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Abstract 

A male Drosophila model of locomotor deficit induced by chronic pentylenetetrazole 

(PTZ), a proconvulsant used to model epileptogenesis in rodents, has recently been 

described. Antiepileptic drugs (AEDs) ameliorate development of this behavioral 

abnormality. Time-series of microarray profiling of heads of male flies treated with PTZ 

has shown epileptogenesis-like transcriptomic perturbation in the fly model. Gender 

differences are known to exist in neurological and psychiatric conditions including 

epileptogenesis. We describe here the effects of chronic PTZ in Drosophila females, and 

compare the results with the male model. As in males, chronic PTZ was found found to 

cause a decreased climbing speed in females. In males, overrepresentation of Wnt, 

MAPK, TGF-beta, JAK-STAT, Cell communication, and Dorso-Ventral axis formation 

pathways in downregulated genes was previously described. Of these, female genes 

showed enrichment only for Dorso-Ventral axis formation. Most significant, ribosomal 

pathway was uniquely overrepresented in genes downregulated in females. Gender 

differences thus exist in the Drosophila model. Gender neutral, Dorso-Ventral axis 

formation may be considered as the candidate causal pathway in chronic 

pentylenetetrazole induced behavioral deficit. Prior evidence of developmental 

mechanisms in epileptogenesis underscores the usefulness of fly model. Gender specific 

pathways may provide a lead for understanding brain dimorphism in neuropsychiatric 

disorders. 

 

 

 

 



 

Introduction 

The prevalence and course of various neurological and psychiatric disorders are known to 

differ between the sexes (1, 2). Sexually dimorphic CNS structure and function are 

known in animals as well (3). The gender-specific differences have been observed at gene 

expression, metabolic and cytogenic levels (4, 5). For example, sex-specific differences 

in brain metabolism have been observed in epileptic patients (4). Similarly, seizures have 

been found to cause gender-specific effect on cell proliferation and survival in rats (5). 

Differences in patterns of gene expression have been suggested as a possible contributing 

factor in sexual dimorphism in neuropsychiatric disorders (6). 

 

A male Drosophila model of locomotor deficit induced by chronic pentylenetetrazole 

(PTZ), a proconvulsant used to model epileptogenesis in rodents, has recently been 

described (7). Antiepileptic drugs (AEDs) have been found to ameliorate development of 

this behavioral abnormality. Time-series of microarray profiling of heads of male flies 

treated with PTZ has shown that gene expression changes in the fly model resemble, to 

some extent, that known in epileptogenesis (7). Given this, we developed a female model 

and examined sex differences, if any. We describe here the effects of chronic PTZ in 

Drosophila females, and compare the results with the male model. 

 

Results 

Chronic treatment with PTZ for seven days was earlier described to result in a decreased 

climbing speed in males (7). We similarly treated females and measured the climbing 



speed. Whereas the control NF treated flies (n=24) climbed with a speed of 1.23 cm/sec, 

PTZ treated ones (n=24) showed a climbing speed of 0.86 cm/sec.  Pair-wise Student’s t-

test, two-tailed, heteroscedastic, showed the gender difference in climbing speed as 

significant (p=0.001). Females were thus found comparable to males in terms of 

behavioral effect of chronic PTZ. 

 

Time-series of microarray expression profiles of heads of male flies at 0 hr and after PTZ 

treatment for 12 hrs, two days and seven days have previously been described (7). 

Numbers of SAM (Significant Analysis of Microarrays) analyzable genes in male 

microarrays at these time-points were 4369, 4637, 5259 and 4297, in that order (7). At 0 

hr, no gene was detected as differentially expressed below 96% FDR (false Discovery 

rate). At 12 hrs, 2nd day and 7th day time-points, 23, 2439 and 265 genes were found to be 

downregulated at 22.76%, 13.74% and 23.03% FDR, in that order (7). No upregulated 

gene was detected at these FDRs (7). Given small number of genes at 12 hrs, these FDRs 

were considered as the best compromise between uniformity across time points and 

acceptability in terms of incorporating false positives. To compare with males, we 

generated microarray gene expression profiles of heads of female flies after 12 hrs, 2 

days and 7 days of PTZ treatment using the same materials and methods. Analyzable 

genes in SAM were found to be 5307, 5346 and 6995, in that order. At 12 hrs, 2nd day 

and 7th day time-points, 1, 3 and 1 genes were upregulated, and 1, 68 and 800 genes were 

downregulated at 0%, 16% and 19% FDR, in that order (Table S1, supporting 

material). Given that the next FDR jumped to 43% at 12 hrs time point, we considered 



the above FDRs as comparable to male profiles. It was notable that in females, like 

males, PTZ’s overall effect on gene expression was inhibitory. 

 

Earlier, clustering of male microarrays was found to be consistent with the time-series 

(7). We clustered the female microarrays and examined their consistency. Like males, 

female microarrays also clustered according to the time-series (Fig. 1a). To examine 

possible gross level sex differences, we clustered both male and female time-series 

together. Except 2nd day time-point where some discrepancy was noted, males and 

females were found to be similar in their chronological response to PTZ (Fig. 1b). Next, 

we identified overrepresented pathways in genes downregulated in females at all the three 

time-points combined (Table 1). In males, overrepresentation of Wnt, MAPK, TGF-beta, 

JAK-STAT, Cell communication, and Dorso-Ventral axis formation pathways in 

downregulated genes was previously described (7). Of these, female genes showed 

enrichment only for Dorso-Ventral axis formation (Fig. 2). Remarkably, ribosomal 

pathway was most significantly overrepresented only in females (Fig. 3). 

 

Discussion 

Our results show that gender differences do exist in the Drosophila model at 

transcriptomic level. Whereas Dorso-Ventral axis formation pathway has been found to 

be common in both sexes, other pathways showed gender bias. Considering similar 

behavioral effect of PTZ, the gender neutral Dorso-Ventral axis formation may be 

considered as the pathway causally associated with development of behavioral deficit 

caused by the chemoconvulsant. It is interesting to note here that gene expression studies 



have previously implicated developmental mechanisms in epileptogenesis (8). This 

underscores the relevance of the fly model in disease genomics. The gender specific 

pathways that we have identified may provide a lead for understanding brain 

dimorphism. Known translational control of long-lasting brain plasticity (9, 10), for 

example, is notable in the context of ribosomal pathway association with the female fly 

model. The Drosophila systems model seems to offer an excellent opportunity to unravel 

the gender differences in neuropsychiatric disorders at cellular and molecular level.  

 

Materials and Methods 

Previously described (7) methods were used. In brief, 3-4 days old virgin females were 

treated with 8 mg/ml of PTZ for varying length of time. Flies treated with normal food 

(NF) were used as controls. Total cellular RNA was isolated from fly heads belonging to 

four biological replicates. Microarray -cDNA Synthesis Kit, -Target Purification Kit, and 

-RNA Target Synthesis Kit (Roche) were used to generate labeled antisense RNA. 

Starting with 10 µg of total cellular RNA, Eberwine method (kits from Roche) was used 

to generate cDNA and thereafter Cy3 and Cy5 (Amersham) labeled antisense RNA. The 

Cy3 and Cy5 labeled aRNAs (control and treated) were pooled together and precipitated, 

washed, air-dried, and dissolved in 18MΩ RNAase free water. A total of 12 microarrays 

(12Kv1, CDMC) were hybridized, four each for 12 hrs, 2nd day and 7th day of PTZ 

treatment. Out of four, two slides were dye-swaps. Slides were scanned at 10 µm 

resolution using GenePix 4000A Microarray Scanner (Molecular Devices) and the 

images preprocessed and quantified using Gene Pix Pro 6.0 (Molecular Devices). The full 

microarray data set has been deposited in the Gene Expression Omnibus 



(http://www.ncbi.nlm.nih.gov/geo/) under accession series GSE10852. Ratio based data 

normalization and selection of features were performed using Acuity 4.0 (Molecular 

Devices). All Spots with raw intensity less then 100U and less then twice the average 

background was ignored during normalization. Normalized data was filtered for the 

selection of features before further analysis. Only those spot were selected which 

contained only a small percentage (<3) of saturated pixels, were not flagged bad or found 

absent (flags>0), had relatively uniform intensity and uniform background [Rgn R2 

(635/532)>0.6] and were detectable above background (SNR>3). Analyzable spots in at 

least three of four biological replicates performed were retrieved for downstream analysis 

using SAM (v.3.0, Excel Add-In) (11), under the conditions of one class response and 

100 permutations. DAVID (12) was used for pathway enrichment analysis 

(http://david.abcc.ncifcrf.gov/home.jsp). KEGG pathway 

(http://www.genome.jp/kegg/tool/color_pathway.html) was used for mapping of fly 

genes. 
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Figure legends 
 
Figure 1. 

Time-series of microarray expression profiles.  Profiles were generated from heads of 

PTZ treated of flies. Hierarchical clustering of female profiles alone (a), and both male 

and female profiles together (b). Male microarrays were described previously [9]. City 

Block similarity metric and average linkage methods were used for clustering of arrays. 

Each profile represents mean of normalized log2 ratio (635/532) of four biological 

replicates with balanced dye-swaps. The cluster was generated using Acuity 4.0. 

 

Figure 2. 

Downregulated genes related to Dorso-ventral axis formation pathway. Green boxes 

indicate genes downregulated in females after chronic PTZ. Differentially expressed 

genes in all the three time-points combined were used for pathway mapping. Dorso-

ventral axis formation pathway was previously found to be enriched in males also [9]. 

 

Figure 3. 

Downregulated genes related to ribosomal pathway. Green boxes indicate genes 

downregulated in females after chronic PTZ. Differentially expressed genes in all the 

three time-points combined were used for pathway mapping. Ribosomal pathway was 

previously not found to be enriched in males [9]. Grey and white boxes indicate presence 

and absence of Drosophila melanogaster genes in the pathway, respectively. 



Table S1. KEGG pathways enriched in genes downregulated in females after 

chronic PTZ 

 

Term     P-Value Benjamini 

       adjusted P-Value 

Ribosome    2.60E-16 2.80E-14 

Dorso-ventral axis formation  3.90E-02 8.20E-01 

Pyruvate metabolism   4.70E-02 7.80E-01 
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