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ABSTRACT

New experimental data is available in the literature regarding the octanol-water distribution 

behavior of representative straight chain perfluoroalkyl carboxylate (PFCA) and sulfonate 

(PFSA) congeners. The current study provides the first investigation into the predictive ability of 

various software programs for estimating the corresponding octanol-water partitioning (log P) 

and distribution (log D) constants of PFCAs and PFSAs. Wide predictive variation was found 

within and between the various methods. Several programs were able to accurately estimate the 

log P/D fragmental contributions of a -CF2- group for PFCAs, as well as the associated Gibbs 

free energies for partitioning into octanol from water due to the hydrophobic character of the 

perfluoroalkyl chain (ΔhydrophobicGow). Only the SPARC log D method accurately predicted the 

electrostatic contributions of the carboxylate head group (ΔelectrostaticGow) towards octanol-water 
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partitioning for PFCAs. Similar log D values and organic carbon normalized sediment-water 

partitioning coefficients (Koc) for PFCAs and PFSAs having equivalent perfluoroalkyl chain 

lengths suggests potentially equivalent ΔelectrostaticGow and ΔhydrophobicGow contributions towards 

lipophilic partitioning for these two contaminant classes, regardless of head group identity. In 

contrast, there are potentially different ΔelectrostaticGow and ΔhydrophobicGow contributions towards 

proteinophilic partitioning.
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INTRODUCTION

Perfluoroalkyl carboxylic acids (PFCAs) and sulfonic acids (PFSAs) (Figure 1) are globally 

distributed halogenated aliphatic contaminants with ionic head groups that behave as surface 

active compounds in environmental and biological systems.[1-11] Because of their propensity to 

accumulate in abiotic and biotic matrices and resulting concerns over in vivo toxicity, their 

persistence towards a number of possible natural and engineered degradation processes, and their 

ability to achieve widespread environmental ubiquity, there is much current interest in the 

partitioning behavior of PFCAs and PFSAs.[11-29] Recently, the first experimental octanol-water 

distribution constants (log D) have been reported [30] for several representative straight chain 

PFCA and PFSA congeners (Figure 2). In light of these new experiment results, and after 

significant hypothetical discussion in the scientific literature over the past decade without any 

experimental data upon which to benchmark the debates, there is now an opportunity to assess 

the predictive abilities of various widely used software programs for estimating octanol-water 

partitioning (log P) and distribution (log D) constants of PFCAs and PFSAs. The current work 

thus provides the first examination of the log P/D predictive power of various software programs 

towards these emerging contaminant classes.

METHODS AND MATERIALS

PFCA and PFSA octanol-water partitioning (log Poctanol:water; hereafter referred to as log P) and 

distribution (log Doctanol:water; hereafter referred to as log D) constants were calculated with the 

3

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.3
28

2.
1 

: P
os

te
d 

25
 M

ay
 2

00
9



SPARC (http://ibmlc2.chem.uga.edu/sparc/; August 2007 release w4.0.1219-s4.0.1219) [31] and 

ALOGPS 2.1 (http://www.vcclab.org/) [32-37] software programs using the SMILES molecular 

formula language [38, 39] as inputs. References to PFCA and PFSA isomer patterns and congener 

identifications follow the framework outlined in ref. [40]. Experimental log D values for the PFCA 

and PFSA congeners under consideration (Figure 2) were obtained from ref. [30].

RESULTS AND DISCUSSION

Existing log P computational methods overpredict log D values for the straight chain C3 through 

C9 PFCA (n-PFBA through n-PFDA) and C8 PFSA (n-PFOS) congeners by 1.0 to 5.4 units 

(Table 1). Average prediction errors within a specific computational program range from 2.5 to 

4.0 units. By comparison, the ADME/Tox WEB and CLogD (using the separate VG, KLOP, and 

PHYS modules) log D programs generally underpredict the log D values at the experimentally 

determined pH range of 6 to 7 [30] by up to 4 units, with average prediction errors within a 

program ranging from -0.7 to -3.3 units. In contrast to the other log D prediction methods, the 

SPARC log D method overpredicted the log D values of both PFCAs and PFSAs by between 1.0 

and 3.5 units.

Wide variability among the various software programs was observed in estimating log P/D 

values for a particular congener, ranging between 5 to 9 units. Only the miLogP (0.34 unit error) 

and ClogD PHYS (-0.15 unit error) methods were able to reliably predict the log D value of n-

PFOS. While the ClogD PHYS module accurately predicts the log D of n-PFOS, it performs 
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poorly on the PFCA congeners (errors ranging from -3.3 to -3.9 units). The ClogD VG and 

KLOP modules overpredict the log D of n-PFOS by 1.3 and 0.7 units, respectively, but – as 

noted above – underpredict the log D of the PFCAs. At pH 7, the ADME/Tox WEB log D 

method underpredicts the log D of both PFCAs and PFSAs by between -0.4 and -1.8 units. At pH 

6, however, the ADME/Tox WEB log D method accurately predicts the log D of the n-PFHpA 

through n-PFDA congeners (errors ranging from 0.08 to -0.2 units).

The lack of clarity regarding the experimental pH at which the PFCA log D values were 

determined (a range of pH 6 to 7 is quoted [30]) precludes a more definitive assessment regarding 

the potential log D prediction accuracy of the ADME/Tox WEB log D programs for longer chain 

PFCAs. For longer chain PFCAs, the pKa values may be sufficiently high (about 3 to 4 [41, 42]) 

such that pH dependent octanol-water partitioning may be present at pH 6 to 7. By contrast, all 

PFSAs are expected to have pKa values <<0 [43] and thus, would not be expected to display pH 

dependent octanol-water partitioning behavior under environmentally or biologically relevant pH 

values. We have previously shown the ADME/Tox WEB pKa prediction program appears to be 

the only software program that accurately predicts the aqueous solution acidity constants of 

PFCAs.[44] For ionizable compounds such as PFCAs and PFSA, the dependence of log D values 

on reliable software estimation of corresponding substrate pKa values is an important 

determinant for obtaining reasonably accurate partitioning constant estimates. By comparison, 

SPARC does not adequately model the pKa values of either PFCAs or PFSAs,[28, 42, 44] hindering 

its ability to reliably estimate corresponding log D values for these contaminants.
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It is also important to reinforce the distinction between log P and log D values, particularly since 

log P values can be estimated for ionizing compounds. Log P values represent the relative 

concentrations of the molecular species in octanol and water, whereas log D values represent the 

relative sums of the molecular and ionized species in octanol and water.[45] Some software 

programs (e.g., SPARC, ADME/Tox Web, cLogP) can calculate both log P and log D. In their 

work, Jing et al. [30] appear to have determined the log D values for the PFCAs and PFSAs, as 

they explicitly discuss measuring the concentrations of the monoanionic species in both the 

water and octanol phases. While we compare both estimated log D and log P values with the 

experimental log D values herein, we stress that a formal comparison can only be made between 

the experimental and estimated log D values. Any comparisons between estimated log P values 

and the experimental log D values are intended to examine the empirical correlation between 

these two values, which is an important question to consider in light of the preponderance of 

octanol-water partitioning constant programs that do not include substrate ionization modules. 

Researchers in this field need to be more clear as to whether they are calculating or measuring 

log P or log D values for PFCAs and PFSAs, and include explicit caveats as to the potential 

theoretical inapplicability – despite any empirical correlations – of using log P values on 

ionizable compounds when a log D analysis may be more theoretically appropriate.

In their comparison of experimental log D and estimated log P values for PFCAs and PFSAs, 

Jing et al. [30] used the >3 year old log P values from the 2006 SPARC, EPI Suite (KOWWIN), 

and CLogP programs as previously reported by Arp et al.[12] However, as we have shown 

elsewhere,[11] software programs for estimating log P/D values are continuously being refined 
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and updated over time. Thus, obtained values should always be considered as representing a 

snapshot in time, and use of historical log P/D estimates in the literature should always be 

confirmed with current versions of the software, particularly prior to making claims regarding 

accuracies of these programs. As we show in Table 1, the SPARC log P and ClogP estimates for 

PFCAs and PFSAs have changed by up to 2 units since the prior work of Arp et al.,[12] and it is no 

longer valid to use the Arp et al. [12] dataset for these programs. In addition, Jing et al. [30] should 

have noted that they were comparing their experimental log D values to computationally 

estimated log P values.

Similarly, Kelly et al. [46] have recently not only used the 2006 SPARC log P dataset from Arp et 

al. [12] in their studies regarding the biological partitioning of PFCAs and PFSAs, but these 

authors also applied an arbitrary and uniform one unit reduction to this out-of-date dataset in an 

attempt to generate purportedly reliable log P values for subsequent use in partitioning constant 

based classification systems. We show these final adjusted log P values from Kelly et al. [46] in 

Table 1, and note that they differ from the experimental log D values by a significant amount, 

ranging from 1.5 to 2.5 units. In addition, the errors between the log P values used by Kelly et al. 

[46] and the experimental log D values are not consistent with variations in chain length for the 

PFCAs, highlighting the errors in their arbitrary adjustment of out-of-date computational 

estimates by a uniform assumed error.

The availability of this straight chain series of PFCA experimental log D and estimated log P/D 

values with differing perfluoroalkyl chain lengths allows for the calculation of log P/D 
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fragmental contributions of a -CF2- group (ƒ(CF2)), as well as the associated Gibbs free energies 

for partitioning into octanol from water (ΔGow=-RTlnP or ΔGow=-RTlnD) due to the electrostatic 

contributions of the carboxylate head group (ΔelectrostaticGow) and the hydrophobic character of the 

perfluoroalkyl chain (ΔhydrophobicGow).[47] The ƒ(CF2) values can be obtained via linear regression of 

log P/D values against the perfluoroalkyl chain length (for ƒ(CF2) units of log P/D), and via 

linear regression of ΔGow against the perfluoroalkyl chain length (for ƒ(CF2) units of kJ mol-1). In 

a plot of ΔGow against the perfluoroalkyl chain length, the y-intercept is defined as the 

ΔelectrostaticGow value, and the difference between the value of ΔGow for a particular compound and 

ΔelectrostaticGow is defined as ΔhydrophobicGow. This relationship among the variables is shown in Figure 

3 for the experimental PFCA log D dataset, as well as for the 2009 SPARC log P and log D 

estimates. Where log P values are used in such an analysis, the derived ƒ(CF2), ΔelectrostaticGow, and 

ΔhydrophobicGow values obtained are strictly for the molecular species, whereas when log D values 

are employed, the resulting ƒ(CF2), ΔelectrostaticGow, and ΔhydrophobicGow values represent a composite 

of contributions for the molecular and ionized species in each phase. At near neutral pH values 

where PFSAs and PFCAs are effectively completely dissociated, the ƒ(CF2), ΔelectrostaticGow, and 

ΔhydrophobicGow values obtained from log D measurements and/or estimates are primarily 

representing contributions from the ionized species.

In such an analysis, it is commonly assumed that ΔelectrostaticGow is constant with chain length, such 

that the variation in ΔGow with changing perfluoroalkyl chain length is due solely to variation in 

ΔhydrophobicGow. We cannot validate this assumption, although as we have previously stressed,[11, 28, 

42-44] the known substantial increase in pKa (a potential proxy for electrostatic character of an 
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acidic head group) with increasing PFCA chain length (pKa values increasing by up to about 3 

units in moving from trifluoroacetic acid to n-PFOA) [41, 42] suggests that ΔelectrostaticGow values may 

not be constant with chain length for these contaminants under some partitioning conditions. 

Unfortunately, the lack of experimental data and computational issues in accurately modeling the 

acidity of PFCAs and PFSAs [42-44, 48] precludes any reliable conclusions as to the perfluoroalkyl 

chain length dependence of ΔelectrostaticGow values for these two compound classes. With these 

possible issues in mind, we note that strong linear correlations (r>0.99) were observed between 

the experimental and estimated log P/D values for all software programs, although slight 

curvature in the relationship was evident for some estimates. Most importantly, the experimental 

dataset does not exhibit curvature in the relationship between log D and perfluoroalkyl chain 

length of 3 through 9 carbons, strongly suggesting that there is negligible experimental variation 

in ΔelectrostaticGow with changing n-perfluoroalkyl chain length throughout this homologue range, 

and that the ionized species contributions towards ƒ(CF2), ΔelectrostaticGow, and ΔhydrophobicGow values 

are likely dominant at the experimental pH range of 6 to 7. The lack of any changes in the 

electrostatic contribution towards octanol-water partitioning as a function of perfluoroalkyl chain 

length may also be supported by the log D finding by Jing et al. [30] for the straight chain 8:2 

fluorotelomer carboxylic acid (i.e., n-PFNA with the two α-fluorines next to the carboxylate head 

group replaced with hydrogen atoms). The 400-fold lower log D value obtained by simply 

replacing the two α-fluorines with α-hydrogens was rationalized by these authors as due to a 

corresponding loss of high inductive electron withdrawing power of the α-fluorines, thereby 

increasing the ionic character of the head group and disfavoring partitioning into the less polar 

octanol solvent. 
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The experimental and estimated ƒ(CF2), ΔelectrostaticGow, and ΔhydrophobicGow values for the PFCAs are 

given in Table 2. There is a range in the agreement between the experimental ƒ(CF2), 

ΔelectrostaticGow, and ΔhydrophobicGow values, although several methods accurately estimate one or more 

of these properties. The average signed and unsigned errors between the experimental ƒ(CF2) 

value of -3.4 kJ mol-1 and the various values derived from the log P/D based estimation methods 

are 17% and 25%, respectively. Excellent agreement was obtained with the AC_logP, miLogP, 

MLOGP, CLogP (KLOP), CLogP (PHYS), CLogD (KLOP), and CLogD (PHYS) methods, 

having respective ƒ(CF2) errors of only 6%, 9%, -9%, 10%, 6%, -6%, and -8%. The ƒ(CF2) using 

2009 data has improved for the CLogP based methods (average ƒ(CF2) value of -4.0 kJ mol-1 and 

average error of 20% for the VG, KLOP, and PHYS modules), compared to the larger error 

(59%) reported by Ping et al. using the out-of-date 2006 CLogP data from Arp et al. The SPARC 

ƒ(CF2) error has increased to 51% using the current 2009 data compared to a 38% error in the 

2006 data. No change in the KOWWIN data has occurred between 2006 and 2009. The 

calculation method for ΔhydrophobicGow yields an equivalent error for each method to that given for 

the ƒ(CF2) value.

Greater error is evident in the ΔelectrostaticGow estimates, with average signed and unsigned errors of 

-41% and 107% across all software programs. All methods had absolute ΔelectrostaticGow errors 

>75% with the exception of the SPARC log D method, which provided an accurate ΔelectrostaticGow 

estimate within -12% of the experimental value. The ADME/Tox Web log D and CLogD 

methods significantly overestimated the ΔelectrostaticGow value by up to 156%, whereas all log P 
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methods significantly underestimated the ΔelectrostaticGow value by up to -164%. These error 

directions are consistent with the log P methods assuming that only the molecular species is 

dissolving in the octanol phase, which would accrue a lower free energy cost compared to the log 

D methods that assume the PFCAs are effectively dissociated, and therefore, that the ionized 

species are the dominant solutes in the octanol phase. The SPARC program only requires 

reparametrization of the ƒ(CF2) value to be able to achieve accurate log D predictions for PFCAs, 

whereas the AC_logP, miLogP, MLOGP, CLogP (KLOP), CLogP (PHYS), CLogD (KLOP), and 

CLogD (PHYS) methods will only require reparametrization of the ΔelectrostaticGow value for 

carboxylate ions to achieve accurate estimates. All other software programs will require 

reparametrization of both the ƒ(CF2) and ΔelectrostaticGow estimation algorithms in order to achieve 

reliable log D estimates for PFCAs. Here we again stress that, based on first principles, log P 

programs should not be used to predict octanol-water partitioning constants for ionizable species 

such as PFCAs and PFSAs, particularly if a suitable log D estimation program is available. 

However, given the widespread use of these log P programs on complex molecules of 

environmental, pharmaceutical, and industrial utility, it may be more desirable to adjust an 

existing log P estimation program to yield reliable log D estimates via manipulation of ƒ(CF2) 

and ΔelectrostaticGow factors, rather than develop or move to an entirely new log D program.

The effective equivalence of the experimental log D values for the straight chain eight 

perfluorocarbon carboxylate (i.e., n-PFNA) and sulfonate (i.e., n-PFOS) suggests that the 

experimental ΔelectrostaticGow values for perfluoroalkyl carboxylic and sulfonic acids are equivalent, 

as the hydrophobic contributions from the n-perfluorooctane chains on both compounds may be 
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equal. Caution must be exercised among researchers when comparing perfluoroalkyl chains of 

equivalent length. Although named n-perfluorooctanoic acid (n-PFOA), this compound only has 

seven perfluoroalkyl carbons in its chain, with the ‘other’ carbon being counted in the IUPAC 

naming system coming from the carboxylate head group. Thus, n-PFOA and n-PFOS do not have 

equivalent perfluoroalkyl chain lengths. While such issues appear trivial, we note that Kelly et al. 

[46] made this error in their work (see Table S3 in ref. [46], whereby all PFCAs from n-PFHpA 

through to the n-perfluorotetradecanoic acid [n-PFTeA] have perfluoroalkyl chain lengths that 

are erroneously high by one carbon), leading to an incorrect relationship (both conceptual and 

quantitative) between perfluoroalkyl chain length and the wet weight trophic magnification 

factor (TMFww) for PFCAs in Figure S7 from ref. [46]. If Kelly et al. [46] had used the correct 

perfluoroalkyl chain length values for PFCAs, they would have found that the TMFww values for 

n-PFNA, n-PFOS, and n-perfluorooctane sulfonamide (n-PFOSA) (each of which has eight 

perfluoroalkyl carbons in the chain) were close in value to each other, suggesting that the 

hydrophobic character of the equivalent perfluoroalkyl chains for these three compounds is 

playing a major role in the trophic magnification behavior, and that the remaining smaller 

differences in the TMFww values are due to variation in the head groups (although we stress that 

any trophic magnification insights regarding n-PFOSA relative to n-PFNA and n-PFOS are 

greatly complicated, potentially intractably, by the fact that n-PFOSA can likely be metabolized 

in vivo to n-PFOS).

We also note that differences in the electron withdrawing nature of the sulfonate and carboxylate 

groups (sulfonic acids are much stronger acids, by up to 10 pKa units or greater, than carboxylic 
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acids) [42, 43] may differentially alter the hydrophobic nature of the perfluoroalkyl chains for both 

the molecular and ionized species, leading to the experimental result whereby ΔGow is equal for 

both compounds, but the composite ΔelectrostaticGow and ΔhydrophobicGow values may be equally different 

with opposite magnitudes that offset each other to yield equivalent ΔGow values. If the 

ΔelectrostaticGow and ΔhydrophobicGow values for a PFCA and PFSA with the same perfluoroalkyl chain 

length are equal, however, this suggests that the log D values of PFCAs and PFSAs with the 

same chain length and branching patterns may also be effectively equal.

Even though Jing et al. [30] only determined the log D value for a single PFSA congener (n-

PFOS), support for this log D equivalence hypothesis is also available from the organic carbon 

normalized sediment partitioning coefficient (Koc) data of Higgins and Luthy.[17, 18] In their 

sediment dataset,[17] the authors found very close Koc values for n-PFOS and n-PFNA (2.57±0.13 

and 2.39±0.09, respectively) and for n-perfluorodecane sulfonic acid (n-PFDS) and n-

perfluoroundecane carboxylic acid (n-PFUnA) (3.53±0.12 and 3.30±0.11), as well as an 

estimated ƒ(CF2) range of 0.5 to 0.6 that agrees well with the 0.61 value from Jing et al.[30] To 

better understand the possible close octanol-water partitioning relationship between the log D 

values of PFCAs and PFSAs at near neutral pH values where all compounds are expected to be 

dominantly in their ionized forms, additional experimental work is required using straight chain 

PFSAs with similar chain lengths to that examined by Jing et al.,[30] as well as on branched 

PFCAs and PFSAs to see if this apparent close ΔGow relationship between straight chain 

members of these two classes of perfluorinated compounds also extends universally across all 

perfluoroalkyl chain configurations. For biological systems, the PFCAs and PFSA also behave as 
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proteinophilic contaminants, and bioconcentration factor (BCF) studies have generally shown 

that for an equivalent perfluoroalkyl chain length, PFSAs have higher BCF values than PFCAs.

[26, 49-51] As a result, it appears that PFSAs may have more favorable (i.e., more negative) 

ΔelectrostaticGow values for proteinophilic partitioning than do the PFCAs, even though these two 

classes appear to have nearly equivalent ΔelectrostaticGow values for lipophilic partitioning. While the 

ΔhydrophobicGow values will likely change for both PFCAs and PFSAs in moving from a lipophilic to 

a proteinophilic environment, the equivalence of the perfluoroalkyl moieties from which the 

hydrophobic influence is derived will mean that the relative ΔhydrophobicGow values will likely 

remain equivalent in the new solvent system, and any net changes in the overall partitioning 

behavior will be driven primarily from differential changes in the ΔelectrostaticGow values at the 

respective head groups between these two classes.

14

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.3
28

2.
1 

: P
os

te
d 

25
 M

ay
 2

00
9



FIGURE CAPTIONS

Figure 1. General structures of the compounds under study.

Figure 2. Structures of the PFCA and PFSA congeners for which experimental Kow values are 

available.

Figure 3. Comparison between available experimental log D values for the C3 (n-PFBA) through 

C9 (n-PFDA) PFCA congeners (circles) and corresponding predicted values using the current 

versions of the SPARC log P (squares) and SPARC log D (triangles) software programs. Best fit 

linear regressions extrapolated negatively to the y-axis intercept are shown for each dataset. A 

conceptual calculation of ΔelectrostaticGow and ΔhydrophobicGow values for the experimental log D dataset 

is also shown.
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Table 1. Comparison of experimental and predicted log P/D values using various software programs for the straight chain C3 (n-
PFBA) through C9 (n-PFDA) perfluoroalkyl carboxylic acids and n-perfluorooctane sulfonic acid (n-PFOS). Experimental log D 
errors are those given in ref. [30]. Previous log P estimates from Arp et al. [12] as cited by Jing et al. [30] and those provided by Kelly et al. 
[46] are also given for comparison.

n-PFBA n-PFPA n-PFHxA n-PFHpA n-PFOA n-PFNA n-PFDA n-PFOS
Perfluoroalkyl chain length 3 4 5 6 7 8 9 8
Experimental log Da -0.52 0.09 0.70±0.10 1.31 1.92 2.57±0.07 2.90±0.10 2.45±0.08
Kelly et al. [46] n/a n/a n/a 2.80 3.60 4.50 5.40 4.30
SPARC 2009 log P 2.91 3.69 4.50 5.36 6.26 7.23 8.26 4.67
SPARC 2006 log Pb n/a n/a 3.12 3.82 4.59 5.45 6.38 5.28
SPARC log DpH6-7 0.86 1.69 2.53 3.41 4.33 5.32 6.36 3.41
ALOGPS 2.57 2.93 3.37 3.93 4.29 4.55 4.85 4.24
AC_logP 1.75 2.37 2.99 3.61 4.23 4.85 5.47 3.46
AB/logP 1.72 3.63 3.88 4.52 5.17 5.81 6.45 5.00
miLogP 1.76 2.40 3.05 3.69 4.33 4.97 5.61 2.79
ALOGP 1.84 2.33 2.83 3.32 3.81 4.30 4.79 4.16
MLOGP 1.90 2.53 3.11 3.66 4.17 4.66 5.12 3.88
KOWWIN 2009 log P 2.43 3.40 4.37 5.33 6.30 7.27 8.23 6.28
KOWWIN 2006 log Pb n/a n/a 4.37 5.33 6.30 7.27 8.23 6.28
XLOGP2 1.70 2.44 3.18 3.93 4.67 5.42 6.16 4.89
XLOGP3 2.25 2.92 3.59 4.26 4.93 5.60 6.28 5.02
ADME/Tox WEB log DpH6 -2.36 -0.46 -0.21 1.07 1.70 2.34 2.98 0.90
ADME/Tox WEB log DpH7 -2.36 -0.46 -0.21 0.55 1.20 1.83 2.47 0.90
ClogP (VG) 2.61 3.45 4.28 5.12 5.95 6.78 7.62 5.98
ClogP (KLOP) 2.33 2.98 3.62 4.27 4.91 5.56 6.20 5.62
ClogP (PHYS) 1.98 2.61 3.23 3.85 4.47 5.10 5.72 4.69
ClogP 2006b n/a n/a 3.15 3.39 3.62 3.86 4.09 2.28
ClogD (VG) -3.26 -2.94 -2.40 -1.60 -0.77 0.06 0.90 3.71
ClogD (KLOP) -3.50 -3.31 -2.89 -2.27 -1.62 -0.98 -0.33 3.14
ClogD (PHYS) -3.83 -3.63 -3.20 -2.60 -1.98 -1.35 -0.73 2.30

a from ref. [30]. b from ref. [12].
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Table 2. Experimental and estimated log P/D fragmental contributions of a -CF2- group (ƒ(CF2)) and the Gibbs free energies for the 
electrostatic (ΔelectrostaticG) and hydrophobic (ΔhydrophobicG) contributions towards octanol-water partitioning using various software 
programs for the straight chain C3 (n-PFBA) through C9 (n-PFDA) perfluoroalkyl carboxylic acids.

ΔhydrophobicG
(kJ mol-1)

ƒ(CF2)
(log units)

ƒ(CF2) 
(kJ mol-1)

ΔelectrostaticG 
(kJ mol-1) n-PFBA n-PFPA n-PFHxA n-PFHpA n-PFOA n-PFNA n-PFDA

Experimental log Da 0.61 -3.4±0.1 12.8±0.6 -10.1 -13.4 -16.8 -20.1 -23.5 -26.8 -30.2
SPARC 2009 log P 0.89±0.02 -5.1±0.1 -0.7±0.7 -15.9 -20.3 -25.0 -29.9 -35.0 -40.6 -46.4
SPARC 2006 log Pb 0.82±0.03 -4.7±0.1 5.9 n/a n/a -23.7 -27.7 -32.1 -37.0 -42.3
SPARC log DpH7 0.91±0.02 -5.2±0.1 11.3±0.6 -16.2 -20.9 -25.7 -30.7 -36.0 -41.6 -47.6
ALOGPS 0.39±0.02 -2.2±0.1 -8.1±0.7 -6.5 -8.6 -11.1 -14.3 -16.3 -17.8 -19.5
AC_logP 0.62±0.00 -3.5±0.0 0.6±0.0 -10.6 -14.2 -17.7 -21.2 -24.8 -28.3 -31.8
AB/logP 0.71±0.07 -4.0±0.4 -1.2±2.7 -8.7 -19.6 -21.0 -24.6 -28.4 -32.0 -35.7
miLogP 0.64±0.00 -3.7±0.0 0.9±0.0 -11.0 -14.6 -18.3 -22.0 -25.6 -29.3 -33.0
ALOGP 0.49±0.00 -2.8±0.0 -2.1±0.0 -8.4 -11.2 -14.1 -16.9 -19.7 -22.5 -25.2
MLOGP 0.54±0.01 -3.1±0.1 -2.2±0.5 -8.7 -12.3 -15.6 -18.7 -21.6 -24.4 -27.0
KOWWIN 2009 log P 0.97±0.00 -5.5±0.0 2.7±0.0 -16.5 -22.1 -27.6 -33.1 -38.6 -44.2 -49.6
KOWWIN 2006 log Pb 0.97±0.00 -5.5±0.0 2.7±0.0 -16.5 -22.1 -27.6 -33.1 -38.6 -44.2 -49.6
XLOGP2 0.74±0.00 -4.2±0.0 3.1±0.0 -12.8 -17.0 -21.2 -25.5 -29.7 -34.0 -38.2
XLOGP3 0.67±0.00 -3.8±0.0 -1.3±0.0 -11.5 -15.3 -19.1 -23.0 -26.8 -30.6 -34.5
ADME/Tox WEB log DpH6 0.84±0.07 -4.8±0.4 24.7±2.7 -11.2 -22.0 -23.5 -30.8 -34.4 -38.0 -41.7
ADME/Tox WEB log DpH7 0.73±0.07 -4.2±0.4 22.6±2.6 -9.1 -20.0 -21.4 -25.7 -29.4 -33.0 -36.7
CLogP (VG) 0.83±0.00 -4.8±0.0 -0.6±0.0 -14.3 -19.1 -23.8 -28.6 -33.3 -38.1 -42.9
CLogP (KLOP) 0.65±0.00 -3.7±0.0 -2.3±0.0 -11.0 -14.7 -18.4 -22.1 -25.8 -29.5 -33.1
CLogP (PHYS) 0.62±0.00 -3.6±0.0 -0.7±0.0 -10.6 -14.2 -17.8 -21.3 -24.9 -28.5 -32.0
CLogP 2006b 0.24±0.01 -1.4±0.0 -11.3 n/a n/a -6.7 -8.1 -9.4 -10.7 -12.1
CLogD (VG) 0.72±0.04 -4.1±0.2 32.8±1.5 -14.2 -16.0 -19.1 -23.6 -28.4 -33.1 -37.9
CLogD (KLOP) 0.55±0.04 -3.1±0.2 31.0±1.3 -11.1 -12.1 -14.5 -18.1 -21.8 -25.4 -29.1
CLogD (PHYS) 0.54±0.03 -3.1±0.2 32.6±1.2 -10.7 -11.8 -14.3 -17.7 -21.3 -24.9 -28.4

a from ref. [30]. b from ref. [12].
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Fig. 1
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Fig. 2
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Fig. 3
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