the individual 

leave-one-out density maps. Fisher exact test was used to investigate moderation of effects by 

clinical and demographic factors, including comorbidity, medication status, age or gender. 

For these analyses, the proportion of studies within each clinical or demographic group 

reporting the effect was calculated, and differences in proportions were tested between 

groups. 

 

Identification of Significantly Hypo- and Hyperconnectivity across Psychiatric 

Disorders (Dataset 1) 

Construction of Hypo- and Hyperconnectivity Networks 

We separately constructed binary networks of hypo- and hyperconnectivity based on the seed 

regions (SEED nodes) and the regions with between-groups differences (TARGET nodes). 

Regardless of hypo- and hyperconnectivity networks, we all extracted the SEEDs and 

TARGETs from the meta-analytic Dataset 1 and constructed separate SEED and TARGET 

binary networks. Each seed coordinate from an individual study was smoothed with 1 cm3 

sphere in a standard stereotactic space and compared with the high-resolution 1024-region 

template. The node was set to value of 1 if 20% or more of the SEED or TARGET nodes 
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overlapped with the regional volume defined by the 1024-region parcellation template. Thus, 

for each contrast, we obtained the binary SEED and TARGET matrices, in which an edge was 

defined as between the given SEED node and any of the TARGET nodes (Fig. S5). 

Construction of a Null Model Based on Data Randomization 

To assess whether a certain edge in a given experiment had a significantly greater frequency 

than expected by chance across the included contrasts, a nonparametric permutation test (N = 

10,000) was performed with network-based statistic (NBS) correction (3). Specifically, for 

each edge, we counted the frequencies of the edges that appeared to be altered across 

contrasts. Then, for each permutation, we randomly allocated SEED and TARGET nodes in 

each of the included contrasts and computed the frequencies of the edge across all the 

contrasts in a random model. The process was iterated 10,000 times and formed a null 

distribution (Fig. S6). A primary threshold (p < 0.0001, uncorrected) was first applied to this 

null hypothesis for each link to define a set of suprathreshold links among which any 

connected components and their size (M, number of links) were then determined. To estimate 

the significance for each component, the null distribution of connected component size was 

empirically derived using a nonparametric permutation approach (1000 permutations). For 

each permutation, we randomly generated 1000 matrixes based on the above-mentioned 

approach. Combined with the matrix used to count the frequencies of edges across included 

studies, these matrixes were randomly reallocated into two groups and non-parameter tests 

were computed independently for each link. Then, the same primary threshold (p < 0.0001) 

was used to generate suprathreshold links among which the maximal connected component 

size was recorded. Finally, for a connected component of size M found in the correct 

grouping of matrixes generated by the included studies and null hypothesis, the corrected 

p-value was determined by finding the proportion of the 1000 permutations for which the 

maximal connected component was larger than M. Finally, we obtained a set of hypo- and 

hyperconnectivity that frequently appeared across psychiatric disorders. 

 

R-fMRI Data and Cognitive Behavioral Tests of Healthy Subjects (Dataset 3) 

Participants and Image Acquisition 

This dataset was used to assess whether the network connectivity was associated with 
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cognitive function. The dataset was collected as part of the Washington University-Minnesota 

Consortium Human Connectome Project (4). The participants were recruited from 

Washington University (St. Louis, MO) and the surrounding area. All participants gave 

informed consent. The R-fMRI data used were from all parts of releases, consisting of data 

from 970 participants. R-fMRI data were collected over 2 days. On each day, 28 min of 

R-fMRI data across two runs were collected (56 min total), and the first run was only 

extracted for our study. A total of 97 and 13 subjects were excluded due to a lack of fMRI 

data runs and behavioral test scores, respectively. Furthermore, 27 subjects were excluded 

due to the identification of an arachnoid cyst, and 68 subjects were excluded due to larger 

head motion, with a criterion of 3 mm or 3°. Finally, the data of 766 subjects were included in 

the analyses. All the included subjects were healthy adults, ranging in age from 22 to > 36 

years, and the gender ratio was 331/435 (male/female).  

All subjects were scanned on a 3-T Siemens connectome-Skyra scanner (customized to 

achieve 100 mT m−1 gradient strength) with a 32-channel phased array head coil. This high 

spatial and temporal resolution was made possible through the use of multiband echo-planar 

imaging, with a simultaneous multi-slice acceleration factor of 8 (5). To aid in cross-subject 

registration and surface mapping, T1-weighted structural images with a resolution 0.7-mm 

isotropic were also acquired, and B0 field mapping was carried out to aid in correcting EPI 

distortions. The parameters were as follows: TR = 720 ms; TE = 33.1 ms; FA = 52°; 

bandwidth = 2,290 Hz/pixel, in-plane field of view = 208 × 180 mm, 72 slices, and 2.0 mm 

isotropic voxels. The resting-state data collection details for this data set can be found 

elsewhere (5, 6). 

Image Preprocessing 

In brief, the R-fMRI dataset preprocessing consisted of standard functional connectivity 

preprocessing strategies, including the removal of the first five volumes, slice timing 

correction, spatial volume correction, segment and normalization to an MNI space, which 

was performed using minimal preprocessing pipelines for the Human Connectome Project (4). 

Next, we removed the linear trend and nuisance time series (motion, ventricle, whole-brain, 

cerebrospinal fluid and white matter signals) using a linear regression. Finally, we performed 

temporal band pass filtering (0.01-0.1 Hz). Notably, 68 subjects were excluded for larger 
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head motion with a criterion of 3 mm or 3°. 

Extraction of Cognitive Behavioral Scores  

Apart from the R-fMRI data, for each subject from Dataset 3, we also extracted the 

corresponding behavioral scores of 12 items involved in the domain of general cognitive 

function, including episodic memory, executive function/cognitive flexibility, executive 

function/inhibition, fluid intelligence, language/reading decoding, language/vocabulary 

comprehension, processing speed, self-regulation/impulsivity, spatial orientation, sustained 

attention, verbal episodic memory and working memory. 

 

Supplementary Results 

First, to test whether the network dysfunction was affected by head movement, we replicated 

the SB-FC meta-analysis with 103 studies in which the results were obtained after regressing 

out head movement (7, 8). This analysis revealed altered functional connectivity within and 

between our three neurocognitive networks of interest, which was similar to the main 

findings (Fig. S7). We also compared the differences between the effect sizes of studies with 

and without regression of head motion and among the studies with 6, 12 and 24 head motion 

parameters. The results showed no statistically significant differences between the subsets of 

studies (p > 0.05), suggesting that head motion effects had little effect on our main results. 

Second, to test whether network dysfunction was affected by the global signal (GS) (9, 10), 

we separately performed the SB-FC meta-analysis of 129 studies with global signal 

regression (GSR) and 113 studies without GSR. The patterns of common alterations in 

functional connectivity within and between our three neurocognitive networks were 

replicated using studies both with and without GSR (Fig. S8). Moreover, the effect sizes of 

the studies did not differ for the two subsets of studies with and without GSR (p > 0.05), 

suggesting that global signal effects had little influence on our main results. Third, to assess 

whether the results were independent of each of the included studies, we performed further 

meta-analysis using the leave-one-out validation approach. We failed to find a 

disproportionate effect of any single study (p < 0.001); therefore, all of the initially included 

studies were retained in the analysis. Fourth, to evaluate whether the results for the DMN 
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network were biased by the fact that most of the studies focused on DPD and SCZ, we 

separately repeated the SB-FC meta-analysis of the DMN network after excluding studies on 

DPD and SCZ. This analysis yielded similar results to the previous meta-analysis of DMN 

dysfunction. In the meta-analysis of studies excluding DPD, functional alteration was 

observed within the DMN (e.g., the medial prefrontal cortex, ventral anterior cingulate cortex 

and posterior cingulate cortex) and between the DMN seeds and regions of the dorsal anterior 

cingulate cortex and ventral insula in the SN and regions of the dorsomedial and dorsolateral 

prefrontal cortex in the FPN (Fig. S10A). Similar patterns were also shown in the 

meta-analysis of studies excluding SCZ (Fig. S10B). To assess whether the meta-analytic 

results of altered DMN connectivity could be replicated in DPD and SCZ, we separately 

performed the meta-analysis of studies in both disorders, which revealed similar results to the 

previous meta-analysis of altered DMN connectivity. Specifically, DPD showed functional 

alteration within the DMN (e.g., posterior cingulate cortex) and between the DMN seeds and 

insula in the SN and dorsolateral prefrontal cortex in the FPN (Fig. S10C). Similarly, SCZ 

showed functional alteration within the DMN (e.g., ventromedial prefrontal cortex) and 

between the DMN seeds and dorsomedial prefrontal cortex in the FPN and the regions of 

insula and dorsal anterior cingulate cortex in the SN (Fig. S10D). Finally, to assess the 

robustness of the results, we repeated this analysis using a range of spherical kernel radii 

(from 10mm to 15mm), which recapitulated the results of our main meta-analysis (Fig. S11). 
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Table S1. Number of Studies, Patients and Controls Included in the SB-FC 
Meta-Analysis. 
Disorders Abbreviations Studies Patients Controls 
Attention deficit hyperactivity disorder ADHD 16 374 395 
Anxiety disorders ANX 19 436 422 
Autism spectrum disorder ASD 29 1315 1371 
Bipolar affective disorder BD 18 493 524 
Depressive disorder DPD 63 2023 1839 
Obsessive-compulsive disorder OCD 16 481 459 
Posttraumatic stress disorder PTSD 15 492 450 
Schizophrenia SCZ 66 2684 2705 
Total  242 8298 8165 
  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Sha et al. Supplement 

10 

Table S2. Number of Studies, Patients and Controls Included in the VBM 
Meta-Analysis. 
Disorders Abbreviations Studies 

(Dec/Inc) 
Patients Controls 

Attention deficit hyperactivity disorder ADHD 24(24/5) 670 619 
Anxiety disorders ANX 19(19/5) 447 484 
Autism spectrum disorder ASD 28(28/12) 713 735 
Bipolar affective disorder BD 25(25/7) 836 1008 
Depressive disorder DPD 66(66/14) 2613 2958 
Obsessive-compulsive disorder OCD 27(27/10) 763 847 
Posttraumatic stress disorder PTSD 29(29/3) 494 599 
Schizophrenia SCZ 145(145/25) 7491 7254 
Total  363(363/81) 14027 14504 
Note: Dec and Inc respectively represent the number of included studies reporting decreased 
and increased volumes in the patients group compared with control group. 
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Table S3. Summary of Seed-Networks Included in SB-FC Meta-Analysis of Altered 
Connectivity. 

Networks ADHD ANX ASD BD DPD OCD PTSD SCZ 
Total 

studies 
DMN 10 13 29 8 61 17 13 44 195 
FPN 11 5 14 4 17 4 0 23 78 
SN 8 4 7 3 24 16 6 20 88 

Note: Seed regions-of-interest (ROIs) were categorized into seed-networks based on their 
location within our priori functional neurocognitive networks including default mode (DMN), 
frontoparietal (FPN) and salience network (SN). The number in the table represented the 
number of studies included in each SB-FC analysis of seed-networks in each of disorders. In 
an individual study, if several contrasts involved in the same seed-network, these contrasts 
were counted as one study. 
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Table S4. MNI Coordinates of Regions with Functional Connectivity Alterations within 
and between Neurocognitive Networks across Psychiatric Disorders. 

Seed-network 
(and thresholding) 

MNI 
coordinates Maxstat. Voxels Description 

DMN 

hb 

2,40,-6 0.1465 900 Frontal_Med_Orb_R 
38,2,0 0.1328 488 Insula_R 

-6,-60,34 0.1291 173 Precuneus_L 
2,42,20 0.1241 93 Cingulate_Ant_L 

34,18,-16 0.1182 66 Insula_R 
0,-70,26 0.1140 48 Cuneus_L 
2,-58,22 0.1119 26 Precuneus_R 
2,-58,22 0.1114 23 Precuneus_R 
-6,20,-2 0.1078 19 Caudate_L 

eb 2,24,2 0.1002 11655 Caudate_L 
-2,-60,30 0.1002 1662 Precuneus_L 

FPN 
hb -16,40,38 0.1488 9 Frontal_Sup_L 

eb 
-4,44,26 0.1345 1644 Frontal_Sup_Medial_L 
12,6,10 0.1315 483 Caudate_R 
46,16,8 0.1352 334 Frontal_Inf_Oper_R 

SN 

hb 
-38,8,-22 0.1641 93 Temporal_Pole_Sup_L 
-26,28,48 0.1532 63 Frontal_Mid_L 
-30,28,36 0.1479 24 Frontal_Mid_L 

eb 
-18,24,42 0.1349 1430 Frontal_Sup_L 
-40,10,-16 0.1349 1048 Insula_L 
26,8,-14 0.1292 741 Insula_R 

 -2,46,6 0.1223 581 Cingulate_Ant_L 
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Table S5. Summary of Seed-Networks Included in SB-FC Meta-Analysis of Hypo- and 
Hyperconnectivity. 

Networks ADHD ANX ASD BD DPD OCD PTSD SCZ 
Total 

studies 
DMN-hypoconnectivity 6 6 17 5 38 8 7 26 113 
DMN-hyperconnectivity 4 7 12 3 23 9 6 18 82 
FPN-hypoconnectivity 7 3 6 2 8 1 0 13 40 
FPN-hyperconnectivity 4 2 8 2 9 3 0 10 38 
SN-hypoconnectivity 3 2 4 1 18 10 2 12 52 
SN-hyperconnectivity 5 2 3 2 6 6 4 8 36 
Note: Seed regions-of-interest (ROIs) were categorized into seed-networks based on their 
location within our priori functional neurocognitive networks including default mode (DMN), 
frontoparietal (FPN) and salience network (SN). The number in the table represented the 
number of studies included in each SB-FC analysis of seed-networks in each of disorders. In 
an individual study, if several contrasts involved in the same seed-network, these contrasts 
were counted as one study. 
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Table S6. MNI Coordinates of Regions with Hypo- and Hyperconnectivity within and 
between Neurocognitive Networks across Psychiatric Disorders. 

Seed-network 
(and thresholding) 

MNI 
coordinates Maxstat. Voxels Description 

DMN: Patients < Controls 

hb 
0,44,-8 0.1903 637 Frontal_Med_Orb_L 
-4,20,0 0.1536 141 Caudate_L 

-18,16,-2 0.1496 57 Putamen_L 

eb 
6,28,0 0.1275 7556 Caudate_R 

-40,6,-10 0.1262 982 Insula_L 
0,-58,28 0.1267 941 Precuneus_L 

DMN: Patients > Controls 

hb 

-40,32,-6 0.1639 21 Frontal_Inf_Orb_L 
42,-6,8 0.1632 16 Insula_R 
6,46,24 0.1628 14 Cingulate_Ant_R 

-40,24,-4 0.1670 12 Frontal_Inf_Orb_L 

eb 

-40,26,-4 0.1474 1229 Frontal_Inf_Orb_L 
38,2,2 0.1454 1037 Insula_R 
4,50,26 0.1469 786 Cingulate_Ant_R 

-6,-64,36 0.1382 736 Precuneus_L 
-36,32,30 0.1402 641 Frontal_Mid_L 

FPN: Patients < Controls 
eb 8,4,14 0.1861 748 Caudate_R 

FPN: Patients > Controls 
eb -10,40,32 0.1900 552 Frontal_Sup_Medial_L 

SN: Patients < Controls 
hb -40,8,-20 0.2423 161 Temporal_Pole_Sup_L 

eb 

-40,10,-14 0.1926 1308 Insula_L 
-32,28,42 0.1889 779 Frontal_Mid_L 
48,14,38 0.1595 544 Frontal_Inf_Oper_R 
26,10,-8 0.1819 499 Putamen_R 
-2,36,18 0.1541 450 Cingulate_Ant_L 
-4,-58,28 0.1514 342 Precuneus_L 
44,-54,34 0.1778 277 Angular_R 

SN: Patients > Controls 
eb -48,-20,52 0.1795 496 Postcentral_L 
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Table S7. MNI Coordinates of Regions with Decreased Grey Matter across Psychiatric 
Disorders. 

MNI coordinates Maxstat. Voxels Description 
Height-based threshold 

-42,28,-10 0.96 10355 Frontal_Inf_Orb_L 
38,10,-2 0.83 5196 Insula_R 

-58,-16,10 0.07 45 Temporal_Sup_L 
Extent-based threshold 

40,20,-10 1.00 13832 Insula_R 
2,44,14 1.00  Cingulate_Ant_R 

-38,18,-16 1.00 12678 Insula_L 
-2,50,2 1.00  Cingulate_Ant_L 
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Table S8. Distribution of Edges That Frequently Altered across Psychiatric disorders. 
Networks Hypoconnectivity Hyperconnectivity 

DMN-DMN 602 487 
FPN-FPN 161 108 

SN-SN 153 21 
DMN-FPN 438 419 
DMN-SN 468 317 
FPN-SN 293 119 

Interactions of other networks 1073 784 
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Figure S1. Flow Diagram of Study Selection in SB-FC Meta-Analysis. 
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Figure S2. Effect Sizes Across Disorders in SB-FC Meta-Analysis. 
Effect sizes were extracted from available 186 studies to calculate the mean and standard 
deviation values in individual disorder. 
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Figure S3. Flow Diagram of Study Selection in VBM Meta-Analysis. 
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Figure S4. Effect Sizes Across Disorders in VBM Meta-Analysis. 
Effect sizes were extracted from available 261 studies to calculate the mean and standard 
deviation values in individual disorder. 
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Figure S5. Constructing Network from the Meta-Analytic Dataset across Psychiatric 
Disorders. 
We constructed separate SEED and TARGET binary networks. If a SEED or TARGET node 
was centered around its coordinates, then it was modeled as a 1 cm3 sphere in a standard 
stereotactic space and aligned with the high-resolution 1024-region template. If a SEED node 
was a published anatomical mask, it was directed compared with the 1024-region template. 
The node was set to value of 1 if 20% or more of the SEED or TARGET nodes overlapped 
with the regional volume defined by the 1024-region parcellation template. Thus, for each 
contrast, we obtained the binary SEED and TARGET matrices. In each of the contrasts, an 
edge was defined as between the given SEED node and any of the TARGET nodes.  
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Figure S6. Consistently Altered Functional Connectivity Patterns across Psychiatric 
Disorders. 
Columns represent different contrasts and rows areas. For each edge, we counted the 
frequencies of the edges that appeared to be altered across contrasts. Then, for each 
permutation, we randomly allocated SEED and TARGET nodes in each of the included 
contrasts and computed the frequencies of the edge across all the contrasts in a random model. 
The process was iterated 10,000 times and formed a null distribution. After NBS correction, 
we obtained a set of aberrant functional connectivity that frequently appeared across 
psychiatric disorders. 
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Figure S7. Functional Connectivity Meta-Analysis of Studies with Regression of Head 
Movement across Psychiatric Disorders. 
The results showed aberrant communication within and between triple neurocognitive 
networks, which was similar patterns with the main findings. Abbreviations: DMN, 
default-mode network; FPN, frontoparietal network; SN, salience network; Cau, caudate; 
dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dmPFC, 
dorsomedial prefrontal cortex; Ins, insula; mPFC, medial prefrontal cortex; OFC, orbital 
frontal cortex; PCC, posterior cingulate cortex; TP, temporal pole; eb, extent-based threshold; 
hb, height-based threshold. 
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Figure S8. Functional Connectivity Meta-Analysis of Studies with and without GSR 
across Psychiatric Disorders. 
(A) Meta-analytic results of altered functional connectivity patterns with triple 
neurocognitive networks by using the studies with GSR; (B) Meta-analytic results of altered 
functional connectivity patterns with triple neurocognitive networks by using the studies 
without GSR; Abbreviations: DMN, default-mode network; dACC, dorsal anterior cingulate 
cortex; dlPFC, dorsolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; Ins, 
insula; mPFC, medial prefrontal cortex; OFC, orbital frontal cortex; PCC, posterior cingulate 
cortex; TP, temporal pole; eb, extent-based threshold; hb, height-based threshold. 
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Figure S9. Significant Functional Hypo- and Hyperconnectivity across Psychiatric 
Disorders. 
The result was a pattern of hypo- and hyperconnectivity that significantly appeared across 
psychiatric disorders in the 1024-region template. 
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Figure S10. Functional Connectivity Meta-Analysis of Studies Excluding DPD and SCZ 
Studies. 
(A) Altered connectivity patterns of DMN with the studies excluding of DPD; (B) Altered 
connectivity patterns of DMN with the studies excluding of SCZ; (C) Altered connectivity 
patterns of DMN with the studies of DPD; (D) Altered connectivity patterns of DMN with the 
studies of SCZ; Abbreviations: DMN, default-mode network; DPD, depression disorder; 
dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dmPFC, 
dorsomedial prefrontal cortex; Ins, insula; mPFC, medial prefrontal cortex; OFC, orbital 
frontal cortex; PCC, posterior cingulate cortex; TP, temporal pole; eb, extent-based threshold; 
hb, height-based threshold. 
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Figure S11. Functional Connectivity Meta-Analysis with 13mm as the Radius of 
Spherical Kernel. 
The results showed aberrant communication within and between triple neurocognitive 
networks, which was similar patterns with the main findings. Abbreviations: DMN, 
default-mode network; FPN, frontoparietal network; SN, salience network; Cau, caudate; 
dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dmPFC, 
dorsomedial prefrontal cortex; Ins, insula; mPFC, medial prefrontal cortex; OFC, orbital 
frontal cortex; PCC, posterior cingulate cortex; TP, temporal pole; Put, putamen; eb, 
extent-based threshold; hb, height-based threshold. 
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