
University Degree in Computer Science and Engineering

2018-2019

Bachelor Thesis

“Characterization of the topology of the
Bitcoin network”

Guillermo Escobero Hernández

Marcelo Bagnulo Braun

Leganés, 2019

This work is licensed under Creative Commons Attribution – Non Commercial –

Non Derivatives

SUMMARY

Cryptocurrencies have shown great potential over the last years. They introduced a

revolutionary concept: the no need for banks or third-party institutions to validate the

payments. Transactions are public and known by all the users connected to a distributed

network, so anyone can check the historical data. Having knowledge about different net-

work parameters and nodes interaction can help to improve the protocol and to find vul-

nerabilities. Bitcoin was the pioneer and is nowadays the most used digital coin. This

project proposes a method to explore the reachable nodes of the main Bitcoin network.

The script connects to a set of initial nodes and requests their known peers, in order to

connect to them and request their list of known peers also. Over 198,000 unique IP ad-

dresses were observed, although only 7500 nodes could be reached. The analysis of the

data shows statistics of parameters of the nodes, like version used, geographic location or

services implemented, and try to use them to give a general overview of the interaction

between nodes.

Keywords: Peer-to-peer computing, Monitoring, Online Banking, Network Topology

iii

DEDICATION

To my parents, Fabiola and Juan Carlos, who always supported me in every decision

I made.

To LaVendicionDevs, my friends from university.

v

CONTENTS

1. INTRODUCTION. 1

1.1. Motivation . 1

1.2. Document structure . 2

2. STATE OF THE ART . 3

2.1. Electronic cash and transactions . 3

2.2. Bitcoin . 3

2.2.1. Blockchain . 4

2.2.2. Proof-of-Work and Consensus system . 4

2.2.3. Anonymity . 5

2.2.4. Bitcoin network . 5

2.2.5. Peer discovery . 7

2.2.6. Transactions propagation . 8

2.2.7. Block propagation . 9

2.2.8. Synchronizing blockchains . 9

2.3. Related work . 10

2.3.1. AddressProbe and Coinscope . 10

2.3.2. TxProbe . 12

2.3.3. Timing analysis of the Bitcoin network . 13

2.3.4. Bitnodes.earn.com crawler . 14

3. DESCRIPTION OF THE SOLUTION . 15

3.1. Goal . 15

3.2. Main methodology . 15

3.3. Detailed design . 16

vii

4. DATA OBTAINED AND RESULTS . 19

5. REGULATORY FRAMEWORK . 29

5.1. Bitcoin regulation . 29

5.2. Ethical matters . 29

5.3. Software licenses . 30

6. SOCIO-ECONOMIC ENVIRONMENT . 31

6.1. Planning. 31

6.2. Budget. 32

6.2.1. Hardware . 32

6.2.2. Software. 33

6.2.3. Consumables . 33

6.2.4. Human resources . 34

6.2.5. Indirect costs . 34

6.2.6. Total costs. 34

6.3. Socio-economic impact . 35

7. CONCLUSIONS AND FUTURE LINES OF WORK 37

7.1. Final conclusions . 37

7.2. Future lines of work . 37

BIBLIOGRAPHY. 39

viii

LIST OF FIGURES

1.1 Comparison of Bitcoin interest [1] with market price in USD [2] 1

2.1 Blockchain diagram . 4

2.2 Protocol used to broadcast new objects in the Bitcoin network (Standard

relaying protocol) . 6

2.3 The initial handshake between peers [5] 8

3.1 Detail of the technique . 16

4.1 Length of the ADDR messages received 20

4.2 Number of occurrences of each peer address 24

4.3 Heat map of the Bitcoin network . 26

4.4 TOR network structure. Diagram originally contributed by the Electronic

Frontier Foundations and under a Creative Commons Attribution 3.0 United

States License. 27

6.1 Duration of the main tasks of the project 31

6.2 Gantt chart of the main tasks of the project 32

x

LIST OF TABLES

2.1 Connection Inference rules for AddressProbe 11

3.1 VERSION message . 17

3.2 ADDR message . 17

3.3 NET_ADDR structure . 18

4.1 Protocol version . 21

4.2 User agents . 22

4.3 Supported services . 23

4.4 Ports used . 24

4.5 Block height example data . 25

6.1 Hardware costs . 32

6.2 Software costs . 33

6.3 Consumables costs . 33

6.4 Human resources . 34

6.5 Indirect costs . 34

6.6 Total costs . 34

xii

1. INTRODUCTION

Cryptocurrencies are considered one of the most revolutionary after the Internet in-

vention. In a globalized world, most of the everyday life aspects have suffered a digital

transformation, and payments are not an exception.

Bitcoin was the first and is the most famous cryptocurrency nowadays. Its popularity

has grown enormously in the last four years, showing great potential as a new digital

currency and attracting the interest of people and governments (Fig.1.1).

Fig. 1.1. Comparison of Bitcoin interest [1] with market price in USD [2]

1.1. Motivation

Bitcoin operates through a decentralized network to make all the transactions between

users. All the data in the network is public and known by every node.

This project gives a top view of the network and extracts conclusions from the data

obtained from all the reachable network participants. To obtain this data, an application

is implemented to connect to the Bitcoin network and explore it.

On the one hand, monitoring a wide part of the network can give the contributors and

maintainers the ability to detect anomalies and possible vulnerabilities of the network,

helping to improve the protocol.

On the other hand, attackers can find weak points of the network, like highly connected

nodes, that could attack to take control of them and perform a denial-of-service attack or

1

51% attack. This attack is based on controlling more than half of the nodes of the network

in order to infect the network with tampered transactions.

1.2. Document structure

This document is divided in seven chapters:

• Introduction: this chapter. Contains the motivation for developing this project and

the summary of the project documentation.

• State of the art: in this chapter background about electronic cash, cryptocurrencies

and Bitcoin protocol is given. This will help the reader to understand the different

related works discussed at the end of this chapter.

• Description of the solution: this chapter explains the methodology used and the

design of the tool implemented.

• Data obtained and results: this chapter contains the experiment details and dis-

cusses all the obtained data.

• Regulatory framework: the current Bitcoin regulations applicable to this project

are commented. This chapter also contains all the necessary software licenses and

copyright notices.

• Socio-economic environment: first, the general planning and budgeting of the project

are explained here. Then, the possible socio-economic impact of the project is dis-

cussed.

• Conclusions and future lines of work: this chapter contains the main conclusions of

the project and some possible future lines of work.

2

2. STATE OF THE ART

2.1. Electronic cash and transactions

Since decades ago, electronic cash protocols have been widely used [3]. These proto-

cols use digital currency signed by a trusted bank, and users can send this money directly

to another user without exchanging card or account numbers. Security is ensured by pub-

lic key digital signature schemes, but payee needed to verify the bank database of spent

money to avoid double-spent coins.

Double spending is one of the biggest problems in an electronic cash system. When

using conventional cash, this problem does not exist, as it is physical. But when using

digital transactions, a user could easily copy a single transaction several times, paying

with money already spent. Double spending is traditionally avoided making all the users

trust in the validation of a third-party institution, like a bank.

However, this adds a point of failure to the system. This institution has to keep a

record of all the transactions and sensible information of all users. An attack or even a

human error could have important consequences. Also, if the servers or the connection

fail, the service will be unavailable.

2.2. Bitcoin

Bitcoin is born as a peer-to-peer version of electronic cash. Created by Satoshi

Nakamoto (pseudonym) in 2008, its first appearance was on a cryptographic mailing list.

This message contained a white paper [4] describing a new concept: a purely peer-to-peer

network to make payments that solved the problem of the previous proposed electronic

cash models, the need of a trusted third-party institution to validate the transaction.

Nowadays, the Bitcoin project is called "Bitcoin Core" and is distributed under the

MIT license. It is maintained by the Bitcoin Core Team, but anyone can contribute to its

official repository in GitHub1.

1https://github.com/bitcoin/bitcoin

3

Fig. 2.1. Blockchain diagram

2.2.1. Blockchain

Bitcoin solves this problem without the need of a third-party institution. The solution is

called “Blockchain”, a decentralized record of transactions based on cryptography proof

instead of trust. The Blockchain is basically a chain of blocks of signed transactions. All

transactions are public. This way, the payee can check all the blockchain back to the first

transaction to check the validity of the transaction received.

To keep track of the order of transactions, Bitcoin uses timestamps. Data contained

in each block of transactions is hashed with the current timestamp. This proves that the

data in the block existed at that time. This hash also includes the previous block hash

(chaining the blocks) (Figure 2.1).

The current size of the Bitcoin blockchain is about 223 GB 2.

2.2.2. Proof-of-Work and Consensus system

But, as the Bitcoin network has to be peer-to-peer and does not have a centralized

server, it is needed a proof-of-work system. This works as a system of consensus between

the nodes to agree on the order of transactions. Each block includes a “nonce”, a number

that will be incremented until the hash of it with the rest of the data of the block begins

with specific a number of zeros. This number of leading zeros is known as “difficulty of

2https://www.blockchain.com/es/charts/blocks-size

4

the block”. It is variable as the protocol is designed to maintain a nearly constant release

of new blocks per hour. This mathematical problem requires a lot of CPU effort, and the

first node that founds a valid nonce gets a reward in bitcoins.

This difficult task will also avoid dishonest modifications of the blocks. If a malicious

user tries to modify a block, he will need to redo the proof-of-work of that block and the

following ones. The attacker could finish the hashing of all the blocks, but the network

will always choose the largest chain. So, if more of the half of the total nodes are honest,

the honest chain will grow faster, and the attacker’s chain will be rejected. Then, he could

be successful only if he controls a 51% or more of the total CPU power.

Providing that he can make more profit validating blocks honestly, this works as an in-

centive to not to try to attack the network, but to put an effort in validating and maintaining

the network up. Making profit of these validations is commonly known as “mining”.

2.2.3. Anonymity

Another of the advantages of not relying on a third-party institution is privacy. Users

connected to the Bitcoin network are anonymous. Only the public key of the payee is

needed to make payments, and real information of the user is not linked to transactions or

stored in the network.

2.2.4. Bitcoin network

Bitcoin network has the structure of a peer-to-peer (decentralized) network. Makes use

of the TCP/IP protocol over the port 8333 by default.

Protocol messages

• Version messages (VERSION): message containing the basic information of a node.

When a node initiates a connection to a new peer, they exchange version messages

(Fig.2.3).

• Address messages (ADDR): message containing a list of peers known by the node,

with their IP addresses, ports, running services, and a timestamp.

5

Fig. 2.2. Protocol used to broadcast new objects in the Bitcoin network (Standard relaying proto-

col)

• Get address messages (GETADDR): message used request the list of active known

peers of a node. In response, the node will send a ADDR message.

• Inventory messages (INV): when a node creates or receives a new object (i.e. block

or transaction), it broadcasts an inventory message to its neighbors that contains the

hash of the new object(s). It can contain a maximum of 50,000 entries.

• Get data messages (GETDATA): nodes use this message to request a specific object,

usually in response to an INV message. When a node receives an INV, it checks

what objects are new, and request them using the hashes received and sending them

to the peer embedded in a GETDATA message (Figure 2.2).

• Transaction messages (TX): it contains all the information about a certain bitcoin

transaction. Nodes send this as a reply to a GETDATA message.

• Block messages (BLOCK): it contains all the information about a certain bitcoin

block. Nodes send this as a reply to a GETDATA message.

Nodes classification

Bitcoin network is very width and not all the users connected to it implement the same

services. Of course, all the users need to connect to the peer-to-peer network, but in

order to make the clients lighter and faster, the developers limit them just to use the

needed operations. This permits to use bitcoins to the less powerful and battery-limited

devices like smartphones. For example, only a few of the total nodes download and

6

maintain the full blockchain, but Bitcoin protocol implements solutions to validate blocks

and transactions without the need of keeping the whole blockchain in memory.

However, other nodes can also verify transactions without a full copy of the blockchain.

They are called SPV nodes (simplified payment verification).

The bitcoin community has created different types of nodes, based on the needs and

interests of each user, for example creating nodes with special network protocol for cre-

ating mining pools or connecting to a special subnet.

The main four components of a node are wallet, miner function, blockchain and net-

work [5]:

• Wallet: a wallet functionality is needed if the user wants to store and make payments

with her Bitcoins.

• Miner: this is only needed if the node is intended to make validations and block

mining. Also, it consumes a high amount of resources.

• Blockchain: nodes can store the entire blockchain, the last n blocks mined, or even

no blockchain.

• Network: the node can be configured to connect to the main Bitcoin network or can

implement custom network protocols, for example, to support a mining pool.

2.2.5. Peer discovery

When a new node is connected to the network, the first operation is to find peers to

connect.

If the node already knows at least one peer, it will connect to this peer establishing

a TCP connection. After this, nodes will exchange version messages containing basic

information to make sure they are compatible (Figure 2.3).

If the node does not know any peer yet, it will query DNS using “DNS seeds”, which

are usually hardcoded in the bitcoin clients. These servers provide a list of IP addresses

of bitcoin nodes.

Now that our node is connected to one or more peers (and the “version handshake” is

7

Fig. 2.3. The initial handshake between peers [5]

done), it will start to propagate its address and to discover new peers. It will send its IP

address to its new peers, and these will forward the message to their neighbors. Another

option is to ask its neighbors for a list of their peers and send the address message directly

to them.

After all these connections, our node has different paths in the network. However, this

peer discovering process must not be stopped, as nodes come and go, it will lose old peers

and make new connections. Nodes send messages to check if the connection stills alive.

If the peer does not reply for more than 90 minutes, it is assumed to be disconnected.

This “peer discovery” process also makes the network grow and shrink without any

central control and ignore idle peers and network problems.

2.2.6. Transactions propagation

When a client wants to create a new transaction, these are the steps done:

• The payer creates a new transaction and signs it with its private key of the wallet

currently used. This wallet contains a pair of keys (public key and private key) and

a set of unspent transactions (bitcoins received but not spent yet).

• The payer broadcasts the transaction to its peers.

• The nodes that receive the transaction, will check if its correct (the coins are not

double-spent, the transaction has no errors and the signature is correct). If it is

correct, then they will also broadcast it. If not, they ignore the new transaction.

8

• This unconfirmed transaction will be kept in memory (mempool) and will be there

until included in a block and mined. When the block containing the transaction is

mined, is said that the transaction has one confirmation. Each block added to the

chain after it will give an additional confirmation to the transaction.

• This process is expected to last about ten minutes. The protocol keeps a historical

record of the average mining time of the blocks and increases or decreases the

difficulty of the hash problem to keep the mining time around ten minutes.

• Once a miner mines the block, it broadcasts the block to its peers. Peers only accept

the node if all transactions included are valid and not already spent. If it is correct,

they will start working in the next block with other not confirmed transactions.

2.2.7. Block propagation

According to the Bitcoin documentation [6], when a node mines a new block it can

propagate it in three different ways:

Unsolicited Block Push. The miner directly sends a BLOCK message to its peers.

Standard Block Relay. This is the default method. The node follows the standard

relaying protocol already discussed (Figure 2.2).

Direct Headers Announcement. The sender can send immediately a HEADERS mes-

sage containing the header of the new block without any request of its peers. The node

will use this method with the peers that during the initial version handshake asked it with

a SENDHEADERS message.

2.2.8. Synchronizing blockchains

Every node blockchain starts with the same block, the genesis block. This block is

embedded in the source code of every client. Once a node connects to the bitcoin network,

for the first time or after going offline a few minutes, it will compare its local blockchain

with the copies of its peers.

The synchronization starts with the version message previously explained. This mes-

sage contains a field called “BestHeight” that indicates the current height of the local

9

blockchain of the node. This refers to the number of blocks (or length) of the local chain.

This way, when the outdated node notices that its peer has a different number of blocks,

they will exchange the hash of their local top blocks.

Then, the node with the larger blockchain will notice that the received hash corre-

sponds to a block in its blockchain, but not to the top block. This node will send to its

peer a list with the hashes of the missing blocks.

After that, the outdated node starts asking for the content of the missing blocks from

all its connected peers. This is done in order to not to overwhelm a single peer with a lot

of requests.

2.3. Related work

There are several works focused on the structure and behavior of the Bitcoin network.

The literature about this topic is wide and, due to the rapid development of Bitcoin, some

methods are useless in the latest versions of the protocol.

Some of the main techniques developed to infer data about the nodes and the possible

edges between them are AddressProbe[7], TxProbe[8] or time-based analysis[9].

2.3.1. AddressProbe and Coinscope

In 2015, a group of researchers of the University of Maryland developed a technique

to discover links in the Bitcoin network [7]. The technique is called AddressProbe and is

based on the way the Bitcoin clients keep track of the addresses of known peers.

Each node has a local database (addrMan) containing the addresses and its times-

tamps of known peers, currently connected or announced by other peers by ADDR mes-

sages. Bitcoin protocol updates these timestamps depending on the connection nature:

for outgoing connections, the timestamp associated with that peer is updated for every

message received. For incoming connections, the timestamp is fixed to the time when

the connection was established. The rest of the peers that are known by ADDR messages

received, the node keeps the new addresses and waits two hours before adding them to

the addrMan database. However, if the address received is in the database, the timestamp

will be updated with the new one if it is more recent.

10

B’s ts of A

A’s ts of B ts≥2hr Unique & ts<2hr Not unique & ts<2hr

ts≥2hr ∄ edge ∃ edge B→ A Unclear A↛ B

Unique and ts<2hr ∃ edge A→ B ∃ edge A↔ B ∃ edge A→ B

Not unique and ts<2hr Unclear B↛ A ∃ edge B→ A Unclear

Table 2.1. CONNECTION INFERENCE RULES FOR

ADDRESSPROBE

GETADDR messages can be sent to the maximum possible number of nodes in the

network and the ADDR messages received can be analyzed, comparing the timestamps to

infer the possible edges of each node (Table 2.1).

The authors implemented this method and develop a platform called Coinscope, that

isolates the functionalities of the Bitcoin protocol that AddressProbe needs. These are fo-

cused on creating and maintaining long-lived connections, sending GETADDR messages

in an efficient way and listening only to relevant messages. Authors declare that using

Coinscope, they were able to scan the whole network in a matter of minutes.

After the experiment, the authors concluded:

• Most of the nodes have degree between 8 and 12. However, some persistent nodes

reach 10000 connections. The majority of them are mining pools and measurement

and research nodes.

• Bitcoin network does not behave like a traditional random graph.

• The broadcast topology conceals influential nodes that represent disproportionate

amounts of mining power (2% of the nodes account for 75% of the total mining

power).

After the release of this work, the contributors of BitcoinCore changed the way the

Bitcoin clients updates the timestamps (version 0.10.1), making AddressProbe method

useless [10].

11

2.3.2. TxProbe

TxProbe [8] is a technique to infer the topology of the public Bitcoin network. Its basic

inferring technique is based on "orphan" transactions.

An orphan transaction is a transaction that arrives before its parents. That means that

it spends coins that are not yet included in the blockchain. When a node receives a new

transaction that cannot be validated, it is marked as an orphan transaction and stored in a

list called MapOrphanTransaction. This way, the node waits until the ancestors arrive to

validate this orphan transaction.

The basic technique used by TxProbe takes advantage of these orphan transactions.

When a node receives an orphan transaction, it will keep it in MapOrphanTransaction

structure. After that, if it receives a INV message containing the hash of the orphan

transaction, it will not request the transaction to the peer (avoiding the broadcast of a non-

validated transaction). This allows knowing if the node has received the transaction or

not.

To check if an edge between two nodes exists, the testing node creates two transactions

that spend from the same coin, and send one to the first node and the other to the second

node. This way, each node will accept the received transaction, and if one node sends its

new transaction to the other peer, this will refuse it, as will detect it as a double-spending

transaction.

After that the testing node creates a third new transaction that spends coins from the

first transaction, and sends it only to the first node. If the edge between the nodes exists,

the second node will receive the new transaction and will mark it as an orphan, storing it

in MapOrphanTransaction as it does not know about its parent.

Finally, the testing node will send an INV message with the third transaction hash. If

the edge exists, the node will have the transaction stored, so it will not reply asking for it.

One problem of this technique is that is an invasive method. MapOrphanTransaction

has a limited size of 100 orphan transactions. TxProbe cleans this structure of the targeted

nodes evicting previous existing transactions to get the maximum possible space to store

its custom orphan transactions.

TxProbe scans the Bitcoin main network in about 8.25 hours.

12

After the experiment, the authors concluded (the following data was obtained from

the Bitcoin test network (2018), not the main network):

• Average degree is 16.6. Most of the nodes have 7 to 14 peers. The maximum degree

observed was 59.

• 733 nodes with 6090 edges.

• Non-random structure.

• This conclusions cannot be applied to the main network. TxProbe would work on

the main network, but the authors did not perform the experiment on the Bitcoin

main network as they could not predict the effect that would occur to real transac-

tions and network congestion.

2.3.3. Timing analysis of the Bitcoin network

In 2016, researchers from the Karlsruhe Institute of Technology developed a technique

to infer the structure between the nodes of the reachable Bitcoin network [9]. They created

a model of the Bitcoin network and then compared it with the real main network. The

method used was based on connecting to different nodes and calculating the receiving

times of each transaction or block from each node. This data permitted the authors to

design a probabilistic model that calculates if two nodes are connected. The precision

obtained was ∼40%.

Bitcoin clients implement trickling techniques that add random delay to messages

to avoid time analysis. The authors solved this comparing the time that the message

took to be received with the approximation of node location, network delay (using ping

system messages) and the application latency (using Bitcoin protocol PING messages)

the trickling latency can be approximated.

They also concluded that the trickling techniques can help an attacker to analyze the

traffic if it is not configured properly.

13

2.3.4. Bitnodes.earn.com crawler

Bitnodes [11] is a project oriented to estimate the size of the Bitcoin network. It is

also deployed in a website3 where the user can have access to historical data of different

snapshots of the network, as well as search nodes by IP or check current statistics of the

network.

The data obtained from the methodology implemented in this project was compared

with data from Bitnodes website.

3https://bitnodes.earn.com/

14

3. DESCRIPTION OF THE SOLUTION

3.1. Goal

To retrieve all the possible data about each reachable node of the Bitcoin network.

3.2. Main methodology

The solution proposed is based on the list of known active peers that every node keeps

in memory. The system connects to new peers concurrently, asking about their peers to

connect to them and repeat the process until all the nodes are discovered.

1. First, the application makes an initial DNS discovery of peers. It connects to a set

of known DNS nodes (marked as "SeedNodes" in fig.3.1) that keep an updated list

of active nodes.

2. Once connected, the application will ask each one for their list of known nodes (IP

addresses and ports) sending them a GETADDR message.

3. Then, the application will wait for the ADDR message. When received, the list

of nodes will be added to the list of pending nodes, and the connected node will

be marked as "explored" to avoid connecting to the same node twice in the same

session.

4. The application will start trying to connect to each node in the "pending" list and

sending its VERSION message. If the node replies, it will be saved as an "explored"

node and a GETADDR message will be sent to ask for its list of known peers.

5. If the node replies, the list of announced peers will be saved in the "pending" list.

Then the application will start to try connecting to them.

To avoid overloading the network, it does not make any request of blocks or transac-

tions, and it only requests the list of peers once to each node. The connection is closed

after receiving the information to minimize the number of simultaneous connections.

15

Fig. 3.1. Detail of the technique

3.3. Detailed design

The proposed solution is a "crawler" application developed in Java programming lan-

guage [12], and uses Bitcoinj [13] library to connect and manage the connections to the

different peers. The source code can be found in GitHub4. After obtaining the experiment

data, a Python [14] script is used to analyze it.

After connecting to each node, the parameters are obtained from two types of mes-

sages: VERSION and ADDR. From the VERSION message, the relevant data for this case

are version, services, addr_from and start_height fields (Table 3.1). This indicates that the

node is running the Bitcoin protocol and online. This data is saved as a tuple (IPv4/IPv6

address, port, height, version, sub-version, local services) that represents each explored

node.

ADDR messages help to know all the nodes that the active nodes have seen connected

to the Bitcoin network recently. This is the data that the crawler uses to explore new

nodes.

4https://github.com/GuillermoEscobero/bitcrawler/blob/master/Crawler.java

16

Description Data type Comments

version int32_t Version of the Bitcoin protocol that the node is running

user_agent int32_t
Version of the Bitcoin client application that the node is running.

Also called "subVersion"

services uint64_t Number that indicates the services that the node implements

timestamp int64_t Current system timestamp of the node

addr_recv net_addr
net_addr structure containing data about

the IP address and port of the receiver of this version message

addr_from net_addr
net_addr structure containing data about

the IP address and port of the sender of this version message

start_height int32_t
Length of the largest local blockchain of the node.

Also called "best height"

Table 3.1. VERSION MESSAGE

Description Data type Comments

count var_int Number of entries that the message contains

addr_list (uint32_t + net_addr)[] List of the peer addresses (Table 3.3)

Table 3.2. ADDR MESSAGE

Each peer address sent by a node is defined by a tuple: (IP of the sender node, port of

the sender node, IP of the known peer, port of the known peer).

17

Description Data type Comments

time uint32 Timestamp associated to the peer

services uint64_t Services supported

IPv6/4 char[16] IPv6/4 address

port uint16_t Port number

Table 3.3. NET_ADDR STRUCTURE

18

4. DATA OBTAINED AND RESULTS

Bitcoin network was monitored for 3 days, making an experiment every two hours.

Over three millions of entries were obtained in every snapshot of the network (∼150 MB

of data). The following discussed data is obtained from a random network snapshot, as the

experiment period was not long enough to extract conclusions of the differences between

snapshots. This data was obtained on July 1st, 2019 from Madrid, Spain.

The crawler application was capable of analyzing the main Bitcoin network in 44

minutes on average. The end of the analysis was considered if the application did not

connect to any new peer in the last 15 minutes. This is because the rate of explored nodes

drops gradually in time as it is harder to find new nodes as the number of explored nodes

increases.

After analyzing the data, the number of unique active nodes discovered was 7530.

Only a 84,25% replied to our GETADDR request. These nodes sent over 198 thousands

of unique IP addresses.

It is important to note that those addresses belong to nodes of the Bitcoin nodes, but

they do not have to be full nodes. Bitcoin network is formed by several types of nodes

as discussed before (subsection 2.2.4). Some of them are programmed to not to reply to

GETADDR messages or any other messages, in order to light the computation. Also, the

list of known peers that each node keeps do not have to be a list of connected peers. Even

the node maybe never connected to them, so edges between nodes cannot be inferred

from these data. These addresses can be learned from ADDR messages received from

other peers that can contain addresses not currently online. These two reasons explain the

big difference between explored nodes (∼7500) and discovered addresses (∼198,000).

Figure 4.1 shows how most of the nodes are divided into two big groups. The first

group sent 1,000 peer addresses and the second group sent only one address. The reasons

for these numbers are two. 1,000 is the limit of addresses per each ADDR message. Also,

when a node connects to others, it is normal to send an ADDR message containing its own

address. That explains the big number of nodes that only sent one entry.

19

4000 3000 2000 1000 2 1

0

1,000

2,000

3,000

Number of address received

N
od

es
se

nd
in

g

Fig. 4.1. Length of the ADDR messages received

Protocol Version

Table 4.1 contains the protocol versions seen in the experiment. The most used in the

Bitcoin network is 70015 with 95.87% of the explored nodes using it. This matches with

the version protocol used by Bitcoin Core5.

Client version

Table 4.2 shows the most used Bitcoin clients used. There are hundreds of different clients

and implementations. Also, the text identifying the client running (user_agent) can be

changed and some people use it to promote their website or "post" a message.

The reader can easily notice that most of the client versions start by "Satoshi". All

these versions are releases of Bitcoin Core that are named after the creator of Bitcoin.

The last version is 0.18.0, released on May, 2nd 2019. It can be observed that most of

the nodes still running the previous version 0.17.1. Famous bitcoin libraries as btcd-wire

[15], bcoin [16] or bitcore [17] also appear on the data obtained.

5https://github.com/bitcoin/bitcoin/blob/master/src/version.h

20

Protocol version Nodes observed

70015 7219

70012 159

70014 61

70013 32

70002 32

80002 21

70016 3

50400 2

80003 1

Table 4.1. PROTOCOL VERSION

Services

When connecting to a new peer, it will send some flags indicating the services that it

supports (Table 4.3). This is interesting as powerful nodes support services that can help

other nodes with limited resources to check if the transactions are valid or not, making

the deployment of Bitcoin applications easier and less resource-consuming.

The obtained data shows a 97.38% of total nodes declare themselves as full-blockchain

nodes (NODE_NETWORK flag). The rest of them are pruned nodes, that means they do

not have the full blockchain downloaded.

78.87% of explored nodes implement NODE_NETWORK, NODE_BLOOM,

NODE_WITNESS and NODE_NETWORK_LIMITED, that are all the services currently

supported by Bitcoin Core.

21

Bitcoin Client and version Nodes observed

Satoshi:0.17.1 2103

Satoshi:0.18.0 1800

Satoshi:0.16.3 631

Satoshi:0.17.0 533

Satoshi:0.13.2 411

Satoshi:0.17.0.1 346

Satoshi:0.15.1 295

Satoshi:0.16.0 260

Satoshi:0.12.1(bitcore) 100

Satoshi:0.16.2 98

Satoshi:0.18.99 97

Satoshi:0.14.2 74

Satoshi:0.14.99 64

Satoshi:0.16.1 59

Satoshi:0.15.0.1 58

Satoshi:0.17.99 53

Satoshi:0.16.99 44

Satoshi:0.12.1 42

Satoshi:0.13.1 32

btcwire:0.5.0btcd:0.12.0/ 28

Table 4.2. USER AGENTS

22

Local services supported Description

NODE_NETWORK
This node is capable of sending all historical full blocks,

not just headers.

NODE_GETUTXO

This node gives support to check unspent transactions.

These nodes help light-weight nodes to validate

transactions. Bitcoin Core does not support it yet.

NODE_BLOOM

This node supports bloom filters. Light nodes can

query transactions in the blockchain fast

without downloading all of it.

NODE_WITNESS
This node supports a different serialization format

for transaction messages.

NODE_NETWORK_LIMITED
The node is capable of sending at least the last

288 blocks. Nodes with pruned blockchain use this flag.

Table 4.3. SUPPORTED SERVICES

Analysis of IP addresses

Figure 4.2 shows the occurrences of each IP address observed in one network snapshot,

where all the IP addresses are ordered from most to less frequent. The most frequent IP

appears 87 times. This means that 87 different peers knew that peer at the moment of

the experiment. It can be seen that the number of occurrences drops, with most of the IP

addresses being known by 10 or less nodes.

This difference can be due to different factors. One of them is up-time. The nodes

with the largest up-time are the most known, as they maintain the connections for more

time and have more probability of being broadcast. Another possible reason is that there

are nodes with a high number of connections, with 2% of the nodes controlling the 75%

of the total computation power [7].

23

Fig. 4.2. Number of occurrences of each peer address

Ports used

Bitcoin network uses port 8333 by default. However, nodes can use custom ports, as

they inform its port number to its peers in the initial handshake. 94.08% of the total

observed IP addresses uses the default port. Table 4.4 shows the five more used ports of

the explored nodes.

Port used Nodes observed

8333 6791

8433 70

9595 49

8885 34

6333 12

Table 4.4. PORTS USED

Block height

While the tool is exploring the network, new blocks are mined and broadcast in the

network, extending the blockchains of the nodes. In average, every 10 minutes a new

block is mined, so during each experiment, the block height will increase around 4 blocks.

Because of this, updated nodes can report different block heights depending on the time

they are explored.

This was taken into account in the data analysis. 95.29% of the total nodes reported

24

Block height observed Percentage of the total nodes

733864 0.096980

580976 0.027709

580975 3.809920

580974 11.637573

580973 79.855916

580972 0.055417

580971 0.027709

Table 4.5. BLOCK HEIGHT EXAMPLE DATA

a block height of the last block. This was decided based on the most appeared block

height and the following three consecutive blocks. Table ?? shows an example. It was as-

sumed that 580973 was the last mined block when the experiment started, but the Bitcoin

blockchain reached 580976 blocks while the tool was executing.

The rest of the nodes showed anomalous values. There were some groups of nodes

that announced similar heights between them, but with a big difference (ahead and behind)

with the accepted blockchain. This may be due to the existence of small groups of nodes

connected using a custom blockchain with research or testing purposes. Other nodes were

very outdated, reporting a block height of a few months, or even 10 years ago 6.

Geographic distribution

Bitcoin network has participants around the world. IP addresses of the explored active

nodes were located and are represented in figure 4.4. The United States is the country

with the highest number of running nodes, followed by Germany and France. In countries

where Bitcoin use is forbidden, like China or Brazil [18], users decide to connect although

they are breaking the law.

It is known that China is the country with most mining pools, controlling about 75%

of the total computation mining power [19], mainly due to the low power supply price.

The top three mining pools (BTC.com [20], AntPool [21] and F2Pool [22]) are located

there and mine 42% of the daily blocks in average [19]. However, these powerful nodes

6https://www.blockchain.com/es/btc/block-height/99409

25

Fig. 4.3. Heat map of the Bitcoin network

are not represented in the map, as all the nodes of the mining pools are not reachable from

the public network. Mining pools also make great efforts in keeping as private as possible

in order to avoid possible attacks.

TOR network

Some users prefer to connect to the Bitcoin network using proxies to protect their iden-

tity even more. In countries where Bitcoin is prohibited and its access is blocked, users

still use it connecting through virtual private networks (VPNs) or networks with special

encryption protocols like TOR.

The TOR project [23] (The Onion Router) is an open source project focused on im-

proving the anonymity and privacy on the Internet. Tor network is a distributed peer-to-

peer network. The privacy of a user is achieved thanks to the path that the data sent will

follow until it reaches its final destination. In every jump from a node to another, the data

is encrypted and routed to another node, in order to avoid a man-in-the-middle attack.

Instead of using standard IP addresses, the Tor project identifies its nodes with .onion

addresses (onion because of the similarity with its encrypting method that adds a layer in

every jump). As the IP of the nodes is unknown and the data can exit the network from

any node, it is very complex to identify and locate an onion address.

The easiest way to use TOR is through a web browser developed by its contributors

26

Fig. 4.4. TOR network structure. Diagram originally contributed by the Electronic Frontier Foun-

dations and under a Creative Commons Attribution 3.0 United States License.

and maintainers. It converts the computer executing it in a TOR node and allows the user

to access websites using .onion domains.

Most Bitcoin clients implement the functionality of using a proxy server, and the

user can easily download the software from the Tor project website to connect to the Tor

network and route its traffic through it.

27

5. REGULATORY FRAMEWORK

5.1. Bitcoin regulation

As discussed before, the main attractions of cryptocurrencies are the anonymity and

the no need for a financial institution to regulate it. Bitcoin is also known to be one the

currency used to support illegal activities in the "Dark Net" and tax evasion because of its

anonymity [24].

In addition to these reasons, the difficulty of applying regulations to a distributed pub-

lic network is making the governments start thinking about new laws and ways to control

this new currency. Most of the countries permit users to use Bitcoin and make payments,

but some of them make a distinction treating cryptocurrencies as digital goods instead of

legal currency. However, other countries, like China, have prohibited the payments and

exchanges of Bitcoins with legal currencies [18].

This experiment is based in Spain, where the Bitcoin transactions are permitted. Vir-

tual coins are not considered a currency as they are not issued by an official monetary

authority (European Union does not consider Bitcoin as a legal currency also). Instead,

they are considered digital goods and are regulated by the Civil Code [25].

However, the laws regarding the transactions of cryptocurrencies do not apply to this

work, as the method just connects to other nodes without doing any other operations like

transactions or mining. Also, the method does not store or manage sensible data, only

public parameters of clients that are needed by the Bitcoin protocol to operate.

5.2. Ethical matters

Regarding ethical issues, some users can see the discussed technique as a flooding or

denial-of-service attack, as connecting to a big number of nodes goes against the decen-

tralized nature of Bitcoin. Also, it adds overhead to the network for running a task that

was not initially intended to be performed.

29

5.3. Software licenses

Java Development Kit (JDK)

JDK used in this project is owned by Oracle America, Inc. It is distributed under Oracle

Binary Code License (BCL) that allows the user to use JDK to compile and run programs

[26].

Python

Python is distributed as Open Source [27] software and its releases are GPL-compatible

[28].

GeoLite2 databases

This project includes GeoLite2 data created by MaxMind 7. The GeoLite2 databases are

distributed under the Creative Commons Attribution-ShareAlike 4.0 International License

[29].

bitcoinj

Bitcoinj is distributed under the Apache License 2.0 [30]. Allows the user to modification,

distribution, and usage with commercial purposes.

OpenHeatMap

OpenHeatMap service was used to generate the world heatmap of Bitcoin nodes popula-

tion. It is licensed under GNU GPL [28].

Microsoft Excel

Microsoft Excel by Microsoft was used under an Office 365 University license.

7https://www.maxmind.com

30

6. SOCIO-ECONOMIC ENVIRONMENT

This chapter contains the planning and budget used to carry out this project. After that,

the possible socio-economic impact is discussed.

6.1. Planning

The project was divided into different stages (fig.6.1) that were developed in four months

(83 days), starting in February 2019 and finishing in June 2019.

The first step was to gain general knowledge about Bitcoin and its network protocol.

Once the Bitcoin protocol was fully understood, the research of academic works related

to the problem started. These works helped to adapt the methodology to the resources

and deadlines provided. Then, the development of the method and the programming of

the tool started. After that, the experimentation period started, monitoring the network to

obtain all the data used for analysis and conclusions. Finally, the documentation of the

project was written.

A Gantt chart was designed to provide a general view of the project stages (fig.6.2).

Fig. 6.1. Duration of the main tasks of the project

31

Fig. 6.2. Gantt chart of the main tasks of the project

6.2. Budget

This section lists all the resources used in the project, as well as their economic cost.

6.2.1. Hardware

The project was designed, implemented and deployed in a Apple Macbook Pro Mid 2012

(2.9 GHz Intel Core i7, 8 GB 1600 MHz DDR3) computer. A Askey RTF811VW wireless

router was used as the gateway to connect to the internet (provided by the ISP).

Description Cost Lifetime Usage time Total cost

Computer 1,525 e 96 months 4 months 63.54 e

Router 0 e 48 months 4 months 0 e

Total 63.54 e

Table 6.1. HARDWARE COSTS

32

6.2.2. Software

Description Usage time Cost per month Total cost

Jet Brains

InteliJ IDEA CE
2 months 0 e 0 e

Oracle JDK 2 months 0 e 0 e

Docker

Desktop Community
2 month 0 e 0 e

Python 1 month 0 e 0 e

Pandas 1 month 0 e 0 e

Overleaf.com 1 month 0 e 0 e

GitHub.com 3 months 0 e 0 e

Microsoft

Excel
1 month 0 e 0 e

Total 0 e

Table 6.2. SOFTWARE COSTS

6.2.3. Consumables

Description Units Unit cost Total cost

Paper (500 sheets) 1 4.99 e 4.99 e

Ink cartridge 1 9.81 e 9.81 e

Total 14.8 e

Table 6.3. CONSUMABLES COSTS

33

6.2.4. Human resources

Position Cost per hour Dedication Taxes (23.6%) Total cost

Software

engineer
12 e 170 hours 481.44 e 2,521.44 e

Project

supervisor
15 e 20 hours 70.8 e 370.8 e

Total 2,892.24 e

Table 6.4. HUMAN RESOURCES

6.2.5. Indirect costs

Description Usage time Cost per month Total cost

Internet

connection
4 months 32.64 e 130.56 e

Power supply 4 months 42.78 e 171.12 e

Transport 4 months 20 e 80 e

Per diem 4 months 112 e 448 e

Total 829.68 e

Table 6.5. INDIRECT COSTS

6.2.6. Total costs

Section Total cost

Hardware 63.54 e

Software 0 e

Consumables 14.8 e

Human resources 2,892.24 e

Indirect costs 829.68e

Total cost of the project 3,800.26 e

Table 6.6. TOTAL COSTS

34

6.3. Socio-economic impact

The economic value associated with Bitcoin makes the users treat its network as a

different one, as real profit can be obtained participating in it. This accelerates its devel-

opment and expansion, but also attracts the interest of potential attackers.

The tool implemented in this project can be used in future applications for monitoring

and detecting possible patterns and anomalies on the Bitcoin network. Also, if the mon-

itoring of the network is maintained over a large amount of time, some interesting data

will be obtained and relations with the price of Bitcoin may be found.

However, the high popularity and economic interests associated with Bitcoin impulsed

a big inversion in research and projects, like mining pools, trading sites or online wallets,

that have powerful systems that could be used to monitor the network and obtain the data

by themselves.

Apart from technical analysis, the tool developed and this report can be used to help

people to understand Bitcoin from the computer network view and see how the different

agents and protocols of a distributed network can affect to others.

35

7. CONCLUSIONS AND FUTURE LINES OF WORK

7.1. Final conclusions

In this project, a wide part of the Bitcoin network was monitored. However, not all

nodes are reachable, like mining pools, so this is not a full representation of the network.

Most of the explored nodes contributed to the network properly, although some of them

only implemented the essential services and did not reply to peers requests to save com-

putation resources. Also, some nodes used different parameters, like custom clients or

protocol versions.

7.2. Future lines of work

In order to obtain more relevant data about specific Bitcoin protocol parameters, like

blocks and transactions propagation, several functionalities can be implemented to im-

prove the monitoring of the network and analysis of parameters:

• Deployment of the crawler in the cloud, with different gateway locations to improve

the speed of the nodes discovery.

• Implementation of an alert system that allows monitoring the value of a specific

parameter and raises an alert when it fulfills the rules defined by the user.

• Implementation of a web application showing the metrics of a recent network snap-

shot.

• Integration with an edge-inferring method, some of them were discussed on section

2.3, to find relations between both sources of data.

• Monitoring of block propagation and transactions received.

37

BIBLIOGRAPHY

[1] "bitcoin" - Google Trends. [Online]. Available: https://trends.google.com/

trends/explore?date=2009-05-12%5C%202019-06-12%5C&q=bitcoin.

[2] Bitcoin Market Price (USD). [Online]. Available: https://www.blockchain.

com/es/charts/market-price.

[3] D. Chaum, “Blind signatures for untraceable payments”, in, ser. Advances in Cryp-

tology - Proceedings of Crypto 82. 1983, p. 199.

[4] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system. [Online]. Available:

https://bitcoin.org/bitcoin.pdf.

[5] A. M. Antonopoulos, Mastering Bitcoin, 2nd ed. O’Reilly Media, 2017.

[6] The Bitcoin Core developers, Bitcoin protocol documentation. [Online]. Available:

https : / / en . bitcoin . it / wiki / Protocol _ documentation (visited on

04/30/2019).

[7] A. Miller et al., Discovering bitcoin’s public topology and influential nodes, Acc-

sessed: 2019-04-12, May 2015. [Online]. Available: http://www.cs.umd.edu/

projects/coinscope/coinscope.pdf.

[8] S. Delgado-Segura et al., “Txprobe: Discovering bitcoin’s network topology us-

ing orphan transactions”, CoRR, vol. abs/1812.00942, 2018. arXiv: 1812.00942.

[Online]. Available: http://arxiv.org/abs/1812.00942.

[9] T. Neudecker, P. Andelfinger, and H. Hartenstein, “Timing analysis for inferring

the topology of the bitcoin peer-to-peer network”, in 2016 Intl IEEE Conferences

on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scal-

able Computing and Communications, Cloud and Big Data Computing, Inter-

net of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/Smart-

World), Jul. 2016, pp. 358–367. doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-

SmartWorld.2016.0070.

39

https://trends.google.com/trends/explore?date=2009-05-12%5C%202019-06-12%5C&q=bitcoin
https://trends.google.com/trends/explore?date=2009-05-12%5C%202019-06-12%5C&q=bitcoin
https://www.blockchain.com/es/charts/market-price
https://www.blockchain.com/es/charts/market-price
https://bitcoin.org/bitcoin.pdf
https://en.bitcoin.it/wiki/Protocol_documentation
http://www.cs.umd.edu/projects/coinscope/coinscope.pdf
http://www.cs.umd.edu/projects/coinscope/coinscope.pdf
http://arxiv.org/abs/1812.00942
http://arxiv.org/abs/1812.00942
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070

[10] The Bitcoin Core developers, Bitcoin Core 0.10.1 release notes, 2015. [Online].

Available: https://github.com/bitcoin/bitcoin/blob/v0.10.1/doc/

release-notes.md (visited on 04/30/2019).

[11] Bitnodes crawler repository. [Online]. Available: https://github.com/ayeowch/

bitnodes.

[12] Java programming language. [Online]. Available: https://www.java.com/.

[13] Bitcoinj library. [Online]. Available: https://bitcoinj.github.io/.

[14] Python programming language. [Online]. Available: https://www.python.

org/.

[15] Btcd repository. [Online]. Available: https://github.com/btcsuite/btcd.

[16] Bcoin repository. [Online]. Available: https://github.com/bcoin- org/

bcoin.

[17] Bitcore library. [Online]. Available: https://bitcore.io/.

[18] G. L. R. C. The Law Library of Congress, Regulation of Bitcoin in Selected Ju-

risdictions, 2014. [Online]. Available: https://www.loc.gov/law/help/

bitcoin-survey/ (visited on 06/10/2019).

[19] Blockchain.com, Distribution of hash rate between mining pools. [Online]. Avail-

able: https://www.blockchain.com/pools?timespan=4days.

[20] Btc.com mining pool homepage. [Online]. Available: https://pool.btc.com/.

[21] Antpool mining pool homepage. [Online]. Available: https://www.antpool.

com/.

[22] F2pool mining pool homepage. [Online]. Available: https :/ /www . f2pool.

com/.

[23] Tor project. [Online]. Available: https://www.torproject.org/.

[24] M. Tsukerman, “The block is hot: A survey of the state of bitcoin regulation

and suggestions for the future”, Berkeley Technology Law Journal, vol. 30, no. 4,

pp. 1127–1170, 2015. [Online]. Available: https://scholarship.law.berkeley.

edu/cgi/viewcontent.cgi?article=2084&context=btlj.

40

https://github.com/bitcoin/bitcoin/blob/v0.10.1/doc/release-notes.md
https://github.com/bitcoin/bitcoin/blob/v0.10.1/doc/release-notes.md
https://github.com/ayeowch/bitnodes
https://github.com/ayeowch/bitnodes
https://www.java.com/
https://bitcoinj.github.io/
https://www.python.org/
https://www.python.org/
https://github.com/btcsuite/btcd
https://github.com/bcoin-org/bcoin
https://github.com/bcoin-org/bcoin
https://bitcore.io/
https://www.loc.gov/law/help/bitcoin-survey/
https://www.loc.gov/law/help/bitcoin-survey/
https://www.blockchain.com/pools?timespan=4days
https://pool.btc.com/
https://www.antpool.com/
https://www.antpool.com/
https://www.f2pool.com/
https://www.f2pool.com/
https://www.torproject.org/
https://scholarship.law.berkeley.edu/cgi/viewcontent.cgi?article=2084&context=btlj
https://scholarship.law.berkeley.edu/cgi/viewcontent.cgi?article=2084&context=btlj

[25] Boletín Oficial del Estado, Código Civil arts. 335, 337 and 345, 1889. [Online].

Available: https://www.boe.es/eli/es/rd/1889/07/24/(1)/con (visited

on 05/29/2019).

[26] Oracle Binary Code License Agreement for the Java SE Platform Products and

JavaFX, 2017. [Online]. Available: https://www.oracle.com/technetwork/

java/javase/terms/license/index.html (visited on 06/01/2019).

[27] The Open Source Definition, 2007. [Online]. Available: https://opensource.

org/osd.

[28] Free Software Foundation, Inc., Gnu general public license, Accsessed: 2019-06-

01, Jun. 2007. [Online]. Available: https://www.gnu.org/licenses/gpl-

3.0.html.

[29] Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) Creative Commons li-

cense. [Online]. Available: https://creativecommons.org/licenses/by-

sa/4.0/.

[30] Bitcoinj license (Apache License 2.0), 2004. [Online]. Available: https://github.

com/bitcoinj/bitcoinj/blob/master/COPYING.

[31] B. Schoenmakers, Basic security of the ecash payment system, 1998. [Online].

Available: http://www.win.tue.nl/~berry/papers/cosic.pdf.

[32] A. Back, Hashcash - a denial of service counter-measure, 2002. [Online]. Avail-

able: http://www.hashcash.org/papers/hashcash.pdf.

[33] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation of clients

in bitcoin P2P network”, CoRR, vol. abs/1405.7418, 2014. arXiv: 1405.7418.

[Online]. Available: http://arxiv.org/abs/1405.7418.

41

https://www.boe.es/eli/es/rd/1889/07/24/(1)/con
https://www.oracle.com/technetwork/java/javase/terms/license/index.html
https://www.oracle.com/technetwork/java/javase/terms/license/index.html
https://opensource.org/osd
https://opensource.org/osd
https://www.gnu.org/licenses/gpl-3.0.html
https://www.gnu.org/licenses/gpl-3.0.html
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/bitcoinj/bitcoinj/blob/master/COPYING
https://github.com/bitcoinj/bitcoinj/blob/master/COPYING
http://www.win.tue.nl/~berry/papers/cosic.pdf
http://www.hashcash.org/papers/hashcash.pdf
http://arxiv.org/abs/1405.7418
http://arxiv.org/abs/1405.7418

	Introduction
	Motivation
	Document structure

	State of the art
	Electronic cash and transactions
	Bitcoin
	Blockchain
	Proof-of-Work and Consensus system
	Anonymity
	Bitcoin network
	Peer discovery
	Transactions propagation
	Block propagation
	Synchronizing blockchains

	Related work
	AddressProbe and Coinscope
	TxProbe
	Timing analysis of the Bitcoin network
	Bitnodes.earn.com crawler

	Description of the solution
	Goal
	Main methodology
	Detailed design

	Data obtained and results
	Regulatory framework
	Bitcoin regulation
	Ethical matters
	Software licenses

	Socio-economic environment
	Planning
	Budget
	Hardware
	Software
	Consumables
	Human resources
	Indirect costs
	Total costs

	Socio-economic impact

	Conclusions and future lines of work
	Final conclusions
	Future lines of work

	Bibliography

