USING TEXTPRESSO FOR INFORMATION RETRIEVAL, FACT EXTRACTION AND DATABASE ENTRY

WormBase: a collaborative effort for genetics, genomics and biology of *C. elegans* and some related nematodes

How does experimental data get into WormBase?

WormBase literature curation pipeline

WormBose Why incorporate text mining into our curation pipeline?

WormBase curators curate >25 different types of data, but there are still data types we don't yet curate

For some data types we do curate, we have a backlog

older papers <2001

newer curation tasks

More genomes = more curation

If text mining tools can improve curation efficiency, they'll help with all of this!

Compresso: Text Mining for Literature Curation

http://www.textpresso.org

Key features:

- Search full text of articles, returns sentences
- Keyword (+synonyms) and/or category searches

'regulation': attenuate, downregulate, enhancing, inhibiting, misregulated, etc.

- Sort by score, year, journal, etc.

sort by score = efficient prioritization

- Open source, with 19 different implementations

Müller H-M, Kenny EE, and Sternberg PW. PLoS Biol. 2004 Nov;2(11):e309

"...all <u>wild-type</u> <u>embryos</u> have <u>foci</u> of <u>GFP:SAS-4</u> <u>associated</u> with both <u>sperm</u> <u>centrioles</u>..."

...all <phenotype_celegans> wild-type </phenotype_celegans>
life_stages_celegans> embryos </life_stages_celegans> have
<assay_terms> foci </assay_terms> of <assay_terms> GFP </assay_terms>
<celegans> SAS-4 </protein_celegans> <verbs> associated </verbs>
with both <anatomy_celegans> sperm </anatomy_celegans>
<cellular_components> centrioles </cellular_components>...

Paper-entity association: alleles and transgenes

Principle: standardized nomenclature allows for pattern matching in full text using regular expressions

Alleles: q71, lg6001, e2141ts, oz12oz75

[a-z]{1-3}\d+\w*\d*

98% recall

Transgenes: syls1, nls2, bln1

80% recall, >95% precision

Textpresso for Data Type Identification: What kinds of experiments?

Data type identification: RNAi experiments

Principle: combinatorial category search to find evidence for experiments in full text of articles

"We <u>performed RNAi feeding</u> using lim-7_cDNA (see Section 2.2) on homozygous wild-type and heterozygous (tm674/hT2 [let GFP]) animals..."

"...we exposed ain-1 (ku322) animals to ain-2 (<u>RNAi</u>), starting with L1 larvae and using a published <u>RNAi</u> feeding construct and <u>protocol</u>..."

<u>RNAi terms</u> RNAi RNA interference dsRNA	+	Experimental terms feed* inject performed	 Recall: 95.7% Precision: 61.2%
HT115		protocol	Precision: 61.2%

Data type identification: Antibodies and antibody production

Principle: pattern matching and combinatorial category search to find evidence for antibodies in full text

"The immunoprecipitated protein complexes were subsequently immunoblotted using <u>anti-HCF-1</u>, <u>anti-DAF-16</u>, or anti-GFP antibodies."

"To determine the expression pattern of sepa-1, we <u>raised</u> <u>antibodies</u> against the KIX domain of SEPA-1."

Antibody pattern anti-DAF-16 OF anti-HCF-1		Antibody verbs produced generated raised	<u>Antibody terms</u> antibody	85% recall
	OR		+ antise antise antibo	antiserum antisera antibodies

Textpresso for Fact Extraction: Finding Curatable Information

Fact Extraction: GO Cellular Component Curation

Principle: combinatorial category searches to retrieve experimental results from the full text of papers

Why GO Cellular Component curation?

-Subcellular localization is often expressed in a stereotypical way within a single sentence

GFP:: RAB-7 is visualized on the membranes of late endosomes

- Limited number of experimental strategies or assays

- Microscopy
- Fractionation

- Typically annotate using only one GO evidence code, IDA

Needed to make new categories:

What words and phrases are diagnostic of subcellular localization experiments?

- 1 Curators read ~240 papers containing localization data
- 2 Collected ~1,700 sentences that report experimental results
 - 3 Examined word usage and frequency

This approach took advantage of the work that curators already do and also allowed us to add annotations to WormBase while we created the new categories.

Fact Extraction: GO Cellular Component Curation

Three new categories:

Cellular Components

Verbs

Assay Terms

IDA-1 and IDA-1: GFP were not restricted to presynaptic sites

but were abundantly localized throughout cell bodies axons and

dendrites of expressing neurons.

Can we annotate from the search results?

Test searches:

search with names of previously uncurated *C. elegans* proteins and three new categories

Criteria:

Returned sentences must contain a *C. elegans* protein plus one word from each of the three categories

Results:

Papers: 79.1% recall, 61.8% precision

Sentences: 30.3% recall, 80.1% precision

*Annotations: 66.2% recall, 97.3% precision

Fact Extraction: GO Cellular Component Curation

Is Textpresso-based curation more efficient?

YES!

Tests comparing manual vs. Textpresso-based curation:

Textpresso yields 8- to 15-fold improvement in curation efficiency

Incorporating Textpresso into our Curation Pipeline

Weekly searches:

Onward! Future Developments and Plans

Improve Search Results

- **False Positives**
 - Textpresso searches by paper section
 - Word exclusion
- **False Negatives**
 - What do we miss and why?
 - Missing category terms
 - Non-standard nomenclature
 - Information in multiple sentences

More Category Development

- Use Textpresso searches to help make new categories
- Category Editor interactive, iterative Textpresso searches

Incorporate Textpresso Searches into Existing Curation Tools

- Phenote for Phenotype and GO Curation

Acknowledgements

<u>Textpresso – Caltech</u>

Juancarlos Chan Ruihua Fang Joshua Jaffery* Eimear Kenny* Hans-Michael Müller Arun Rangarajan Tracy Teal*

WormBase – Caltech

Juancarlos Chan Wen Chen Jolene Fernandes Ranjana Kishore Raymond Lee Cecilia Nakamura Andrei Petcherski*

Slava Petcherski* Gary Schindleman Erich Schwarz Kimberly Van Auken Daniel Wang Xiaodong Wang Karen Yook

*alumni

Paul Sternberg, Pl

Funding: National Human Genome Research Institute, NIH WormBase, Textpresso, Gene Ontology

Bioinformatics Group, Lewis Sigler Institute for Integrative Genomics, Princeton University