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Abstract

Empirical Time Series is too linear. After the 2008 great depression, the board members

of the central banks realize that they were unable to foresee the �nancial meltdown until

it was too late, due to the linear structure of the models used for the forecasts, claiming

the need for non-linear models. The �eld of non-linear time series model is too vast, and

sometimes these models are too complex to use them for forecasting. Furthermore, most of

the economic variables are persistent, viewed as unit roots, adding an extra level of di�culty

in the study of non-linear time series models. The challenge is to develop non-linear models

with persistent variables.

Threshold models are a class of non-linear model characterized by di�erent regimes, de-

termined by a threshold variable. These regimes can represent the di�erent stages of the eco-

nomic cycles, for example, economic expansions and recessions, periods with high volatility

and low volatility in the stock market, among many other examples. Many of the advan-

tages of the threshold models are the simplicity of estimation using least square estimation,

interpretation of the non-linear structure, and testing.

In this dissertation, we study threshold models with unit roots from two di�erent perspec-

tives. In one had we introduce a univariate analysis and on the other hand, a multivariate

analysis.

In the �rst chapter, titled "Threshold Stochastic Unit Roots Models" co-authored with

Jesús Gonzalo and Raquel Montesinos, we present the univariate analysis by introducing a

new class of stochastic unit-root (STUR) processes. This new model, namely the threshold

autoregressive stochastic unit root (TARSUR) process, is strictly stationary, but if we do

not consider the threshold e�ect, it can mislead to conclude that the process has a unit

root. The TARSUR models are not only an alternative to �xed unit root models but present

interpretation, estimation, and testing advantages to the existent STUR models.

This study analyzes the properties of the TARSUR models and proposes two simple tests

to identify this type of processes. The �rst test will allow us to detect the presence of unit

roots, which can be �xed or stochastic, and the asymptotic distribution (AD) of this test

presents a distribution discontinuity depending if the unit root is �xed or stochastic. The
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second test we propose is a simple t-statistic (or the supremum of a sequence of t-statistics) for

testing the null hypothesis of a �xed unit root versus a stochastic unit root hypothesis. It is

shown that its asymptotic distribution (AD) depends if the threshold value is identi�ed under

the null hypothesis or not. When the threshold parameter is known, the AD is a standard

normal distribution, while in the case of an unknown threshold value, the AD is a functional

of Brownian Bridge. A Monte Carlo simulation shows that the proposed tests behave very

well in a �nite sample, and the Dickey-Fuller test cannot easily distinguish between exact

unit roots and threshold stochastic unit roots. The study concludes with applications to U.S.

stock prices, U.S. house prices, U.S. interest rates, and USD/Pound exchange rates.

The second chapter, we present the multivariate analysis with "Multiple Long Run Equi-

libria Through Cointegration Eyes". In this chapter, we introduce threshold e�ects in the

cointegration relation. Cointegration has succeeded in capturing the unique long-run linear

equilibrium. Speci�c non-linearities have been incorporated into cointegrated models but

always assuming the existence of a single equilibrium. In this study, we explore the possi-

bility of di�erent long-run equilibria depending on the state of the world (i.e., good and bad

times, optimism and pessimism, frictional coordination) in a threshold framework. Starting

from the present-value model (PVM) with di�erent discount factors and depending on the

state of the economy, we show that this type of PVM implies threshold cointegrated with

di�erent long-run equilibria. We present the estimation and inference theory, and the study

�nishes with two empirical applications where the variables are not linearly cointegrated but

threshold cointegrated.

The third chapter, we continue in the multivariate framework and introduce the paper

titled "Quasi-Error Correction Model". Cointegration captures single long-run equilibrium

relationships between economic variables and the error correction model (ECM) is the mech-

anism in which the equilibrium is maintained. In this study, we introduce the quasi-error

correction model (QECM), derived from the cointegration relation with threshold e�ects,

where each regime represents a di�erent equilibrium relation between the variables. In con-

trast to the linear ECM, the QECM has a regressor which captures the switching between

equilibria, capturing the dynamic structure of the equilibrium change. This regressor will

pose a problem similar to the non-linear error correction models, where the model cannot be

balanced using the traditional de�nitions of integration. We present the estimation and the

inference theory and �nish with an empirical application for U.S. interest rate of instruments

with di�erent maturities.
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Chapter 1

Threshold Stochastic Unit Root Models

1.1 Introduction

It is well established that many economic series contain dominant, smooth components, even

after simple deterministic trends are removed. Since the seminal work of Nelson and Plosser

(1982), this characteristic has been adequately captured by unit root (UR) models and unit

roots have become a "stylized fact" for most macroeconomic and �nancial time series data.

This has produced extensive literature on econometric issues related to unit root models (see

Phillips and Xiao (1998) for a survey).

In order to avoid the tight constraints that an exact unit root imposes on a process, and

to be able to generate more �exible and realistic models, research has recently evolved in two

directions. The �rst line of research generalizes UR models by allowing for fractional roots:

ARFIMA models (see Granger and Joujeux (1980), Beran (1994), Robinson (1994), Baillie

(1966), Dolado, Gonzalo and Mayoral (2002) ) The second one makes the UR model more

�exible by allowing the unit root to be stochastic (see Leybourne, McCabe and Tremayne

(1996), Leybourne, McCabe and Mills (1996), McCabe and Tremayne (1995), Granger and

Swanson (1997), Gourieroux and Robert (2006), Distaso (2008), Lieberman and Phillips

(2014) ) instead of a �xed parameter. With both extensions, a more general form of non-

stationary are allowed than those implied by the standard exact unit root autoregressive

models. This study forms part of the second line of research.

Stochastic unit root models (STUR) arise naturally in economic theories, as well as in

many macroeconomic and �nancial applications (see Leybourne, McCabe and Mills (1996),

Granger and Swanson (1997) and Lieberman and Phillips (2014)).The STUR models can be

stationary for some periods or regimes, and mildly explosive for others. This characteristic

makes them not to be di�erence stationary. If a series shows evidence of non-stationarity,

which is not removable by di�erencing, it is inappropriate to estimate the conventional
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ARIMA or cointegration/error-correction models because the properties of the estimators

and the tests involved are not the same as those in the standard di�erence stationary case.

For instance, two series generated by two independent STUR models will be wrongly detected

to be cointegrated according to some of the most used cointegration tests (see Gonzalo and

Lee (1998)). This problem is not detected with standard unit root tests, such as the Dickey-

Fuller test, because they cannot easily distinguish between exact unit roots and stochastic

unit roots. In order to obtain a better statistical distinction between these two types of

unit roots, McCabe and Tremayne (1995) proposed a locally best invariant test (assuming

gaussianity) for the null hypothesis of di�erence stationary versus a stochastic unit root.

The application of this constancy parameter test to the macroeconomic variables analyzed

in Nelson and Plosser (1982) suggest that about half of them are not di�erence stationary, as

opposed to what has been widely believed (see Leybourne, McCabe and Tremayne (1996)).

Hence, the notion that some economic time series are non-stationary in a rather more general

way needs to be considered and, consequently, more elaborate techniques of modeling and

estimation need to be explored.

From a statistical point of view, a suitable justi�cation for using time varying parameter

models to approximate or represent non-stationary processes are provided by Cramer's (1961)

extension of the Wold theorem (see Granger and Newbold (1986), page 38). This extension

implies that any non-stationary stochastic process, with �nite second order moments, may be

written as a ARMA process with coe�cients that can vary with time. Most of the literature

previously cited above considers that the time-varying unit root varies as a sequence of

independent and identically distributed (i.i.d.) random variables. This assumption is not

necessarily the most appropriated in economics because it implies that the model structure

will change too often between states corresponding to stationary and explosive roots, whereas

we might assume that the transition between those two states occurs in a more gradual

fashion. One way of introducing this gradual behavior is by allowing the unit autoregressive

root itself to follow a random walk (see Leybourne, McCabe and Mills (1996)). In this case,

the change is smoother than in the i.i.d. case, but again it has the inconvenience that it

occurs regularly at every moment in time. In this study it is assumed that the economy stays

in a "good" or "bad" state for several periods of time until certain determining variables

overpass some key values. This assumption is perfectly captured by modeling the evolution

of economic variables via threshold models. In particular, to model the random behavior of

the largest root of an ARMA process, we propose a threshold autoregressive (TAR) model

where the largest root is less than one in some regimes and larger than one in others, in

such a way that on average it is equal to one. This threshold autoregressive stochastic unit

root (TARSUR) model presents several advantages with respect to the previously mentioned
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approaches. First, its computational simplicity. The estimation of all the parameters is done

by least squares (LS ) regression. Second, the t-statistic is used to test the hypothesis of non-

threshold e�ects versus threshold e�ects, in some cases it follows asymptotically a standard

distribution and, therefore, there is no need to generate new critical values. Third, the

threshold variable is suggested by economic theory and it will likely provide an explanation

or cause for the existence of a unit root, which to the best of our knowledge is still lacking

in the econometric literature. Fourth, in many situations, threshold models are easier to use

for forecasting than random coe�cient models. This is the case when the threshold variable

is an observable variable with past time dependency.

The rest of the study is organized as follows. In Section 1.2, we present economic con-

ditions when asset prices follow a TARSUR process. In section 1.3, we de�ne the TARSUR

model and examine its properties: strict stationarity, covariance stationarity, geometric er-

godicity and impulse response function. In Section 1.4, we present two di�erent tests for

identifying this type of process, the �rst one checks the presence of unit roots which can be

either �xed or stochastic, and the second test checks for the presence of threshold e�ects.

The asymptotic distribution of this test is developed under two di�erent situations: when the

threshold value is known and when the threshold value is unknown and unidenti�ed. Section

1.5 analyzes the �nite sample performance (size and power) of the tests developed in this

study . Section 1.6 brie�y discusses some practical issues present in all the threshold mod-

els. Section 1.7 shows four empirical applications of the proposed model: U.S. stock prices,

U.S. house prices, U.S. interest rates, and U.S./Pound exchange rates. Finally, Section 1.8

provides the concluding remarks. Proofs are provided in the Appendix.

1.2 Predictability of Return and TARSUR

Since the work of Samuelson (1965), asset prices have been modeled as a martingale process

considering returns to be unpredictable. Following Leroy (1973) and Lucas (1978), the mar-

tingale property is obtained from the Euler equation that describes the optimal behavior of

the representative consumer:

ptU
′
t = E

[
(1 + ρ)−1(pt+1 + dt)Ut+1

∣∣∣∣∣Ft
]

(1.1)

, where the information set Ft contains all the past and current information available,

pt is the stock price at time t, dt is the dividend, ρ is a constant discount factor, and U
′
is

the marginal utility. The simplest way to derive the martingale equivalence for asset pricing

and the stochastic di�erence equation (1.1) is to assume that the asset has a zero-dividend
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payment, with risk neutrality and ρ = 0. This setup is unrealistic for many assets and

only can be appealing for intrinsically worthless assets like money. For a non-zero dividend

payment, under risk neutrality, Samuelson (1973) shows that the martingale property holds

if the discount factor is the dividend-price ratio ρ = dt
pt
.

E(pt+1|Ft) = pt

In order to generalize the martingale property, we propose a stochastic unit root spec-

i�cation that can be derived from an inter-temporal optimization framework. Assume a

two-period lived representative agent at time t, which maximize the expected utility function

Max
ct,ct+1

E
(
U(ct) + β(zt)U(ct+1)

∣∣∣Ft),
where β(zt) > 0 represents the individual time preference and depends on the percep-

tion of the individual about the state of the world (expansion and recession, high or low

unemployment). The individual has the opportunity to buy ht amount of a risky assets at

the beginning of period t at known price pt and sells it in the next period at an unknown

price pt+1. The considered asset yields a dividend dt at the end of period t increasing the

possibility of consumption at time t+1. Given an exogenous steam of income wt, the budget

constraints are

ct = wt − ptht
ct+1 = ht(pt+1 + dt)

Then, the equilibrium condition for this model is:

ptU
′
t = E

[
(1 + ρ(zt))

−1(pt+1 + dt)Ut+1

∣∣∣∣∣Ft
]
, (1.2)

where ρ(zt) is the state-dependent discount factor. Following the work of Samuelson

(1973), under risk neutrality, and assuming that the state-dependent discount rate can be

represented as a dividend-price ratio with a state-dependent premium δ̃(zt) with zero mean,

ρ(zt) = pt
dt

+ δ̃(zt), we can establish the stochastic unit root speci�cation. If we further assume

that δ̃(zt) = ρ̃1I(zt ≤ r) + ρ̃2I(zt > r) have a threshold structure, we can get the TARSUR

process:

E(pt+1|Ft) = (1 + δ̃(zt))pt = δ(zt)pt, (1.3)
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where δ(zt) = ρ1I(zt ≤ r) + ρ2I(zt > r) with E(δt) = 1. Under rational expectation

pt+1 = δ(zt)pt + εt (1.4)

1.3 TARSUR model

Consider the following threshold �rst order autoregressive (TAR) model

Yt = [ρ1I(Zt−d ≤ r1) + · · ·+ ρnI(Zt−d > rn−1)]Yt−1 + εt =

= δtYt−1 + εt, t = 1, · · · , T (1.5)

, where δt = ρ1I(Zt−d ≤ r1)+· · ·+ρnI(Zt−d > rn−1), I(·) is an indicator function, and εt is
an innovation term. Zt is the threshold variable and, in this study, it will be a predetermined

variable (E (εt+j|Zt) = 0,∀j > 0). d is the delay parameter, and r1 < r2 < · · · < rn−1 are the

threshold values.

De�nition 1. A TARSUR process is de�ned by equation (1.5) with E(δt) =
∑n

i=1 ρipi = 1,

∀t,, where pi is the probability of Zt−d being in regime i, and V (δt) > 0.

For simplicity, and without loss of generality, in this section, where the properties of the

TARSUR model are analyzed, we will not introduce any deterministic terms. They will be

considered in the testing section.

The variables {εt} and {Zt} satisfy the following assumptions.

Assumptions

(A.1) {εt, Zt} is strictly stationary, ergodic, and adapted to the sigma-�eld =t
def
=

{(εj, Zj) , j ≤ t}.
(A.2) {Zt} is strong, mixing with mixing coe�cients αm , and satis�es

∑∞
m=1 α

1/2−1/τ
m <

∞ for some τ > 2.

(A.3) εt is independent of =t−1, E(εt) = 0 and E |εt|w = k <∞ with w = 4.

(A.4) Zt has a continuous and increasing distribution function.

(A.5) ε1 admits a positive continuous probability density function.

(A.6) E(max(0, log |ε1|)) <∞.
(A.7) ess. sup |ε1| <∞1.

(A.8) For i = 1, 2, · · · , n the coe�cients ρi have the following form, ρi = exp{ ci
T
}, where

c1, c2, · · · , cn are constants.

Assumptions (A.1) and (A.3) specify that the error term is a conditionally homoskedas-

tic martingale di�erence sequence. (A.3) also bounds the extent of heterogeneity in the

1The essential supremum of X is ess sup X = inf {x : P (|X| > x) = 0} = ||x||∞.
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conditional distribution of εt. (A.1), (A.2), (A.3), (A.4), and (A.8) are used to obtain the

asymptotic distributions of the statistics proposed in this study. (A.3) is the most restrictive

assumption but is essential for inference purpose. We need it to prove the tightness of a

partial sum process. Assumptions (A.1) and (A.6) are required to show strict stationarity

of Yt, and (A.7) is needed for weak stationarity of {Yt}. In many cases, (A.7) can be re-

laxed . For instance, if {εt} and {Zt} are mutually independent, (A.7) can be replaced by

||ε||p = [E|ε1|p]1/p < ∞, ∀p < ∞ (see Karlsen (1990)). Finally (A.8) restricts the autore-

gressive coe�cients for di�erent regimes move around unity. This assumption is required to

solve the asymptotic distribution discontinuity in one of the tests, proposed in this study to

identify these types of models.

It is important to notice that if we limit the analysis to self-exciting threshold autore-

gressive models (Zt = Yt), then it is not possible to handle the issue of stochastic unit roots

(unless we introduce deterministic components with size and sign constraints). This is be-

cause if any of the parameters ρi is greater than one, the process Yt will not be stationary

and ergodic (see Petrucelly and Woolford (1984)) and, therefore, assumption (A.1) will not

hold.

1.3.1 Stationary Properties

Equation (1.5) represents a speci�c case of a stochastic di�erence equation, where δt is a

discrete random variable that takes di�erent values depending on the location of the threshold

variable Zt−d. Iterating backwards, the stochastic di�erence equation (1.5),

Yt = εt +
m−1∑
j=1

(
j−1∏
i=0

δt−i

)
εt−j +

(
m−1∏
i=0

δt−i

)
Yt−m

= C1,t(m) + C2,t(m),

(1.6)

, where C1,t(m) = εt +
∑m−1

j=1

(∏j−1
i=0 δt−i

)
εt−j, and C2,t(m) =

(∏m−1
i=0 δt−i

)
Yt−m. The

following results are obtained from (1.5) and (1.6):

(a) If C1,t(m) converges, asm→∞ in Lp for p ∈ [0,∞]2, the C1,t(m) = εt+
∑m−1

j=1

(∏j−1
i=0 δt−j

)
εt−j

is a strictly stationary solution of the stochastic di�erence equation de�ned by (1.5).

(b) If C2,t(m) converges in probability to zero, then the above solution is unique.

(c) If p > 0 in result (a), then {Yt} has a �nite pth order moment.

2L0 is equivalent to convergence in probability.
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The problem of �nding conditions on ({δt, εt}) such that {Yt} has a strictly or second-

order stationary solution has been studied by several authors. Vervaat (1979) and Nicholls

and Quinn (1982) assume ({δt, εt}) to be i.i.d. and mutually independent. Pourahmadi (1986,

1988) and Tjφstheim (1986) allow δt to be a dependent process. More general conditions are

given in the following theorem based on Brandt (1986) and Karlsen (1990).

Theorem 1. If the sequence {εt, Zt} satis�es assumptions (A.1), (A.6), and

−∞ < E log |δ1| < 0 (1.7)

holds, then the process (1.5) is strictly stationary. Moreover, if (A.7) is satis�ed and

∞∑
j=0

(
E|ψt,j|2

) 1
2
<∞, (1.8)

with ψt,0 = 1 and ψt,j =
∏j−1

i=0 δi for j ≥ 1, then the process (1.5) is second-order stationary.

Theorem 1 provides su�cient conditions for (a) and (b) to hold when p = 0, 1, or 2.

It shows that strictly and covariance stationary will depend on the type of convergence of

the in�nite sequence {ψt,j}∞j=0. In fact, if condition (1.7) is satis�ed, {ψt,j} will converge

absolutely almost sure to zero as j goes to in�nity, and this implies the strict stationarity

of process (1.5) (see Brandt (1986)). The mean square convergence of {ψt,j}∞j=0 is obtained

provided condition (1.8) holds, and in this case, process (1.5) is also second-order stationary.

Note that there is a trade-o� between (A.7) and (1.8). For instance, assumption (A.7)

can be relaxed by imposing ||ε||p < ∞, ∀p < ∞; but in this case, we need to modify (1.8)

requiring a stronger condition

∞∑
j=0

(
E|ψt,j|2+κ

) 1
2+κ

<∞, for a κ > 0. (1.9)

Also, as mentioned before, it is assumed that {εt} and {Zt} are mutually independent

with ||ε1||p < ∞, ∀p < ∞, then condition (1.8) is a su�cient condition for second-order

stationary.

Corollary 1. A TARSUR process with ρi > 0, for i = 1, · · · , n, is strictly stationary.

Corollary 1 follows from Theorem 1 and establishes su�cient and easy to check conditions

for a TARSUR process to be strictly stationary. It covers the most appealing TARSUR model

from an empirical point of view, that is, the model with ρi values around unity: stationary

for some regimes and mildly explosive for others. Notice that The �xed unit root models are
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not stationary, but if we allow the root to be stochastic around unity we can archieve strict

stationarity.

Theorem 1 produces explicit conditions for strict stationarity. However, no moments need

to exist and, to the best of our knowledge, they are not explicit conditions for second-order

stationarity; therefore, each case must be studied. In order to obtain explicit expressions, we

work with the following representative case:

{δt} is a 1st-order stationary Markov Chain with two regimes or states (ρ1 and ρ2)

This case can be generalized to an N-order stationary Markov Chain with N > 1, and to

more than two regimes; however, nothing is gained on the understanding of the process and

the algebra becomes very tedious.

Su�cient conditions for second-order stationarity are presented in the following proposi-

tion.

Proposition 1. Suppose {Yt} is generated by (1.5) and {δt} is a 1st-order stationary Markov

Chain with two regimes (ρ1 and ρ2). De�ne the following 2× 2 matrix

F2 =

(
ρ2

1p11 ρ2
1p21

ρ2
2p12 ρ2

2p22

)

, where pij denotes the conditional probability P (δt = ρj|δt−1 = ρi), i, j = 1, 2. If the spectral

radius of F2, ρ(F2), is less than one, {Yt} is covariance stationary.

Notice that if we consider {δt} to be i.i.d. process, the above proposition becomes the

necessary and su�cient condition established by Nicholls and Quinn (1982) for second-order

stationarity in random coe�cient autoregressive models (RCA):

ρ(F2) < 1⇐⇒ E(δ2
t ) = ρ2

1p1 + ρ2
2p2 < 1 (1.10)

From this inequality, it can be concluded that the TARSUR process with an i.i.d. thresh-

old variable is not covariance stationary, since E(δ2
t ) > 1.

Proposition 1 determines that the covariance stationarity of a TARSUR process depends

on the transition probabilities p12 and p22, and on the parameter values ρ1 and ρ2. For

instance, for the values of the parameters ρ1 = 0.9, ρ2 = 1.1, p12 = 0.8 and p22 = 0.2,

the TARSUR process is covariance stationary. Overall, it is straightforward to show that a

necessary condition for ρ(F2) < 1 is p12 > p22 (or equivalent p21 > p11). In other words, the

transition probability of being in the same regime must be smaller than the probability of

the changing regimes. The idea underlying this condition is to avoid staying in the explosive

regime for too long.
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1.3.2 Geometric Ergodicity

From the works of Chan (1993), geometric ergodicity is required to obtain consistency for

the estimator of the threshold value (r̂), in the case where the TARSUR process is covariance

stationary. Also, this condition is needed to apply sub-sampling latter on to obtain valid

critical values for one of the proposed tests.

Finding conditions for {Yt} to be geometrically ergodic have been studied by several au-

thors. Chan and Tong (1985), Chan (1989), and Chen and Tsay (1991) give conditions on

the coe�cients for the self-exciting threshold autoregressive models. Gonzalo and Gonzalez

(1998) and Gourieroux and Robert (2006) show geometric ergodicity for the threshold au-

toregressive model assuming that one of the states follows a unit root process. Basrak, Davis

and Mikosch (2002), Cline (2007) and Fraq, Makarova and Zakoian (2008) show geometric

ergodicity for the stochastic unit root process assuming that the sequence {δt} and {εt} are
independent and identically distributed. More general conditions are given in the following

result based on the works of Yao and Attali (2000).

Theorem 2. If the sequence {Zt, εt} satisfy (A.1), (A.3), (A.5), and {δt} is a positive

recurrent Markov chain on a �nite set E = {1, 2...n} with a transition matrix F and invariant

measure η, then if:

E(log(δt)) = η1log(ρ1) + η2log(ρ2) + · · ·+ ηnlog(ρn) < 0 (1.11)

then there is a γ0 ∈ (0, w] for w = 4 such that the chain Xt = {δt, Yt} is V-uniformly
ergodic with V (z, y) = |y|γ0 + 1.

Note that here we show V-uniform ergodicity, which implies geometrical ergodicity (Meyn

and Tweedie, 2005 Chapter 16).

Corollary 2. A TARSUR process with a positive recurrent Markov chain {δt} equipped with

ρi > 0 for i ∈ E = {1, 2..., n}, is V-uniformly ergodic.

Corollary 2 follows from Theorem 2, which establishes a su�cient condition for the TAR-

SUR process to be geometrically ergodic. Note that the exact unit root processes are not

ergodic, but if we allow the root to be stochastic and vary around unity and impose conditions

on the behavior of the stochastic unit root, we can archive a stronger form of geometrical

ergodicity.
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1.3.3 Impulse Response Function

In order to obtain the impulse response function (IRF ) of {Yt}, we need to derive itsMA(∞)

representation. From the conditions of the �rst part of Theorem 1, this representation exists

and can be written as:

Yt = εt +
∞∑
j=1

(
j−1∏
i=0

δt−i

)
εt−j =

∞∑
j=0

ψt,jεt−j. (1.12)

The response of Yt to a shock, ∂Yt+h
∂εt

= ψt,h opposite to the �xed root case, becomes

stochastic now. For this reason, the impulse response function (IRF ) is de�ned as:

ξh = E

(
∂Yt+h
εt

)
= E(ψt,h) = E

(
h−1∏
i=0

δt−i

)
, h = 1, 2, · · · , (1.13)

Proposition 2. Under Proposition 1 conditions, the IRF of the process {Yt} de�ned by (1.5)
is given as

ξh =
(

1 1
)
F h

1

(
ρ1p1

ρ2p2

)
, h = 1, 2, · · · , (1.14)

where F1 =

(
ρ1p11 ρ2p21

ρ2p12 ρ2p22

)
. Shocks have transitory e�ect (limh→∞ ξh = 0) if and only if

the spectral radius of F1, ρ(F1) is less than one.

Proposition 2 establishes that depending on the transition probabilities, shocks can have

transitory or permanent e�ects. It is easy to check that for the TARSUR process, the

following implications hold:

1. If p22 > p12: limh→∞ ξh =∞, as it happens in an explosive model.

2. If p22 = p12: limh→∞ ξh = 1 ∀h, as it happens in a random walk model. Note that in

this case {Zt} is an i.i.d. process.

3. If p22 < p12: limh→∞ ξh = 0, as it happens in a stationary model.

Proposition 1 and Proposition 2 show that the TARSUR models are more �exible than

�xed unit roots, speci�cally in the sense of being able to produce a rich set of plausible

scenarios. If p22 ≥ p12 the process is not covariance stationary and shocks have permanent

e�ects and even increasing e�ects on the mean; but if p22 < p12, shocks have only transitory

e�ects on the mean and depending on the parameter value, it can be stationary or not. This

10
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latter case of no covariance stationary but transitory shocks resembles, in the IRF sense, the

ARFIMA model with a long memory parameter between 0.5 and 1. (see Dolado, Gonzalo

and Mayoral (2002)).

Figure 1.1, a-c, displays simulated realizations from TARSUR and random walk (RW)

models. The TARSUR series are generated by model (1.5) with two regimes , εt is an i.i.d.

Normal (0, 1). The random walk series is generated from the same set of innovations. The

�rst 50 observations of each series have been disregarded to avoid any initial conditional

dependency. For comparison, each �gure shows a random walk versus three di�erent types

of TARSUR processes: p22 > p12, p22 = p12, and p22 < p12. Each �gure di�ers by the value of

the variance of the stochastic unit root coe�cient. More speci�cally, in �gure 1.1a, ρ1=0.99

and ρ2 = 1.01 (V (δt) = 0.0001), in �gure 1.1b, ρ1=0.97 and ρ2 = 1.03 (V (δt) = 0.0009), and

in �gure 1.1c ρ1=0.9 and ρ2 = 1.1 (V (δt) = 0.001). For small values of V (δt), the RW and

TARSUR are indistinguishable. As V (δt) increases the TARSUR series become more volatile

than the corresponding RW. It is worth mentioning that even in the most unstable case (see

�gure 1.1c), the "explosive" TARSUR series (p22 > p12) does not look like a standard AR(1)

with a �xed explosive root.

[Figure 1.1 enters here]

1.3.4 Di�erencing a TARSUR process

By di�erencing model (1.5), we obtain

∆Yt = (δt − 1)Yt−1 + εt (1.15)

Proposition 3. Assume that {Yt} is generated by model (1.5). If δt has a strictly positive

variance, {∆Yt} is strictly (covariance) stationary if and only if {Yt} is strictly (covariance)
stationary.

In contrast to �xed unit root models, stochastic unit root models are not di�erence

stationary, in the sense that if the process is not stationary in levels, its di�erence will

not be stationary either. Alternatively, if the process is strictly stationary (i.e., conditions of

the �rst part of Theorem 1 are satis�ed), its �rst di�erence will also be strictly stationary.

In this case we can express model (1.15) as a MA(∞)

∆Yt =
∞∑
j=0

Ψt,jεt−j (1.16)

, where Ψt,0 = 1 and Ψt,j = (δt − 1)ψt−1,j−1, j ≥ 1. From (1.16) the IRF of {∆Yt} can be

easily obtained.

11
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1.4 Testing for TARSUR

Since the TARSUR model requires both conditions, E(δt) = 1 and V (δt) > 0 holds. In this

section we propose a testing strategy to check both conditions. We present two independent

tests, on one hand, we test the null of E(δt) = 1 without any knowledge about V (δt); on the

other hand, we test the null of no threshold e�ect V (δt) = 0 without imposing any restriction

on E(δt).

To simplify the notation, as in Caner and Hansen (2001) and Gonzalo and Pitarakis

(2002), from (A.4) we can replace the threshold variable with a uniform distributed variable

using the following equality:

I(Zt−d ≤ r) = I(P (Zt−d) ≤ P (r)) = I(Ut−d ≤ λ), (1.17)

where P (.) is the marginal distribution of {Zt}, and Ut−d denotes a uniformly distributed

random variable on [0, 1] and λ = P (r). Using the suggested transformation, we can rewrite

the TARSUR process de�ned in (1.5) as follows:

Yt = ρ1I(Ut−d ≤ λ)Yt−1 + ρ2I(Ut−d > λ)Yt−1 + εt (1.18)

Since our objective is to test the conditions E(δt) = 1 and V (δt) > 0, it is important to

rewrite the above model in such a way that these two conditions are expressed in terms of

parameters in an equivalent regression. To do this, we add and subtract on the right hand

side of model (1.18), E(δt)Yt−1 = [ρ1λ + ρ2(1 − λ)]Yt−1, then we can rewrite the TARSUR

model as:

Yt = E(δt)Yt−1 + (ρ1 − ρ2)[I(Ut−d ≤ λ)− λ]Yt−1 + εt (1.19)

subtracting on both sides Yt−1

∆Yt = [E(δt)− 1]Yt−1 + (ρ1 − ρ2)[I(Ut−d ≤ λ)− λ]Yt−1 + εt (1.20)

rearranging the di�erent terms

∆Yt = φYt−1 + γHt(λ)Yt−1 + εt, (1.21)

where Ht(λ) = I(Ut−d ≤ λ)− λ, γ = (ρ1 − ρ2) and φ = E(δt)− 1.

Both conditions of the TARSUR process can be characterized by the parameters φ and

γ in model (1.21) because:

12
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• The parameter γ captures the variability of the coe�cients, since for all λ ∈ (0, 1),

V (δt) = γ2λ(1− λ) is non-zero, unless γ = 0.

• The parameter φ by construction captures the condition E(δt) = 1.

As it occurs with the Dickey-Fuller (DF) t-test, in order to obtain asymptotic distributions

that are invariant to the deterministic terms contained in the data generating process (DGP),

the regression model to implement the test will contain the state dependent constant:

∆Yt = µ1I(Ut−d ≤ λ) + µ2I(Ut−d > λ) + φYt−1 + γHt(λ)Yt−1 + εt (1.22)

1.4.1 Testing for E(δt) = 1

For testing the null of E(δt) = 1 against the alternative E(δt) < 1 without having any

knowledge on V (δt), which can be zero or positive, this can be examined by testing in

regression model (1.22):

H0 : φ = 0

H1 : φ < 0
(1.23)

Under H0, the asymptotic distribution of tφ=0 statistic shows a distribution discontinuity,

like the case when we test for the autoregressive coe�cient in an AR(1) process. This

distribution discontinuity will depend if V (δt) > 0, or V (δt) = 0.

• For the case when V (δt) = 0, it implies that γ = 0. Under H0, the DGP (1.21) becomes:

Yt = Yt−1 + εt, (1.24)

which is the random walk (RW) process.

• For the case when V (δt) > 0, γ 6= 0. Under H0, the DGP (1.21) becomes:

∆Yt = γHt(λ) + εt, (1.25)

which is the TARSUR process from De�nition 1.

The distribution discontinuity is due to the fact that the random walk is a non-stationary

process and the TARSUR process, from the �rst part of Theorem 1 and Corollary 1, is strictly

stationary and also possibly covariance stationary under the conditions given in Proposition

1.

13
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Lemma 1. Suppose that V (δt) = 0 and assumptions (A.1), (A.2), (A.3), and (A.4) hold.

1. Consider DGP (1.21), and regression model (1.22) with no deterministic terms. Then,

under H0 : φ = 0, the tφ=0 statistic has the following asymptotic distribution:

tφ=0 ⇒
1
2
[W (1)2 − 1]

{
∫ 1

0
W (r)2dr}1/2

(1.26)

2. Consider the DGP (1.21), and regression model (1.22) with a threshold constant term.

Then, under H0 : φ = 0, the tφ=0 statistic has the following asymptotic distribution:

tφ=0 ⇒
1
2
[W (1)2 − 1]−W (1)

∫ 1

0
W (r)dr

{
∫ 1

0
W (r)2dr − [

∫ 1

0
W (r)dr]2}1/2

(1.27)

where W (.) is the standard Brownian motion.

Note that in the case when V (δt) = 0, the asymptotic distribution of the tφ=0 statistic is

the same as the case when we test for unit roots.

Lemma 2. Suppose that V (δt) > 0, under the conditions in Proposition 1, the TARSUR

process is covariance stationary; then, the tφ=0 statistic has the following distribution:

tφ=0 ⇒ N (0, 1) (1.28)

Since we do not know if V (δt) is positive or zero, we do not how it is the asymptotic

distribution of tφ=0. Furthermore, even if the V (δt) > 0, we do not know if the TARSUR

process is covariance stationary or not. To overcome these problems, we will assume that the

coe�cients of the TARSUR process move around unity, following the work of Phillips (1987)

and Chan and Wei (1987) for the autoregressive parameter of AR(1).

Lemma 3. Under assumptions (A.2), (A.3), and (A.8), then as T →∞:

(a) T−
1
2Y[Tq] ⇒ σJc1,c2(q);

(b) T−
3
2

∑
Yt ⇒ σ

∫
Jc1,c2(q)dq;

(c) T−2
∑
Y 2
t ⇒ σ2

∫
J2
c1,c2

(q)dq;

(d) T−
3
2

∑
YtI(Ut−d ≤ λ)⇒ σλ

∫
Jc1,c2(q)dq;

(e) T−2
∑
Y 2
t I(Ut−d ≤ λ)⇒ σ2λ

∫
J2
c1,c2

(q)dq;

14
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(f) T−1
∑
Yt−1εt ⇒ σ2

∫
Jc1,c2(q)dW (q);

(g) T−1
∑
Yt−1I(Ut−1−d ≤ λ)εt ⇒ σ2

∫
Jc1,c2(q)dW (q, λ);

, where the integral is over (0, 1) with σ2 = E(ε2), W(.) is the standard Brownian motion,

and Jc1,c2(q) = [W (q)+(c1λ+c2(1−λ))
∫ q

0
e(q−s)(c1λ+c2(1−λ))W (s)ds] is the Ornstein-Uhlenbeck

process.

One may wonder how V (δt) enters the process Jc1,c2 , similar to the autoregressive process,

it is captured by the term C = c1λ+ c2(1−λ). Then, the asymptotic distribution of the tφ=0

statistic under H0 using the near unit root set up is

Proposition 4. Suppose that assumption (A.1), (A.2), (A.3), (A.4), and (A.8) hold.

1. Consider DGP (1.21) and the regression model (1.22) with no deterministic term.

Then, under H0 : φ = 0, the tφ=0 statistic has the following asymptotic distribution:

tφ=0 ⇒
∫ 1

0
Jc1,c2(q)dW (q)

{
∫ 1

0
J2
c1,c2

(q)dq}1/2
(1.29)

2. Consider DGP (1.21) and the regression model (1.22) with a threshold constant term.

Then, under H0 : φ = 0, the tφ=0 statistic has the following asymptotic distribution:

tφ=0 ⇒
∫ 1

0
Jc1,c2(q)dW (q)−W (1)

∫ 1

0
Jc1,c2dq

{
∫ 1

0
J2
c1,c2

(q)dq − [
∫ 1

0
Jc1,c2(q)dq]2}1/2

(1.30)

Note that the distribution presented above is a function of the nuisance parameters C =

c1λ+ c2(1− λ), and this distribution will change depending if the V (δt) is positive or zero.

• If the V (δt) > 0, under H0 of E(δt) = 1, the strictly stationary condition in Theorem

1 imposes the restriction −∞ < E(log|δt|) < log(E|δt|) = 0, which under assumption

(A.8) implies that −∞ < C < 0.

• If the V (δt) = 0, under H0 of E(δt) = 1, this imposes the restriction ρ1 = ρ2 = 1 and,

therefore, under assumption (A.8) c1 = c2 = 0, which implies C = 0.

Since C is unknown and cannot be estimated, we use sub-sampling to obtain critical

values, (Romano and Wolf, 2001 and Berg, McMurry and Politis, 2010). Sub-sampling

requires knowledge about the rate of convergence of the estimator, φ̂, which in this case can

be
√
T or T depending on V (δt) and E(δt). To overcome this problem, we follow the work

of Romano and Wolf (2001) by using the studentized statistic.

In order to apply sub-sampling, two more conditions must be checked:
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1. Under H0, the studentized statistic, tφ=0, has a non-degenerated distribution.

2. The sub-sampling statistic is strongly mixing.

For our propose both conditions are satis�ed since, from Proposition 4, the �rst condition

stated above is satis�ed whether V (δt) = 0 or V (δt) > 0. The second condition is also satis�ed

because when V (δt) > 0, form Theorem 2 and Corollary 2, the process {Yt} is geometrically

ergodic and for the case where V (δt) = 0, it is proven in Romano and Wolf (2001).

1.4.2 Testing for Threshold E�ect

This section attempts to construct a test for the null of no-threshold e�ect versus the alterna-

tive of a threshold e�ect. It is worthwhile to emphasize that we do not make any assumption

about E(δt), which can be equal to one or less than one. Assuming that 0 < λ < 1, the null

hypothesis of the no-threshold e�ect (V (δt) = 0) versus the alternative of a threshold e�ect

(V (δt) > 0) can be tested by testing

H0 : γ = 0

H1 : γ 6= 0
(1.31)

in regression model (1.22)

The proposed test and its asymptotic distribution depend on whether the threshold pa-

rameter λ is known or unknown and unidenti�ed under the null.

1.4.2.1 Threshold Value Known

The case of a known threshold value, λ = λ̄, becomes relevant for pedagogical or explanatory

reasons as well as for cases where the regimes are determined by the sign of the threshold value

(see Enders and Granger (1998) momentum TAR model). In this situation, the proposed is

the t-statistic for γ = 0, tγ=0(λ) in the regression model (1.22), and its asymptotic is shown

in the next proposition.

Proposition 5. Suppose that the threshold value is known, then λ = λ̄, and assumptions

(A.1), (A.2), (A.3), and (A.4) hold. Whether E(δt) is equal to one or less than one, under

the null of no threshold, tγ=0(λ̄) statistic has the following asymptotic distribution

tγ=0(λ̄)⇒ N (0, 1) (1.32)
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1.4.2.2 Threshold Value Unknown

When the threshold value λ is unknown, it is assumed that this parameter lies in the interval

(0, 1). The least squares (LS) estimate of λ is the value that

argmin
λ∈(0,1)

σ̂2(λ) (1.33)

, where σ̂2(λ) = T−1
∑T

t=1 ε̂
2
t denotes the residual variance from the LS estimation of

model (1.22). This estimate λ̂ coincides with the one obtained by maximizing the Wald

statistics, WT (λ), that test the null hypothesis of no threshold in regression (1.22)

WT = WT (λ̂) = sup
λ∈(0,1)

WT (λ) (1.34)

, where WT (λ) = t2γ=0(λ). Then, the asymptotic distribution of WT is

Proposition 6. Suppose that assumptions (A.1), (A.2), (A.3), and (A.4) hold. Whether

E(δt) is equal to one or less than one, under the null of no threshold:

1. Consider DGP (1.21) and regression model (1.22) with no deterministic terms. Then,

under the null H0 : γ = 0, the WT statistic has the following asymptotic distribution:

WT ⇒ sup
λ∈(0,1)

( ∫
W (s)dV (s, λ)

)2

λ(1− λ)
∫
W (s)2ds

≡ sup
λ∈(0,1)

[BB(λ)]2

λ(1− λ)
(1.35)

where W (.) is the standard Brownian motion and V (s, λ) is a Kiefer-Muller 3 process

on [0, 1]2. BB(λ) is a standard Brownian bridge (zero mean Gaussian process with

covariance λ1∧λ2−λ1λ2). The last equivalence is due to the fact that W (s) = W (s, 1)

and V (s, λ) are independent.

2. Consider DGP (1.21) and regression model (1.22) with a threshold constant term.

Then, under the null H0 : γ = 0, the WT statistic has the following asymptotic distri-

bution:

WT ⇒ sup
λ∈(0,1)

( ∫
W (s)∗dV (s, λ)

)2

λ(1− λ)
∫
W ∗(s)2ds

≡ sup
λ∈(0,1)

[BB(λ)]2

λ(1− λ)
(1.36)

where W ∗(.) = W (.)−
∫ 1

0
W (s)ds.

3A Kiefer-Muller V on [0, 1] is given by V (t1, t2) = B(t1, t2) − t2B(t1, 1) is a standard Brownian sheet.
The standard Brownian sheet B(t1, t2) is a zero-mean Gaussian process indexed by T = [0, 1]2 and covariance
function Cov[B(s1, tt), B(s2, t2)] = (s1 ∧ t1)(s2 ∧ t2).
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From an empirical perspective, we cannot search the threshold parameter λ in the unit

interval because as λ approaches zero or one, we do not have enough observations to estimate

the parameters of one of the states. As in the structural break literature (Andrews (1993,

2003) and Estrella (2003)), they search for the break in a subset of the unit interval de�ned

by [π1, π2]. We propose the same approach by dropping a proportion π0 of the set of threshold

parameter candidates in the right and the left, such that π1 = π0 and π2 = 1− π0, then

sup
λ∈[π1,π2]

[BB(λ)]2

λ(1− λ)
(1.37)

For di�erent π0, the critical values of the asymptotic distribution (1.37) are tabulated in

(Andrews (1993, 2003) and Estrella (2003)).

1.5 A Monte Carlo Experiment and Testing Strategy.

Using the Monte Carlo method, we examine the performance of the proposed tests, as well as

the power of the Dickey Fuller test t-test against di�erent TARSUR alternatives. The Monte

Carlos experiment consists of 10,000 replications with sample sizes T = 200 and 500. The

error term εt is generated as i.i.d. N (0, 1), and the threshold variable follows, and without

loss of generality, a �rst order Markov process with transition matrix:

F =

(
p11 p12

p21 p22

)
(1.38)

To �ll these transition probabilities such that E(δt) = 1 holds, �rst we �x the coe�cient

ρ1 and ρ2, choose a λ = P (r) such that E(δt) = λρ1+(1−λ)ρ2 = 1. Second, we �x p21, and by

using the conditional probabilities property we can �ll the rest of the transition probabilities

since p22 = 1− p21, p12 = p21
λ

1−λ , and p22 = 1− p12.

Tables 1.1 and 1.4 show the empirical size for the two proposed tests, that is, for the

mean E(δt) = 1 and for the variance V (δ) = 0, under di�erent sample sizes and dependence

levels of the threshold variable. In these simulations, we assume that the probability of being

in regime ρ1 = 1 is the same as being in regime ρ2 = 1, that is, λ = P (r) = 0.5. This

condition imposes symmetry restrictions on the matrix F , where p12 = p21, and also in the

case when p21 = 0.5, all the entries of matrix F are equal to 0.5, which represents the case

where the threshold variable is i.i.d.. Table 1.1 summarizes the results by assuming that

the threshold parameter is known, and we can see that the empirical size coincides with the

nominal size of 5% for both tests. Table 1.4 reports the same results as in Table 1.1 but

assumes that the threshold parameter is unknown and unidenti�ed. For the latter case, we

18



Chapter 1. Threshold Stochastic Unit Root Models

search the threshold parameter in a subset generated by sorting the threshold variables from

smallest to the biggest and dropping 15% of the elements on the left and the right side, that

is, π0 = 0.15.

Tables 1.2 and 1.5 show the empirical size of the test for the mean, E(δt) = 1, and the

power of the tests for the variance, V (δt), under di�erent levels of dependency in the threshold

variable p21 = {0.5, 0.7, 0.9}, and di�erent values of |γ| = {0.02, 0.04, 0.1, 0.2}. We choose

ρ1 and ρ2 such that λ = 0.5 and |ρ1 − ρ2| = |γ|. The results in Tables 1.2 are constructed

by assuming that the threshold parameter is known, and we can see that independent of the

value of |γ|, the empirical size for the test of the mean (E(δt) = 1) coincides with the nominal

size of 5%. Also, we can see that as |γ| gets bigger the empirical power for the test of the

variance, V (δt) changes to one. Tables 1.5 shows the same result under the assumption that

the threshold parameter is unknown and unidenti�ed.

Tables 1.3 and 1.6 report the same information as in Tables 1.2 and 1.5, but in these

cases, we will choose ρ1 and ρ2 such that λ = P (r) is di�erent from 0.5, which allows the

matrix F to be asymmetric.

Tables 1.7, 1.8, 1.15, and 1.16 shows the power for the test of the mean, E(δt) = 1, and

the size for the test, V (δt) = 0, under di�erent dependency levels of the threshold variable,

p21 = {0.5, 0.9}. Using a local alternative approach, we allow the coe�cients to take the form

ρi = 1− k
T
for some k ≥ 0 and i = 1, 2. The threshold variable is generated by assuming that

the probability of being in regime ρ1 is the same as being in regime ρ2, that is, λ = 0.5. As

before, for the case where p21 = 0.5, all the entries for the matrix F will be 0.5, which means

that the threshold variable is i.i.d.. Tables 1.7 and 1.8 assume that the threshold value is

known, and as shown in Proposition 5, independent of the value of k, the empirical size of

the test for V (δt) coincides with the nominal level of 5%. For the test of the mean, E(δt) = 1,

as k →∞ the empirical power of the test tends to one. Tables 1.15 and 1.16 show the same

results but assume that the threshold parameter is unknown and unidenti�ed.

Table 1.9, 1.10, 1.11, 1.12,1.13, and 1.14 show the power for the test of E(δt) = 1 under

di�erent speci�cations of |γ| = {0.02, 0.04, 0.1, 0.2} and dependency levels of the threshold

variable, p21 = {0.5, 0.9}. We select the coe�cients ρ1 = a1− k
T
and ρ2 = a2− k

T
for some a1

and a2 such that λ = 0.5 and |ρ1 − ρ2| = |γ|. We can see that as k → ∞, the power of the

test for the mean E(δt) = 1 goes to one. Also, as |γ| gets bigger, the power of the test for the
V (δt) tends to one. Tables 1.17, 1.18, 1.19, 1.20, 1.21, and 1.22 show the same results but

assume that the threshold parameter is unknown and unidenti�ed. For illustrative purpose,

we present the power of the Dickey-Fuller (DF) unit root test against the same TARSUR

alternatives previously considered. The t−statistic is calculated from the regression
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∆Yt = b1 + b2Yt−1 + vt (1.39)

The conclusion is that the DF unit root test cannot easily distinguish between a pure

unit root and a threshold stochastic unit root.

1.6 Some Extra Issues

From the empirical point of view, there are four extra issues that are present in all the

threshold models and need to be discussed. These issues are:

1. Models with higher dynamics. For practical purpose, model (1.5) is rather too simplis-

tic, so it must be replaced as in Leybourne, McCabe and Tremayne (1996) by a more

general version of (1.5)

Y ∗t = δtY
∗
t−1 + εt (1.40)

where

Y ∗t = Yt −
p∑
i=1

ωiYt−i, (1.41)

with all the roots of the lag polynomial Φp(L) = 1 −
∑p

i=1 ωiL
i lying outside the unit

circle. The advantage of this formulation is that when E(δt) = 1, under the null, the

process is integrated for order one, and the hypothesis for the threshold e�ect can still

be framed in terms of the single parameter, namely γ. The model has the following

representation

Yt =

p+1∑
i=1

ηitYt−i + εt, (1.42)

where η1t = (δt + ω1), ηit = (ωi − δtωi−1) for i = 2, · · · , p and ωp+1,t = −δtφp. With

E(δt) = 1, under the null hypothesis γ = 0, Yt is an AR(p + 1) process with a non-

random unit root because the coe�cients ηit still sum to unity. Alternatively, when

γ 6= 0, Yt is a random coe�cient of the AR(p + 1) process. The sum, st, of the p + 1

AR coe�cient is given by
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st = δt(1−
p∑
i=1

ωi) +

p∑
i=1

ωi, (1.43)

so that st has a mean of unity and variance V (δt)(1 −
∑p

i=1 ωi)
2. Thus, when γ 6= 0

(V (δt) > 0), Yt represents an AR(p+1) process with a random unit root. It is straight-

forward to show that the result of Theorem 1 and the asymptotic theory developed in

Section 4 still hold. For the latter, the only required modi�cation is to add p lags of ∆Yt

in the regression model (1.22). The number of lags can be chosen by some information

criteria (see Kapetianos (2001)).

2. Determination of number of regimes. The number of regimes can be determined by

sequential testing or by some model selection technique. The �rst approach consists

of running the TARSUR tests sequentially in a similar fashion as it done in Bai and

Perron (1998) for structural breaks. The second approach inherits the spirit of the �rst

one, but it uses some information criteria instead of a test. This has been introduced in

Gonzalo and Pitarakis (2002). The consistency of both approaches needs to be proved

for a TARSUR framework.

3. Inference on the threshold parameter r. This is the toughest topic in the literature. To

the best of our knowledge, the most general solution is given via the use of sub-sampling

methods in Gonzalo and Wolf (2004). Extensions of this approach to a TARSUR

framework are currently under investigation by the authors.

4. Misspeci�cation of the threshold forcing variable. This type of misspeci�cation pro-

duces, as in the standard omission of a relevant variable case, inconsistency of the

parameter estimate, unless the true and wrong threshold variable splits the sample in

a similar fashion. In practice, we propose to choose the threshold variable based on

some information criteria.

1.7 Empirical Applications

In order to provide an empirical illustration of how the estimation and testing of a TARSUR

model can be applied in practice, we present four applications where some theoretical and/or

empirical controversy exists about the randomness of the unit root in the AR representation.

The �rst example models U.S. stock prices, the second investigates the U.S. house prices,

the third analyzes the U.S. interest rates, and fourth the nominal exchange rate between the

USD/Pound exchange rates.
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1.7.1 U.S. Stock Price

Following the economic model presented in Section 1.2, in this application we investigate via

our TARSUR model the link between asset prices and real activity, as well as the predictabil-

ity of asset returns. The data analyzed are the quarterly series of real Standard & Poor's

Composite Stock Price Index from 1947:1 to 2016:4. The threshold variable representing the

real activity is the increment in real GDP. More information about the data on stock prices

can be found in Shiller (http://www.econ.yale.edu/ shiller/data.htm), and the GDP (S.A.)

series in the U.S. Bureau of Economic Analysis, retrieved from FRED

(https://fred.stlouisfed.org/series/GDPC1).

The estimated model for the stock prices is the TARSUR model

∆Yt = µ1I(Zt−d ≤ λ) + µ2I(Zt−d > λ) + φYt−1 + γHt(r)Yt−1 + εt,

, where Yt is the real stock price index and Zt corresponds to changes in the real GDP

(∆rgdpt). The Dickey-Fuller unit root test suggests that real stock prices as well as the real

GDP contain a unit root, therefore, Zt is I(0).

[Tables 1.23 and 1.24 here]

Table 1.23 summarizes the estimation results for the TARSUR model. Since we have to

estimate the threshold parameter, we search in the set generated by ordering the observation

of ∆rgdpt from the smallest to the biggest and dropping 15% of the elements of this set

in the right and the remaining in the left, in terms of the distribution (1.37), π1 = 0.15

and π2 = 0.85. Testing for E(δt) = 1, we can see that tφ=0 = −1.398 and the 5% critical

value obtained using sub-sampling is CVtφ=0
= −2.43; therefore, we fail to reject the null of

E(δt) = 1. Testing for V (δt) > 0, the null hypothesis of no threshold e�ect is clearly rejected

at the 5% signi�cant level since WT = 13.76 versus the critical value of CVtγ=0 = 8.86

tabulated in Estrella (2003) for π0 = 0.15.

The TARSUR model does not only capture a clearly positive relationship between the

stock market and real activity but also it �nds a candidate variable Zt to explain the causes of

why stock prices may have a unit root. To evaluate the forecast performance, we test the one

step-ahead forecast of stock returns, ∆Yt, produced from our TARSUR model with respect

to the RW with drift (∆Yt = c+ut). Since the TARSUR process is a nested model of the RW

process, we follow the method proposed by Clark and West (2006) where the one step-ahead

forecast errors are constructed by using the estimated parameters (φ̂, γ̂, λ̂, µ̂1, andµ̂2) from a

rolling window regression and construct the mean square prediction adjusted statistic (MSPE-

adjusted). We test under the null of equal forecast error variance H0 : σ2
RW = σ2

TARSUR.
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Following the argument of Ashley, Granger and Schmalensee (1980), Clark and McCracken

(2001, 2006), the alternative hypothesis considered will be one-sided H1 : σ2
RW > σ2

TARSUR

because if the process does not follow a RW, we expect forecast from the TARSUR model to be

superior to those from the RW. The MSPE-adjusted statistic we obtain is tMSPE−adj = 5.03

which is greater than the 5% critical value of a standard normal. Also, we measure the

forecasting performance by counting the number of times that the sign of the returns is

predicted correctly. The TARSUR model predicts the sign correctly 69% of times, whereas

the RW model predicts 55% of times correctly. From the forecasting point of view, the

TARSUR model also has a good performance.

To recover the estimates of ρ1 and ρ2 there are two forms. After failing to reject the null

of H0 : φ = 0, the �rst method is to estimate the following unrestricted model:

Yt = µ1I(Zt−d ≤ λ) + µ2I(Zt−d > λ) + ρ1I(Zt−d ≤ λ)Yt−1 + ρ1I(Ut−d ≤ λ)Yt−1 + εt (1.44)

The second form is to impose the null of φ = 0 on the regression model (1.22) such

that from the maintained hypothesis of unit root (ρ1λ + ρ2(1 − λ) = 1) and the estimated

parameters, γ̂ and λ̂, is straightforward to recover the estimates of ρ1 and ρ2 and the transition

probabilities p̂22 and p̂12 (see Table 1.24). When E(δt) = 1 holds the estimates of ρ1 and ρ2,

in both methods it should be the same. The results in Tables 1.23 and 1.24 show that when

the increment of real GDP is less than 78.71, the stock price index is in the stationarity and

mean reverting regime (autoregressive parameter equals to 0.976). The estimated probability

of being in this regime is 0.68. On the other hand, when the increment of the real GDP is

larger than 78.71, prices follow a mildly explosive model (autoregressive parameter is equal to

1.023). This occurs with probability 0.32. Overall, the stochastic root of the autoregressive

representation is on average unity.

[Insert �gure 1.2 here]

Figure (1.2) presents the plot of the U.S. stock prices, the green dots represent the periods

in which the TARSUR model tells us that the stock prices are in the explosive state, and the

red dots represent the periods in which the stock prices are in the mean reverting period. The

vertical lines represent the U.S. recessions (www.nber.org/cycles/cyclesmain.html). From this

plot, we can see that the TARSUR model is able to identify the periods in which the stock

prices are expanding and the periods in which they are contracting.

Given that the estimated value of the delay parameter d is equal to one, at time t− 1 it

is known in which regime we are at period t. Therefore, stock prices will not be a martingale
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process with respect to the information set formed by past values of Yt and ∆rgdpt. In other

words, if ∆rgdpt is considered a plausible explanation of the stochastic unit root, future

returns could be predictable in the sense that

Et−1

(
Yt − Yt−1

Yt−1

)
= Et−1(δt − 1) 6= 0 (1.45)

From (1.45) and the results in Tables 1.23 and 1.24 we conclude that if we were in a

"recession" state at time t − 1 (∆rgdpt < 78.71), the expected value of returns at time t

would be negative. On the contrary, if we were in an "expansion" state (∆rgdpt > 78.71) the

expected return would be positive. In this way, we �nd that there exists a positive non-linear

relationship between the expected stock returns and the real activity of the economy. The

linear links between the stock returns and macroeconomic variables are found widely in the

�nancial literature (Chen et al. (1986), Fama (1990)).

1.7.2 U.S House Price

In this application, we study the link between house prices and real activity using the TAR-

SUR model. The analyzed data are the quarterly series of the U.S. real home price index from

1961:1 to 2016:04. The threshold variable representing real activity is the quarterly growth

rate of real GDP per-capita. More information about the U.S. real house price index can be

found in the website of Shiller (http://www.econ.yale.edu/ shiller/data.htm) and about the

real GDP per-capita (S.A) series can be found in the Federal Reserve Bank of St. Louis (

https://fred.stlouisfed.org).

Price bubbles is not a new phenomenon and it was modeled as an explosive autoregressive

process. From a historical perspective (Tulipmania, South sea bubble, 1929 stock market

crash, Dotcom bubble, and the more recent house market bubble) we observe that bubbles

have a peculiar behavior, that is, a period during which the asset price grows sharply followed

by a sudden steep drop.

Modeling price bubble as an explosive autoregressive process captures the period in which

the bubble is expanding but is unable to capture the price drop. The TARSUR model solves

this problem by allowing some of the autoregressive coe�cients to remain above unity for

some periods and bellow unity for others, but on average one. This change on the coe�cients

will be able to capture the explosive and implosive behavior of price bubbles, and we will

also able to �nd a plausible random variable capable of explaining this behavior change.

As before, the estimated TARSUR model for the house prices is:
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∆Yt = µ1I(Zt−d ≤ λ) + µ2I(Zt−d > λ) + φYt−1 + γHt(r)Yt−1 + εt,

, where Yt is the real house price index and Zt is the quarterly growth rate of GDP per-

capita (∆RgdpPt). The usual Dickey-Fuller test suggests that the home price index and real

GDP per-capita have a unit root but ∆RgdpPt is I(0).

[Insert Tables 1.25 and 1.26 here]

Table 1.25 summarizes the estimation results; however, since the threshold parameter is

unknown, we search the threshold parameter in a subset generated by dropping 15% of the

threshold value of candidates from the right and the left in the set generated by ordering

the observations of (∆RgdpPt). Testing for E(δt) = 1, the t-statistic is tφ=0 = 0.551, which

compares with the critical value obtained using sub-sampling CVtφ=0
= −2.969, clearly we

fail to reject the null of E(δt) = 1. Testing for threshold e�ect, the null hypothesis is clearly

rejected at the 5% signi�cant level since the Wald test is WT = 16.556, compared to the

critical value of CVγ=0 = 8.86 tabulated in Estrella (2003) for π0 = 0.15.

In this empirical application, we also compare the one-step ahead forecast performance

of the estimated TARSUR process with respect to the UR with drift (∆Yt = µ+ ut). Again,

following the procedure proposed by Clark and West (2006), we test the null of equal forecast

error variance (H0 : σ2
RW = σ2

TARSUR). The MSPE-adjusted is tMSE−adj = 3.06, which is

greater than the 5% critical value of a standard normal, rejecting the null of equal forecast

error variance in favor of the TARSUR model. Also, we measure the number of times the

sign is predicted correctly, which also shows that the TARSUR model is slightly superior by

predicting 69% correctly against the 65% predicted by the RW.

In Table 1.26 we recover the estimates of ρ1 and ρ2 and the transition probabilities p̂22

and p̂12. The results in Tables 1.25 and 1.26 show that when the quarterly growth rate

of the GDP per capita is less than 0.28%, the real house price is in the stationary regime

(with autoregressive parameter of 0.97). The probability of being in this regime is 0.33. If

the quarterly growth rate of the GDP per capita is larger than 0.28%, the real house price

follows a mildly explosive process (autoregressive parameter 1.02). The probability of being

in this regime is 0.67.

[Insert Figure 1.3 here]

Figure 1.3 presents the plot of the U.S. real house price index, the vertical lines represent

the U.S. recessions (www.nber.org/cycles/cyclesmain.html). The green dots represent the
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periods in which the TARSUR model tells us that the house price is in the explosive state

and the red dots represent the periods where the TARSUR model tells us that the house

price is in a mean reverting state. Note that the TARSUR model is able to assess something

about the 2008 house price bubble, since it is able to capture the explosive behavior of house

prices between 2001 to 2008, represented by green dots, and the implosion of house prices

between 2008 to 2010, represented by red dots.

1.7.3 U.S Interest rates

In this empirical application, we analyze the U.S. three-month treasury bill interest rates

using our TARSUR model. The series have monthly frequency from January 1949 to De-

cember 2016, more information is available in the Federal Reserve Bank of St. Louis (

https://fred.stlouisfed.org).

Leybourne, McCabe and Mills (1996) perform a similar exercise for the international U.S.

bond yield data (BUS) but with higher frequency data on a shorter period (daily close of

trade observation from April 1st to December 29st 1989). They �nd that the null hypothesis

of �xed unit root versus the alternative of a stochastic unit root is clearly not rejected.

In order to apply our TARSUR model, we need a candidate for a threshold variable.

There is an extensive body of literature showing the negative relation between interest rates

and unemployment rates (Sargent, Fand and Goldfeld (1973), Friedman (1977), Blanchard

and Wolfers (2000)). Then, the threshold variables we use will be the annual changes in the

unemployment rate (Aunratet) available in the Federal Reserve Bank of St. Louis.

[Insert Tables 1.27 and 1.28 here]

Table 1.27 shows the estimation results of the TARSUR model. Testing for E(δt) = 1,

we fail to reject the null hypothesis of E(δt) = 1 since the t-statistic tφ=0 = −0.843, which

is greater than the critical value generated by sub-sampling CVφ=0 = −3.56. Testing for

V ar(δt) > 0, we reject the null of no-threshold e�ect since the Wald test WT = 16.548, which

is greater than CVγ=0 = 8.86 from Estrella (2003) for π0 = 0.15.

The TARSUR model captures a negative non-linear relationship between the interest

rates and the annual increment of unemployment rates. We can see from Tables 1.27 and

1.28 that if the annual change in unemployment rate is less than 0.4%, the interest rate is in

the "explosive" state with the autoregressive coe�cient of 1.006, which is close to one, and

the probability of being in this regime is 0.74. If the annual change in unemployment rate is

greater than 0.4%, the interest rate is in the mean reverting state with the coe�cient 0.968,

and the probability of being in this regime is 0.26.
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[Insert Figure 1.4 here]

Figure 1.4 plots the series of interest rates, the green dots represent the periods in which

the interest rates are in the "explosive" state (Aunratet ≤ 0.4%), and the red dots are the

periods in which the interest rates are in the mean reverting state (Aunratet > 0.4%). The

vertical lines represent a recession as determined by the National Bureau of Economic Re-

search (NBER)(www.nber.org/cycles/cyclesmain.html). As we can see during the recession

periods, during which the unemployment rate increases and interest rate tends to decline,

consistent with the economic theory and the TARSUR model is able to capture a non-linear

relationship of this phenomena.

Also, we evaluate the forecast performance of the TARSUR model against the UR process

with drift (∆Yt = µ+ut). The MSPE-adjusted statistic is tMSPE−adj = 1.98, which is rejected

at the 5% signi�cant level but not rejected at the 1% signi�cant level. Furthermore, we

evaluate the number of times the TARSUR model predicts correctly the sign with respect to

the RW. In this case, the TARSUR model has a similar performance to the RW with 48%

and 47%, respectively.

1.7.4 Dollar/Pound Nominal Exchange Rates

For the last empirical application, we try to �nd a non-linear behavior of the U.S. dollar

and the British pound nominal exchange rates using our TARSUR model. The data we use

are the monthly series of nominal exchange rates of the U.S. dollar per British Pound from

January 1978 to December 2016. More information is available in the Federal Reserve Bank

of St. Louis database ( https://fred.stlouisfed.org).

In order to estimate a TARSUR model, we need to �nd a suitable threshold variable.

In their work, Messe and Rugo� (1983)and Barbara Rossi (2006) use the �rst di�erence of

the nominal short-term interest rate di�erential between countries as one of the explanatory

variables suggested by the economic theory. Following their work, we use this �rst di�erence

of the nominal interest di�erential as a threshold variable. More information about the series

of short-term interest rates can be found in the OECD database (http://www.oecd.org/std).

Meese and Rogo� (1983) show that economic models used to forecast exchange rates

are outperformed by the random walk. A possible explanation for this phenomenon is the

presence of parameter instability. In order to explore this puzzle and improve the out-of-

sample forecast, there is a lot of work in the time-varying parameter models, Engle (1994)

and Marsh (2000) use regime-switching models, but it is still unable to beat the random

walk. Schinasi and Swamy (1989) and Rossi (2006) use random coe�cient models and they

can have a better out-of-sample forecast than the RW.
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[Insert Tables 1.29]

Table 1.29 shows the estimation of the TARSUR model. Testing for E(δt) = 1, we fail

to reject the null hypothesis of φ = 0 since the t-statistic tφ=0 = −1.79, which is greater

than the critical value obtained using sub-sampling, CVφ=0 = −2.90. Testing for V (δt), we

clearly do not reject the null of no-threshold e�ect since the Wald statistic WT = 7.84, which

is smaller than CVγ=0 = 8.86, from Estrella (2003) for π0 = 0.15. The results from the tests

suggest the presence of a unit root that is �xed.

From the forecast perspective, using the method of Clark and West (2006), we compare

the TARSUR model with respect to the random walk with drift (∆Yt = µ+ εt) and, clearly,

we fail to reject the null of equal variance of error forecast. The MSPE-adjusted statistic is

tMSPE−adj = 0.94. Furthermore, the proportion where the TARSUR model predicts correctly

the sign of the exchange rates is 51.42%, which is slightly better than the RW at 47%.

This result that we obtain is like the one obtained by Engle (1994), but with a di�erent

methodology. The advantage of the TARSUR model is that we can �nd a reason why both

models have an equal out-of-sample forecast performance in terms of mean squared error.

This is because we are not able to reject the existence of �xed unit roots.

1.8 Conclusion

This study introduces a new class of stochastic unit root models (TARSUR) where the random

behavior of the unit root is driven by an economic threshold variable. By doing that, we not

only make the unit root models more �exible but also �nd an explanation for the existence

of unit roots. Flexibility is obtained because depending on the values of certain parameters,

the TARSUR process can behave like an explosive process, an exact unit root process, or a

stationary process. Explanatory power is gained because TARSUR models, by identifying an

economic variable as a threshold variable, can provide a cause for the existence of unit roots.

Empirical applications show that estimation and testing of TARSUR models is not more

di�cult than the estimation and testing involved in �xed-unit root models. This is a clear

advantage of the TARSUR models with respect to other stochastic unit root methodologies

available in the literature.
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Appendix

1.A Proofs

Proof of Theorem 1. The condition for strict stationary follows from Brandt (1986), and

the weak stationary from Karlsen (1990).

Proof of Corollary 1. From V (δt) > 0 and by Jensen's inequality we get

Elog|δ1| < logE|δ1| = logEδ1 = 0 (1.46)

Therefore condition (1.7) holds.

Proof of Proposition 1. The condition for covariance stationary is given by,

∞∑
j=0

E
(
|ψt,j|2

) 1
2

=

[(
1 1

) ∞∑
j=1

F j
2

(
ρ1p1

ρ2p2

)]
<∞, (1.47)

with F2 =

(
ρ2

1p11 ρ2
1p21

ρ2
2p12 ρ2

2p22

)
. This in�nite sum converges if the spectral radius of F2 is less

than one.

Proof of Theorem 2. The proof is in the paper of Yao and Attali (2000), Theorem 1,

with |fk(y)| = ak|y|+ bk for k ∈ E = {1, 2..., n} where {ak, bk} are positive constants.

Proof of Corollary 2. The proof is the same as Corollary 1.

Proof of Proposition 2. The IRF can be expressed as

ξh =
(

1 1
) ∞∑
j=1

F h
1

(
ρ1p1

ρ2p2

)
, h = 1, 2, · · · , (1.48)

where F1 =

(
ρ1p11 ρ1p21

ρ2p12 ρ2p22

)
. Therefore limh→∞ξh converges to zero if and only if the

spectral radius of F1 is less than one.

Proof of Proposition 3. Iterating backwards equation (1.15),

∆Yt = εt + (δt − 1)
m−1∑
j=1

(
j−1∏
i=1

δt−i

)
εt−j + (δt − 1)

(
m−1∏
i=1

δt−i

)
Yt−m. (1.49)
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Subtracting (1.15) from equation (1.49)

∆Yt(Yt−m)−∆Yt = (δt − 1)(Yt−1(Yt−m)− Yt−1), (1.50)

where ∆(Yt−m) correspond to equation (1.49) and ∆Yt to equation (1.15). As long as

V (δt) > 0, ∆(Yt−m) converges almost sure (in mean square) to ∆Yt as m → ∞, if and only

if Yt−1(Yt−m) converges almost sure (in mean square) to Yt−1.

In order to derive the asymptotic distribution of the proposed tests we need to use some

of the asymptotic tools developed in Caner and Hansen (2001).

De�ne the partial-sum process

WT (s, λ) =
1√
T

[Ts]∑
t=1

I(Ut−d ≤ λ)εt, (1.51)

with λ = P (Zt−d ≤ r) = P (r). Theorem 1 in Caner and Hansen (2001) establishes that

WT (s, λ)⇒ σW (s, λ), (1.52)

on (s, λ) ∈ [0, 1]2 as T →∞, where W (s, λ) is a standard Brownian sheet on [0, 1]2, and

σ2 = E(ε21).

De�nition 2. A standard Brownian sheet S indexed by R+ × [0, 1] is a zero-mean Gaussian

process with continuous sample paths and covariance function,

Cov[S(s, u), S(t, v)] = (s ∧ t)(u ∧ v).

Following Theorem 2 in Caner and Hansen (2001) if Yt = Yt−1 + εt

1√
T

T∑
t=1

YtI(Ut−d ≤ λ)εt ⇒ σ

∫ 1

0

W (s)dW (s, λ), (1.53)

whereW (.) is a standard Brownian motion. Finally from Theorem 3 in Caner and Hansen

(2001)

1

T 3/2

T∑
t=1

YtI(Ut−d ≤ λ)⇒ λσ

∫ 1

0

W (s)ds (1.54)

1

T 2

T∑
t=1

Y 2
t I(Ut−d ≤ λ)⇒ λσ2

∫ 1

0

W 2(s)ds (1.55)

The proofs are divided into two parts depending if the deterministic components are
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included in the regression model (1.22): (1) no deterministic components included µ1 = µ2 =

0, and (2) including state dependent constant terms µ1 6= µ2.

Let's start writing a close form of the estimator of φ and γ for the case in which no

deterministic components are considered and allow us to rewrite model (1.22) as follows,

∆Yt = Xt−1β + εt (1.56)

where Xt =
(
Yt−1 Ht(λ)Yt−1

)
and β =

(
φ

γ

)
. Then the least square estimate of β is,

β̂ =

(
T∑
t=1

X ′t−1Xt−1

)−1( T∑
t=1

X ′t−1∆Yt

)
, (1.57)

equivalently

β̂ − β =

(
T∑
t=1

X ′t−1Xt−1

)−1( T∑
t=1

X ′t−1εt

)
, (1.58)

Now,

T∑
t=1

X ′t−1Xt−1 =

( ∑T
t=1 Y

2
t−1

∑T
t=1 Y

2
t−1Ht(λ)∑T

t=1 Y
2
t−1Ht(λ)

∑T
t=1 Y

2
t−1H

2
t (λ)

)
(1.59)

De�ne Γb =

(
T b 0

0 T b

)
for b = {1

2
, 1} depending if the process Yt is covariance stationary

or not, and multiplying both sides of (1.58) we get

Γb(β̂ − β) =

(
T−2b

∑T
t=1 Y

2
t−1 T−2b

∑T
t=1 Y

2
t−1Ht(λ)

T−2b
∑T

t=1 Y
2
t−1Ht(λ) T−2b

∑T
t=1 Y

2
t−1H

2
t (λ)

)−1(
T−2b

∑T
t=1 Yt−1εt

T−2b
∑T

t=1 Yt−1Ht(λ)εt

)
(1.60)

Equation (1.60) is key since we derive the asymptotic distribution of the tests from here,

for the case in which the regression model (1.22) we do not considere deterministic terms.

Let's write the least square estimate of φ and γ when state dependent constants are intro-

duced in the regression model (1.22). We can estimate both parameters from the following

regression,
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[I(Ut−d ≤ λ)∆Y I
t + I(Ut−d > λ)∆Y II

t ] = φ[I(Ut−d ≤ λ)Y I
t−1 + I(Ut−d > λ)Y II

t−1]

+ γ[(1− λ)I(Ut−d ≤ λ)Y I
t−1 + λI(Ut−d > λ)Y II

t−1]

(1.61)

where ∆Y I
t =

(
∆Yt −

∑T
t=1 I(Ut−d≤λ)∆Yt∑T
t=1 I(Ut−d≤λ)

)
, ∆Y II

t =
(

∆Yt −
∑T
t=1 I(Ut−d>λ)∆Yt∑T
t=1 I(Ut−d>λ)

)
, Y I

t−1 =(
Yt−1 −

∑T
t=1 I(Ut−d≤λ)Yt−1∑T
t=1 I(Ut−d≤λ)

)
and Y II

t−1 =
(
Yt−1 −

∑T
t=1 I(Ut−d>λ)Yt−1∑T
t=1 I(Ut−d>λ)

)
.

Let us rewrite model (1.61) as follows

[I(Ut−d ≤ λ)∆Y I
t + I(Ut−d > λ)∆Y II

t ] = X̃ ′t−1β + εt (1.62)

where β =

(
φ

γ

)
and

X̃ ′t−1 =
(
I(Ut−d ≤ λ)Y I

t−1 + I(Ut−d > λ)Y II
t−1 (1− λ)I(Ut−d ≤ λ)Y I

t−1 + λI(Ut−d > λ)Y II
t−1

)
(1.63)

Then as before the least square estimate

β̃ =

(
T∑
t=1

X̃ ′t−1X̃t−1

)−1( T∑
t=1

X̃ ′t−1∆Yt

)
, (1.64)

equivalently

β̃ − β =

(
T∑
t=1

X̃ ′t−1X̃t−1

)−1( T∑
t=1

X̃ ′t−1εt

)
, (1.65)

Now,

T∑
t=1

X̃ ′t−1X̃t−1 =

(
x̃1 x̃2

x̃3 x̃4

)
(1.66)

where x̃1 =
∑T

t=1

[
I(Ut−d ≤ λ)(Y I

t−1)2 + I(Ut−d > λ)(Y II
t−1)2

]
, x̃2 = x̃3 =

∑T
t=1

[
(1 −

λ)I(Ut−d ≤ λ)(Y I
t−1)2 + λI(Ut−d > λ)(Y II

t−1)2

]
and x̃4 =

∑T
t=1

[
(1− λ)2I(Ut−d ≤ λ)(Y I

t−1)2 +

λ2I(Ut−d > λ)(Y II
t−1)2

]
.

For Γ1 =

(
T 0

0 T

)
and multiplying both sides of (1.65) we get,
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Γ1(β̃ − β) =

(
T−2x̃1 T−2x̃2

T−2x̃3 T−2x̃4

)−1(
T−1

∑T
t=1[I(Ut−1 ≤ λ)Y I

t−1 + I(Ut−1 > λ)Y II
t−1]εt

T−1
∑T

t=1[(1− λ)I(Ut−d ≤ λ)Y I
t−1 + λI(Ut−d > λ)Y II

t−1]εt

)
(1.67)

Expression (1.67) is important since we will use to derive the asymptotic distribution of

the tests when we include in the regression model state dependent constants.

Proof of Lemma 1. For the case in which V (δt) = 0, under the null of φ = 0 the DGP

(1.21) became a Random Walk process Yt = Yt−1 + εt.

To prove paragraph (1), we use the close form of the estimator of β in equation (1.60),

for b = 1, that is

Γ1(β̂ − β) =

(
T−2

∑T
t=1 Y

2
t−1 T−2

∑T
t=1 Y

2
t−1Ht(λ)

T−2
∑T

t=1 Y
2
t−1Ht(λ) T−2

∑T
t=1 Y

2
t−1H

2
t (λ)

)−1(
T−1

∑T
t=1 Yt−1εt

T−1
∑T

t=1 Yt−1Ht(λ)εt

)
(1.68)

Note that since Yt is a RW we have that

T−2

T∑
t=1

Y 2
t−1 ⇒ σ2

∫ 1

0

W 2(s)ds (1.69)

by construction of Ht(λ) = I(Ut−d ≤ λ)− λ and (1.55) with (1.69) we know that

T−2

T∑
t=1

Y 2
t−1Ht(λ) = T−2

T∑
t=1

I(Ut−d ≤ λ)Y 2
t−1 − λT−2

T∑
t=1

Y 2
t−1 → 0 (1.70)

Finally from (1.55) and (1.69) we have

T−2

T∑
t=1

Y 2
t−1H

2
t (λ)⇒ σ2λ(1− λ)

∫ 1

0

W 2(s)ds. (1.71)

From (1.69), (1.70) and (1.71) the matrix

(
T−2

∑T
t=1 Y

2
t−1 T−2

∑T
t=1 Y

2
t−1Ht(λ)

T−2
∑T

t=1 Y
2
t−1Ht(λ) T−2

∑T
t=1 Y

2
t−1H

2
t (λ)

)−1

⇒
(
σ2

∫ 1

0

W 2(s)ds
)−1

(
1 0

0 [λ(1− λ)]−1

)
(1.72)

From the usual unit root asymptotic we known that
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T−1

T∑
t=1

Yt−1εt ⇒ σ2 1

2
[W (1)2 − 1] (1.73)

and

T−1

T∑
t=1

Yt−1Ht(λ)εt ⇒ σ2

∫ 1

0

W (s)dV (s, λ), (1.74)

where V (s, λ) is a Kiefer-Muller process on [0, 1]2, then(
T−1

∑T
t=1 Yt−1εt

T−1
∑T

t=1 Yt−1Ht(λ)εt

)
⇒ σ2

(
1
2
[W (1)2 − 1]∫ 1

0
W (s)dV (s, λ)

)
(1.75)

Putting all together we have

Γ1(β̂ − β)⇒

 1
2

[W (1)2−1]∫ 1
0 W

2(s)ds∫ 1
0 W (s)dV (s,λ)

λ(1−λ)
∫ 1
0 W

2(s)ds

 (1.76)

From (1.76) the distribution of the tφ=0 is the same as the Dickey-Fuller test, and is free

of the threshold parameter λ.

The proof for paragraph (2) is done in the same way as the paragraph (1) by using the

closed form of the estimator β̃.

(
T−2x̃1 T−2x̃2

T−2x̃3 T−2x̃4

)−1

⇒ 1( ∫ 1

0
W (s)2ds− [

∫ 1

0
W (s)ds]2

) (1 0

0 [(1− λ)λ]−1

)
(1.77)

 T−1
∑T
t=1

[
I(Ut−d ≤ λ)Y It−1 + I(Ut−d > λ)Y IIt−1

]
εt

T−1
∑T
t=1

[
(1− λ)I(Ut−d ≤ λ)Y It−1 − λI(Ut−d > λ)Y IIt−1

]
εt

⇒ σ2

( ∫ 1

0
W (s)dB(s)−W (1)

∫ 1

0
W (s)ds∫ 1

0
W (s)dV (s, λ)− V (1, λ)

∫ 1

0
W (s)ds

)
(1.78)

Putting all together we have that:

Γ1(β̃ − β)⇒


∫ 1
0 W (s)dW (s)−W (1)

∫ 1
0 W (s)ds( ∫ 1

0 W (s)2ds−[
∫ 1
0 W (s)ds]2

)
∫ 1
0 w(s)dV (s,λ)−V (1,λ)

∫ 1
0 W (s)ds

λ(1−λ)
( ∫ 1

0 W (s)2ds−[
∫ 1
0 W (s)ds]2

)
 (1.79)

This complete the proof of Lemma 1.

Proof of Lemma 2. The proof of this Lemma is straightforward, since the TARSUR

process is covariance stationary, from equation (1.60) with b = 1
2
, we apply the ergodic
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stationary martingale di�erences central limit theorem.

Proof of Lemma 3 To show the convergence of T−1/2Y[Tq] ⇒ Jc1,c2(q), �rst note that

ln(δt) = ln(ρ1I(Ut−d ≤ λ) + ρ2I(Ut−d > λ)) = ln(ρ1)I(Ut−d ≤ λ) + ln(ρ2)I(Ut−d > λ) (1.80)

Let de�ne St =
∑t

i=1 εi, from this sequence of partial sum construct.

XT (q) = T−1/2σ−1S[Tq] = T−1/2σ−1Sj−1,
j − 1

T
≤ q <

j

T
(1.81)

we have that,

XT (q)⇒ W (q) (1.82)

Iterating backward the TARSUR model (1.5) we have that:

Y[Tq] =

[Tq]∑
i=1

( [Tq]−i∏
j=1

δ[Tq]−j+1

)
εi +

( [Tq]∏
j=1

δj

)
Y0 (1.83)

Taking logs and exponential in the product of δt

Y[Tq] =

[Tq]∑
i=1

e
∑[Tq]−i
j=1 ln(δt−j+1)εi +

( [Tq]∏
j=1

δj

)
Y0 (1.84)

by adding and subtracting inside the exponential ([Tq] − j)E(ln(δt)) and reordering the

terms

Y[Tq] =

[Tq]∑
i=1

e([Tq]−i)E(ln(δt))e
∑[Tq]−i
j=1 [ln(δt−j+1)−E(ln(δt))]εi +

( [Tq]∏
j=1

δj

)
Y0 (1.85)

First focus on the term e([Tq]−i)E(ln(δt)) in equation (1.85). From assumption (A.8) we have

that

e([Tq]−i)E(ln(δt)) = e
[Tq]−i
T

[c1λ+c2(1−λ)] = e
[Tq]−i
T

C (1.86)

where C = [c1λ+ c2(1− λ)]

Second, focus on the term e
∑[Tq]−i
j=1 [ln(δ[Tq]j+1)−E(ln(δt))], we can write as follows
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e
∑[Tq]−i
j=1 [ln(ρ1)I(U[Tq]−d−j+1≤λ)+ln(ρ2)I(U[Tq]−d−j+1>λ)−ln(ρ1)λ−ln(ρ2)(1−λ)]

= e
∑[Tq]−i
j=1 [ln(ρ1)(I(U[Tq]−d−j+1≤λ)−λ)+ln(ρ2)(I(U[Tq]−d−j+1>λ)−(1−λ))]

= e(ln(ρ1)−ln(ρ2))
∑[Tq]−i
j=1 [I(U[Tq]−d−j+1≤λ)−λ]

(1.87)

From assumption (A.8)we have that:

= e
c1−c2
T

∑[Tq]−i
j=1 [I(U[Tq]−d−j+1≤λ)−λ] (1.88)

Note that as T →∞

1

[Tq]− i

[Tq]−i∑
j=1

[I(U[Tq]−d−j+1 ≤ λ)− λ]→p 0 (1.89)

such that expression (1.88) can be written as

= e(c1−c2)
[Tq]−i
T

op(1) (1.90)

From (1.86) and (1.90) we can rewrite (1.85) as follows

T−1/2Y[Tq] =

[Tq]∑
i=1

e
[Tq−i]
T

C+op(1)εi +O(T−1/2) (1.91)

Then

T−1/2Y[Tq] = σ

[Tq]∑
i=1

e
[Tq−i]
T

C+op(1)

∫ i
T

i−1
T

dXT (s) +O(T−1/2)

= σ

[Tq]∑
i=1

∫ i
T

i−1
T

e
[Tq−i]
T

C+op(1)dXT (s) +O(T−1/2)

= σ

∫ q

0

e(q−s)C+op(1)dXT (s) +O(T−1/2)

(1.92)

We use integration by parts on the �rst term which is valid since e(q−s)C is continuous

and XT (s) is increasing and of bounded variation. From (1.82) and the continuous mapping

theorem as T →∞,
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σ{XT (q)+(C+op(1))

∫ q

0

e(q−s)C+op(1)XT (s)ds}+O(T−1/2)⇒ σ{W (q)+C

∫ q

0

e(q−s)CW (s)ds}

(1.93)

The proofs of (b) and (c) are similar. To prove (d) we follow the results of Gonzalo and

Pitarakis (2012). We have to show the strong approximation

Sup
q∈[0,1]

∣∣∣Y[Tq]√
T
− Jc1,c2(q)

∣∣∣ = oa.s(1) (1.94)

Following the steps in Phillips (1998) lemma A.3 we use the Hungarian strong approxima-

tion to the partial sum process ,
∑t

i=1 εi and construct an expanded probability space that

contains {εt, Yt} and the Brownian motionW (.) for which the following strong approximation

holds:

Sup
q∈[0,1]

∣∣∣∑[Tq]
i=1 εi√
T
−W (q)

∣∣∣ = oa.s(1) (1.95)

Then

T−1/2Y[Tq] = σ

∫ q

0

e(q−s)C+{([Tq/T ]−q)−(i/T−s)}C+oa.s(1)dXT (s)

= σ

∫ q

0

e(q−s)CdXT (s)(1 + oa.s(1))

= σ

∫ q

0

e(q−s)CdXT (s) + oa.s(1)

(1.96)

since e{([Tq/T ]−q)−(i/T−s)} = eO(T−1) = 1 + o(1) uniformly in q ∈ [0, 1] and s ∈ [ j−1
T
, j
T

]

uniformly over j = 1, · · · , T . Since e(q−s)C is continuous and XT (s) is increasing and bounded

variations we can integrate by parts (1.96)

T−1/2Y[Tq] = σ{XT (q) + C

∫ q

0

e(q−s)CXT (s)ds}+ oa.s(1) (1.97)

Sup
q∈[0,1]

∣∣∣Y[Tq]√
T
− Jc1,c2(q)

∣∣∣ ≤ Sup
q∈[0,1]

|XT (q)−WT (q)|

+ Sup
q∈[0,1]

∣∣∣ ∫ q

0

e(q−s)C
∣∣∣ Sup
s∈[0,1]

|XT (a)−WT (a)|+ oa.s(1) = oa.s

(1.98)

The rest of the proof of part (d) follows from Gonzalo and Pitarakis (2012). (e) follows
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identical lines to the proof of (d).

To prove (f) note that by squaring (1) and summing over t we have

T−1Y 2
T = 2c1

1

T 2

T∑
t=1

I(Ut−d ≤ λ)Y 2
t−1 + 2c2

1

T 2

T∑
t=1

I(Ut−d > λ)Y 2
t−1 + 2

1

T

T∑
t=1

Yt−1εt +
1

T

T∑
t=1

εt +O(T−1/2)

(1.99)

From the strong law of large numbers for weakly dependent sequence T−1
∑
εt → σ2

almost surely. From (a) and (d) with the continuous mapping theorem, as T →∞,

2T−1

T∑
t=1

Yt−1εt ⇒ σ2{Jc1,c2(1)}2 − 2σ2C

∫ 1

0

{Jc1,c2(s)}2ds− σ2 = 2σ2

∫ 1

0

Jc1,c2(s)dW (s)

(1.100)

The last inequality came form

{Jc1,c2(1)}2 = 1 + 2C

∫ 1

0

{Jc1,c2(s)}2ds+

∫ 1

0

Jc1,c2(s)dW (s) (1.101)

Our result in (g) follows along the same lines as in Lemma 1 in Gonzalo and Pitarakis

(2012) and Theorem 2 of Caner and Hansen (2001).

Proof of Proposition 4.

To prove the �rst part of Proposition 4, we use the close form of the estimators presented

in (1.60) with b = 1, and the results in Lemma 3 with the continuous mapping theorem. The

second part of Proposition 4 is proven similarly, by using in this case equation (1.67).

Proof of Proposition 5.

For the cases where E(δt) < 1 the proof can be found in Gonzalez and Gonzalo (1997).

For the case where E(δt) = 1, under the null of H0 : γ = 0, note that DGP (1.21)

became a random walk process. For this case, whether the regression model does not have

deterministic components or have state dependent constants is already proven in Lemma 1.

Case 1: Regression model (1.22) with µ1 = µ2 = 0. From (1.78) we can see that

T−1(γ̂ − γ)⇒
∫ 1

0
W (s)dV (s, λ)

λ(1− λ)
∫ 1

0
W 2(s)ds

(1.102)

From the continuous mapping theorem

tγ=0 ⇒
∫ 1

0
W (s)dV (s, λ)√

λ(1− λ)
∫ 1

0
W 2(s)ds

(1.103)
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Since V (s, λ) and B(s) ≡ B(s, 1) are independent, it can be proved for a �xed λ,∫ 1

0
W (s)dV (s, λ)√∫ 1

0
W (s)2ds

≡ N (0, σ2
λ), (1.104)

where σ2
λ = V (Ht(λ)ε/σ) = λ(1− λ).

Case 2: Regression model (1.22) with state dependent constants. From equation (1.79)

we have that:

T−1(γ̃ − γ)⇒
∫ 1

0
B(s)dV (s, λ)− V (1, λ)

∫ 1

0
B(s)ds

λ(1− λ)
( ∫ 1

0
W (s)2ds− [

∫ 1

0
W (s)ds]2

) ≡ ∫ 1

0
W ∗(s)dV (s, λ)

λ(1− λ)
( ∫ 1

0
W ∗(s)2ds

) (1.105)

where W (.)∗ = W (.)−
∫ 1

0
W (s)ds. From the continuous mapping theorem we have that:

tγ=0 ⇒
∫ 1

0
W ∗(s)dV (s, λ)√

λ(1− λ)
∫ 1

0
W ∗(s)2ds

(1.106)

Again note that W ∗(s) and V (s, λ) are independent, we get the desired result.

Proof of Proposition 6. Since the threshold value is unknown and unidenti�ed,the test

statistic proposed is

Sup
λ∈(0,1)

tγ=0(λ)2. (1.107)

All the cases considered in Proposition 6 are examined in Proposition 5. Applying the

continuous mapping theorem we have that

WT ⇒ Sup
λ∈(0,1)

t(λ)2. (1.108)

where t(λ) is the asymptotic distribution of the t−statistic obtained in Proposition 5.
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1.B Tables and Figures

Table 1.1: Empirical size of test for E(δt) and the V (δy). Threshold parameter known λ = 0.5.

Coe�cients Dependence T=200 T=500
tφ=0 tγ=0 tφ=0 tγ=0

ρ1 = ρ2 = 1
(|γ| = 0)

p12 = 0.5 (i.i.d.) 4.83 5.00 5.40 5.20
p12 = 0.7 5.10 5.24 5.90 5.10
p12 = 0.9 6.12 5.44 6.10 5.11

Table 1.2: Empirical size of test for E(δt) and power of the test for V (δt). Threshold param-
eter known and λ = 0.5.

Coe�cients Dependence T=200 T=500
tφ=0 tγ=0 tφ=0 tγ=0

ρ1 = 0.99 ρ2 = 1.01
(|γ| = 0.02)

p12 = 0.5 (i.i.d.) 4.91 12.53 5.07 46.93
p12 = 0.7 6.20 13.16 6.10 45.22
p12 = 0.9 5.85 13.49 5.94 45.79

ρ1 = 0.98 ρ2 = 1.02
(|γ| = 0.04)

p12 = 0.5 (i.i.d.) 4.54 35.34 5.00 85.73
p12 = 0.7 5.68 34.91 5.61 86.40
p12 = 0.9 6.03 34.35 6.02 85.50

ρ1 = 0.95 ρ2 = 1.05
(|γ| = 0.1)

p12 = 0.5 (i.i.d.) 4.66 88.85 4.50 99.96
p12 = 0.7 5.04 87.32 4.72 99.92
p12 = 0.9 5.54 85.47 4.98 99.93

ρ1 = 0.9 ρ2 = 1.1
(|γ| = 0.2)

p12 = 0.5 (i.i.d.) 4.52 99.64 5.57 100.00
p12 = 0.7 3.97 99.58 3.60 100.00
p12 = 0.9 4.40 99.51 3.26 100.00
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Table 1.3: Empirical size of test for E(δt) and empirical power of the test for V (δt). Threshold
parameter known.

Coe�cients λ F T=200 T=500
tφ=0 tγ=0 tφ=0 tγ=0

ρ1 = 0.985, ρ2 = 1.01 0.4

(
0.4 0.6
0.9 0.1

)
5.46 17.39 5.33 58.16

ρ1 = 0.95, ρ2 = 1.02 0.28

(
0.8 0.2
0.5 0.5

)
4.70 66.23 4.98 98.42

ρ1 = 0.99, ρ2 = 1.03 0.75

(
0.2 0.8
0.27 0.73

)
5.29 28.47 5.16 78.85

ρ1 = 0.8, ρ2 = 1.08 0.8

(
0.4 0.6
0.15 0.85

)
4.44 76.27 4.68 99.26

ρ1 = 0.95, ρ2 = 1.02 0.28

(
0.7 0.3
0.75 0.25

)
5.16 63.46 4.99 98.40

Table 1.4: Empirical size of test for E(δt) and the variance, V (δy). Threshold parameter
unknown and λ = 0.5.

Coe�cients Dependence T=200 T=500
tφ=0 tγ=0 tφ=0 tγ=0

ρ1 = ρ2 = 1
(|γ| = 0)

(i.i.d.) 5.17 3.97 5.33 4.45
p01 = 0.7 5.80 3.96 5.62 4.46
p01 = 0.9 5.69 3.83 5.53 4.33

Table 1.5: Empirical size of test for E(δt) and empirical power for V (δt). Threshold parameter
Unknown λ = 0.5

Coe�cients Dependence T=200 T=500
tφ=0 tγ=0 tφ=0 tγ=0

ρ1 = 0.99 ρ2 = 1.01
(|γ| = 0.02)

(i.i.d.) 5.39 8.28 5.11 33.28
p01 = 0.7 5.35 7.99 5.32 32.85
p01 = 0.9 5.73 8.42 5.58 32.86

ρ1 = 0.98 ρ2 = 1.02
(|γ| = 0.04)

(i.i.d.) 5.29 22.86 5.41 76.31
p01 = 0.7 5.78 22.41 5.32 75.63
p01 = 0.9 5.99 22.01 5.80 74.39

ρ1 = 0.95 ρ2 = 1.05
(|γ| = 0.1)

(i.i.d.) 5.38 78.85 4.92 99.76
p01 = 0.7 5.60 76.35 5.19 99.67
p01 = 0.9 6.05 73.89 5.22 99.65

ρ1 = 0.9 ρ2 = 1.1
(|γ| = 0.2)

(i.i.d.) 5.00 100.00 5.62 100.00
p01 = 0.7 5.57 98.32 3.88 100.00
p01 = 0.9 4.96 98.77 3.46 100.00
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Table 1.6: Empirical size of test for E(δt) and empirical power for V (δt). Threshold parameter
Unknown.

Coe�cients P (r) F T=200 T=500
tφ=0 tγ=0 tφ=0 tγ=0

ρ1 = 0.985, ρ2 = 1.01 0.4

(
0.4 0.6
0.9 0.1

)
5.60 9.71 5.63 45.34

ρ1 = 0.95, ρ2 = 1.02 0.28

(
0.8 0.2
0.5 0.5

)
5.20 53.26 5.80 96.18

ρ1 = 0.99, ρ2 = 1.03 0.75

(
0.2 0.8
0.27 0.73

)
5.23 12.60 4.87 52.69

ρ1 = 0.8, ρ2 = 1.08 0.8

(
0.4 0.6
0.15 0.85

)
4.17 42.14 3.91 90.21

ρ1 = 0.95, ρ2 = 1.02 0.28

(
0.7 0.3
0.75 0.25

)
5.69 48.91 5.76 95.77

Table 1.7: Local power of the test E(δt), compared with Dickey-Fuller test. Empirical size
for V (δt). Threshold parameter is known with i.i.d. threshold variable.

ρ1 = 1− k
T
, ρ2 = 1− k

T
, (|γ| = 0)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 5.11 5.43 5.10 5.01 4.90 5.09
k = 2 6.00 6.80 5.20 7.07 7.35 5.14
k = 5 10.72 12.81 5.59 11.48 11.83 4.95
k = 8 19.68 23.80 5.72 21.01 22.89 5.16
k = 10 26.66 33.37 5.12 29.94 32.71 5.11
k = 12 35.36 44.68 5.24 39.49 44.95 4.99
k = 15 49.61 64.31 5.44 54.72 62.77 5.38
k = 18 63.09 80.45 5.15 69.65 78.54 5.27
k = 20 70.47 87.26 5.30 77.19 86.89 5.06
k = 28 89.99 99.30 5.58 94.83 99.05 4.91
k = 30 92.80 99.73 5.08 97.12 99.59 5.34
k = 35 96.98 99.97 5.29 98.95 99.94 4.75
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Table 1.8: Local power of the test E(δt) and compared with Dickey-Fuller. Empirical size
for V (δt). Threshold parameter is known generated by p12 = 0.9 and λ = 0.5.

ρ1 = 1− k
T
, ρ2 = 1− k

T
, (|γ| = 0)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 6.04 5.37 5.17 6.04 4.89 4.97
k = 2 8.18 7.13 5.06 8.03 6.78 4.85
k = 5 13.60 12.81 5.20 13.75 12.51 5.00
k = 8 24.78 23.80 4.85 24.40 22.86 5.11
k = 10 33.29 34.35 5.06 34.07 32.93 4.83
k = 12 43.70 45.58 4.93 45.03 44.65 4.91
k = 15 58.33 64.01 4.98 61.27 62.82 4.82
k = 18 70.98 87.40 5.33 75.21 78.55 5.12
k = 20 79.18 87.40 5.33 82.34 86.82 4.83
k = 28 94.28 99.17 5.37 96.66 99.06 4.84
k = 30 96.15 99.70 4.79 98.07 99.69 5.47
k = 35 97.95 99.99 .37 99.32 99.98 4.67

Table 1.9: Local power of the test for E(δt) compared withDickey-Fuller test. Empirical
power for V (δt). Assumed threshold parameter is known with i.i.d. threshold variable.

ρ1 = 0.99− k
T
, ρ2 = 1.01− k

T
, (|γ| = 0.02)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 4.88 5.26 12.81 4.55 4.57 47.32
k = 2 6.07 6.76 10.23 6.63 6.87 34.94
k = 5 10.62 12.74 8.967 11.44 11.76 25.71
k = 8 19.75 23.85 8.08 21.38 22.96 19.91
k = 10 26.95 34.32 7.04 29.71 32.95 17.28
k = 12 35.45 45.59 6.89 39.53 44.81 16.02
k = 15 49.80 64.05 6.80 55.12 63.22 14.15
k = 18 62.35 79.53 6.70 69.73 78.79 12.44
k = 20 71.13 88.16 6.05 77.48 86.95 11.91
k = 28 90.16 99.29 6.24 94.97 98.98 10.33
k = 30 92.90 99.73 5.87 96.70 99.67 9.91
k = 35 96.62 99.99 5.88 99.01 99.98 9.10

43



Chapter 1. Threshold Stochastic Unit Root Models

Table 1.10: Local power for E(δt) compared with Dickey-Fuller. Empirical power forV (δt).
Threshold parameter known with p12 = 0.9 and λ = 0.5.

ρ1 = 0.99− k
T
, ρ2 = 1.01− k

T
, (|γ| = 0.02)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 6.17 5.66 13.14 5.73 5.06 46.64
k = 2 7.91 6.87 9.64 7.87 7.03 34.19
k = 5 13.81 12.97 8.35 13.73 12.62 24.76
k = 8 24.51 24.01 7.05 24.47 23.16 20.25
k = 10 33.57 34.34 6.74 34.26 .33.29 16.90
k = 12 42.97 45.76 7.09 44.98 45.06 15.27
k = 15 58.47 64.42 6.49 60.96 63.07 13.64
k = 18 71.83 80.17 5.92 75.21 78.87 12.88
k = 20 79.14 87.50 6.43 82.21 86.48 11.45
k = 28 94.41 99.31 6.05 96.56 99.07 10.12
k = 30 95.62 99.76 5.99 98.06 99.69 10.34
k = 35 98.27 99.97 6.03 99.42 99.99 8.95

Table 1.11: Local power for E(δt) compared with Dickey-Fuller. Empirical power for V (δt).
Threshold parameter known with i.i.d. threshold variable.

ρ1 = 0.95− k
T
, ρ2 = 1.05− k

T
, (|γ| = 0.1)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 4.65 5.06 88.36 4.76 4.67 99.95
k = 2 7.04 7.17 80.31 7.74 7.25 99.87
k = 5 11.75 13.92 68.75 14.25 13.58 99.65
k = 8 20.41 23.91 58.26 23.99 24.80 99.36
k = 10 27.77 35.33 51.45 32.52 34.12 98.93
k = 12 37.14 45.87 46.42 43.27 46.58 88.36
k = 15 49.88 64.47 40.54 57.32 63.00 96.96
k = 18 63.66 80.24 36.14 72.01 79.72 95.44
k = 20 71.22 88.31 34.42 78.19 86.55 94.19
k = 28 90.57 99.34 26.36 95.34 98.96 88.53
k = 30 93.38 99.67 25.95 96.76 99.50 86.58
k = 35 96.43 99.99 23.19 98.89 99.97 82.11
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Table 1.12: Local power for E(δt) compared with Dickey-Fuller. Empirical power for V (δt).
Threshold parameter known with p12 = 0.9 and λ = 0.5.

ρ1 = 0.95− k
T
, ρ2 = 1.05− k

T
, (|γ| = 0.1)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 5.44 9.28 86.13 4.80 11.37 99.91
k = 2 7.32 8.43 78.65 7.01 10.80 99.85
k = 5 13.99 15.33 67.42 12.80 17.04 99.60
k = 8 23.62 25.89 57.32 22.82 29.42 99.18
k = 10 32.26 36.83 51.75 32.08 40.12 98.81
k = 12 41.72 48.03 46.09 42.24 52.34 98.26
k = 15 57.84 66.94 40.09 59.05 70.31 97.12
k = 18 70.96 82.15 35.75 72.59 84.51 95.34
k = 20 77.96 89.70 34.28 80.24 90.80 94.60
k = 28 93.74 99.42 27.29 96.79 99.68 88.36
k = 30 95.49 99.76 25.76 97.80 99.85 86.81
k = 35 .98.13 99.96 23.30 99.30 99.98 82.34

Table 1.13: Local power for E(δt) compared with Dickey-Fuller. Empirical power for V (δt).
Threshold parameter is known with i.i.d. threshold variable.

ρ1 = 0.9− k
T
, ρ2 = 1.1− k

T
, (|γ| = 0.2)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 4.49 5.83 99.66 5.92 7.66 1
k = 2 8.48 8.34 99.21 10.85 10.46 1
k = 5 13.48 15.09 98.29 21.00 18.86 1
k = 8 23.14 26.23 96.23 32.26 30.15 1
k = 10 30.98 36.67 95.09 41.76 40.10 1
k = 12 38.90 47.53 93.56 50.04 50.94 1
k = 15 53.42 65.36 89.63 64.38 66.85 1
k = 18 66.39 80.26 86.96 75.86 79.83 99.99
k = 20 73.20 87.70 84.32 82.15 87.02 99.99
k = 28 90.61 99.12 74.90 95.21 98.46 99.98
k = 30 93.50 99.60 72.16 96.90 99.33 99.98
k = 35 96.65 99.99 67.42 99.05 99.88 99.97
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Table 1.14: Local power for E(δt) compared with Dickey-Fuller. Empirical power for V (δt).
Threshold parameter known with p12 = 0.9 and λ = 0.5.

ρ1 = 0.9− k
T
, ρ2 = 1.1− k

T
, (|γ| = 0.1)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 4.23 16.52 99.47 3.31 23.60 1
k = 2 6.30 13.30 99.09 5.23 24.21 1
k = 5 11.92 20.49 98.12 11.12 35.02 1
k = 8 22.42 34.40 96.09 19.75 51.43 1
k = 10 30.60 45.78 95.07 27.96 62.72 1
k = 12 40.32 58.51 92.82 37.06 73.83 1
k = 15 55.74 75.11 89.83 52.56 86.29 1
k = 18 68.21 87.37 86.37 66.33 94.39 1
k = 20 75.53 92.47 84.23 74.98 97.47 1
k = 28 92.99 99.61 74.73 94.30 99.95 99.99
k = 30 94.96 99.84 71.90 96.54 99.98 1
k = 35 97.66 1.00 67.08 98.79 1 99.99

Table 1.15: Local power forE(δt) compared with Dickey-Fuller. Empirical size for V (δt).
Threshold parameter is Unknown with i.i.d. threshold variable.

ρ1 = 1− k
T
, ρ2 = 1− k

T
, (|γ| = 0)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 5.48 5.53 4.10 5.03 4.84 3.79
k = 2 6.86 7.06 3.72 6.96 7.04 4.19
k = 5 12.43 13.28 4.13 12.49 12.70 4.36
k = 8 20.58 23.73 4.00 21.83 23.33 4.17
k = 10 27.89 33.33 3.8 30.23 33.23 4.13
k = 12 37.15 45.76 3.58 40.02 44.63 4.03
k = 15 51.40 64.48 3.70 55.92 62.25 4.30
k = 18 63.38 79.76 4.06 69.09 79.16 4.06
k = 20 70.98 87.82 3.67 77.39 87.41 4.25
k = 28 90.18 99.37 3.75 95.19 99.24 4.11
k = 30 92.46 99.65 3.50 96.97 99.57 4.08
k = 35 96.67 99.96 3.95 98.88 99.96 4.25
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Table 1.16: Local power for E(δt) compared with Dickey-Fuller. Empirical size for V (δt).
Threshold parameter is Unknown with p12 = 0.9 and λ = 0.5.

ρ1 = 1− k
T
, ρ2 = 1− k

T
, (|γ| = 0)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 5.71 5.45 3.91 5.33 4.84 4.00
k = 2 7.34 7.19 3.90 7.86 7.04 4.04
k = 5 12.38 13.03 3.84 13.02 12.70 4.08
k = 8 21.26 23.06 3.69 23.18 23.33 4.39
k = 10 30.66 34.40 3.91 31.79 33.48 4.00
k = 12 39.06 45.59 3.91 41.94 44.85 4.06
k = 15 53.51 63.80 3.95 58.17 63.47 4.16
k = 18 66.75 80.86 3.58 72.03 78.25 4.44
k = 20 73.73 88.01 4.44 80.28 86.67 3.96
k = 28 92.00 99.33 3.93 95.98 99.10 3.94
k = 30 93.87 99.67 4.12 97.33 99.73 4.32
k = 35 97.04 99.96 3.94 99.11 99.96 4.01

Table 1.17: Local power for E(δt) compared with Dickey-Fuller. Empirical power for V (δt).
Assumed threshold parameter is Unknown with i.i.d. threshold variable.

ρ1 = 0.99− k
T
, ρ2 = 1.01− k

T
, (|γ| = 0.02)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 5.45 5.32 7.73 5.17 4.94 33.31
k = 2 6.59 6.92 6.75 7.29 6.96 23.23
k = 5 12.04 13.24 5.78 12.53 12.79 16.11
k = 8 20.77 23.84 4.96 21.60 23.44 12.64
k = 10 27.58 33.23 4.55 29.34 32.40 11.25
k = 12 36.33 45.64 4.82 40.60 44.62 10.18
k = 15 50.64 64.94 4.73 55.87 63.48 8.86
k = 18 63.40 79.83 4.82 70.02 78.40 7.93
k = 20 71.08 87.70 4.17 78.90 86.89 7.91
k = 28 89.86 99.11 4.25 94.92 99.18 6.99
k = 30 93.06 99.73 4.31 96.83 99.55 6.69
k = 35 96.31 99.96 3.90 98.81 99.95 6.18
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Table 1.18: Local power for E(δt) compared with Dickey-Fuller. Empirical power for V (δt).
Threshold parameter Unknown with p12 = 0.9 and P (Ut−d ≤ λ) = 0.5.

ρ1 = 0.99− k
T
, ρ2 = 1.01− k

T
, (|γ| = 0.02)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 5.82 5.49 8.00 6.08 5.78 31.71
k = 2 7.63 7.26 6.76 7.03 6.38 22.74
k = 5 12.69 13.00 5.78 12.48 12.18 16.37
k = 8 21.34 23.37 4.93 22.89 23.68 12.61
k = 10 30.43 34.71 4.61 30.88 33.00 11.32
k = 12 38.55 45.73 4.,75 42.61 45.67 10.36
k = 15 53.94 65.09 4.30 58.60 63.85 8.99
k = 18 66.86 80.16 4.43 72.04 78.53 8.62
k = 20 75.05 87.66 4.49 80.07 87.58 7.80
k = 28 91.55 99.10 4.48 95.88 99.25 6.89
k = 30 94.02 99.72 4.79 97.64 99.59 6.92
k = 35 97.24 99.96 4.01 98.99 99.95 6.01

Table 1.19: Local power for E(δt) compared with Dickey-Fuller. Empirical power for V (δt).
Threshold parameter Unknown with i.i.d. threshold variable.

ρ1 = 0.95− k
T
, ρ2 = 1.05− k

T
, (|γ| = 0.1)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 5.46 5.13 79.75 5.13 4.90 99.76
k = 2 7.33 7.25 67.11 7.97 7.48 99.45
k = 5 12.63 13.38 51.11 14.21 13.95 98.77
k = 8 21.52 24.77 40.39 24.22 24.97 97.76
k = 10 28.53 34.35 34.70 32.74 35.05 96.06
k = 12 38.51 46.81 30.40 42.30 46.66 94.93
k = 15 50.52 64.44 26.59 57.92 63.26 91.91
k = 18 63.77 79.86 22.26 71.27 78.14 88.70
k = 20 71.66 88.02 20.17 78.88 86.43 85.87
k = 28 90.15 99.27 16.01 95.16 98.92 75.61
k = 30 92.62 99.62 14.62 96.35 99.51 73.34
k = 35 96.46 99.95 13.78 98.69 99.93 67.48
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Table 1.20: Local power for E(δt) compared with Dickey-Fuller. Empirical power for V (δt).
Threshold parameter Unknown with p12 = 0.9 and P (Ut−d ≤ λ) = 0.5.

ρ1 = 0.95− k
T
, ρ2 = 1.05− k

T
, (|γ| = 0.1)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 6.27 9.43 74.89 5.32 10.99 99.67
k = 2 7.67 8.75 64.04 6.76 11.05 99.06
k = 5 12.99 14.75 49.89 13.00 17.44 98.58
k = 8 22.19 26.76 38.64 22.66 29.57 97.65
k = 10 30.01 36.63 34.93 31.65 39.97 95.96
k = 12 39.94 48.80 29.66 42.59 53.04 94.57
k = 15 54.08 67.32 25.22 57.73 69.33 91.44
k = 18 67.57 82.71 22.11 71.17 83.01 87.82
k = 20 74.08 89.62 20.39 79.30 90.32 85.41
k = 28 92.09 99.38 15.21 95.88 99.49 75.04
k = 30 94.03 99.75 14.48 97.31 99.79 71.25
k = 35 97.36 99.98 13.44 99.04 99.96 66.98

Table 1.21: Local power for E(δt) compared with Dickey-Fuller. Empirical power for V (δt).
Threshold parameter Unknown with i.i.d. threshold variable.

ρ1 = 0.9− k
T
, ρ2 = 1.1− k

T
, (|γ| = 0.2)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 4.99 6.15 99.01 5.79 7.60 100
k = 2 9.10 7.91 98.00 10.35 10.31 100
k = 5 14.52 14.88 95.58 20.92 19.11 100
k = 8 23.39 26.48 91.24 32.05 29.56 100
k = 10 30.41 36.64 87.49 41.13 39.76 100
k = 12 40.20 47.97 84.53 50.27 50.28 100
k = 15 53.03 65.80 78.58 63.31 65.80 100
k = 18 65.61 80.07 72.97 75.00 80.41 99.99
k = 20 72.61 87.68 68.75 81.97 86.45 99.99
k = 28 90.16 98.95 56.08 95.64 98.62 99.84
k = 30 93.07 99.65 53.60 97.14 99.38 99.87
k = 35 96.60 99.99 47.75 98.95 99.96 99.78
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Table 1.22: Local power for E(δt) compared Dickey-Fuller. Empirical power for V (δt).
Threshold parameter is Unknown with p12 = 0.9 and P (Ut−d ≤ λ) = 0.5.

ρ1 = 0.9− k
T
, ρ2 = 1.1− k

T
, (|γ| = 0.2)

T=200 T=500
tφ=0 D-F tests tγ=0 tφ=0 D-F tests tγ=0

k = 0 5.15 16.80 98.41 3.50 23.47 100
k = 2 7.10 14.11 96.94 6.01 24.76 100
k = 5 12.11 20.45 94.22 10.74 34.67 100
k = 8 22.43 34.61 89.52 20.19 50.95 100
k = 10 29.61 45.80 86.80 27.74 62.21 100
k = 12 39.08 58.08 82.14 37.52 73.44 100
k = 15 53.77 75.55 75.92 51.88 87.05 99.99
k = 18 66.10 87.52 71.00 66.36 94.28 100
k = 20 74.14 92.92 67.04 74.35 97.08 99.97
k = 28 91.57 99.76 55.95 94.21 99.97 99.98
k = 30 93.80 99.89 51.54 95.98 99.94 99.91
k = 35 96.94 99.98 46.69 98.48 99.99 99.63

Table 1.23: TARSUR model for U.S. Stock Prices.

µ̂1 µ̂2 γ̂ φ̂ tφ=0 CVtφ=0
d r̂ WT CVWt

15.398 −0.893 -0.0466 -0.0088 -1.3983 -2.4307 1 78.71 13.76 8.86

(6.728) (11.892) (0.0125) (0.0063)

Table 1.24: U.S. Stock Prices TARSUR regime roots.

Zt−d ρ̂1 ρ̂2 P̂ (r) p22 p12

∆gdpt−d 0.9761 1.0226 0.677 0.528 0.225

Table 1.25: TARSUR model for U.S. real house prices.

µ̂1 µ̂2 γ̂ φ̂ tφ=0 CVtφ=0
d r̂ WT CVWT

3.374 −1.811 -0.049 0.003 0.551 -2.969 1 0.0028 16.556 8.86

(1.271) (0.885) (0.012) (0.005)

Table 1.26: U.S. house prices TARSUR regime roots.

Zt−d ρ̂1 ρ̂2 P̂ (r) p22 p12

∆gdppct−d 0.970 1.019 0.327 0.723 0.569

Table 1.27: TARSUR model for U.S. interest rates.

µ̂1 µ̂2 γ̂ φ̂ tφ=0 CVtφ=0
d r̂ WT CVWT

0.012 0.029 0.038 -0.004 -0.844 -3.557 1 0.4 16.548 8.86

(0.023) (0.042) (0.009) (0.005)
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Table 1.28: U.S. interest rates TARSUR regime roots.

Zt−d ρ̂1 ρ̂2 P̂ (r) p22 p12

∆gdppct−d 1.006 0.968 0.74 0.920 0.028

Table 1.29: TARSUR model for U.S.Dollar/Pound.

µ̂1 µ̂2 γ̂ φ̂ tφ=0 CVtφ=0
d r̂ WT CVWT

−0.013 0.058 0.047 -0.015 -1.787 -2.90 1 0 7.78 8.86

(0.020) (0.019) (0.017) (0.008)
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(a)

(b)

(c)

Figure 1.1: Random Walk versus di�erent TARSUR series. For di�erent V (δt).
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Figure 1.2: Regimes selected by TARSUR model for U.S. stock prices.

Figure 1.3: Regimes selected by TARSUR model for U.S. house prices.
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Figure 1.4: Regimes selected by TARSUR model for U.S. interest rates.
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Chapter 2

Multiple Long-run Equilibria Through

Cointegration Eyes

2.1 Introduction

Most of the �nancial and macroeconomic time series show persistent behavior (Granger,

1966), such that the unit root (UR) become stylized facts. The economic theory assesses the

interrelation between economic variables with unit roots via long-run equilibrium relation-

ships. When the relationship between variables is linear, we can test the existence of such

relationships through the concept of cointegration (Granger, 1981 and Engel and Granger

1987). Indeed, when two or more economic variables are in equilibrium, then they must be

cointegrated. For example, the literature suggests links between short-term interest rates

and long-term interest rates (Froot 1989, Campbell and Shiller 1991, Hall, Anderson and

Granger 1992, Choi and Wohar 1995), and also links between price and dividends via the

present value models (PVM)derived by Campbell and Shiller (1987).

Nearly all the economic models in macroeconomics are highly non-linear, and this gives

us good reasons to think that the actual data-generating process of the macroeconomic series

is non-linear; for instance, the DSGE models predict a complicated non-linear relationship

between the variables and between the past and future. Many other examples are the non-

linear Taylor rules, environmental Kuznets curve, models for �nancial bubbles, and non-

linear growth models. The concept of non-linear cointegration captures persistence with

non-linear behavior of economic variables, and the research has moved in two directions.

One line of research focuses on the short-term dynamic where the non-linearity arose from

the adjustment mechanism toward a single linear equilibrium, Balke and Fomby (1997),

Hansen and Seo (2002), Seo (2006), Kapetanios, and Shin and Snell (2006). Another line of

research attempts to introduce non-linear behavior in the long-run equilibrium relation, see,
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for instance, Park and Phillips (2001) Chang, Park, and Phillips (2001), and Saikkonen and

Choi (2004, 2010).

Economic theory has developed models with the presence of multiple equilibria, that is,

Azariadis and Drazen (1990) propose a Diamond-type model that allows multiple, locally

stable equilibria, while Benhabib, Schmitt-Grohé and Uribe, (2001) explore the condition

where the Taylor rule generates multiple equilibria, but Time Series econometrics has not

considered this type of non-linear cointegration with persistent variables.

The goal of this study is to analyze the presence of multiple long-run equilibria via a

threshold cointegration framework where the non-linearity arises from introducing state-

dependent behavior in the long-run equilibrium relationship. Speci�cally, we introduce

threshold e�ects in the long-run equilibrium relationships to capture di�erent relations be-

tween non-stationary variables during di�erent stages of the business cycle. Also, we intro-

duce methods to test for the presence of threshold cointegration and inference about the

presence of multiple equilibria.

Our analysis focuses on the threshold e�ects induced by observable factors dictated by

the economic theory (e.g., economic growth, unemployment growth), which are assumed to

be stationary. The advantages such models o�er, with respect to other non-linear models,

are a straightforward estimation by the least-squares method and an intuitive economic

interpretation of the non-linear relation. Very often, the economic theory does not specify

the type of non-linearity that links di�erent economic variables, but a threshold speci�cation

can be viewed as an approximation to a more general class of non-linear processes, see

Petrucelli (1992).

Inference tools to assess both the presence of non-linear cointegration and threshold ef-

fects within the long-run equilibrium regression are essential in applied work, since omitting

the presence of non-linear components in the long-run equilibrium relationship produces an

inconsistent estimation of the cointegrating vector and leads to misinterpretation of the long-

run equilibrium.

In related work, Saikkonen and Choi (2004) analyze the statistical properties of the test for

detecting the presence of non-linearities in a cointegrating regression with a smooth transition

functional form. Choi and Saikkonen (2010) test the null hypothesis of cointegration in

the non-linear regression with I(1) variables using the Kwiatkowski-Phillips-Schmidt-Shin

(KPSS) test proposed by Kwiatkowski, Phillips, Schmidt, and Shin (1992). Earlier work

that analyzes the possibility of regime change in the cointegrating vector can be found in

Seo (1998), as they test for structural breaks in the cointegrating vector and the adjustment

mechanism. Pitarakis and Gonzalo (2006) present a test to detect for threshold e�ects in the

long-run equilibrium equation when the threshold parameter, which determines the di�erent
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regimes, is unknown and cannot be identi�ed under the null hypothesis of no-threshold e�ects,

but assuming the existence of the cointegration relation.

In Section 2.2, we show an example stating the conditions where the PVM can generate

a threshold cointegration. Section 2.3 introduces the statistical model formally and the as-

sumption used in the study. Section 2.4 proposes tests to identify these types of processes

and its asymptotic distribution. Section 2.5 shows a relevant extension of the basic frame-

work presented in Section 2.4, generalizing the testing procedure. Section 2.6 shows the �nite

sample performance of the tests proposed in this study. Section 2.7 illustrates two relevant

empirical applications where multiple equilibria may arise. The �rst application analyzes the

presence of multiple cointegration relationships between U.S. interest rates of di�erent ma-

turities. The second application analyzes the existence of multiple equilibrium relationships

between prices and dividends. Section 2.8 concludes.

2.2 The Economic Model

The present value models are one of the simplest stochastic dynamic models in economics

that de�ne price as a linear function of the expected discounted dividend.

Pt = Et

[
∞∑
j=0

( 1

1 +R

)j+1

dt+j

]
(2.1)

, where Et(.) is the conditional expectation given this information up to time t, {dt} is
the dividend, and R is the implicit discount rate and is assumed to be constant. Campbell

and Shiller (1987) show that if {dt} is an I(1) process, {Pt} must be also an I(1) process,

and they have to be cointegrated with the cointegrating vector
(

1 1
R

)′
, that is,

(Pt −
1

R
dt) =

1

R
Et(∆Pt) (2.2)

Assuming that the discount rate is a state-dependent variable driven by the business

cycle, that is GDP growth and industrial production index growth.

Rt−1 = R1I(zt−1 ≤ r) +R2I(zt−1 > r) (2.3)

, where {zt−1} is the threshold variable, and r is the threshold value that determines the

di�erent regimes (expansions and recessions, good times, and bad times). Then, the PVM

can be written as
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Pt = E

[
∞∑
j=0

( j∏
i=0

1

1 +Rt+i−1

)
dt+j

]
(2.4)

Reordering the di�erent terms, we get:

(Pt −
1

Rt−1

dt) = Et(∆Pt) (2.5)

From the structure of the discount factor in (2.3) and assuming that dividends follow

RW, we can write (2.5) as follows:

Pt =
1

R1

I(zt−1 ≤ r)dt +
1

R2

I(zt−1 > r)dt + ẽt

dt = dt−1 + ε̃t

(2.6)

, which is a triangular type representation that will allow us to test for threshold cointe-

gration and the presence of multiple equilibrium relations between prices and dividends.

2.3 The Econometric Model

Consider the following non-linear cointegration regression with a threshold e�ect:

yt = β1I(zt−h ≤ r0)xt + β2I(zt−h > r0)xt + et,

xt = xt−1 + εt,
(2.7)

, where et and εt are the scalar stationary disturbance terms. zt−h is the threshold variable,

r0 is the threshold parameter, h is the delay where we observe the threshold variable, which

is not essential for our analysis and we set up h = 1, and I(zt−1 ≤ r0) is an indicator function

that takes value one when zt−1 ≤ r0 and zero otherwise. If et is an I(0) process, then (2.7) is a

cointegration relation with the cointegrating vector
(

1 −β1

)′
if I(zt−1 ≤ r0), and

(
1 −β2

)′
if I(zt−1 > r0).

In the linear framework, the de�nition of cointegration says that two or more I(1) variables

are cointegrated if there exists a linear combination, which is I(0). Overall, one of the biggest

problems to de�ne cointegration in the threshold framework and the non-linear world are

derived from the concept of integration, which helps to classify linear processes as I(0) and

I(1), depending on its stochastic properties but is unable to establish the properties of the

non-linear processes. For instance, xt de�ned in system (2.7) is an I(1) process, but when it is

multiplied with the indicator function, I(zt−1 ≤ r0)xt, it is not a I(1) process any more since
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taking the �rst di�erence does not make the series an I(0) process; indeed, we can consider

the many di�erences and never will be I(0). Due to these di�culties, we follow the work

of Gonzalo and Pitarakis (2006), Berenger-Rico and Gonzalo (2014a, 2014b), and use the

concept of summability, which is the generalization of the concept of I(.)ness, to characterize

the stochastic properties of the non-linear process.

De�nition 1. A stochastic process yt : t ∈ N is said to be summable of order δ, or S(δ), if

there exist a slowly varying function L(T) and a deterministic sequence kt such that

ST =
1

T
1
2

+δ
L(T )

T∑
t=1

(yt − kt) = Op(1), (2.8)

, where δ is the minimum real number that makes ST bounded in probability.

De�nition 1 shares the same spirit as the de�nition of I(0), presented in Müller (2008)

and Davison (2009), where they de�ne a process to be an I(0) if it satis�es the functional

central limit theorem (FLCT). Once the generalization of the order of integration for the

non-linear process is available, it is easy to extend the concept of cointegration for non-

linear relationships and this can be done through the concept of co-summability developed

by Berenguer-Rico and Gonzalo (2014b)

De�nition 2. Two summable stochastic processes, yt ∼ S(δy) and xt ∼ S(δy), are said to be

co-summable if there exists f(xt) ∼ S(δy) such that mt = yt−f(xt) is S(δm), with δm = δy−δ
for δ > 0.

Proposition 1. (Berenger-Rico and Gonzalo, 2014). An I(d) with d ≥ 0 is S(d).

Proposition 1 shows that any integrated linear process of order d is summable of order d,

for example, a random walk with i.i.d innovations is an I(1) process; then, it also must be

S(1) since the partial sum 1
T 3/2

∑T
t=1 xt, is convergent for δ = 1.

To establish the order of summability of {I(zt−1 ≤ r)xt}, {I(zt−1 > r)xt} and yt and the

limiting distribution of the tests required to identify non-linear cointegration. In this section

and Section 2.4 we will work under the following set of assumptions on {εt}, {et} and {zt},
which in the extension section we will relax A.3

Assumptions

(A.1) {εt, et, zt} is strictly both stationary and ergodic.

(A.2) {εt, et, zt} is strong mixing with mixing coe�cients αm satisfying
∑∞

m=1 α
1/2−1/τ
m <

∞ for some τ > 2.

(A.3) et is independent of Ft−1 = {(εt−j, et−j, zt−j), j ≥ 1}, E(et) = 0 and E |et|4 = k <

∞.
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(A.4) zt has a continuous and increasing distribution function P (.).

(A.5) The threshold value r is in a closed and bounded subset of the space of the threshold

variable, that is, r ∈ [rL, rH ].

(A.6) E(εt) = 0 with E|εt|2+ρ <∞ for some ρ > 0.

Assumptions A.1, A.2, and A.3 are similar to the assumptions proposed by Caner and

Hansen (2001) to establish the convergence of the partial sum 1√
T

∑T
t=1 I(zt−1 ≤ r)et, which

will allow us to derive the asymptotic distribution of the tests for the presence of non-

linear cointegration. Assumption A.1 requires that the threshold variable is a stationary

process, ruling out the possibility of {zt} being an I(1) process, but general enough to

admit a rich class of stochastic processes. A.3 is very restrictive in the sense it rules out

the possibility of et being serially correlated. The �nite fourth moment assumption is not

necessary for the invariance principle, but it is required to establish the tightness properties

of the above empirical process. In the following sections, we are going to abandon this

assumption and allow it to follow a stationary linear process. A.5 restricts the parameter

space of r ensuring that there are enough observations in each regime and assures the existence

of non-degenerated limiting distribution for the test statistic of interest. We choose rL and

rH such that P (zt−1 ≤ rL) = θ > 0 and P (zt−1 > rH) = 1− θ, where θ is commonly selected

in the threshold literature to be 10% of 15% (see Hansen (2000), Caner and Hansen (2001),

Gonzalo and Pitarakis (2006)).

Proposition 2 establishes the order of summability of {I(zt−1 ≤ r)xt}, {I(zt−1 > r)xt}
and yt.

Proposition 2. Under assumption A.1, A.2, and A.3, the processes {I(zt−1 ≤ r)xt}, {I(zt−1 >

r)xt} and {yt} are S(1) and {et} is S(0), (I(0)) and, therefore, {yt} and {xt} are co-summable
(non-linear cointegrated).

2.4 Inference

Let us rewrite the system (2.7) as follows:

yt = β2xt + γI(zt−1 ≤ r0)xt + et,

xt = xt−1 + εt
(2.9)

, where γ = (β1 − β2). Also, we can de�ne the model with state dependent constants,

namely α1 and α2.
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yt = α1I(zt−1 ≤ r0) + α2I(zt−1 > r0) + β2xt + γI(zt−1 ≤ r0)xt + et,

xt = xt−1 + εt
(2.10)

Threshold cointegration requires two conditions that must be tested:

• The �rst condition is that the residuals et must be an I(0). If this condition is not

satis�ed, neither we have linear cointegration nor threshold cointegration.

• The second condition is the presence of a threshold e�ect. If there is no-threshold e�ect

in the long-run equilibrium equation, then the cointegration relation is linear.

In this section, we present a testing procedure to check both conditions.

2.4.1 Residual Based Test for Non-linear Cointegration

We test for the presence of threshold cointegration by testing if et is an I(0) process, using

the residual based KPSS test proposed by Shin (1994). Testing for cointegration in a non-

linear framework is not new, for example, Choi and Saikkonen (2004, 2010) present the

residual based KPSS test to detect the presence of cointegration assuming that the non-linear

functions are continuous, ruling out the possibility of threshold structures. The proposed

KPSS test uses speci�cations (2.9) and (2.10), which are very general in the sense that we

will be able to detect both, threshold cointegration and linear cointegration. If et is an I(0)

process and γ 6= 0, then yt and xt are threshold cointegrated. If et is an I(0) process but

γ = 0, then yt and xt are linearly cointegrated.

To set up the test, de�ne mt = mt−1 + ut and let v1t = mt + et; our aim is to test if the

variance of {ut} is zero, that is, σ2
u = 0. Under the null of cointegration, mt = m0, where m0

is a constant that produces v1t = m0 + et and v1t will be an I(0) process. Testing the null

hypothesis of threshold cointegration versus the alternative of no-threshold cointegration can

be done by testing

H0 : σ2
u = 0

H1 : σ2
u > 0

(2.11)

To perform this test, we must

1. Recover êα,t and êt, which are the CLS residuals from the threshold cointegrating re-

gressions (2.10) and (2.9), respectively. Construct Sα,t =
∑t

j=1 êα,j and St =
∑t

j=1 êj

be the partial sum process based on these residuals.
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2. Then, the KPSS statistics are

CI = n−2

n∑
t=1

S2
t /σ̂

2
e(l) (2.12)

CIα = n−2

n∑
t=1

S2
α,t/σ̂

2
α,e(l) (2.13)

where

σ̂2
e(l) =

1

n

n∑
j=1

ê2
t +

2

n

l∑
i=1

L(i, l)
n∑

t=i+i

êtêt−i (2.14)

σ̂2
α,e(l) =

1

n

n∑
j=1

ê2
α,t +

2

n

l∑
i=1

L(i, l)
n∑

t=i+i

êα,têα,t−i (2.15)

and L(i, 1) = 1− i/(l + i) is the Barlett window.

Following the work of Choi and Saikonnen (2004, 2010) and Shin (1994), under the null

of threshold cointegration, we derive the asymptotic distribution of the KPSS test, namely

CI and CIα. Note that even under assumption A.3, estimation of the single-equation LS

estimator involves second-order bias due to the presence of correlations between xt and et. To

simplify this problem, we can assume strict exogeneity between xt and et or use an e�cient

estimation proposed in the next section.

Proposition 3. Suppose that assumptions A.1, A.2, A.3, A.4, and A.6 hold and assume

that xt is strictly exogenous w.r.t et, then the test statistic CIα and CI have the following

limiting distribution.

CI ⇒
∫ 1

0

Q2

CIα ⇒
∫ 1

0

Q2
α

(2.16)

where

Q = We −
(∫ s

0

Wx

)(∫ 1

0

W 2
x

)−1(∫ 1

0

WxdWe

)
(2.17)

Qα = Ve −
(∫ s

0

Wα
x

)(∫ 1

0

(Wα
z )2
)−1(∫ 1

0

Wα
x dWe

)
(2.18)

(2.19)
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, where W is the standard Brownian process, Wα
x = Wx−

∫ 1

0
Wx is the standard demeaned

Browninan motion, and Ve = We − sWe is a standard Browninan bridge.

Proposition 3 shows that under strict exogeneity, the asymptotic distribution of the test

does not depend on nuisance parameters and is the same distribution for testing the null

of linear cointegration using KPSS (Shin, 1994). Note that this distribution in the linear

case depends on the number of regressors included in the regression, but as observed in

Proposition 3, the threshold regression depends on the number of non-threshold regressors

included in the regression.

Now, we show the consistency of the KPSS test and the limiting distribution of statistics

under the alternative of no cointegration (σ2
u > 0). The limited distribution is based on the

same functionals of Brownian as in the tests presented by Phillips and Ouliaris (1990), but

the form of the limiting distributions is di�erent.

Proposition 4. Under the alternative hypothesis of no cointegration σ2
u > 0, the statistics

CI and CIα, normalized by l/n have the following distributions

l

n
CI ⇒

∫ 1

0

(∫ s

0

Qp

)2

/

∫ 1

0

Q2
p (2.20)

l

n
CIα ⇒

∫ 1

0

(∫ s

0

Qα
p

)2

/

∫ 1

0

(Qα
p )2 (2.21)

(2.22)

, where

Qp = Wm +Wx

(∫ 1

0

W 2
x

)−1(∫ 1

0

WxWm

)
(2.23)

Qα
p = Wα

m +Wα
x

(∫ 1

0

(Wα
x )2
)−1(∫ 1

0

Wα
xW

α
m

)
(2.24)

(2.25)

Proposition 4 shows that the tests CI and CIα are consistent and diverge at rate (n/l)

under the alternative of no cointegration. As observed in Kwiatkowsky, Phillips, Schmidt

and Shin (1992) and Shin (1994), the test depends on our choice of the lag truncation of the

long-run variance estimation l, and this choice is critical for the test to have good power.
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2.4.2 Testing for Threshold E�ect

Once we obtain cointegration in the �rst stage, we proceed to test for the threshold e�ect, and

the goal of this section is to construct a test for analyzing the null of no-threshold e�ects in

the long run equation versus the alternative of a threshold e�ect. Assuming that r ∈ [rL, rH ],

this can be examined by testing:

H0 : γ = 0

H1 : γ 6= 0
(2.26)

in the �rst equation of system (2.9) and (2.10), such that if γ = 0, the long-run equation

becomes yt = β2xt+et, which is the linear cointegration, and yt = α1I(zt−1 ≤ r0)+α2I(zt−1 >

r0) + β2xt + et, which is also the linear cointegration case with a possible state dependent

drift, whether α1 = α2 or α1 6= α2.

The asymptotic distribution of the test depends on whether the threshold parameter r is

known or unknown, and in the latter case, whether it can be identi�ed or unidenti�ed under

the null hypothesis.

2.4.2.1 Threshold Parameter is Known

The case where the threshold parameter is known, r = r0, is relevant for explanatory reasons

as well as for the cases in which the di�erent regimes are predetermined, for example, from the

economic theory or the sign of the threshold variable. In this case, the proposed t−statistic
for γ = 0, tγ=0(r0), has the following asymptotic distribution

Proposition 5. Suppose that the threshold value is known, r = r0, and assumptions A.1,

A.2, A.3, A.4, and A.6 hold. Under the null of no-threshold e�ects, tγ=0(r0), the statistic

has the following asymptotic distribution:

tγ=0(r0)⇒ N (0, 1) (2.27)

2.4.2.2 Threshold Parameter is Unknown but Identi�ed

In the case where the DGP has a threshold e�ect in the drift term, we can estimate by using

the LS threshold value, r̂n, in the �rst stage, before testing for the threshold e�ect. This is

possible because under the null H0 : γ = 0, we can estimate the super-consistency of the

threshold parameter (T-consistent) and it can be taken as known.

Proposition 6. Suppose that assumptions A.1-A.6 hold, under H0 : γ = 0 , as n → ∞ (i)

r̂n →p r0, and (ii) n|r̂n − r0| = Op(1).
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In this case, we can use the t-statistics for γ = 0 evaluated at the estimated threshold

parameter r̂n, which takes us back to Proposition 5.

Proposition 7. Under assumption A.1-A.6, under H0 : γ = 0 and α1 6= α2 the tγ=0(r̂n)

statistic has the following asymptotic distribution:

tγ=0(r̂n)⇒ N (0, 1) (2.28)

2.4.2.3 Threshold Parameter is Unknown and Unidenti�ed

Under assumption A.3, testing for the presence of threshold e�ects, when the threshold value

is unknown and unidenti�ed, is studied extensively by Gonzalo and Pitarakis (2006). For

completeness, we include their results in this section.

When the threshold value r0 is unknown and unidenti�ed under the null of no-threshold

e�ect, the proposed test is the Supremum of the Wald statistics, WN ,

WN = sup
r∈[rL,rH ]

Wn(r) (2.29)

, whereWn(r) = t2γ=0(r). Then, the asymptotic distribution of the Wald statistics is given

as:

Proposition 8. Suppose that assumptions A.1-A.6 hold. Consider the long-run equation

(2.7) under the null H0 : γ = 0, the Wn statistics has the following asymptotic distribution:

Wn ⇒ sup
r∈[rL,rH ]

( ∫
Wε(s)dVe(s, λ)

)2

λ(1− λ)
∫
Wε(s)2ds

≡ sup
r∈[rL,rH ]

[BB(λ)]2

λ(1− λ)
(2.30)

, where λ = P (zt−1 ≤ r), Wε(.) is the Brownian motion and Ve(s, λ) is a Kiefer-Muller

process on [0, 1]2. BB(λ) is a standard Brownian bridge (zero mean Gaussian process with

covariance λ1 ∧λ2−λ1λ2). The last equivalence is due to the fact that Wε(s) = Wε(s, 1) and

Ve(s, λ) are independent.

Note that the asymptotic distribution presented in Proposition 8 is the same as the one

for testing structural breaks, according to Andrews (1993, 2003), and this distribution is

tabulated by Estrella (2003) for di�erent values of θ.

2.5 Extensions to I(0) Cointegrating Errors

Assuming that et is an independent process with respect to its own past {et−1, et−2, . . .} in
A.3 is a strong assumption, ruling out the possibility of {et} being serially correlated and
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this will pose a problem for example, when testing for cointegration, the null of cointegration

possibly is rejected because et is autocorrelated. Also, this assumption does not allow for

short-term dynamics, where any disequilibria are instantly corrected.

As discussed by Gonzalo and Pitarakis (2006), there is a non-natural extension for the

weak convergence of the partial sum Gn = 1√
n

∑[ns]
t=1 etI(zt−1 ≤ r) as shown in the work of

Caner and Hansen (2001, Theorem 1, assuming that et follows an i.i.d process) in which

both the marks et as well as zt are the general stationary process. To have a tractable limit

theorem for elements like Gn, in this section, we relax our earlier assumption A.3 by allowing

et to follow a linear process, more formally

(B.3): Let et =
∑∞

j=0 ajvt−j, where
∑∞

t=1
1√
t

(∑∞
j=t a

2
j

)1/2

< ∞ with a0 = 1 and {vt}
satisfy the following conditions E(vt) = 0, E(v2

t ) = σ2
v , E|vt|4 < ∞, and vt is independent

with respect Ft−1 = σ{vt−j : j ≥ 1} and independent of zt−j for j = ±1,±2, . . ..

The assumption
∑∞

t=1
1√
t

(∑∞
j=t a

2
j

)1/2

<∞ and the independence between vt and zj are

needed to derive the invariance principle of Gn = 1√
n

∑[ns]
t=1 etI(zt−1 ≤ r). Note that the

requiring
∑∞

t=1
1√
t

(∑∞
j=t a

2
j

)1/2

< ∞ is slightly stronger than assuming
∑∞

j=0 |an| < ∞, as

pointed out by Wu (2002, Lemma 1). Assuming independence between vt and zj can be

strong but it is used, for example, in the study of Caner and Hansen (2001), which requires

the independence of vt and zt−j for j = 1, 2..., also the work of Gonzalo and Pitarakis (2006)

requires that vt is independent of zt+q−j for j = 1, 2..., when et follows a moving average of

�nite order q.

The functional central limit theorem (CLT) result for Gn is derived using the results in

Peligrad and Utev (2005) and Mervelede, Peligrad and Utev (2006),

Proposition 9. Under assumptions A.1, A.2, and B.3,

Gn =
1√
n

[ns]∑
t=1

etI(zt−1 ≤ r)⇒
√
η(λ)WeI(s) ≡ Ge(s, λ) (2.31)

, where η(λ) = limn→∞
E(

∑n
t=1 etI(zt−1≤r))2

n
.

Proposition 9 is an extension of the result from the work of Gonzalo and Pitarakis (2006,

Proposition 3), where they derive the convergence of the partial sum Gn by allowing et to

be a �nite moving average process. Also, the proposition specializes the result from Caner

and Hansen (2001) by setting aj = 0 for all j ≥ 1 such that et = vt, then η(λ) = λσ2
v and

Ge(s, λ) =
√
σvλWe(s) =

√
σvWe(s, λ).

Then, it is easy to show that under assumptions A.1, A.2, A.4, A.6, and B.3, for ξt =(
εt et etI(zt−1 ≤ r)

)′
we have the following result
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1√
n

[ns]∑
i=1

ξt ⇒ B(s) ≡
(
Bx(s) Be(s) Ge(s, λ)

)′
(2.32)

with covariance matrix

Ω =

 σ2
ε σε,e σε,e,λ

σε,e σ2
e σe,e,λ

σε,e,λ σe,e,λ η(λ)

 such that Ω = LL′ we have B(s) = LW(s) (2.33)

, whereW(s) is the vector of the Wiener process. Since et is a linear process and assuming

B.3, we can write σ2
e = σ2

vC(1)2, σe,e,λ = λσ2
vC(1)2 and η(λ) = λ2σ2

vC(1)2 + G, where
C(1) =

∑∞
j=0 aj and G = limn→∞

1
n
E(
∑n

t=1 et(I(zt−1 ≤ r)− λ))2.

The second step is to show the limiting distribution of the process 1
n

∑n
t=1 xtI(zt−1 ≤

r)et. It is well known that in certain cases when Gn is not a martingale process, then
1
n

∑n
t=1 xtI(zt−1 ≤ r)et does not converge to

∫ 1

0
Bx(s)dGe(s, λ), see for example Phillips

(1987). Using the martingale approximation proposed in Hansen (1992), we can derive the

following result:

Theorem 1. Under assumption A.1., A.2, and B.3,

1

n

n∑
t=1

xtI(zt−1 ≤ r)et ⇒
∫ 1

0

Bx(s)dGe(s, λ) + λE(εiei) + λΛ1 (2.34)

, where Λ1 = limn→∞
1
n

∑n
i=1

∑∞
j=i+1 E(εiej).

From Theorem 4.1 in Hansen (1992), we know that 1
n

∑n
t=1 xtet ⇒

∫ 1

0
Bx(s)dBe(s) +

E(εiei)+Λ1. Equipped with Theorem 1 and Theorem 3 in Caner and Hansen (2001), we can

show the convergence of the LS estimate for the parameter of interest β2 and γ:

Lemma 1. Under assumptions A.1, A.2, and B.3, when no drift is considered

T (Γ̂− Γ)⇒

λ

( ∫ 1
0 Bx(s)dBe(s)−

∫ 1
0 Bx(s)dGe(s,λ)+(1−λ)[Λ+E(εiei)]

)
λ(1−λ)

∫ 1
0 Bx(s)2ds∫ 1

0 Bx(s)dGe(s,λ)−λ
∫ 1
0 Bx(s)dBe(s)

λ(1−λ)
∫ 1
0 Bx(s)2ds

 (2.35)

when considering a state-dependent drift

T (Γ̂α − Γα)⇒

λ

( ∫ 1
0 B

α
x (s)dBe(s)−

∫ 1
0 B

α
x (s)dGe(s,λ)+(1−λ)[Λ+E(εiei)]

)
λ(1−λ)

∫ 1
0 (Bαx (s))2ds∫ 1

0 B
α
x (s)dGe(s,λ)−λ

∫ 1
0 B

α
x (s)dBe(s)

λ(1−λ)
∫ 1
0 (Bαx (s))2ds

 (2.36)
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2.5.1 Testing for Non-Linear Cointegration

In the case where the regressors are strictly exogenous, that is, σε,e = σε,e,λ = 0, as it happens

in the previous section, the KPSS test is free of nuisance parameters and the distribution of

CI and CIα are the same as in Proposition 3.

In general, assuming σε,e = σε,e,λ = 0 is very restrictive in time series modeling. Note

that as it happens in linear cointegration, the regressors xt may be correlated with et, and

the asymptotic result developed for the KPSS test derived previously is not robust to the

problem of endogenous regressors, since it would involve nuisance parameters. In general,

when et and εt is serially correlated it is not enough to consider only the contemporaneous

relationship between et and εt and, therefore, we have to consider the past and future values

of ∆xt as additional regressors. Following the work of Shin (1994) and Saikkonen (1991), we

require the following conditions:

Condition 1: The spectral density matrix fuu(ω) is bounded away from zero fuu(ω) > a,

ω ∈ [0, π] and a > 0, where ut =
(
εt et

)′
.

Condition 2: The covariance function of ut is absolutely summable,
∑∞

j=−∞ ||E(utu
′
t+j)|| <

∞, where ||.|| is the Euclidean norm.

Under the conditions stated above, we can write et =
∑∞

j=−∞ πjεt−j+ẽt, where
∑∞

j=−∞ |πj| <
∞ and ẽt is a stationary process such that E(εt+j ẽt) = 0 for j = ±1,±2, . . .. As discussed in

Shin (1994) and Saikkonen (1991), we cannot regress a model with an in�nite number of lags

and leads of ∆xt = εt. Since {πj} is absolutely summable, that is, πj ≈ 0 for |j| > K, and

K is large enough, we can truncate the regression for using K lags and leads. The choice of

K must satisfy the following condition, as n→∞ and K →∞

K3/n→ 0, and n1/2

∞∑
|j|>K

|πj| → 0 (2.37)

For further details see Saikkonen (1991). The assumption given in (2.37) is su�cient to

obtain the asymptotic distribution of the KPSS test, therefore, for a chosen lag truncation

K we can rewrite (2.9),

yt = β2xt + γI(zt−1 ≤ r0)xt +
K∑

j=−K

πj∆xt−j + ẽ∗t

xt = xt−1 + εt

(2.38)
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, where ẽ∗t =
∑∞
|j|>K πj + ẽt, and similarly (2.10),

yt = α1I(zt−1 ≤ r0) + α2I(zt−1 > r0) + β2xt + γI(zt−1 ≤ r0)xt +
K∑

j=−K

πα,j∆xt−j + ẽ∗t

xt = xt−1 + εt

(2.39)

We now proceed to construct the stochastic process B̃n by B̃n = 1
n

∑[ns]
t=1 ξ̃t, where ξ̃t =(

εt ẽt ẽtI(zt−1 ≤ r)
)′
. B̃n converges weakly to B̃ as n → ∞, where B̃ is the vector of

Brownian motion with the following block diagonal covariance matrix, Ω̃ = diag{σε,Ωe.ε}.
The elements of the vector B̃ are B̃ =

(
Bx Be.ε Ge.ε

)′
, where Be,ε = Be − σε,eσ−2

ε Bx and

Ge,ε = Ge − λσε,eσ−2
ε Bx. By construction, Be.ε and Ge.ε are independent of Bx.

Lemma 2. Let β̃2, γ̃ and π̃j, β̃
α
2 , γ̃

α and π̃j
α be the ordinary least squares (OLS) estimators

obtained from (2.38) and (2.39). Then,

T (Γ̃− Γ)⇒ 1

λ(1− λ)
∫ 1

0
B2
x

(
λ
( ∫ 1

0
BxdBe,x −

∫ 1

0
BxdGe,x

)
∫ 1

0
BxdGe,x − λ

∫ 1

0
BxdBe,x

)
(2.40)

T (Γ̃α − Γα)⇒ 1

λ(1− λ)
∫ 1

0
(Bα

x )2

(
λ
( ∫ 1

0
Bα
xdBe,x −

∫ 1

0
Bα
xdGe,x

)
∫ 1

0
Bα
xdGe,x − λ

∫ 1

0
Bα
xdBe,x

)
(2.41)

Also,

( n
K

)1/2
K∑

j=−K

(π̃j − πj) = Op(1),
( n
K

)1/2
K∑

j=−K

(π̃αj − πj) = Op(1), (2.42)

From the result above, let ˆ̃e∗t and ˆ̃e∗α,t be the OLS residuals from (2.38) and (2.39) respec-

tively, and S̃t =
∑

j=1
ˆ̃e∗t and S̃α,t =

∑
j=1

ˆ̃e∗α,t. Let σ̃
2
e(l) and σ̃

2
α,e(l) be the estimators de�ned

in (2.14) and (2.15) based on ˆ̃e∗t and ˆ̃e∗α,t. Then, the modi�ed statistics for cointegration are

de�ned ass

C̃I = n−2

n∑
t=1

S̃2
t /σ̃

2
e(l), C̃Iα = n−2

n∑
t=1

S̃α,t/σ̃
2
α,e(l) (2.43)

Theorem 2. The limiting distribution of the KPSS test obtained using the modi�ed statistic,

C̃I and C̃Iα are the same as in Proposition 3.
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2.5.2 Testing for Threshold E�ect

From (2.33) and assumption B.3 we can see that

B(s) =


σεWx(s)

σε,e
σε
Wx(s) +

[
C(1)2σ2

v −
(
σε,e
σε

)2]1/2

We(s)

λσε,e
σε
Wx(s) + λ

[
C(1)2σ2

v −
(
σε,e
σε

)2]1/2

We(s) +
√
GWeI(s, λ)

 (2.44)

Testing for threshold e�ects, we are interested in the distribution of γ̂ and γ̂α from Lemma

1.

T (γ̂ − γ)⇒
∫ 1

0
Bx(s)dGe(s, λ)− λ

∫ 1

0
Bx(s)dBe(s)

λ(1− λ)
∫ 1

0
(Bx(s))2ds

=

√
G

σελ(1− λ)

∫ 1

0
Wx(s)dWeI(s)∫ 1

0
W 2
x (s)ds

T (γ̂α − γα)⇒
∫ 1

0
Bα
x (s)dGe(s, λ)− λ

∫ 1

0
Bα
x (s)dBe(s)

λ(1− λ)
∫ 1

0
(Bα

x (s))2ds
=

√
G

σελ(1− λ)

∫ 1

0
Wα
x (s)dWeI(s)∫ 1

0
(Wα

x )2(s)ds

(2.45)

SinceWx andWeI are independent, it is well known that
∫ 1
0 Wx(s)dWeI(s)√∫ 1

0 W
2
x (s)ds

≡ N(0, 1). Testing

for the null of γ = 0 in this framework, which is free of nuisance parameters, is feasible when

G can be estimated under the null hypothesis, which are cases where the threshold value r

is known or identi�ed under the null.

2.5.2.1 When r is Known

When the threshold value is known, r = r0, we can recover the residuals êt from the model

(2.9), such that G can be estimated as in Phillips (1987) and Phillips and Perron (1988) by

Ĝ =
1

n

n∑
j=1

ê2
t (I(zt−1 ≤ r0)− λ̄0)2 +

2

n

l∑
i=1

L(i, l)
n∑

t=i+1

êtêt−i(I(zt−1 ≤ r0)− λ̄0)(I(zt−1−i ≤ r0)− λ̄0)

(2.46)

, where λ̄0 = 1
n

∑
I(zt−1 ≤ r0) is a consistent estimator of P (zt−1 ≤ r0) = λ0. Now we

can de�ne a simple transformation of the conventional test statistic for testing γ = 0, which

eliminates the nuisance parameters in the distribution:

70



Chapter 2. Multiple Long-run Equilibria Through Cointegration Eyes

t̃γ=0(r0) = γ̂(r0)

√
λ̄0(1− λ̄0)

Ĝ((X(r0)′X(r0))−1)22

(2.47)

, where ((X(r0)′X(r0))−1)22 is the element (2,2) in the following matrix

(X(r0)′X(r0))−1 =

(
1
n2

∑n
t=1 x

2
t

1
n2

∑n
t=1 x

2
t I(zt−1 ≤ r0)

1
n2

∑n
t=1 x

2
t I(zt−1 ≤ r0) 1

n2

∑n
t=1 x

2
t I(zt−1 ≤ r0)

)−1

(2.48)

Proposition 10. When the threshold values is known, that is, r = r0, with assumptions A.1,

A.2, B.3, A.4, and A.6, under the null H0 : γ = 0, the test statistic t̃γ=0(r0) has the following

distribution

t̃γ=0(r0)⇒ N (0, 1) (2.49)

2.5.2.2 When r is Unknown but Identi�ed

Again, when there is a threshold e�ect in the drift, we can estimate super-consistently the

threshold parameter under H0 : γ = 0; then, we can use r̂n as if we know r0. We can recover

êα,t from model (2.10) and estimate Gα as follows.

Ĝα =
1

n

n∑
j=1

ê2
α,t(I(zt−1 ≤ r̂n)−λ̂)2+

2

n

l∑
i=1

L(i, l)
n∑

t=i+1

êα,têα,t−i(I(zt−1 ≤ r̂n)−λ̂)(I(zt−1−i ≤ r̂n)−λ̂)

(2.50)

, where λ̂ = 1
n

∑
I(zt−1 ≤ r̂n), which will also be a consistent estimator of P (zt−1 ≤ r0) =

λ0, then the modi�ed statistic for testing γ = 0 is

t̃αγ=0(r̂n) = γ̂(r̂n)

√
λ̂(1− λ̂)

Ĝα((X(r̂n)′X(r̂n))−1)22

(2.51)

Proposition 11. When the threshold value is unknown but identi�ed under the null of γ = 0,

with assumptions A.1, A.2, B.3, A.4, A.5, and A.6., the test statistic t̃αγ=0(r̂) has the following

distribution

t̃αγ=0(r̂n)⇒ N (0, 1) (2.52)

Assuming σε,e = σε,e,λ = 0 is relevant for the distribution of the KPSS test to be free of

nuisance parameters, but it is not relevant for testing for threshold e�ects since independently

if et and εt are serially correlated or not, we can construct t̃γ=0(r̄) or t̃αγ=0(r̂n) as in (2.47)

and (2.51) such that their distribution under the null of γ = 0 is free of nuisance parameters

and is the same as in Proposition 5 and Proposition 7. Gonzalo and Pitarakis (2006) found a
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similar situation, where the proposed test for threshold e�ects was robust under the problem

of endogeneity.

2.6 Simulations

In this section, we illustrate the key features of the di�erent tests presented under di�erent

scenarios, when et is independent of past realizations, when et is a linear process but xt is

strictly exogenous and, �nally, when et is a linear process and xt is endogenous.

Our data-generating process (DGP) is given by yt = β2xt + γI(zt−1 ≤ r)xt + et and

yt = α1I(zt−1 ≤ r) + α2I(zt−1 > r)β2xt + γI(zt−1 ≤ r)xt + et, respectively, where ∆xt = εt.

We take zt as an AR(1) process zt = ρzzt−1 + ηt with ηt = n.i.d(0, 1). et also is constructed

as an AR(1) process et = ρet−1 +vt, where vt = n.i.d(0, 1), and by changing the value of ρ we

can control the dependence structure of the shocks in the long run equation. We also consider

the cases where the threshold parameter r is known and the threshold value is estimated r̂n.

All the experiments are based on 10000 replication and setting β2 = 1, α1 = 1 and α2 = 2

throughout.

First, we evaluate the behavior of the KPSS test under di�erent scenarios. In these sim-

ulations, we choose di�erent values of the bandwidth parameters as a function of the sample

size n, l0 = 0, l4 = 4Integer
[
n/100

]1/4
and l12 = 12integer

[
n/100

]1/4
in the estimation of

the long run variance σ̂2
e(l) and σ̂

2
α,e(l).

Tables 2.11 to 2.19 show the size of the KPSS under assumption A.3, that is, {et}, is
an i.i.d process for di�erent choices of the bandwidth parameter l, under di�erent levels of

persistence of the threshold variable ρz = {0.5, 0.9} with di�erent values of γ = {0, 1}. When

γ = 0, it is the linear speci�cation, and when γ = 1, it is the threshold speci�cation. Also, we

perform the test including state dependent drifts and without drift, whether the threshold

parameter is known or unknown.

As we can see when the DGP is linear, γ = 0, and we perform the KPSS test including

the regressors with a threshold e�ect, the size of the test is correct since the empirical

size approaches the nominal size of 5%. Also, the size is correct for the di�erent levels

of persistence of the threshold variable ρz, whether the threshold parameter is known or

estimated. Note that, independent of the choice of the bandwidth parameter, the estimation

of the long run variance does not have any e�ect on the size of the test.

Tables 2.20 to 2.28 show the power of the KPSS test when {et} is an i.i.d process, con-

sidering di�erent values of σ2
u = {0.01, 0.1, 1}, and for di�erent choices of l0, l4, and l12. As

we have shown in Proposition 4, the choice of the bandwidth parameter l is relevant since

choosing a large l will cost power, for example, as observed in Tables 2.20 to 2.22, when the
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threshold parameter is assumed to be known and the DGP does not have state-dependent

constants, by �xing the sample size n and �xing σ2
u, we can see a decrease of power as the

bandwidth parameter increases. Choosing l4 and l12 and increasing σ2
u but �xing the sample

size, the power approaches to a limit which is not necessarily one. The power increases as n

increases, thereby re�ecting the consistency of the test. We can observe similar results when

the threshold parameter is estimated, see Tables 2.26 and 2.28.

Tables 2.29 to 2.35, show the size of the KPSS test, when et follows an AR(1) process

with di�erent values of ρ = {−0.8,−0.5,−0.2, 0.2, 0.5, 0.8} and the di�erent speci�cations of

the DGP. As we can see, the KPSS test for testing threshold cointegration have the same

problem pointed out by Kwiatkowsky, Phillips, Schmidt y Shin (1992), where under the null

of σ2
u = 0, as ρ → 1 et become a random walk, and the test will tend to over-reject the null

of threshold cointegration, also when ρ < 0, the KPSS tends to be conservative. The over-

rejection problem is severe for the case of l = 0, which is not a valid test even asymptotically.

For l4, when ρ = 0.5, the test presents a moderate size distortion but a severe size distortion

for ρ = 0.8. Finally, for l12, the test has the correct size for ρ = 0.5 but a slight over-rejection

for ρ ≥ 0.8.

In the last experiment, we use dynamic OLS estimation to control for the endogeneity

between xt with et. In this case, we create ηt and ε as a bivariate normal with the covariance

matrix. (
σ2
ε ση,ε

ση,ε σ2
η

)
(2.53)

we set σ2
ε = σ2

η = 1, and we allow ση,ε = {0.5, 0.8}. As we can see, we have the same results

as in the case where xt is exogenous, in which we have over-rejection when ρ→ 1 and the test

is conservative when ρ < 0, and as in the previous case, this problem aggravates when l = 0.

When ρ = 0, xt, and et are only correlated contemporaneously, and the dynamic ordinary

least squares (DOLS) estimation helps to control the second-order bias, and the empirical size

of the test approaches the nominal size of 5%. We only have a contemporaneous correlation

between xt and et as the second-order bias, and we can see in this case the size of the KPSS

test is under control. See Tables 2.36 and 2.39.

In the next experiments, we show the behavior of the test to identify the threshold e�ect

in the long run equation. Table 2.40 shows the size of the test when {et} is an i.i.d process.

In the case where the state-dependent constant is included, we can see that the empirical

size is close to the nominal size of 5% for di�erent persistence levels of the threshold variable

ρz = {0.5, 0.9}, or if the threshold value is known or estimated. Table 2.41 shows the same

result in the case where the state-dependent drift is not considered.

In Table 2.42, we show the power of the test when {et} follows an i.i.d process considering
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di�erent values of γ = {0.01, 0.05, 0.1, 0.5}. The DGP considered has a state-dependent drift,

and we can see that the tests have correct power since both, as sample size increases and

the value of γ deviates from zero, the power of the test approaches unity. Table 2.43 shows

the same results when the DGP does not have state-dependent constants and the threshold

parameter is assumed to be known.

In the last experiment for the test for threshold e�ect, we show the performance of the test

when et follows an AR(1) process with autoregressive coe�cients ρ = {−0.8,−0.5,−0.2, 0.2, 0.5, 0.8}
and di�erent values of σε,η = {0, 0.5, 0.8}. The bandwidth parameter for the estimation of G
is chosen as l0, l4, and l12. In the case where l = 0, the test rejects too often when ρ > 0

and too seldom when ρ < 0 and this problem aggravates when ρz = 0.9. In the cases where

the choices are l4 and l12, and ρz ≤ 0.5 for any values of ρ, the empirical size of the test

is correct. When ρz = 0.9 for ρ ≥ 0.8, the test tends to over reject the null of no-threshold

e�ect for small sample sizes, but as the sample size increases the empirical size of the test

approaches the nominal size of 5%. The over-rejection of the null in small samples is due to

the estimation of the long-run variance of G, which is poorly approximated in small samples.

See tables 2.44 to 2.50.

2.7 Empirical Applications

2.7.1 Term Structure of U.S Interest Rates

In this application, we analyze the existence of multiple equilibria between interest rates of

instruments with di�erent maturities. It is widely known that the interest rate series are

I(1), and interest rates with di�erent maturities must be cointegrated, as proposed by Stock

and Watson (1988). There is a vast amount of work that studies the cointegration relation

between interest rates with di�erent maturities, but all of them assume the existence of a

single equilibrium relationship with a mixed conclusion, for example, the Johansen (1996)

procedure is unable to �nd cointegration at the usual signi�cance levels. In their work,

Enders and Siklos (2001) extend the analysis by allowing a threshold structure in the short-

term dynamics, however, assuming the existence of a unique equilibrium relation. They

conclude that when the adjustment follows an autoregressive threshold structure (TAR) the

series of U.S. federal funds rate and the U.S. 10-year rates on government bonds are not

cointegrated, however, when the short-term dynamics follows a momentum-TAR, they �nd

a cointegration relation.

Following the work of Enders and Siklos (2001), we use monthly observations of the federal

fund rates and 10-year government bonds from January 1960 to March 2019. The data are
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daily averages and are available in the Federal Reserve Bank of St. Louis database. We use

the annual growth rate of the U.S. production index as the threshold variable, which will

determine the di�erent periods of the business cycles, economic expansions, and recessions.

As discussed in Shin (1994) and Sikkonen (1991), the choice of the number of lags and

leads, K, and the bandwidth parameter, l, for the estimation of the long run variance are

critical, especially on l. In this application, we choose K using the Akaike information

criterion (AIC) information criteria, and for the bandwidth parameter, we present the results

of the tests using di�erent values of l. For illustration purpose, we estimate the linear long-

run equilibrium relationship between short- and long-term interest rates using the DOLS

estimation. The optimal number of lags and leads included in the regression is K = 3

Table 2.1: Linear cointegration, estimation result.

α β

−2.88 1.166

(0.137) (0.020)

We test for linear cointegration using the KPSS test as in Shin (1994), and note that for

di�erent values of l we reject at 5% signi�cance the null hypothesis of linear cointegration,

since the KPSS statistic is higher than the critical value (CV) of 0.314 tabulated in Shin

(1994) .

Table 2.2: KPSS test using linear regression model.

l = 7 l = 8 l = 9 l = 10 1 = 11 l = 12

0.585 0.533 0.492 0.4583 0.431 0.4076

Now we test for threshold cointegration, and in this case, we assume that there is a

threshold e�ect in the drift, which is relevant for estimating the threshold parameter that

is T-consistent. First, we test for cointegration including a non-linear component in the

long-run equation, as in the linear case, the optimal choice of lags and leads in the DOLS

estimation is K = 3, and the estimated long-run equation is given as:

Table 2.3: Cointegration with threshold e�ect, estimation result.

α1 α2 β1 β2 r

−2.573 −0.354 1.244 0.909 0.048

(0.151) (0.023) (0.288) (0.041)
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We perform the KPSS test on the estimated residual for di�erent values of l, and since we

�nd cointegration at the 5% signi�cance level, the KPSS statistic is lower than the critical

value of 0.314.

Table 2.4: KPSS test using threshold regression model.

l = 7 l = 8 l = 9 l = 10 1 = 11 l = 12

0.286 0.262 0.242 0.227 0.214 0.203

As we have argued before, constructing the KPSS test using a threshold speci�cation

in the regression is unable to di�erentiate between linear and threshold cointegration. The

second step is to test for the presence of a threshold e�ect in the long-run equilibrium equation

by testing if γ = (β1 − β2) = 0. For di�erent values of l, we reject the null of no-threshold

e�ect since the statistic is higher than the 5% CV of a standard normal.

Table 2.5: Testing for threshold e�ect.

l = 7 l = 8 l = 9 l = 10 1 = 11 l = 12

3.621 3.547 3.499 3.468 3.452 3.448

Since we reject the null of γ = 0, we can conclude the presence of two equilibrium relations

between both short- and long-term interest rates. When the annual growth of industrial

production (IP) is above 4.8%, we are in an expansion period, and the cointegrating vector is(
1 0.909

)′
, implying that the long-term interest rate is higher than the short-term interest

rate. When the industrial activity slows down, the annual growth of IP is under 4.8%, and

the cointegrating vector is
(

1 1.244
)
, which indicates that the short-term interest rate is

higher than the long-term interest rate.

2.7.2 Empirical Application: US Stock Price and Dividend

In this application, we investigate via our threshold cointegration model the non-linear link

between price and dividends using the Volatility Index (VIX) as a threshold variable.

The data analyzed are the monthly series of real Standard and Poor&s Composite Stock

Price Index and the real dividend from 1960:1 to 2018:7. The threshold variable representing

the di�erent regimes is the VIX Index, which generates periods where the perceived volatility

is high and periods with low volatility. More information about the data on stock prices

and dividends can be found in Shiller (http://www.econ.yale.edu/ shiller/data.htm) and

information on the VIX Index series can be obtained from FRED (https://fred.stlouisfed.org).
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As an illustration porpoise, we estimate the linear cointegration equation and perform

the KPSS test on the estimated residuals. The optimal choice of lags and leads using AIC is

K = 0,

Table 2.6: Linear cointegration, estimation result.

c β K

121.89 47.25 0

(65.50) (2.21)

Testing for linear cointegration, we can see that for di�erent values of the bandwidth

parameter l, we reject the null of cointegration at 5% signi�cance since the KPSS test is

higher than the CV of 0.314 tabulated in Shin (1994).

Table 2.7: KPSS test using linear regression model.

l = 10 l = 11 l = 12 l = 13 1 = 14 l = 15

0.46 0.43 0.40 0.34 0.35 0.33

Now we estimate the threshold speci�cation including the non-linear regression and test

for cointegration using the estimated residuals. The optimal number of lags and leads indi-

cated by AIC is K = 11

Table 2.8: Cointegration with threshold e�ect, estimation result.

α1 α2 β1 β2 r K

−185.20 1357 52.14 8.22 19.57 11

(71.34) (141.71) (2.48) (5.21)

Checking for cointegration, we can see for each value if l fails to reject the null of cointe-

gration at 5% signi�cant level.

Table 2.9: KPSS test using threshold regression model.

l = 10 l = 11 l = 12 l = 13 1 = 14 l = 15

0.31 0.29 0.27 0.25 0.24 0.23

Once we �nd cointegration in the threshold regression estimation, as in the previous

application, we proceed to test for the presence of threshold e�ects by testing if β1 = β2. We
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perform the test using di�erent choices of the bandwidth parameter in the estimation of the

long run variance of G. As we can see in the Table 2.10 for each value of l, we reject the null

of no-threshold e�ect at 5% signi�cance level, thereby concluding the presence of multiple

cointegration relations.

Table 2.10: Testing for threshold e�ect.

l = 10 l = 11 l = 12 l = 13 1 = 14 l = 15

2.79 2.63 2.61 2.54 2.47 2.44

Since we have concluded that there is a threshold e�ect, the real price and real dividend

present two equilibrium relations driven by the perceived volatility in the market. When the

volatility is high, the VIX index is above 19.57, and the implicit discount rate is R2 = 1
β2

=

12.17%. When the volatility is low, the VIX index is below 19.57, and the implicit discount

rate is R1 = 1
β1

= 1.92%. This result is consistent with the economic theory because the

return of a risky asset must be higher in periods when the volatility is higher than in periods

with lower volatility.

2.8 Conclusion

Many economic relations between persistent variables are not linear, and this is captured by

the concept of non-linear cointegration. Extensions of linear cointegration to a non-linear

framework have always considered the existence of a single long-run equilibrium where the

non-linearity comes from the adjustment mechanism towards it. In this study, we analyze

non-linear cointegration with multiple long-run equilibria via threshold cointegration. We

present a test to assess the presence of non-linear cointegration, and an inference procedure

to detect threshold structures. Two empirical applications are shown, between U.S. stock

prices and dividends and U.S. interest rates from instruments with di�erent maturities, where

cointegration with di�erent equilibrium relations is not rejected whereas standard linear

cointegration is rejected.
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Appendix

2.A Proofs

Proof of Proposition 2

In order to show that {I(zt−d ≤ r)xt} is summable of order one we have to prove that:

Sn =
1

n
1
2

+δx
L(n)

n∑
t=1

I(zt−d ≤ r)xt = Op(1), (2.54)

From the asymptotic results from Canner and Hansen (2001), for δx = 1 we have that;

Sn =
1

n
3
2λσε

n∑
t=1

I(zt−d ≤ r)xt →
∫ 1

0

Wx(s)ds, (2.55)

where L(n) = 1
λσε

, λ = Pr(zt−d ≤ r) and Wn(.) is the standard Brownian motion. For

{I(zt−d > r)xt}, the proof is similar with L(n) = 1
(1−λ)σε

.

Also, we have to show that:

Sn =
1

n
1
2

+δy
L(n)

n∑
t=1

yt = Op(1), (2.56)

by construction we know that:

Sn =
1

n
1
2

+δy
L1(n)

[
β1

n∑
t=1

I(zt−d ≤ r)xt+β2

n∑
t=1

I(zt−d > r)xt

]
+
L1(n)

L2(n)

1

n
1
2

+δy
L2(n)

n∑
t=1

I(zt−d ≤ r)et

(2.57)

Note that from the work of Caner and Hansen (2001) we know that for L2(n) = 1
σe
,

it is easy to show that 1

n
1
2 σe

∑n
t=1 I(zt−d ≤ r)et → Be(s, λ) then for δy = 1 we have

1

n
1
2 +δyσe

∑n
t=1 I(zt−d ≤ r)et = op(1). Then for L1(n) = 1

[β1λ+β2(1−λ)]σx
, from corollary 1 we

have

Sn =
1

n
1
2

+δy [β1λ+ β2(1− λ)]σε

n∑
t=1

yt →
∫ 1

0

Wx(s)ds (2.58)

and is easy to see that L1(n)
L2(n)

= O(1).

Proof of Proposition 3

The proof of proposition 3 we split into two parts. The �rst part we show the asymptotic
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distribution of the LS estimate of β2 and γ under the null of σu = 0. The second part we

show the convergence of n−1/2S[ns] under the null of σu = 0. Note that under the null of

cointegration σu = 0 then vt = m0 + et. Without loss of generality, set m0 = 0, then vt = et

To show the asymptotic distribution of the LS estimate of β2 and γ, write equation (2.9)

as follows

yt = X ′tΓ + vt (2.59)

where Xt =

(
xt

xtI(zt−1 ≤ r)

)
and Γ =

(
β2

γ

)
Then the LS estimate of Γ is

Γ̂ =
( n∑
t=1

XtX
′
t

)−1( n∑
t=1

Xtyt

)
= Γ +

( n∑
t=1

XtX
′
t

)−1( n∑
t=1

Xtvt

)
(2.60)

Under the null of cointegration:

Γ̂ = Γ +
( n∑
t=1

XtX
′
t

)−1( n∑
t=1

Xtet

)
(2.61)

we can rewrite equation (2.61) as follows

n(Γ̂− Γ) =
( 1

n2

n∑
t=1

XtX
′
t

)−1

︸ ︷︷ ︸
A

( 1

n

n∑
t=1

Xtet

)
︸ ︷︷ ︸

B

(2.62)

Lets see the convergence of A.

1

n2

n∑
t=1

XtX
′
t =

(
1
n2

∑n
t=1 x

2
t

1
n2

∑n
t=1 x

2
t I(zt−1 ≤ r)

1
n2

∑n
t=1 x

2
t I(zt−1 ≤ r) 1

n2

∑n
t=1 x

2
t I(zt−1 ≤ r)

)
(2.63)

Since xt is a random walk, from Caner and Hansen (2001) we know that:

1

n2

n∑
t=1

XtX
′
t ⇒

(
σ2
ε

∫ 1

0
W 2
x (s)ds λσ2

ε

∫ 1

0
W 2
x (s)ds

λσ2
ε

∫ 1

0
W 2
x (s)ds λσ2

ε

∫ 1

0
W 2
x (s)ds

)

≡ σ2
ε

∫ 1

0

W 2
x (s)ds

(
1 λ

λ λ

) (2.64)

Then by the continuous mapping theorem we have:

( 1

n2

n∑
t=1

XtX
′
t

)−1

⇒ 1

σ2
ελ(1− λ)

∫ 1

0
W 2
x (s)ds

(
λ −λ
−λ 1

)
(2.65)
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Lets see what converges the term B,

( 1

n

n∑
t=1

Xtet

)
=

(
1
n

∑n
t=1 xtet

1
n

∑n
t=1 xtetI(zt−1 ≤ r)

)

=

(
1
n

∑n
t=1 xt−1et + 1

n

∑n
t=1 etεt

1
n

∑n
t=1 xt−1etI(zt−1 ≤ r) + 1

n

∑n
t=1 I(zt−1 ≤ r)etεt

) (2.66)

Again from Caner and Hansen (2001) we have

( 1

n

n∑
t=1

Xtet

)
⇒

(
σeσε

∫ 1

0
Wx(s)dWe(s) + w12

σeσε
∫ 1

0
Wx(s)dWe(s, λ) + λw12

)

≡

(
σeσε

∫ 1

0
Wx(s)dWe(s)

σeσε
∫ 1

0
Wx(s)dWe(s, λ)

) (2.67)

From the assumption where εt and e2t are independent, we can forget about the second

order bias w12.

Putting all together we have that:

n(Γ̂− Γ)⇒ σe

λ(1− λ)σε
∫ 1

0 W
2
x (s)ds

(
λ −λ
−λ 1

)( ∫ 1
0 Wx(s)dWe(s)∫ 1

0 Wx(s)dWe(s, λ)

)
(2.68)

The second part of the proof consist to show the convergence n−1/2S[ns] = n−1/2
∑[ns]

j=1 v̂j.

By adding and subtracting vj and reordering

n−1/2S[ns] = n−1/2

[ns]∑
j=1

(v̂j − vj + vj) = T−1/2

[ns]∑
j=1

vj + n−1/2

[ns]∑
j=1

(v̂j − vj) (2.69)

Recall that under the null of cointegration vj = ej and note that v̂j = yj − X ′jΓ̂ with

vj = yj −X ′jΓ, then

(v̂j − vj) = −X ′j(Γ̂− Γ) (2.70)

then rewritting

n−1/2

[ns]∑
j=1

ej − n−3/2

[ns]∑
j=1

X ′jn(Γ̂− Γ) (2.71)

Then as n→∞, n−1/2S[ns] converges to
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σeWe(s)−
σe

λ(1− λ)
∫ 1

0
W 2
x (s)ds

(∫ s
0
Wx(s)ds λ

∫ s
0
Wx(s)ds

)
(
λ −λ
−λ 1

)( ∫ 1

0
Wx(s)dWe(s)∫ 1

0
Wx(s)dWe(s, λ)

) (2.72)

Then (2.72) can be written as:

σe

(
We(s)−

∫ s
0
Wx(s)ds

∫ 1

0
Wx(s)dWe(s)∫ 1

0
W 2
x (s)ds

)
≡ σeQ(s) (2.73)

From (2.73) we can conclude that:

n−2

n∑
t=1

S2
t ⇒ σ2

e

∫ 1

0

Q2(s)ds (2.74)

The only task left is to show that: σ̂2
e →p σ

2
e . Under the null of cointegration

σ̂2
e =

1

n

n∑
t=1

e2
t + op(1)→p σ

2
e . (2.75)

Then we can conclude that

CI = n−2

n∑
t=1

S2
t /σ̂

2
e ⇒

∫ 1

0

Q2(s)ds (2.76)

When state dependent drift is included

yt = α1I(zt−1 ≤ r) + α2I(zt−1 > r) + β1I(zt−1 ≤ r)xt + β2I(zt−1 > r)xt + et (2.77)

Construct the following stack matrices

Y =


y1

...

yn

 , 1z =


I(z0 ≤ r) I(z0 > r)

...
...

I(zn−1 ≤ r) I(zn−1 > r)

 , Xz =


x1I(z0 ≤ r) x1I(z0 > r)

...
...

xnI(zn−1 ≤ r) xnI(zn−1 > r)



e =


e1

...

en

 , C =

(
α1

α2

)
, Γ =

(
β1

β2

)
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De�ne Mz = In − 1z(1
′
z1z)

−11′z where In is the identity matrix, then we can rewrite the

model as

MzY = MzXΓ +Mze (2.78)

Then the LS estimate of Γ is the usual

(Γ̂− Γ) = (X ′zMzX)−1(X ′zMze) (2.79)

where

(X ′zMqXz) =

∑n
i=1 x

2
i I(zi−1 ≤ r)−

(∑n
i=1 xiI(zi−1≤r)

)2∑n
i=1 I(zi−1≤r) 0

0
∑n

i=1 x
2
i I(zi−1 > r)−

(∑n
i=1 xiI(zi−1>r)

)2∑n
i=1 I(zi−1>r)


(2.80)

(X ′zMze) =

∑n
i=1 I(zi−1 ≤ r)xiei −

(∑n
i=1 xiI(zi−1≤r)

)(∑n
i=1 eiI(zi−1≤r)

)
∑n
i=1 I(zi−1≤r)∑n

i=1 I(zi−1 > r)xiei −
(∑n

i=1 xiI(zi−1>r)
)(∑n

i=1 eiI(zi−1>r)
)

∑n
i=1 I(zi−1>r)

 (2.81)

Using the results from Caner and Hansen (2001) we can see that;

n(Γ̂− Γ)⇒

 ∫ 1
0 B

α
x (s)dBe(s,λ)

λ
∫ 1
0 (Bαz (s))2ds∫ 1

0 B
α
x (s)dBe(s)−

∫ 1
0 B

α
x (s)dBe(s,λ)

(1−λ)
∫ 1
0 (Bαz (s))2ds

 (2.82)

If we write each element of MzY , MzXz and Mze we can see that
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MzY =


y1 −

(
I(z0 ≤ r)

∑n
i=1 yiI(zi−1≤r)∑n
i=1 I(zi−1≤r) + I(z0 > r)

∑n
i=1 yiI(zi−1>r)∑n
i=1 I(zi−1>r)

)
...

yn −
(
I(zn−1 ≤ r)

∑n
i=1 yiI(zi−1≤r)∑n
i=1 I(zi−1≤r) + I(zn−1 > r)

∑n
i=1 yiI(zi−1>r)∑n
i=1 I(zi−1>r)

)
 =


ȳ1

...

ȳn



MzXz =


I(z0 ≤ r)

(
x1 −

∑n
i=1 xiI(zi−1≤r)∑n
i=1 I(zi−1≤r)

)
I(z0 > r)

(
x1 −

∑n
i=1 xiI(zi−1>r)∑n
i=1 I(zi−1>r)

)
...

...

I(zn−1 ≤ r)
(
xn −

∑n
i=1 xiI(zi−1≤r)∑n
i=1 I(zi−1≤r)

)
I(zn−1 > r)

(
xn −

∑n
i=1 xiI(zi−1>r)∑n
i=1 I(zi−1>r)

)
 =


x̄−1 x̄+

1
...

...

x̄−n x̄+
n



Mze =


e1 −

(
I(z0 ≤ r)

∑n
i=1 eiI(zi−1≤r)∑n
i=1 I(zi−1≤r) + I(z0 > r)

∑n
i=1 eiI(zi−1>r)∑n
i=1 I(zi−1>r)

)
...

en −
(
I(zn−1 ≤ r)

∑n
i=1 eiI(zi−1≤r)∑n
i=1 I(zi−1≤r) + I(zn−1 > r)

∑n
i=1 eiI(zi−1>r)∑n
i=1 I(zi−1>r)

)
 =


ē1

...

ēn



Such that for each t, it can be written as ȳt =
(
x̄−t x̄+

t

)
Γ + ēt, then the constructed

partial sum 1√
n
S[ns]:

1√
n
S[ns] =

1√
n

[ns]∑
t=1

ēt︸ ︷︷ ︸
A

− 1√
n

[ns]∑
t=1

(
x̄−i x̄+

i

)
(Γ̂− Γ)︸ ︷︷ ︸

B

(2.83)

In A, from the structure of ēt we have that

1√
n

[ns]∑
t=1

ēt =
1√
n

[ns]∑
t=1

et −
[ns]

n

1

[ns]

[ns]∑
t=1

I(zt−1 ≤ r)

1√
n

∑n
i=1 eiI(zi−1 ≤ r)

1
n

∑n
i=1 I(zi−1 ≤ r)

− [ns]

n

1

[ns]

[ns]∑
t=1

I(zt−1 > r)

1√
n

∑n
i=1 ei −

1√
n

∑n
i=1 eiI(zi−1 ≤ r)

1
n

∑n
i=1 I(zi−1 > r)

⇒ Be(s)− sBe(1)

(2.84)

Now from B we can see that
(

1
n3/2

∑[ns]
t=1 x̄

−
i

1
n3/2

∑[ns]
t=1 x̄

+
i

)
n(Γ̂− Γ) such that
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1

n3/2

[ns]∑
t=1

x̄−i =
1

n3/2

[ns]∑
t=1

I(zt−1 ≤ r)xt −
[ns]

n

1

[ns]

[ns]∑
t=1

I(zt−1 ≤ r)
1

n3/2

∑n
t=1 I(zt−1 ≤ r)xt

1
n

∑n
t=1 I(zt−1 ≤ r)

⇒ λ
(∫ s

0

Bα
x (s)ds

)
(2.85)

Also is easy to see that:

1

n3/2

[ns]∑
t=1

x̄+
i ⇒ (1− λ)

(∫ s

0

Bα
x (s)ds

)
(2.86)

we can see that:

(
1

n3/2

∑[ns]
t=1 x̄

−
i

1
n3/2

∑[ns]
t=1 x̄

+
i

)
n(Γ̂− Γ)⇒

∫ s

0

Bα
x (s)ds

∫ 1

0
Bα
x (s)dBe(s)∫ 1

0
(Bα

x (s))2ds
(2.87)

Then putting all the pieces together we have that;

1√
n
S[ns] ⇒ Be(s)−sBe(1)−

∫ s

0

Bαx (s)ds

∫ 1

0
Bαx (s)dBe(s)∫ 1

0
(Bαx (s))2ds

= σe

(
Ve(s)−

∫ s

0

Wα
x (s)ds

∫ 1

0
Wα
x (s)dWe(s)∫ 1

0
(Wα

x (s))2ds

)
= Qα(s)

(2.88)

The �rst equality came from the strong exogeneity assumption between xt and et. The

using continous mapping theorem we have:

1

n2

n∑
i=1

S2
i ⇒ σ2

e

∫ 1

0

Q2
α(s)ds (2.89)

Then:

CIα ⇒
∫ 1

0

Q2
α(s)ds (2.90)

Proof of Proposition 4

Under the alternative σ2
u > 0 the process mt = mt−1 + ut is a Random Walk, the et =

mt + v1t also will be an Random Walk. For simplicity of exposition we consider the case

without drift, a similar approach can be used when includes state dependent drift. De�ne

yt =
(
xt xtI(zt−1 ≤ r)

)(β2

γ

)
+ et (2.91)
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Call X̃t =

(
xt

xtI(zt−1 ≤ r)

)
and Γ =

(
β2

γ

)
. Then is easy to see that(

β̂2 − β
γ̂ − γ

)
=
( 1

n2

∑
t

X̃tX̃
′
t

)−1( 1

n2

∑
t

X̃tv1t

)
(2.92)

As in (65),
(

1
n2

∑
t X̃tX̃

′
t

)−1

⇒ 1

λ(1−λ)
∫ 1
0 Bx(s)2

(
λ −λ
−λ 1

)
. Let see

( 1

n2

∑
t

X̃tv1t

)
=

(
1
n2

∑
t xt(mt + et)

1
n2

∑
t xtI(zt−1 ≤ r)(mt + et)

)
=

(
1
n2

∑
t xtmt + op(1)

1
n2

∑
t xtI(zt−1 ≤ r)mt + op(1)

)
(2.93)

From the results in Caner and Hansen (2001) then

⇒

( ∫ 1

0
BxBm

λ
∫ 1

0
BxBm

)
(2.94)

Then we can see that:

(
β̂2 − β
γ̂ − γ

)
⇒

∫ 1
0 BxBm∫ 1

0 B
2
x

0

 (2.95)

Then the partial sum 1
n3/2S[ns] is

1

n3/2
S[ns] =

1

n3/2

[ns]∑
i=1

ei −
1

n3/2

[ns]∑
i=1

X̃ ′t

(
β̂2 − β
γ̂ − γ

)
=

1

n3/2

[ns]∑
i=1

mt + op(1)− 1

n3/2

[ns]∑
i=1

X̃ ′t

(
β̂2 − β
γ̂ − γ

)

⇒
∫ s

0

Bm +

∫ s

0

Bm

(∫ 1

0

Bz

)−1(∫ 1

0

BxBm

)
= σu

∫ s

0

Qp

(2.96)

Then we can see that:

1

n4

n∑
t=1

S2
[ns] ⇒ σ2

u

∫ 1

0

(∫ s

0

Qp

)2

(2.97)

From Kwiatkowski, Phillips, Schmidt and Shin (1992), for the Barlett window, we obtain

the result that (nl)−1s2(l)⇒ σ2
u

∫ 1

0
Q2
p. Therefore combining the results above we have:

(l/n)CI =
1

n4

n∑
t=1

S2
[ns]/(nl)

−1s2(l)⇒
∫ 1

0

(∫ s

0

Qp

)2

/

∫ 1

0

Q2
p (2.98)
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Proof of Proposition 5

From equation (2.68), Note that

n(γ̂ − γ)⇒
∫ 1

0
Wx(s)dWe(s, λ)− λ

∫ 1

0
Wx(s)dWe(s)

λ(1− λ)
∫ 1

0
Wx(s)2ds

≡
∫ 1

0
Wx(s)dVe(s, λ)

λ(1− λ)
∫ 1

0
Wx(s)2ds

(2.99)

where that Ve(s, λ) = We(s, λ)−λWe(s, 1) is the Kiefer-Muller process. From the contin-

uous mapping theory, then the distribution of the t-statistic is:

tγ=0(λ) =

∫ 1

0
Wx(s)dVe(s, λ)√

λ(1− λ)
∫ 1

0
Wx(s)2ds

(2.100)

Since We(s) and Ve(s, λ) are independent, it can be proven for a �xed λ that:∫ 1

0
Wx(s)dVe(s, λ)√∫ 1

0
Wx(s)2ds

≡ N (0, σ2
λ) (2.101)

where σλ = λ(1− λ).

Proof of Proposition 6

(i) As T →∞, r̂n →p r0.

Following the work of Hansen (2000) and Chen (2015), to prove consistency of r̂n, we

have to show that Pr(|r̂n − r0| > ε)→ 0 for any ε > 0. De�ne B(ε) = {r : |r − r0| > ε} and
B̄(ε) = {[rL, rH ]\B(ε)}. From the de�nition of r̂n we can see:

Pr(|r̂n − r0| > ε) = Pr
(
inf
r∈B(ε)

SSRn(r) < inf
r∈B̄(ε)

SSRn(r)
)

≤ Pr
(
inf
r∈B(ε)

SSRn(r) < SSRn(r0)
)

= Pr
(
inf
r∈B(ε)

n−1(SSRn(r)− SSRn(r0)) < 0
) (2.102)

where SSRn(r) =
∑n

i=1 ẽ
2 and SSRn(r0) =

∑n
i=1 e

2. Thus, proving Pr(|r̂n−r0| > ε)→ 0,

is equivalent to prove that Pr
(
inf
r∈B(ε)

n−1(SSRn(r)− SSRn(r0)) > 0
)
→ 1

First we de�ne the stacking vectors, without loss of generality assume that h = 1
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Y =


y1

y2

...

yn

 X =


x1

x2

...

xn

 T =


1

1
...

1

 Q =


I(z0 ≤ r)

I(z1 ≤ r)
...

I(zn−1 ≤ r)



e =


e1

e2

...

en

 Q0 =


I(z0 ≤ r0)

I(z1 ≤ r0)
...

I(zn−1 ≤ r0)

 Iz =
(
T Q

)
Γ =

(
α2

γ

) (2.103)

De�ne the following regression for any r ∈ [rL, rH ]

Y = IzΓ +Xβ + ẽ (2.104)

To prove the result we use the Frisch�Waugh�Lovell Theorem, by projecting Y on X, and

Iz on X, to get rid of X. De�ne the annihilator matrix Mx = (In−X(X ′X)−1X ′) such that

MxX = 0, then equation (2.104) can we rewrite as:

MxY = MxIzΓ +Mxẽ (2.105)

Then the LS estimate of Γ is:

Γ̂ = (I ′zMxIz)
−1(I ′zM

′
xMxY ) (2.106)

The estimated residuals can be written as:

Mxẽ = MxY −MxIz(I
′
zMxIz)

−1I ′zM
′
xMxY (2.107)

Equivalently it can be written as:

Mxẽ = (In −MxIz(I
′
zMxIz)

−1I ′zM
′
x)MxY (2.108)

Call Mq = (In −MxIz(I
′
zMxIz)

−1I ′zM
′
x), then SSR(r) = YMxMqM

′
xY
′ Note that equation

(2.105) can be rewritten as:

MxY = MxTα2 +MxQ0δ +Mxe (2.109)
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We can write the SSR(r) as follows:

SSR(r) = δ2Q′0MxMqMxQ0 + 2δQ0MxMqMxe

+ e′MxMqMxe
(2.110)

The equality came from the fact that T ′MxMq = 0 since T ′Mx is a linear combination of(
(T −Q)′Mx Q′Mx

)
.

Note that SSR(r0) = e′MxM
0
qMxe

′, then:

1

n
(SSR(r)− SSR(r0)) =

1

n
δ2Q′0MxMqMxQ0 + 2

1

n
δQ0MxMqMx︸ ︷︷ ︸

A

+
1

n

(
e′MxMqMxe− e′MxM

0
qMxe︸ ︷︷ ︸

B

) (2.111)

We can see that the term B can be written as:

e′MxI
0
z (I ′0z MxI

0
z )−1I ′0z Mxe︸ ︷︷ ︸

B.1

− e′MxIz(I
′
zMxIz)

−1I ′zMxe︸ ︷︷ ︸
B.2

(2.112)

Lets focus on the term (B.2)

( 1

n
e′MxIz

)( 1

n
I ′zMxIz

)−1( 1

n
I ′zMxe

)
(2.113)

Note that the �rst term:

1

n
e′MxIz =

1

n
e′Iz −

( 1

n
e′X
)( 1

n2
X ′X

)−1( 1

n3/2
X ′Iz

) 1

n1/2
(2.114)

Then we can see:

1

n
e′Iz →

(
E[ei] E[eiI(qi−1 ≤ r)]

)
= 0

1

n
e′X →

∫ 1

0
BxdBe

1

n2
X ′X →

∫ 1

0
B2
x

1

n3/2
X ′Iz →

(∫ 1
0 Bx λ

∫ 1
0 Bx

)
(2.115)

where B(.) is the Brownian motion λ = Pr(qi ≤ r). Then 1
n
e′MxIz = op(1)
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The second step is to show the convergence of
(

1
n
I ′zMxIz

)−1

.

1

n
I ′zMxIz =

I ′zIz
n
−
(I ′zX
n3/2

)(X ′X
n2

)−1(X ′Iz
n3/2

)
⇒

(
1 λ

λ λ

)
−

(
∫ 1

0
Bx)

2∫ 1

0
B2
x

(
1 λ

λ λ2

) (2.116)

Then we can see that:

(
1

n
I ′zMxIz)

−1 =
1

λ(1− λ)

λ
∫ 1
0 B

2
x−λ2(

∫ 1
0 Bx)2∫ 1

0 B
2
x−(

∫ 1
0 Bx)2

−λ

−λ 1

 (2.117)

Then we can see that the term B.2 converges to zero. The same happens with B.1.

Now lets focus on the term A. Note that:

MxMqMx = Mx − Sq (2.118)

Where Sq = MxIz(I
′
zMxIz)

−1I ′zMx, then:

2
1

n
δQ′0MxMqMxe = 2

1

n
δQ′0(Mx − Sq)e = 2

1

n
δQ′0Mxe︸ ︷︷ ︸
A.1

− 2
1

n
δQ′0Sqe︸ ︷︷ ︸
A.2

(2.119)

Lets focus on A.1

A.1 = 2δ
( 1

n
Q′0e

)
− 2δ

1

n1/2

( 1

n3/2
Q′0X

)( 1

n2
XX

)−1( 1

n
X ′e
)
→ 0 (2.120)

Now focus on A.2

A.2 = 2δ
(Q′0MxIz

n

)(I ′zMxIz
n

)−1(I ′zMxe

n

)
→ 0 (2.121)

Then we can conclude that:

1

n
(SSR(r)− SSR(r0)) =

1

n
δ2Q′0MxMqMxQ0 + op(1) (2.122)

The last step is to show the convergence of 1
n
δ2Q′0MxMqMxQ0. From (18) we can see:

1

n
δ2Q′0MxMqMxQ0 = δ2 1

n
Q′0MxQ0︸ ︷︷ ︸
D.1

−δ2 1

n
Q′0SqQ0︸ ︷︷ ︸
D.2

(2.123)
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To analyze properly equation (2.123), start by considering all r ∈ [r0, rh]. Lets focus on

D.1,

1

n
δ2Q′0MxQ0 =

Q′0Q0

n
−
(Q′0X
n3/2

)(X ′X
n2

)−1(X ′Q0

n3/2

)
⇒ λ0

(
1− λ0

(
∫ 1

0
Bx)

2∫ 1

0
B2
x

) (2.124)

where λ0 = Pr(qi ≤ r0). From term D.2, we can see:

1

n
Q′0SqQ0 =

(Q′0MxIz
n

)(IzMxIz
n

)−1(IzMxQ0

n

)
(2.125)

After some calculations

1

n
Q′0SqQ0 ⇒

(λ2
0

λ
− λ0

(
∫ 1

0
Bx)

2∫ 1

0
B2
x

)
(2.126)

Then we can see that for r ∈ [r0, rh]:

1

n
δ2Q′0MxMqMxQ0 ⇒ δ2λ0(1− λ0λ

−1) (2.127)

Then δ2λ0 > 0, and for any r ∈ (r0, rh] the term δ2λ0(1 − λ0λ
−1) > 0 and the minimum is

attained at r = r0, where δ
2λ0(1− λ0λ

−1) = 0. For the case where r ∈ [rl, r0], doing similar

calculation as in (125), (126) and (127) we can show that:

1

n
δ2Q′0MxMqMxQ0 ⇒ δ2 (1− λ0)

(1− λ)
(λ0 − λ) (2.128)

Note again that for any r ∈ [rl, r0) the term δ2 (1−λ0)
(1−λ)

(λ0−λ) > 0 and the minimum is attained

at r = r0, with δ
2 (1−λ0)

(1−λ)
(λ0 − λ) = 0

We have shown that:

1

n
(SSR(r)− SSR(r0))→pδ

2
(
λ0(1− λ0λ

−1)I(r ≥ r0)

+
(1− λ0)

(1− λ)
(λ0 − λ)I(r ≤ r0)

)
Which is strictly positive when r ∈ B(ε), thus

Pr
(
inf
r∈B(ε)

n−1(SSRn(r)− SSRn(r0)) > 0
)
→ 1 (2.129)
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Showing the consistency in the estimate of r̂n.

(ii) As n→∞, we have n|r̂n − r0| = Op(1)

Let an = n, To prove that r̂n converges to r0 with rate an, we need to prove that an|r̂n −
r0| = Op(1) or show that ∃ v̄ > 0 s.t limn→∞Pr(|r̂n − r0| ≤ v̄/an) = 1. For any B > 0

de�ne VB = {r : |r − r0| < B}, when n is large enough we have v̄
an

< B. From (i) we

showed that r̂n → r0 which implies that P (r̂n ∈ VB) →p 1, so we need only to examine the

behaviour of r in VB. De�ne VB(v̄) = {r : v̄
an
< |r − r0| < B}, note that VB(v̄) ⊆ VB. To

prove limn→∞Pr(|r̂n − r0| ≤ v̄/an) = 1 we have to show that Pr(r̂n ∈ VB(v̄)) = 0. Let α̂

and δ̂ be α̂(r̂n) and δ̂(r̂n) and de�ne SSR∗n(r) =
∑n

t=1

(
yt − α̂ − δ̂I(zt−1 ≤ r) − β̂xt

)2

and

SSR∗n(r0) =
∑n

t=1

(
yt − α̂ − δ̂I(zt−1 ≤ r0) − β̂xt

)2

. By de�nition SSR∗n(r̂n) ≤ SSR∗n(r0),

hence is su�cient to show that ∀r ∈ VB(v̄), SSR∗n(r) > SSR∗n(r0) with probability 1. As in

(i) we can write:

MxY = MxIzΓ +Mxẽ (2.130)

Such that MxIz =
(
MxT MxQ

)
and

MxY =


y1 − x1β̂

y2 − x2β̂
...

yn − xnβ̂

 , MxT =


1− x1(

∑n
i=1 x

2
i )
−1(
∑n

i=1 xi)

1− x2(
∑n

i=1 x
2
i )
−1(
∑n

i=1 xi)
...

1− xn(
∑n

i=1 x
2
i )
−1(
∑n

i=1 xi)

 (2.131)

MxQ =


I(z0 ≤ r)− x1(

∑n
i=1 x

2
i )
−1(
∑n

i=1 xiI(zi−1 ≤ r))

I(z1 ≤ r)− x2(
∑n

i=1 x
2
i )
−1(
∑n

i=1 xiI(zi−1 ≤ r))
...

I(zn−1 ≤ r)− xn(
∑n

i=1 x
2
i )
−1(
∑n

i=1 xiI(zi−1 ≤ r))

 (2.132)

Call yxt = (yt − xtβ̂), 1xt =
(
1− xt(

∑n
i=1 x

2
i )
−1(
∑n

i=1 xi)
)
,

1zt−1,xt(r) =
(
I(zt−1 ≤ r)− xt(

∑n
i=1 x

2
i )
−1(
∑n

i=1 xiI(zi−1 ≤ r))
)
and

ext =
(
et − xt(

∑n
i=1 x

2
i )
−1)(

∑n
i=1 xiei)

)
, then we can rewrite:

SSR∗n(r) =
n∑
t=1

(
yxt − 1xtα̂− 1qt−1,xt(r)δ̂

)2

SSR∗n(r0) =
n∑
t=1

(
yxt − 1xtα̂− 1qt−1,xt(r0)δ̂

)2
(2.133)
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Then:

SSR∗n(r)− SSR∗n(r0) = 2(δ − δ̂)
n∑
t=1

(1zt−1,xt
(r)− 1zt−1,xt

(r0))ext
− 2δ

n∑
t=1

(1zt−1,xt
(r)− 1zt−1,xt

(r0))ext

+ 2(α̂− α)δ̂
n∑
t=1

(1zt−1,xt
(r)− 1zt−1,xt

(r0))1xt
+ δ2

n∑
t=1

(1zt−1,xt
(r)− 1zt−1,xt

(r0))2

+ 2(δ̂ − δ)δ̂
n∑
t=1

(1zt−1,xt(r)− 1zt−1,xt(r0))1qt−1,xt(r)− (δ̂ − δ)2
n∑
t=1

(1zt−1,xt(r)− 1zt−1,xt(r0))2

= R1 +R2 +R3 +R4 +R5 +R6

(2.134)

We have to show that R1+R2+R3+R4+R5+R6

an(r−r0)
> 0. Consider the case where r ∈ (r0, rH ], the

other case r ∈ [rl, r0) can be shown by symmetry.

Step 1: R1

n(r−r0)
= 2(δ−δ̂)

(r−r0)

[ 1

n

n∑
t=1

1qt−1,xt(r)ext︸ ︷︷ ︸
C.1

− 1

n

n∑
t=1

1qt−1,xt(r0)ext

]
︸ ︷︷ ︸

C.2

we can show that:

1

n

n∑
t=1

1qt−1,xt(r)ext =
1

n

n∑
t=1

I(zt−1 ≤ r)et − (
1

n2

n∑
t=1

x2
t )
−1(

1

n3/2

n∑
t=1

xtI(qt−1 ≤ r))(
1

n

n∑
t=1

xtet)
1√
n

(2.135)

From the proof of (i) note that ( 1
n2

∑n
t=1 x

2
t )
−1( 1

n3/2

∑n
t=1 xtI(qt−1 ≤ r))( 1

n

∑n
t=1 xtet) =

Op(1), then

1

n

n∑
t=1

1qt−1,xt(r)ext →p E(I(zt−1 ≤ r)et) = 0 (2.136)

the last equality came from (A.3). The argument for C.2 is the same es C.1, then:

R1

n(r − r0)
= op(1) (2.137)

Step 2 Using the result from Step 1 is easy to show that R2

n(r−r0)
= op(1).

Step 3: Now consider R4

n(r−r0)
= 2(α̂−α)δ̂

r−r0

( 1

n

n∑
t=1

1qt−1,xt(r)1xt︸ ︷︷ ︸
D.1

− 1

n

n∑
t=1

1qt−1,xt(r0)1xt︸ ︷︷ ︸
D.2

)
. Lets

analyze D.1
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1

n

n∑
t=1

1qt−1,xt(r)1xt =
1

n

n∑
t=1

I(zt−1 ≤ r)−
( 1

n3/2

n∑
t=1

I(zt−1 ≤ r)xt

)( 1

n2

n∑
t=1

x2
t

)−1( 1

n3/2

n∑
t=1

xt

)
⇒ λ

[
1−

(∫ 1

0

B2
x

)−1
∫ 1

0

Bx

]
(2.138)

Similarly from D.2 ⇒ λ0

[
1 −

( ∫ 1

0
B2
x

)−1 ∫ 1

0
Bx

]
, then R4

n(r−r0)
= 2(α̂−α)δ̂

(r−r0)
Op(1) = op(1),

since δ̂ = δ + op(1) and (α̂− α) = op(1).

Step 4: Now consider R5

n(r−r0)
= δ̂(δ̂−δ)

r−r0

( 1

n

n∑
t=1

1qt−1,xt(r)
2

︸ ︷︷ ︸
f.1

− 1

n

n∑
t=1

1qt−1,xt(r0)1qt−1,xt(r)︸ ︷︷ ︸
f.2

)
From f.1 we have:

1

n

n∑
t=1

1qt−1,xt(r)
2 =

1

n

n∑
t=1

I(zt−1 ≤ r)−
( 1

n3/2

n∑
t=1

I(zt−1 ≤ r)xt

)2( 1

n2

n∑
t=1

x2
t

)−1

⇒ λ
[
1− λ

(∫ 1

0

B2
x

)−1(∫ 1

0

Bx

)2] (2.139)

Similarly from f.1 we can show that f.2 ⇒ λ0

[
1 − λ

( ∫ 1

0
B2
x

)−1( ∫ 1

0
Bx

)2]
, then we can

conclude that R5

n(r−r0)
= δ̂(δ̂−δ)

r−r0 Op(1) = op(1).

Step 5: Consider R5

n(r−r0)
= (δ̂−δ)

(r−r0)
1
n

∑n
t=1(1qt−1,xt(r)− 1qt−1,xt(r0))2 Then we can see that:

1

n

n∑
t=1

(1qt−1,xt(r)− 1qt−1,xt(r0))2 ⇒ (λ− λ0)
[
1− (λ− λ0)

(∫ 1

0

B2
x

)−1(∫ 1

0

Bx

)2]
(2.140)

again we conclude that R6

n(r−r0)
= (δ̂−δ)

r−r0 Op(1) = op(1).

Step 6 Finally let see R3

n(r−r0)
= δ2

(r−r0)
1
n

∑n
t=1(1qt−1,xt(r)− 1qt−1,xt(r0))2 then

R3

n(r − r0)
⇒ δ2

(r − r0)
(λ− λ0)

[
1− (λ− λ0)

(∫ 1

0

B2
x

)−1(∫ 1

0

Bx

)2]
(2.141)

Note that since r > r0, and by A.5 λ > λ0, then
δ2

(r−r0)
(λ − λ0) > 0. Note that also

(λ− λ0)
( ∫ 1

0
B2
x

)−1( ∫ 1

0
Bx

)2

< 1 then R3

n(r−r0)
⇒ δ2

(r−r0)
> 0 showing the desired result.

Proof of Proposition 7

In the paper of Gonzalo and Pitarakis (2006) Lemma 2, shows that when the least square

estimator of the threshold parameter is n-consistent, n|r̂n − r0| = Op(1),
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1√
n

∑
I(zt−1 ≤ r̂n)I(zt−1 ≤ r0)− 1√

n

∑
I(zt−1 ≤ r0)→p 0 (2.142)

and we can use the estimation r̂n as if it is known, r0, and the rest is the same as in

Proposition 5.

Proof of Proposition 8

The proof is available in Gonzalo and Pitarakis (2006), Proposition 1 and 2.

Since the threshold value is unknown, the test statistic proposed is

Wn = Sup
r∈(rL,rH)

tγ=0(r)2. (2.143)

Applying the continuous mapping theorem, we have that

Wn ⇒ Sup
r∈(rL,rH)

t(r)2. (2.144)

where tγ(r) is the asymptotic distribution of the t−statistic obtained in Proposition 5.

To obtain the equivalence in equation (2.30), following the work of Gonzalo and Pitarakis

(2012), �rst is to show that the process Wε(s) and Ve(s, λ) are independent. Since both

processes are Gaussian, it is enough to show that both are uncorrelated

E(Wε(s1)Ve(s2, λ)) = E(Wε(s1)[We(s2, λ)−We(s2, 1)]) = E(Wε(s1)We(s2, λ))− λE(Wε(s1)We(s2, 1))

= σε,eλ(s1 ∧ s2)− σε,eλ(s1 ∧ s2) = 0

(2.145)

SinceWε(s) and Ve(s, λ) are independent, equipped with E[Ve(r1, λ1), Ve(r2, λ2)] = σ2
e(s1∧

s2)[(λ1 ∧ λ2) − λ1λ2], which give us
∫ 1

0
Wε(s)dVe(s, λ) ≡ N (0, σeλ(1 − λ)

∫ 1

0
W 2
ε (s)ds). Nor-

malizing by σ2
e

∫ 1

0
W 2
ε (s)ds we get the desired result.

Proof of Proposition 9

To show the invariance principle in proposition 9, we use the following result from Peligrad

and Utev (2005).

Theorem 3. Let {di} be a stationary sequence with �nite second moment E(d2
i ) < ∞.

Assume that
∞∑
n=1

||E(Sn|F0)||
n3/2

<∞ (2.146)

Then {max1≤k≤nS
2
k/n : n ≥ 1} is uniformly integrable and Wn(t) ⇒ √ηW (t), where η is a

non-negative random variable with �nite mean E(η) = σ2 and independent of {W (t) : t ≥ 0}.
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Moreover η is determined by the limit

limn→∞
E(S2

n|I)

n
= η (2.147)

where I is the invariant sigma �eld.

For the sake of application, Merlevede, Peligrad and Utev (2006) formulates su�cient

conditions for the invariance principle in terms of the conditional expectation of an individual

summand {eiI(zi−1 ≤ r)} with respect F0.

Corollary 1. If

∞∑
i=1

1√
i
||E(eiI(zi−1 ≤ r)|F0)||2 <∞ (2.148)

Then (2.146) is satis�ed, then the conclusion of Theorem 1 holds.

Proof of Corollary 1

We have to check that:

∞∑
i=1

1√
i
||E(I(zi−1 ≤ r)ei|F0)||2 <∞ (2.149)

First let see what it is E(I(zi−1 ≤ r)ei|F0). From the independence assumption between

et and zt for all t

E(I(zi−1 ≤ r)ei|F0) = E(I(zi−1 ≤ r)|F0)E(ei|F0) (2.150)

Call E(I(zi−1 ≤ r)|F0) = Pi−1,0, since vi independent w.r.t Fi−1, then

= Pi−1,0E(
i∑

j=−∞

ai−jvj|F0) = Pi−1,0

0∑
j=−∞

ai−jvj = Pi−1,0

∞∑
j=i

ajvi−j (2.151)

Then we can see that:

||E(I(zi−1 ≤ r)ei|F0)||2 = ||Pi−1,0

∞∑
j=i

ajvi−j||2 (2.152)

Since Pi−1,0 ∈ [0, 1] we can see that:

||Pi−1,0

∞∑
j=i

ajvi−j||2 ≤ ||
∞∑
j=i

ajvi−j||2 = ||vj||2
( ∞∑

j=i

a2
j

)1/2

(2.153)
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Then we can see that:

∞∑
i=1

1√
i
||E(I(zi−1 ≤ r)ei|F0)||2 ≤ ||vj||2

∞∑
i=1

1√
i

( ∞∑
j=i

a2
j

)1/2

<∞ (2.154)

Proof of Theorem 1

The proof of theorem 1, follows the martingale approximation of Hansen (1992). For our

case we want to show the convergence of

1

n

n∑
i=1

xiI(zi−1 ≤ r)ei (2.155)

De�ne the �ltration Fxt = σ{xi, ei, qi : i ≤ r} and denote Et(e) = E(e|Fxt ). Then we can

construct the following martingale approximation for I(zi−1 ≤ r)ei. Start with

ηi =
∞∑
k=0

(
Ei(I(zzi−1+k

≤ r)ei+k)−Ei−1(I(zzi−1+k
≤ r)ei+k)

)
, qi =

∞∑
k=1

Ei(I(zzi−1+k
≤ r)ei+k)

(2.156)

then I(zi−1 ≤ r)ei = ηi + qi−1 − qi, and note that Ei−1(ηi) = 0. Then

1

n

n∑
i=1

xiI(zi−1 ≤ r)ei =
1

n

n∑
i=1

εiI(zi−1 ≤ r)ei︸ ︷︷ ︸
A

+
1

n

n∑
i=1

xi−1ηi︸ ︷︷ ︸
B

+
1

n

n∑
i=1

xi−1(qi−1 − qi)︸ ︷︷ ︸
C

(2.157)

The term A, 1
n

∑n
i=1 εiI(zi−1 ≤ r)ei →p E(εiI(zi−1 ≤ r)ei).

From the term B, it is easy to see that under our assumptions 1√
n
x[ns] ⇒ Bx(s) ,

1√
n

∑[ns]
t=1 etI(zt−1 ≤ r)⇒ Ge(s, λ). Then from Theorem 3.1 in Hansen (1992)

1

n

n∑
i=1

xi−1ηi ⇒
∫ 1

0

Bx(s)dGe(s, λ) (2.158)

For the last term C, we add and subtract xiqi and rewrite,

1

n

n∑
i=1

(xi − xi−1)qi −
1

n
xnqn (2.159)

�rst, observe that

sup
t≤n

1

n
|xtqt| ≤ sup

t≤n

∣∣∣ 1√
n
xt

∣∣∣ 1√
n
sup
t≤n
|qt| →p 0 (2.160)
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since sup
t≤n
|xt| = Op(

√
n) and 1√

n
sup
t≤n
|qt| →p 0. Applying the Corollary of Theorem 3.3 in

Hansen (1992)

sup
t≤n

1

n

t∑
i=1

[εiqi − E(εiqi)] (2.161)

Finally we can see that

E
( 1

n

n∑
i=1

εiqi

)
=

1

n

n∑
i=1

E
(
εi

∞∑
k=1

Ei(I(zi−1+k ≤ r)ei+k)
)

=
1

n

n∑
i=1

∞∑
k=1

E
(
εiI(zi−1+k ≤ r)ei+k

)
→ λΛ1

(2.162)

as n→∞, where Λ1 = limn→∞
1
n

∑n
i=1

∑∞
k=1E

(
εiei+k

)
. Putting everything together we can

see that:

1

n

n∑
i=1

xiI(zi−1 ≤ r)ei ⇒ λE(εiei) +

∫ 1

0

Bx(s)dGe(s, λ) + λΛ1 (2.163)

Proof of Lemma 1

For the case without drift, we know that

n(Γ̂− Γ) =

(
1

n

n∑
t=1

XtX
′
t

)−1(
1

n

n∑
t=1

Xtet

)
(2.164)

From Caner and Hansen (2001) we know that(
1

n2

n∑
t=1

XtX
′
t

)−1

⇒ 1

λ(1− λ)
∫ 1

0
Bx(s)2

(
λ −λ
−λ 1

)
(2.165)

From Theorem 1 and Theorem 4.1 in Hansen (1992) we can see that(
1

n

n∑
t=1

Xtet

)
⇒

( ∫ 1

0
BX(s)dBe(s) + Λ + E(εtet)∫ 1

0
BX(s)dGe(s, λ) + λΛ + λE(εtet)

)
(2.166)

Then putting everything together it is easy to see that:

n(Γ̂− Γ)⇒

λ

( ∫ 1
0 Bx(s)dBe(s)−

∫ 1
0 Bx(s)dGe(s,λ)+(1−λ)[Λ+E(εiei)]

)
λ(1−λ)

∫ 1
0 Bx(s)2ds∫ 1

0 Bx(s)dGe(s,λ)−λ
∫ 1
0 Bx(s)dBe(s)

λ(1−λ)
∫ 1
0 Bx(s)2ds

 (2.167)

For the case where state dependent constants are considered is the same, and omitted

here.
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Proof of Proposition 10

Start de�ning the vector ξt =
(
εt et etI(zt−1 ≤ r)

)′
then under our assumption, the

following result holds

1√
n

[ns]∑
i=1

ξt → B(s) ≡

 Bx(s)

Be(s)

Ge(s, λ)

 (2.168)

with covariance matrix

Ω = limn→∞
1

n

{( n∑
i=1

ξt

)( n∑
i=1

ξt

)′}
(2.169)

We can writte in the matrix form

Ω = limn→∞
1

n


(∑n

t=1 εt

)2 (∑n
t=1 εt

)(∑n
t=1 et

) (∑n
t=1 εt

)(∑n
t=1 etI(zt−1 ≤ r)

)
(∑n

t=1 εt

)(∑n
t=1 et

) (∑n
t=1 et

)2 (∑n
t=1 et

)(∑n
t=1 etI(zt−1 ≤ r)

)
(∑n

t=1 εt

)(∑n
t=1 etI(zt−1 ≤ r)

) (∑n
t=1 et

)(∑n
t=1 etI(zt−1 ≤ r)

) (∑n
t=1 etI(zt−1 ≤ r)

)2
 (2.170)

Note that under our assumptions and assumption B.3 we can see that the following

1. limn→∞
1
n
E
(∑n

t=1 εt

)2

= σ2
ε

2. Since et is a linear process we can use the results from Phillips and Solo (1992) among

others to show that limn→∞
1
n
E
(∑n

t=1 et

)2

= C(1)2σ2
v , where C(1) =

∑∞
j=0 aj

3. limn→∞
1
n
E
(∑n

t=1 et

)(∑n
t=1 etI(zt−1 ≤ r)

)
= λC(1)2σ2

v , since

E
( n∑
t=1

et
)( n∑

t=1

et[I(zt−1 ≤ r) + λ− λ]
)

= λE
( n∑
t=1

et
)2

+ E
( n∑
t=1

et
)( n∑

t=1

et[I(zt−1 ≤ r)− λ]
)

note that the �rs term in therm in the sum is equal to previous point and the second

term

E
( n∑
t=1

et

)( n∑
t=1

et[I(zt−1 ≤ r)− λ]
)

=
n∑
t=1

n∑
j=1

E
(
etej [I(zj−1 ≤ r)− λ]

)
=

n∑
t=1

n∑
j=1

E(etej)E[I(zj−1 ≤ r)− λ] = 0

(2.171)

where the last inequality came from the independence between {ej} and {zk}, ∀j, k and
E[I(zj−1 ≤ r)− λ] = 0.
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4. limn→∞
1
n
E
(∑n

t=1 etI(zt−1 ≤ r)
)2

= λ2C(1)2σ2
v+G, whereG = limn→∞

1
n
E
(∑n

t=1 et[I(zt−1 ≤

r)− λ]
)2

. We obtain this result, since

E
( n∑
t=1

et[I(zt−1 ≤ r)− λ+ λ]
)2

= λ2E
( n∑
t=1

et

)2

+ E
( n∑
t=1

et[I(zt−1 ≤ r)− λ]
)2

+ 2λE
( n∑
t=1

et

)( n∑
t=1

et[I(zt−1 ≤ r)− λ]
)

= λ2C(1)2σ2
v + E

( n∑
t=1

et[I(zt−1 ≤ r)− λ]
)2

5. Finally, under our assumptions we can see that

( n∑
t=1

εt
)( n∑

t=1

etI(zt−1 ≤ r)
)

= λ
( n∑
t=1

εt
)( n∑

t=1

et
)

= λσε,e (2.172)

Then putting everything toghether

Ω =

 σ2
ε σε,e λσε,e

σε,e σ2
vC(1)2 λσ2

vC(1)2

λσε,e λσ2
vC(1)2 λ2σ2

vC(1)2 + G

 (2.173)

We can partition the matrix of variance and covariance as Ω = LL′, where

L =


σε 0 0

σε,e
σε

[
C(1)2σ2

v −
(
σε,e
σε

)2]1/2

0

λσε,e
σε

λ
[
C(1)2σ2

v −
(
σε,e
σε

)2]1/2 √
G

 (2.174)

Then we can writte B(s) = LW(s, λ), where W(s, λ)′ =
(
Wx(s) We(s) WeI(s, λ)

)′
such

that B(s) can be written as;

B(s) =


σεWx(s)

σε,e
σε
Wx(s) +

[
C(1)2σ2

v −
(
σε,e
σε

)2]1/2

We(s)

λσε,e
σε
Wx(s) + λ

[
C(1)2σ2

v −
(
σε,e
σε

)2]1/2

We(s) +
√
GWeI(s, λ)

 (2.175)
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Then

n(γ̂ − γ)⇒
∫ 1

0
Bx(s)dGe(s, λ)− λ

∫ 1

0
Bx(s)dBe(s)

λ(1− λ)
∫ 1

0
Bx(s)2ds

≡
λσε,e

∫ 1

0
Wx(s)dWx(s) + λσe

[
C(1)2σ2

v −
(
σε,e

σε

)2]1/2 ∫ 1

0
Wx(s)dWe(s) + σε

√
G
∫ 1

0
Wx(s)dWeI(s, λ)

λ(1− λ)σ2
ε

∫ 1

0
Wx(s)ds

−
λσε,e

∫ 1

0
Wx(s)dWx(s) + λσe

[
C(1)2σ2

v −
(
σε,e

σε

)2]1/2 ∫ 1

0
Wx(s)dWe(s)

λ(1− λ)σ2
ε

∫ 1

0
Wx(s)ds

≡
√
G
∫ 1

0
Wx(s)dWeI(s, λ)

λ(1− λ)σε
∫ 1

0
Wx(s)ds

(2.176)

Note that it easy to see that
∫ 1
0 Wx(s)dWeI(s)√∫ 1

0 W
2
x (s)ds

≡ N(0, 1). When the threshold parameter is

known we have an consistent estimator for Ĝ→p G, then

tγ=0(r0) = γ̂(r0)

√
λ̄(1− λ̄)

Ĝ((X(r0)′X(r0))−1)22

(2.177)

where (X(r0)′X(r0))−1)22 is the element 2x2 of the following matrix

(X(r0)′X(r0))−1 =

( ∑n
t=1 x

2
t

∑n
t=1 x

2
t I(zt−1 ≤ r0)∑n

t=1 x
2
t I(zt−1 ≤ r0)

∑n
t=1 x

2
t I(zt−1 ≤ r0)

)−1

(2.178)

Then it is easy to see that

tγ=0(r0)⇒ N(0, 1) (2.179)

Proof of Proposition 11

The proof of Proposition 11 is the same as Proposition 10 but changing r0 for r̂n.

Proof of Lemma 2

We transform the models (No drift) into matrix form:

yt = X∗t Γ∗ + e∗t (2.180)

where X∗t =
(
xt xtI(zt−1 ≤ r) ∆xt+k . . . ∆xt−k

)′
, Γ∗ =

(
β2 γ π−j . . . πj

)
, and

e∗ = φt +
∑
|j|>K πj∆xt−j such that E(φjxt) = 0, ∀j, t. De�ne the scale matrix D =

diag{(n− 2k)−1, (n− 2k)−1, (n− 2k)−1/2Ik}. Using Conditions 2 and (2.38), it can be shown

that
∑
|j|>K πj∆xt−j = op(n

−1/2), which is also proven in Lemma A5 of Saikkonen (1991).

Following the analysis of Said and Dickey (1984) Lemma 5.1 and Saikkonen (1991) Lemma

A4, we can show that
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D−1(Γ̂∗ − Γ∗) = (D
∑
t

X∗tX
′∗
t )−1(D

∑
t

X∗t e
∗
t )→ R−1(D

∑
t

X∗t φt) (2.181)

where

R = diag{n−2
∑
t

XtX
′
t, E(UtU

′
t)}, with Ut = (∆xt+k, . . . ,∆xt−k)

′ (2.182)

Solving and rearranging we obtain the asymptotic result of Lemma 2. The order of

probability for
∑k

i=−k(π̃j − πj) is given in the appendix of Saikkonen (1991).

Proof of Theorem 2

Using Lemma 2 we want to show that

n−1/2S̃[ns] = n−1/2

[ns]∑
j=1

e∗j + n−1/2

[ns]∑
j=1

(ê∗j − e∗j) (2.183)

and note that

(ê∗t − e∗t ) = −xt(β̂ − β)− xtI(zt−1 ≤ r)(γ̂ − γ)− U ′t(Π̃− Π) (2.184)

Given the structure of e∗t we can write (2.184) as follows,

n−1/2S̃[ns] = n−1/2

[ns]∑
j=1

ẽj + n−1/2

[ns]∑
j=1

(∑
i>|k|

πi∆xj−i

)
− n(β̂ − β2)

1

n3/2

[ns]∑
j=1

zj

− n(γ̂ − γ2)
1

n3/2

[ns]∑
j=1

zjI(zj−1 ≤ r)− n−1/2

[ns]∑
j=1

( k∑
i=−k

∆xj−1(π̃i − πi)
) (2.185)

Note that the �rst element of the sum converges to

n−1/2

[ns]∑
j=1

ẽj ⇒ Be,x(s) (2.186)

The third element of the sum

n(β̂ − β2)
1

n3/2

[ns]∑
j=1

zj ⇒
∫ s

0

Bx(s)
( ∫ 1

0
Bx(s)dBe,x(s)

(1− λ)
∫ 1

0
B2
x(s)ds

−
∫ 1

0
Bx(s)dGe,x(s, λ)

(1− λ)
∫ 1

0
B2
x(s)ds

)
(2.187)

For the four element
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n(γ̂ − γ2)
1

n3/2

[ns]∑
j=1

zjI(zj−1 ≤ r)⇒
∫ s

0

Bx(s)
(∫ 1

0
Bx(s)dGe,x(s, λ)

(1− λ)
∫ 1

0
B2
x(s)ds

− λ
∫ 1

0
Bx(s)dBe,x(s)

(1− λ)
∫ 1

0
B2
x(s)ds

)
(2.188)

Then from (2.187) and (2.188) is easy to see that

− n(β̂ − β2)
1

n3/2

[ns]∑
j=1

zj − n(γ̂ − γ2)
1

n3/2

[ns]∑
j=1

zjI(zj−1 ≤ r)⇒ −
∫ s

0

Bx(s)

∫ 1

0
Bx(s)dBe,x(s)∫ 1

0
B2
x(s)ds

(2.189)

We have to show that n−1/2
∑[ns]

j=1

(∑
i>|k| πi∆xj−i

)
→ 0 uniformly in s

ESup
s≤1

∣∣∣∣∣ 1

n1/2

[ns]∑
j=1

( ∞∑
|i|>k

εj−iπi

)∣∣∣∣∣ ≤ ESup
s≤1

1

n1/2

[ns]∑
j=1

( ∞∑
|i|>k

|εj−i||πi|
)

=
1

n1/2

[ns]∑
j=1

( ∞∑
|i|>k

E|εj−i||πi|
)

≤ Sup
t
E|εt|

1

n1/2

∞∑
|i|>k

|πi| → 0

(2.190)

Then by Markov inequality Sup
s≤1

∣∣∣∣∣ 1
n1/2

∑[ns]
j=1

(∑∞
|i|>k εj−iπi

)∣∣∣∣∣→ 0

Finally the proof where n−1/2
∑[ns]

j=1

(∑k
i=−k ∆xj−1(π̃i − πi)

)
→ 0 uniformly in s can be

found in Shin (1994).

its easy to see that

n−1/2S̃[ns] ⇒ Be,x(s)−
∫ s

0

Bx(s)
(∫ 1

0

B2
x(s)ds

)−1
∫ 1

0

Bx(s)dBe,x(s) (2.191)

Since Be,x = ω
1/2
e,xWe and Be,x is independent of Bx

Qe,x = ω1/2
e,xWe(s)− ω1/2

e,x

∫ s

0

Wx(s)
(∫ 1

0

W 2
x (s)ds

)−1
∫ 1

0

Wx(s)dWe(s) = ω1/2
e,xQ(s) (2.192)

The estimator of the long run variance of ẽt, σ̃e(l) is a consistent estimator of ωe,x, since∑∞
|j|>k ∆xt−jπj = op(n

−1/2) and Theorem 3 in Hansen (1992). Therefore
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C̃I ⇒
∫ 1

0

Q2(s)ds (2.193)

For the case where state dependent drift is included is the same the drift-less case.

2.B Tables

Table 2.11: Size of KPSS test when r = r̄ and No Drift, long run equation shocks are i.i.d,
l = 0

ρz = 0.5 ρz = 0.9

n = 200
γ = 0 5.45 4.83
γ = 1 5.28 4.85

n = 500
γ = 0 5.04 5.01
γ = 1 5.13 4.89

n = 1000
γ = 0 5.49 4.70
γ = 1 4.95 5.22

Table 2.12: Size of KPSS test when r = r̄ and No Drift, long run equation shocks are i.i.d,
l = 4(n/100)1/4

ρz = 0.5 ρz = 0.9

n = 200
γ = 0 5.37 5.34
γ = 1 5.02 4.79

n = 500
γ = 0 5.07 4.75
γ = 1 5.36 4.88

n = 1000
γ = 0 4.55 4.96
γ = 1 4.69 5.25

Table 2.13: Size of KPSS test when r = r̄ and No Drift, long run equation shocks are i.i.d,
l = 12(n/100)1/4

ρz = 0.5 ρz = 0.9

n = 200
γ = 0 5.21 5.06
γ = 1 5.10 5.12

n = 500
γ = 0 4.67 4.64
γ = 1 4.90 4.87

n = 1000
γ = 0 5.15 5.27
γ = 1 5.08 5.16
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Table 2.14: Size of KPSS test when r = r̄ with state dependent Drift, long run equation
shocks are i.i.d, l = 0

ρz = 0.5 ρz = 0.9

n = 200
γ = 0 4.83 4.19
γ = 1 5.03 4.24

n = 500
γ = 0 5.04 4.88
γ = 1 5.39 4.73

n = 1000
γ = 0 4.88 4.28
γ = 1 5.31 4.81

Table 2.15: Size of KPSS test when r = r̄ with state dependent Drift, long run equation
shocks are i.i.d, l = 4(n/100)1/4

ρz = 0.5 ρz = 0.9

n = 200
γ = 0 4.91 4.22
γ = 1 4.83 4.75

n = 500
γ = 0 5.42 4.69
γ = 1 5.60 5.24

n = 1000
γ = 0 5.03 5.52
γ = 1 4.92 4.47

Table 2.16: Size of KPSS test when r = r̄ with state dependent Drift, long run equation
shocks are i.i.d, l = 12(n/100)1/4

ρz = 0.5 ρz = 0.9

n = 200
γ = 0 5.40 4.84
γ = 1 5.35 4.75

n = 500
γ = 0 5.00 5.19
γ = 1 4.98 5.10

n = 1000
γ = 0 5.23 5.17
γ = 1 5.15 5.2

Table 2.17: Size of KPSS test when threshold value is unknown but can be estimated with
state dependent drift, long run equation shocks are i.i.d, l = 0

ρz = 0.5 ρz = 0.9

n = 200
γ = 0 5.50 4.70
γ = 1 4.20 4.30

n = 500
γ = 0 4.80 4.20
γ = 1 4.20 5.30

n = 1000
γ = 0 5.00 5.80
γ = 1 4.80 4.50
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Table 2.18: Size of KPSS test when threshold value is unknown but can be estimated with
state dependent drift, long run equation shocks are i.i.d, l = 4(n/100)1/4

ρz = 0.5 ρz = 0.9

n = 200
γ = 0 5.19 4.36
γ = 1 4.94 5.27

n = 500
γ = 0 5.03 4.82
γ = 1 4.87 5.60

n = 1000
γ = 0 4.73 4.72
γ = 1 5.13 5.62

Table 2.19: Size of KPSS test when threshold value is unknown but can be estimated with
state dependent drift, long run equation shocks are i.i.d, l = 12(n/100)1/4

ρz = 0.5 ρz = 0.9

n = 200
γ = 0 5.53 4.89
γ = 1 5.39 4.86

n = 500
γ = 0 5.08 4.97
γ = 1 5.03 5.07

n = 1000
γ = 0 4.82 5.32
γ = 1 5.30 4.85

Table 2.20: Power of the KPSS for di�erent values of σ2
u, long run equation shocks are i.i.d,

No Drift and threshold parameter known, l = 0

ρz = 0.5 ρz = 0.9
σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1

n = 200
γ = 0 9.49 72.43 98.26 9.18 70.71 97.78
γ = 1 9.49 71.00 98.02 9.11 71.21 97.92

n = 500
γ = 0 25.67 94.81 99.93 25.28 94.71 99.98
γ = 1 24.97 94.62 99.97 25.56 94.43 99.93

n = 1000
γ = 0 48.98 99.34 99.99 48.46 99.41 100.00
γ = 1 48.64 99.40 100.00 48.63 99.34 100.00

Table 2.21: Power of the KPSS for di�erent values of σ2
u, long run equation shocks are i.i.d,

No Drift and threshold parameter known, l = 4(n/100)1/4

ρz = 0.5 ρz = 0.9
σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1

n = 200
γ = 0 8.81 55.44 69.95 8.77 54.49 69.51
γ = 1 9.11 55.81 70.34 8.98 55.66 69.82

n = 500
γ = 0 22.93 82.22 87.11 23.90 81.62 87.88
γ = 1 22.78 81.92 87.50 23.19 82.16 87.11

n = 1000
γ = 0 45.70 93.49 56.64 45.49 93.74 95.07
γ = 1 46.81 93.30 95.51 45.95 93.00 95.18
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Table 2.22: Power of the KPSS for di�erent values of σ2
u, long run equation shocks are i.i.d,

No Drift and threshold parameter known, l = 12(n/100)1/4

ρz = 0.5 ρz = 0.9
σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1

n = 200
γ = 0 8.19 40.18 47.45 8.20 40.75 47.64
γ = 1 7.90 39.95 46.67 8.05 39.89 46.85

n = 500
γ = 0 21.29 59.92 63.98 21.10 61.19 63.56
γ = 1 20.84 61.02 64.81 20.68 61.25 64.23

n = 1000
γ = 0 41.24 75.68 77.17 41.84 76.51 77.49
γ = 1 42.12 76.75 77.61 40.77 77.04 78.20

Table 2.23: Power of the KPSS for di�erent values of σ2
u, long run equation shocks are i.i.d,

with state dependent Drift and threshold parameter known, l = 0

ρz = 0.5 ρz = 0.9
σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1

n = 200
γ = 0 7.81 74.26 99.88 7.04 70.88 99.82
γ = 1 8.05 74.87 99.89 7.06 70.67 99.83

n = 500
γ = 0 21.73 97.69 100.00 20.72 96.89 100.00
γ = 1 21.52 97.61 100.00 20.11 96.95 100.00

n = 1000
γ = 0 46.59 99.91 100.00 44.59 99.91 100.00
γ = 1 46.68 99.92 100.00 44.58 99.92 100.00

Table 2.24: Power of the KPSS for di�erent values of σ2
u, long run equation shocks are i.i.d,

with state dependent Drift and threshold parameter known, l = 4(n/100)1/4

ρz = 0.5 ρz = 0.9
σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1

n = 200
γ = 0 7.51 64.21 87.48 6.82 60.87 86.72
γ = 1 8.41 65.15 88.29 6.66 61.24 86.29

n = 500
γ = 0 21.06 92.54 97.92 19.29 91.71 98.05
γ = 1 20.84 92.97 98.15 20.57 92.12 97.85

n = 1000
γ = 0 44.31 98.89 99.73 44.15 99.04 99.72
γ = 1 44.69 99.02 99.70 43.38 99.07 99.57

Table 2.25: Power of the KPSS for di�erent values of σ2
u, long run equation shocks are i.i.d,

with state dependent Drift and threshold parameter known, l = 12(n/100)1/4

ρz = 0.5 ρz = 0.9
σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1

n = 200
γ = 0 8.14 49.83 61.61 7.15 47.28 59.68
γ = 1 7.88 48.66 61.84 7.19 48.58 61.44

n = 500
γ = 0 19.71 78.85 83.79 19.49 78.38 83.35
γ = 1 19.33 78.34 83.39 19.43 78.07 82.83

n = 1000
γ = 0 41.24 92.69 94.23 41.16 92.24 94.29
γ = 1 42.65 92.53 93.86 42.68 91.64 93.48
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Table 2.26: Power of the KPSS for di�erent values of σ2
u, long run equation shocks are i.i.d,

with state dependent Drift and threshold parameter Unknown and estimated, l = 0

ρz = 0.5 ρz = 0.9
σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1

n = 200
γ = 0 7.87 73.79 99.87 6.64 70.52 99.80
γ = 1 7.72 71.57 99.83 10.75 67.83 99.68

n = 500
γ = 0 21.27 97.51 100.00 19.67 97.08 100.00
γ = 1 19.62 95.64 100.00 21.79 95.43 100.00

n = 1000
γ = 0 46.55 99.99 100.00 45.08 99.89 100.00
γ = 1 42.51 98.96 100.00 44.17 99.32 100.00

Table 2.27: Power of the KPSS for di�erent values of σ2
u, long run equation shocks are i.i.d,

with state dependent Drift and threshold parameter Unknown and estimated, l = 4(n/100)1/4

ρz = 0.5 ρz = 0.9
σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1

n = 200
γ = 0 7.93 63.98 88.52 6.39 60.57 85.78
γ = 1 7.47 60.76 87.82 7.38 55.26 84.98

n = 500
γ = 0 21.31 92.73 98.07 19.26 92.07 97.77
γ = 1 19.01 89.83 98.02 17.57 87.75 97.78

n = 1000
γ = 0 45.28 99.09 99.77 44.88 98.83 99.72
γ = 1 40.92 98.15 99.70 40.29 96.46 99.68

Table 2.28: Power of the KPSS for di�erent values of σ2
u, long run equation shocks are

i.i.d, with state dependent Drift and threshold parameter Unknown and estimated, l =
12(n/100)1/4

ρz = 0.5 ρz = 0.9
σ2
u = 0.01 σ2

u = 0.1 σ2
u = 1 σ2

u = 0.01 σ2
u = 0.1 σ2

u = 1

n = 200
γ = 0 8.41 48.73 60.97 7.08 46.47 59.26
γ = 1 7.75 48.83 60.65 7.61 46.75 59.94

n = 500
γ = 0 19.89 78.00 83.22 18.70 76.77 83.08
γ = 1 19.44 78.30 83.18 18.74 78.03 83.25

n = 1000
γ = 0 42.45 92.05 94.29 41.67 92.16 93.66
γ = 1 43.36 92.27 94.12 40.50 92.34 93.74
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Table 2.29: Size of the KPSS test, whe et ≈ AR(1), for di�erent level of persistence and No
Drift. Threshold parameter Known, l = 0

ρz = 0.5
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 0.00 0.14 1.90 10.52 27.99 61.79
γ = 1 0.00 0.11 1.87 11.15 27.16 61.52

n = 500
γ = 0 0.00 0.06 1.87 11.65 27.78 63.41
γ = 1 0.00 0.08 1.80 10.54 27.98 63.08

n = 1000
γ = 0 0.00 0.01 1.73 10.99 27.37 63.23
γ = 1 0.00 0.05 1.51 11.00 27.80 63.73

ρz = 0.9
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 0.00 0.13 1.86 10.40 27.31 60.53
γ = 1 0.00 0.14 1.73 10.74 26.69 60.57

n = 500
γ = 0 0.00 0.01 1.82 10.65 26.70 62.66
γ = 1 0.00 0.12 1.69 11.31 27.67 63.60

n = 1000
γ = 0 0.00 0.15 1.47 11.47 27.03 64.61
γ = 1 0.00 0.11 1.74 10.71 27.42 64.02

Table 2.30: Size of the KPSS test, whe et ≈ AR(1), for di�erent level of persistence and No
Drift. Threshold parameter Known, l = 4(n/100)1/4

ρz = 0.5
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 1.56 2.96 4.34 5.75 8.06 18.82
γ = 1 1.50 2.96 3.91 5.66 8.31 19.73

n = 500
γ = 0 0.97 3.44 4.33 5.61 7.93 16.89
γ = 1 1.10 2.08 4.34 6.05 8.02 16.86

n = 1000
γ = 0 1.81 3.27 4.35 5.34 6.95 15.14
γ = 1 2.03 3.56 4.57 5.69 7.10 15.53

ρz = 0.9
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 1.48 3.14 4.24 5.52 7.56 19.93
γ = 1 1.59 2.82 4.17 5.70 8.25 18.56

n = 500
γ = 0 1.06 2.89 4.15 5.70 7.80 16.41
γ = 1 1.07 3.14 4.65 5.68 7.78 17.51

n = 1000
γ = 0 1.59 3.32 4.57 5.69 7.10 15.53
γ = 1 1.88 3.44 4.74 5.90 5.56 15.15
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Table 2.31: Size of the KPSS test, whe et ≈ AR(1), for di�erent level of persistence and No
Drift. Threshold parameter Known, l = 12(n/100)1/4

ρz = 0.5
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 1.98 3.55 4.15 4.98 5.89 9.29
γ = 1 2.09 3.54 4.41 4.99 5.68 8.82

n = 500
γ = 0 2.80 4.46 4.74 5.32 5.74 8.39
γ = 1 2.71 4.14 4.54 5.04 5.55 8.50

n = 1000
γ = 0 3.04 4.31 4.67 5.17 5.72 5.17
γ = 1 3.13 4.34 4.90 5.24 5.65 7.71

ρz = 0.9
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 2.09 3.79 4.26 4.77 5.92 8.51
γ = 1 2.07 3.75 4.17 4.85 5.91 9.02

n = 500
γ = 0 2.71 4.07 4.69 5.19 5.33 8.75
γ = 1 2.76 4.07 4.69 5.44 5.57 8.62

n = 1000
γ = 0 3.01 4.37 4.42 4.59 5.91 8.05
γ = 1 2.69 4.07 4.58 5.43 5.93 8.20

Table 2.32: Size of the KPSS test, whe et ≈ AR(1), for di�erent level of persistence with
state dependent Drift. Threshold parameter Known, l = 0

ρz = 0.5
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 0.00 0.12 1.40 12.42 36.15 84.37
γ = 1 0.00 0.11 1.84 11.62 36.17 84.93

n = 500
γ = 0 0.00 0.11 1.69 12.60 36.68 88.13
γ = 1 0.00 0.14 1.47 12.01 36.76 88.91

n = 1000
γ = 0 0.00 0.12 1.45 12.25 37.62 88.99
γ = 1 0.00 0.12 1.63 12.79 37.89 89.80

ρz = 0.9
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 0.00 0.09 1.63 9.95 32.17 81.84
γ = 1 0.00 0.07 1.26 10.06 32.28 81.68.57

n = 500
γ = 0 0.00 0.01 1.52 11.35 35.58 87.08
γ = 1 0.00 0.08 1.48 11.03 34.64 87.14

n = 1000
γ = 0 0.00 0.04 1.57 11.75 36.90 88.95
γ = 1 0.00 0.09 1.43 11.90 36.79 88.90
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Table 2.33: Size of the KPSS test, whe et ≈ AR(1), for di�erent level of persistence with
state dependent Drift. Threshold parameter Known, l = 4(n/100)1/4

ρz = 0.5
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 1.98 3.20 4.31 5.86 9.01 22.26
γ = 1 2.00 3.23 4.44 6.18 8.44 21.67

n = 500
γ = 0 1.15 3.06 4.22 5.34 8.21 20.36
γ = 1 1.03 3.33 4.60 5.74 8.34 19.93

n = 1000
γ = 0 1.95 3.42 4.96 5.74 7.66 17.88
γ = 1 1.87 3.38 4.28 5.62 7.79 17.48

ρz = 0.9
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 1.78 2.73 3.88 5.30 7.42 19.14
γ = 1 1.96 2.81 4.05 5.37 7.30 19.64

n = 500
γ = 0 1.11 2.95 4.12 5.51 8.11 19.08
γ = 1 1.07 3.01 4.11 5.40 8.26 18.75

n = 1000
γ = 0 1.88 3.43 4.25 5.82 7.30 17.36
γ = 1 1.91 3.04 4.09 5.39 7.04 17.00

Table 2.34: Size of the KPSS test, whe et ≈ AR(1), for di�erent level of persistence with
state dependent Drift. Threshold parameter Known, l = 12(n/100)1/4

ρz = 0.5
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 3.11 4.75 4.81 5.82 6.11 10.26
γ = 1 3.09 4.52 5.03 5.42 6.63 9.74

n = 500
γ = 0 2.87 4.42 4.90 5.12 6.40 9.09
γ = 1 3.05 4.33 4.70 5.22 5.93 9.07

n = 1000
γ = 0 3.27 4.38 5.12 5.10 5.62 8.49
γ = 1 3.33 3.94 4.77 5.63 6.10 8.60

ρz = 0.9
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 3.28 4.23 4.29 5.08 5.76 9.56
γ = 1 3.09 4.39 4.63 5,29 6.02 9.46

n = 500
γ = 0 2.90 3.88 4.69 5.02 5.86 8.60
γ = 1 3.00 4.56 4.54 5.39 5.87 8.60

n = 1000
γ = 0 3.35 4.42 4.97 5.06 8.52 7.82
γ = 1 3.16 4.48 4.67 5.46 5.57 8.14
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Table 2.35: Size of the KPSS test, when et ≈ AR(1),for di�erent level of persistence with
state dependent Drift. Threshold parameter Estimated, l = 12(n/100)1/4

ρz = 0.5
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 3.26 4.92 4.97 5.40 6.51 10.36
γ = 1 3.02 4.15 5.12 5.79 6.51 10.22

n = 500
γ = 0 3.20 4.54 4.69 5.31 5.74 9.34
γ = 1 3.22 4.79 5.16 5.86 6.19 9.62

n = 1000
γ = 0 3.29 4.41 4.81 4.99 5.95 8.72
γ = 1 3.12 4.53 5.01 5.38 5.91 8.61

ρz = 0.9
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 3.06 4.54 4.46 5.55 5.89 8.62
γ = 1 3.07 4.50 4.29 5.08 5.84 9.38

n = 500
γ = 0 3.21 4.38 4.86 5.34 5.63 8.85
γ = 1 2.94 4.01 4.59 5.32 6.08 8.47

n = 1000
γ = 0 3.46 4.51 4.48 5.40 6.11 8.36
γ = 1 3.11 4.34 4.56 5.16 6.12 8.20

Table 2.36: Size of the KPSS test, whe et ≈ AR(1) and correlated with xt, for di�erent level
of persistence and No Drift. Threshold parameter known and l = 0.

σε,η = 0.5
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 0.00 0.11 1.71 4.58 10.18 26.15 55.92
γ = 1 0.00 0.13 1.93 4.93 10.60 25.02 56.12

n = 500
γ = 0 0.00 0.06 1.73 5.39 10.80 26.66 59.12
γ = 1 0.00 0.01 1.88 4.88 10.90 26.91 59.16

n = 1000
γ = 0 0.00 0.07 1.90 4.85 10.33 28.01 62.27
γ = 1 0.00 0.15 1.81 5.13 10.50 27.80 61.85

σε,η = 0.8
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 0.00 0.14 1.79 5.34 10.79 26.21 59.16
γ = 1 0.00 0.09 1.63 4.78 10.15 25.44 58.01

n = 500
γ = 0 0.00 0.14 1.74 5.08 11.11 26.36 60.45
γ = 1 0.00 0.70 1.77 5.14 10.50 26.73 60.92

n = 1000
γ = 0 0.00 0.16 1.74 5.19 11.19 27.22 62.59
γ = 1 0.00 0.09 1.97 5.28 11.16 27.68 62.37
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Table 2.37: Size of the KPSS test, whe et ≈ AR(1) and correlated with xt, for di�erent level
of persistence and No Drift. Threshold parameter known and l = 4(n/100)1/4.

σε,η = 0.5
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 1.51 2.66 4.29 4.73 4.35 7.90 17.11
γ = 1 1.35 2.85 4.46 4.63 5.23 7.91 17.23

n = 500
γ = 0 1.14 3.20 4.06 5.48 5.55 8.00 16.57
γ = 1 1.00 3.24 4.24 4.84 5.89 7.79 15.68

n = 1000
γ = 0 1.84 3.43 4.31 5.21 5.55 7.38 14.76
γ = 1 1.56 3.37 4.36 5.23 5.89 7.03 14.57

σε,η = 0.8
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 1.55 2.88 3.94 4.18 5.57 8.07 17.57
γ = 1 1.47 3.03 4.38 5.04 5.36 7.40 17.49

n = 500
γ = 0 1.13 3.15 4.21 5.01 5.69 8.08 15.73
γ = 1 0.92 3.30 4.24 4.88 5.74 7.21 15.70

n = 1000
γ = 0 1.71 3.57 4.51 4.98 5.83 7.67 15.11
γ = 1 1.67 3.21 4.18 4.92 5.57 7.50 14.57

Table 2.38: Size of the KPSS test, whe et ≈ AR(1) and correlated with xt, for di�erent level
of persistence and No Drift. Threshold parameter known and l = 12(n/100)1/4.

σε,η = 0.5
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 2.01 3.57 4.09 4.44 5.08 5.48 8.11
γ = 1 2.14 3.72 4.22 4.28 4.77 5.75 8.44

n = 500
γ = 0 2.89 4.33 4.99 4.53 4.87 5.77 7.65
γ = 1 2.36 3.90 4.85 4.71 4.98 5.34 7.92

n = 1000
γ = 0 3.02 4.21 4.90 4.84 5.13 5.51 7.46
γ = 1 3.01 4.08 4.62 4.94 5.08 5.55 7.30

σε,η = 0.8
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 2.27 3.60 4.25 4.64 4.68 5.11 7.50
γ = 1 2.04 3.55 4.06 4.45 4.84 5.00 7.83

n = 500
γ = 0 2.61 3.93 4.36 4.94 4.76 5.71 7.73
γ = 1 2.87 3.86 4.16 4.98 5.21 5.38 7.40

n = 1000
γ = 0 3.17 4.54 4.80 4.92 5.08 5.58 7.47
γ = 1 2.95 4.20 4.67 5.05 5.24 5.81 7.64
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Table 2.39: Size of the KPSS test, whe et ≈ AR(1) and correlated with xt, for di�erent
level of persistence and with State dependent Drift. Threshold parameter known, and l =
12(n/100)1/4 .

σε,η = 0.8
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 2.07 3.22 4.86 5.12 5.64 4.71 6.32
γ = 1 2.08 3.17 4.90 4.90 5.04 5.14 6.69

n = 500
γ = 0 2.88 3.67 4.73 4.81 4.83 6.02 7.73
γ = 1 2.66 3.53 4.79 5.35 4.91 5.01 6.69

n = 1000
γ = 0 3.10 4.25 4.65 5.24 5.14 5.31 7.46
γ = 1 3.15 4.05 4.65 4.95 4.81 5.60 7.39

σε,η = 0.5
ρ = −0.8 ρ = −0.5 ρ = −0.2 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0.8

n = 200
γ = 0 2.76 4.31 4.81 5.09 5.19 5.43 7.35
γ = 1 2.58 4.19 4.91 4.86 4.28 5.33 7.17

n = 500
γ = 0 2.77 3.92 5.18 5.08 5.33 5.26 7.30
γ = 1 2.62 3.92 4.96 5.15 5.44 5.41 6.98

n = 1000
γ = 0 2.95 4.06 5.05 5.29 5.43 5.72 7.23
γ = 1 2.96 4.06 4.84 5.20 5.58 5.73 7.12

Table 2.40: Size of the test for threshold e�ect with state dependent Drift, long run equation
shocks are i.i.d

Threshold.P Known Threshold.P Unknown
ρz = 0.5 ρz = 0.9 ρz = 0.5 ρz = 0.9

n=200 5.16 4.98 5.48 5.28
n=500 4.84 5.08 4.88 4.75
n=1000 5.22 5.00 4.64 4.73

Table 2.41: Size of the test for threshold e�ect Without Drift, long run equation shocks are
i.i.d

ρz = 0.5 ρz = 0.9
n=200 5.40 5.40
n=500 5.21 5.38
n=1000 5.26 5.19
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Table 2.42: Power of the test for threshold e�ect for di�erent values of γ, long run equation
shocks are i.i.d, With state dependent Drift

Threshold.P Known Threshold.P Unknown
ρz = 0.5 ρz = 0.9 ρz = 0.5 ρz = 0.9

n = 200
γ = 0.01 7.16 7.42 6.88 7.46
γ = 0.05 45.95 44.03 41.61 30.70
γ = 0.10 84.86 82.57 78.16 74.13
γ = 0.50 100.00 100.00 99.86 99.14

n = 500
γ = 0.01 17.33 16.96 17.03 16.64
γ = 0.05 93.28 92.25 90.29 89.60
γ = 0.10 99.96 99.83 98.90 98.26
γ = 0.50 100.00 100.00 100.00 100.00

n = 1000
γ = 0.01 45.65 46.49 44.92 44.30
γ = 0.05 99.87 99.93 99.46 99.49
γ = 0.10 100.00 100.00 99.96 99.91
γ = 0.50 100.00 100.00 100.00 100.00

Table 2.43: Power of the test for threshold e�ect for di�erent values of γ, long run equation
shocks are i.i.d, Without state dependent Drift

ρz = 0.5 ρz = 0.9

n = 200
γ = 0.01 10.89 11.62
γ = 0.05 70.22 69.30
γ = 0.10 94.75 94.11
γ = 0.50 100.00 100.00

n = 500
γ = 0.01 36.54 34.74
γ = 0.05 97.85 97.51
γ = 0.10 99.99 99.99
γ = 0.50 100.00 100.00

n = 1000
γ = 0.01 69.74 69.83
γ = 0.05 99.98 99.97
γ = 0.10 100.00 100.00
γ = 0.50 100.00 100.00

Table 2.44: Size of the test for threshold e�ect Without Drift, long run equation shocks are
AR(1) process and the threshold parameter is known, and l = 0

ρz = 0.5 ρz = 0.9
ρ -0.8 -0.5 -0.2 0.2 0.5 0.8 -0.8 -0.5 -0.2 0.2 0.5 0.8

n = 200 1.58 2.97 3.74 6.75 10.60 13.92 0.30 0.84 3.00 9.41 17.97 32.55
n = 500 1.73 2.36 3.95 6.87 9.65 14.49 0.15 0.86 2.59 9.20 18.78 33.72
n = 1000 1.20 2.41 3.81 6.87 9.99 15.11 0.03 0.66 2.44 9.46 18.13 35.55
n = 2000 1.41 2.66 3.90 6.51 10.03 15.60 0.01 0.43 2.40 9.09 18.97 36.75
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Table 2.45: Size of the test for threshold e�ect Without Drift, long run equation shocks are
AR(1) process and the threshold parameter is known, and l = 4(n/100)1/4

ρz = 0.5 ρz = 0.9
ρ -0.8 -0.5 -0.2 0.2 0.5 0.8 -0.8 -0.5 -0.2 0.2 0.5 0.8

n = 200 5.36 5.86 5.98 7.02 7.33 7.78 5.19 5.43 6.24 7.18 8.51 12.14
n = 500 4.89 5.29 5.66 5.89 6.10 6.85 4.25 5.03 5.43 5.99 7.51 10.55
n = 1000 4.88 4.66 5.04 5.64 5.83 6.37 4.03 4.32 5.22 6.01 6.92 10.55
n = 2000 4.46 5.24 4.93 5.44 5.85 6.16 3.80 4.44 4.86 5.81 6.58 9.83

Table 2.46: Size of the test for threshold e�ect Without Drift, long run equation shocks are
AR(1) process and the threshold parameter is known and l = 12(n/100)1/4

ρz = 0.5 ρz = 0.9
ρ -0.8 -0.5 -0.2 0.2 0.5 0.8 -0.8 -0.5 -0.2 0.2 0.5 0.8

n = 200 6.69 7.09 7.63 7.97 7.88 7.66 6.51 6.93 7.53 7.77 8.89 9.90
n = 500 5.85 6.27 6.18 6.28 6.26 6.62 5.55 5.98 6.08 6.31 7.26 8.37
n = 1000 5.45 5.28 5.43 6.00 5.48 5.76 5.37 5.10 5.25 6.12 6.05 7.49
n = 2000 5.29 5.33 5.29 5.36 5.62 5.77 4.71 5.00 5.37 5.91 5.69 6.83

Table 2.47: Size of the test for threshold e�ect With state dependent Drift, long run equation
shocks are AR(1) process and the threshold parameter is known, and l = 0

ρz = 0.5 ρz = 0.9
ρ -0.8 -0.5 -0.2 0.2 0.5 0.8 -0.8 -0.5 -0.2 0.2 0.5 0.8

n = 200 1.45 2.85 3.51 6.91 10.28 13.56 0.18 0.85 2.99 9.07 18.07 32.54
n = 500 1.32 2.34 4.00 6.70 10.13 14.69 0.10 0.76 2.68 9.29 18.49 35.03
n = 1000 1.26 2.33 3.79 6.51 10.69 14.79 0.08 0.62 2.53 8.77 18.74 35.73
n = 2000 1.36 2.40 3.86 7.00 10.13 14.93 0.08 0.6 2.48 8.89 19.49 36.26

Table 2.48: Size of the test for threshold e�ect With state dependent Drift, long run equation
shocks are AR(1) process and the threshold parameter is known, and l = 4(n/100)1/4

ρz = 0.5 ρz = 0.9
ρ -0.8 -0.5 -0.2 0.2 0.5 0.8 -0.8 -0.5 -0.2 0.2 0.5 0.8

n = 200 5.44 5.87 6.08 7.25 7.17 7.53 5.23 6.27 6.53 6.56 7.44 11.85
n = 500 4.96 5.71 5.71 6.04 6.02 6.99 4.31 4.55 5.82 6.56 7.44 17.85
n = 1000 4.65 5.12 5.16 5.72 6.19 6.04 3.75 4.83 5.33 5.96 7.13 10.65
n = 2000 4.43 4.82 5.01 5.67 5.57 6.40 3.53 4.19 5.14 5.91 6.30 9.19
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Table 2.49: Size of the test for threshold e�ect With state dependent Drift, long run equation
shocks are AR(1) process and the threshold parameter is known, and l = 12(n/100)1/4

ρz = 0.5 ρz = 0.9
ρ -0.8 -0.5 -0.2 0.2 0.5 0.8 -0.8 -0.5 -0.2 0.2 0.5 0.8

n = 200 7.94 8.10 8.43 9.41 9.28 8.88 8.49 9.09 9.27 9.14 9.57 11.18
n = 500 6.04 6.48 6.53 6.83 6.63 7.21 6.58 6.90 7.19 6.68 8.02 8.84
n = 1000 5.62 5.84 6.22 6.10 5.99 6.25 5.59 5.95 6.15 6.12 6.65 7.37
n = 2000 5.76 5.03 5.37 5.77 6.09 5.49 4.98 5.00 5.57 5.68 5.91 6.77

Table 2.50: Size of the test for threshold e�ect With state dependent Drift, long run equation
shocks are AR(1) process and the threshold parameter is Estimated.

ρz = 0.5 ρz = 0.9
ρ -0.8 -0.5 -0.2 0.2 0.5 0.8 -0.8 -0.5 -0.2 0.2 0.5 0.8

n = 200 7.96 7.99 8.33 8.42 8.52 7.59 8.47 8.83 9.06 8.51 9.69 8.64
n = 500 6.28 6.31 6.80 6.28 6.75 6.67 6.24 6.36 6.57 6.90 7.69 8.04
n = 1000 5.98 5.54 6.01 5.65 6.04 6.54 5.36 5.92 6.03 6.36 6.34 7.44
n = 2000 5.34 5.55 5.21 5.58 5.44 5.57 5.10 5.39 6.12 5.97 6.23 6.83
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Chapter 3

Quasi-Error Correction Model

3.1 Introduction

Single economic variables, observed as a time series, move freely in an aimless path and yet we

may �nd some pairs of series moving closely, not too far from each other. Economic theory

asses the existence of long-run equilibrium relationships between economic variables, and

cointegration is a method to study empirically the forces which keep these variables moving

together in the long-run, see Granger (1986) and Engle and Granger (1987). Cointegration

has been used, for example, to study the relation between consumption and income, to

show the link between prices and dividends through present values models, see Campbell

and Shiller (1987). Also has been used to study the relations between the short and long

term interest rate (Campbell and Shiller 1991, etc.). When the variables are cointegrated,

Granger representation theorem assures the existence of an error correction representation

which describes how variables respond to disturbances from the equilibrium. One can see

the ECM as an attractor where the long-run equilibrium is maintained.

The development of the ECM has gone into many directions. In one hand we have the

linear ECM where the adjustment mechanism is constant. In the other hand introduces

the possibility of a threshold e�ect in the adjustment process, see Balke and Fomby (1997),

Hansen and Seo (2002), Gonzalo and Pitrakis (2006). In the work of Granger (2001), Es-

cribano and Mira (2002), Saikonnen (2005), introduces the nonlinear ECM and analyze its

properties. In all these cases, they assume the existence of a single long-run equilibrium.

The objective of this study is to analyze the ECM representation theorem when the eco-

nomic variables present multiple long-run equilibria driven by the business cycle. We study

the simplest case where the long-run equilibrium equation presents a threshold e�ect, indi-

cating the presence of multiple cointegration relations but considering a common adjustment

mechanism. This work is very preliminary, and this case is a stepping stone to the most
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general case, which both, the cointegrating vectors and the adjustment present threshold

e�ect.

Balke and Fomby (1997) are the �rst to introduce a threshold structure in the adjustment

process of the ECM. It attracted much attention since it includes appealing features for

economics like the di�erent speed of the adjustment toward the equilibrium depending, for

example, on how far the system is away from the long-run equilibrium. Also, it allows the

possibility of shutting o� the adjustment mechanism over speci�c regimes, for instance, by

the law of one piece the price of an asset traded simultaneously in two di�erent markets must

be the same. When the price is di�erent, a pro�t can be made by buying in the cheapest

market and simultaneously sell it in the dearest market. When the price di�erence is small,

market participants may not be interested in taking this arbitrage opportunity due to factors

like transaction costs, interest rates, and other barriers. In other words, arbitration occurs

when the price deviation is substantial so that the pro�t is higher than the trading costs.

In Section 3.2 we introduce the single equation quasi-error correction model (QECM)

in the presence of multiple equilibria and discuss if the model is balanced, consistency and

asymptotic normality of the LS estimate of the adjustment parameter. In Section 3.3, we

construct con�dence intervals for the adjustment parameter and show that have the correct

coverage. In Section 3.4, we introduce an application of the QECM to U.S. interest rate with

di�erent maturities. In section 3.5 concludes.

3.2 The Quasi-Error Correction Model Representation

Consider the following triangular representation of the cointegration relation with a threshold

e�ect

yt = β1I(zt−1 ≤ r)xt + β2I(zt−1 > r)xt + et

xt = xt−1 + εt
(3.1)

where {zt} is the threshold variable variable, r is the threshold value which determines the

di�erent regimes, expansions and recessions, high volatility and low volatility, and I(.) is the

indicator function. System (3.1) captures the existence of two cointegrating vectors driven

by the threshold variable zt, that is
(

1 β1

)′
when zt−1 ≤ r, and

(
1 β2

)′
when zt−1 > r

which represent the di�erent long run equilibrium relationships between yt and xt. Though

all the paper, we are working under the following set of assumptions

Assumptions

• A.1: The sequence {εt, zt, vt} is strictly stationary and ergodic and strong mixing with
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mixing coe�cients αn satisfying
∑∞

n=1 α
1
2
− 1
r

n for some r > 2. The threshold variable zt

has a continuous and strictly increasing distribution function F (.).

• A.2: E(εt) = 0, E|εt|4 < ∞ and εt is independent of F zεt−1, where F zεt = σ(zt−j, εt−j :

j ≥ 0).

• A.3: et follows an AR(1) process with autorregresive coe�cient |ρ| < 1, et = ρet−1 +vt,

and vt satisfy the following conditions, E(vt) = 0, E|vt|4 < ∞ and independent with

respect zt−j for all j, also independent of vt−j for j = 1, 2, 3...

• A.4: Assume that vt is strictly exogenous with respect to εt.

Assumptions A.1 and A.2 are standard assumptions in the threshold literature in which

the regressors has a unit root. A.1 restrict the threshold variable to be stationary ruling

out the possibility of {zt} be an I(1) process but general enough to accommodate a wide

variety of processes. A.2 is required to obtain the weak convergence of the partial sum
1√
n

∑n
j=1 εtI(zt−1 ≤ r), which is needed to show the weak convergence of the LS estimate

of the parameter of interest, (ρ − 1). A.3 assumes that the shocks in the long run equation

is linear and follows an AR(1) process, this has an impact on the structure of the QECM

representation in which the adjustment speed is the same for all the di�erent regimes. This

assumption is very restrictive but is needed to understand the most general case in which

both the cointegration relation and the adjustment mechanism has a threshold e�ect.

A critical aspect of the linear cointegration, i.e., β1 = β2 is that taking xt to be an I(1)

process, implies that yt also is an I(1) process such that after taking �rst di�erence in both

sides ∆yt = β∆xt+∆et the equation is balanced, that is the right-hand side and the left-hand

side of the equation have the same order of integration.

When we introduce a threshold e�ect in the long-run equilibrium relationship linking yt

and xt, assuming that xt is di�erence stationary does not imply that yt also is di�erence

stationary. It is easy to show that if xt is an I(1) process then yt is nonstationary but the

nonstationary of yt cannot be removed by taking �rst di�erence, more formally, we can see

that by di�erencing (3.1)

∆yt = ρ̃et−1 + β∆xt + γ(xtI(zt−1 ≤ r)− xt−1I(zt−2 ≤ r)) + vt

∆xt = εt
(3.2)

, where ρ̃ = (ρ−1) and γ = (β1−β2). The presence of the term (xtI(zt−1 ≤ r)−xt−1I(zt−2 ≤
r)) in the right hand side on the �rst equation in (3.2) hinder the possibility of the usual

ECM representation. In summary, introducing threshold e�ect in the cointegration relation,
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does not admit an ECM representation which is balanced, in the sense where the right- and

left-hand side are I(0) process. To move away from the thigh constrains that arise from the

concept of integration, we use the de�nition of summability proposed by Berenger-Rico and

Gonzalo (2014a) which is the natural extension of the concept of integration. Summability

can characterizes the stochastic properties for both, non-linear process and also linear process.

Any integrated process I(d) for some d ≥ 0 also is S(d). Using the results from Caner and

Hansen (2001) we can shown that xtI(zt−1 ≤ r), yt are S(1) process and how the �rst equation

in (3.2) can be balanced in terms of summability.

Lemma 1. Under assumption A.1 and A.2, the process {xtI(zt−1 ≤ r)} is S(1) and its �rst

di�erence, (xtI(zt−1 ≤ r)− xt−1I(zt−2 ≤ r)) is S(0).

Lemma 1 show that {xtI(zt−1 ≤ r)} is S(1) and taking �rst di�erences reduces the order

of summability to S(0). Viewing the properties of [xtI(zt−1 ≤ r) − xt−1I(zt−2 ≤ r)] in

terms of the variance, if zt is an i.i.d process, the V ar([xtI(zt−1 ≤ r) − xt−1I(zt−2 ≤ r)]) =

2F (r)(1− F (r))σε(t− 1) + F (r)σε has a similar behaviour to the variance of a random walk

(RW), but the RW is S(1) whereas [xtI(zt−1 ≤ r)− xt−1I(zt−2 ≤ r)] is S(0). With the result

in Lemma 1, in terms of summability, the QECM representation in (3.2) is balanced.

Proposition 1. If the DGP is (3.1) and the regression model is ∆yt = (ρ−1)et−1 +Ht where

Ht = β∆xt + γ(xtI(zt−1 ≤ r)− xt−1I(zt−2 ≤ r)) + vt the LS estimate of ρ̃ is not consistent

(ˆ̃ρ− ρ̃) = Op(1) (3.3)

Proposition 1 states that in the presence of multiple cointegration relation, the LS es-

timate of the short term dynamics is inconsistent when the switching e�ect (xtI(zt−1 ≤
r)− xt−1I(zt−2 ≤ r)) is not included in regression model (3.2).

Proposition 2. If the DGP is (3.1) and the regression model is (3.2) the LS estimate of ρ̃

is consistent

(ˆ̃ρ− ρ̃) = op(1) (3.4)

Proposition 2 shows that including the switching e�ect in the estimation, the LS estimate

of the adjustment mechanism is consistent. Finally, we show the asymptotic normality of the

LS estimate of ρ̃

Proposition 3. Under assumptions A.1-A.4, the LS estimate of ρ̃

√
n(ˆ̃ρ− ρ̃)⇒ N(0, σ2

v) (3.5)

where σ2
v = E(v2

i ).
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The result in Proposition 3 tells that we can perform inference about the parameter of

interest, ρ̃, and construct con�dence intervals and testing.

Proposition 4. Under assumptions A.1-A.4, Proposition 2 and 3 holds using the LS esti-

mated residuals {êt} obtained in a �rst stage using the regression model in (3.1).

Proposition 4 shows that using estimated residuals obtained in a �rst step does not a�ect

asymptotically the estimation of ρ̃, and this is possible due to the T-consistency of the LS

estimate of β1 and β2, which can be used as if it were known.

3.3 Simulations

In this section, we look at the performance of the con�dence intervals for ρ̃. In these simula-

tions, we assume that the threshold parameter is known r = r0. The data generating process

(DGP) for this experiment is the following threshold cointegration process:

yt = β1I(zt−1 ≤ r)xt + β2I(zt−1 > r)xt + et

xt = xt−1 + εt
(3.6)

In the simulation we set up the parameters β1 = 2, β2 = 1. We assume that the threshold

variable, zt follow an AR(1) process, zt = ρzzt−1 + ηt with |ρz| < 1. Also we generate et as

an AR(1) process, et = ρeet−1 + vt. The shocks {vt, εt, ηt} are generated as a multivariate

normal with the following variance and covariance matrix:

Ω =

σ
2
v 0 0

0 σ2
ε σε,η

0 σε,η σ2
η

 (3.7)

We set up σ2
v = σ2

ε = σ2
η = 1 and allow σε,η = {0.5, 0.9}. We consider di�erent levels of

persistence for the threshold variable ρz = {0.5, 0.9} and for the shocks in the long run equa-

tion ρe = {0.1, 0.5, 0.9}. We perform the simulations with 10000 repetitions, with di�erent

sample sizes n = {200, 500, 1000} observations.
Table 3.1 shows the coverage of the con�dence interval for ρ̃ in the case where β1 and β2

is known. We can see that the coverage is correct, since the empirical coverage approaches

the nominal coverage of 95%, for di�erent values of ρe, and di�erent persistence levels of the

threshold variable.

Table 3.2 shows a similar result in the case where β1 and β2 are estimated using LS in a

�rst step and using the estimated residual {êt} as a regressor to estimate the parameter of

interest ρ̃.
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Table 3.1: Coverage of the CI for ρ̃, here it assumes that β1, β2 is known.

ρz = 0.5 ρz = 0.9
ρe = 0.1 ρe = 0.5 ρe = 0.9 ρz = 0.1 ρz = 0.5 ρe = 0.9

n = 200
σε,η = 0.5 95.04 94.97 94.49 94.46 94.43 95.07
σε,η = 0.9 94.43 94.79 94.98 95.12 94.88 94.82

n = 500
σε,η = 0.5 94.50 94.87 94.93 94.49 94.78 95.04
σε,η = 0.9 94.36 94.98 95.33 94.83 94.47 95.28

n = 1000
σε,η = 0.5 94.62 94.77 95.07 94.93 94.97 94.95
σε,η = 0.9 95.12 95.31 94.93 95.20 94.84 95.45

Table 3.2: Coverage of the CI for ρ̃, with β1, β2 estimated in a �rst stage.

ρz = 0.5 ρz = 0.9
ρe = 0.1 ρe = 0.5 ρe = 0.9 ρz = 0.1 ρz = 0.5 ρe = 0.9

n = 200
σε,η = 0.5 94.28 94.44 92.62 94.50 94.14 91.74
σε,η = 0.9 94.59 94.53 92.19 94.45 94.29 91.93

n = 500
σε,η = 0.5 94.55 94.70 94.16 94.85 94.60 93.71
σε,η = 0.9 95.05 94.44 93.79 94.70 94.78 93.66

n = 1000
σε,η = 0.5 94.71 94.62 94.55 94.83 94.84 94.26
σε,η = 0.9 95.11 95.16 94.52 94 75 94.52 94.93

3.4 Empirical Application. U.S. Interest Rate

Application of the error correction models for U.S. interest rates of instruments with di�er-

ent maturities have been studied extensively under di�erent speci�cations, for example in

the work of Bradley and Lumpkin (1992), Mehra (1994) among many others, considers the

linear ECM. Siklos and Enders (1998) study the asymmetric behavior of the error correction

between interest rates with di�erent maturities.

In this application, we use the QECM to study the adjustment mechanism where the

equilibrium between U.S. short term interest rate and the long term interest rate is main-

tained. Following the result stated above, we assume that for all the di�erent equilibria has

the same adjustment speed. The estimated model is

∆yt = ρ̃et−1 + β2∆xt + γ[I(zt−1 ≤ r)xt − I(zt−2 ≤ r)xt−1] + vt (3.8)

We use the E�ective federal fund rates as short term interest rate and the ten years

government bond yield as the long term interest rate. These data have monthly frequency

constructed by averaging daily observation for the sample 1960:1 to 2019:3 retrieved from

FRED (at the Federal Reserve Bank of St. Louis). We consider the annual increment of the

production index as a threshold variable since it is a crucial indicator of the economic health,

expansions, and recession.
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Table 3.3: QECM estimation for the U.S. interest rates

ρ̃ β2 γ

-0.0584 0.4616 0.0649

We have to take this result carefully since it su�ers two major problems. In one hand, we

estimate the threshold parameter as in Chan (1993) and Canner and Hansen (2001), but the

result stated above is based on the assumption where the threshold value is known. On the

other hand, the adjustment may be di�erent for each regime, but we restrict to be common

for all the states.

3.5 Conclusion

Cointegration is a method to asses empirically the existence of a long-run equilibrium rela-

tionship between economic variables, and the error correction models is a process where this

long-run equilibrium is maintained.

The QECM representation have a di�erent structure to the ECM in the linear case since

it contains an extra term which represents the switching between the di�erent regimes. This

representation is balanced using the concept of summability.

In this study, we present the QECM under the assumption where the error correction term

is common for all the di�erent regimes. Also, we present the consistency and asymptotic

normality of the LS estimate of the adjustment process. We �nalize the paper with an

empirical application with U.S. interest rates of instruments with di�erent maturities.
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Appendix

3.A Proofs

Proof Lemma 1

The summablility order of xtI(zt−1 ≤ r) can be found in Berenger-Rico and Gonzalo

(2014) and is based in Theorem 3 in Caner and Hensen (2001). Without loss of generality

assume that x0 = 0, the second part of Lemma 1

| 1

n1/2+δ

n∑
i=1

[xtI(zt−1 ≤ r)− xt−1I(zt−2 ≤ r)]|

= | 1

n1/2+δ
(xnI(zn−1 ≤ r)− x0I(z−1 ≤ r))| = | 1

n1/2+δ
xnI(zn−1 ≤ r)|

≤ | 1

n1/2+δ
xn| = Op(1) for δ = 0.

showing the desired result.

Lemma 2. Under assumptions A.1 and A.3

1√
n

[ns]∑
i=1

ei−1(I(zi−1 ≤ r)− I(zi−2 ≤ r))⇒ GeI(s, λ) (3.9)

Proof of Lemma 2

To show this result we use the work of Mervelede, Peligrad and Utev (2006) where we

have to check that:

∞∑
i=1

1√
i
||E(ei[I(zi ≤ r)− I(zi−1 ≤ r)]|F0)||2 <∞ (3.10)

First note that by A.3

E(ei[I(zi ≤ r)− I(zi−1 ≤ r)]|F0)

=
i−1∑
j=0

ρjE(vi−j[I(zj ≤ r)− I(zj−1 ≤ r)]|F0) +
∞∑
j=i

ρjvi−jE([I(zj ≤ r)− I(zj−1 ≤ r)]|F0)

=
∞∑
j=i

ρjvi−jE([I(zj ≤ r)− I(zj−1 ≤ r)]|F0)
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The last equality came from the independence between vt and zj for all t and j and indepen-

dence between vt and F0.

Since et is an AR(1) process

= e0ρ
i(Fi,0 − Fi−1,0)

where Fi,0 = E(I(zi ≤ r)|F0) ∈ (0, 1). Then it is easy to see that

||E(ei[I(zi ≤ r)− I(zi−1 ≤ r)]|F0)||2 = ||e0ρ
i(Fi,0 − Fi−1,0)||2

= E
(

(e0ρ
i)2(Fi,0 − Fi−1,0)2

)1/2

≤ E
(

(e0ρ
i)2
)1/2

= ||e0ρ
i||2

(3.11)

With the result above we can see that

∞∑
i=1

1√
i
||E(ei[I(zi ≤ r)− I(zi−1 ≤ r)]|F0)||2 ≤

∞∑
i=1

1√
i
||e0ρ

i||2

≤ ||e0||2
∞∑
i=1

ρi <∞

Lemma 3. Under assumptions A.1, A.2, A.3 and A.4

1

n

n∑
i=1

xiei(I(zi ≤ r)− I(zi−1 ≤ r))⇒
∫ 1

0

Bx(s)dGeI(s, λ) (3.12)

Proof of Lemma 3

The proof came from using Lemma 2 and the result from Hansen (1992) with assumption

A.4.

Lemma 4. Under assumptions A.1 and A.2

1√
n

[ns]∑
i=1

εiI(zi−1 ≤ r)I(zi−2 ≤ r)⇒ GεI(s, λ) (3.13)

Proof of Lemma 4

For all r, {εiI(zi−1 ≤ r)I(zi−2 ≤ r),F zεi−1} is a strictly stationary ergodic martingale dif-

ference sequence with variance σ2
εE(I(zi−1 ≤ r)I(zi−2 ≤ r)). By the central limit theorem for
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martingale di�erence sequence 1√
n

∑[ns]
i=1 εiI(zi−1 ≤ r)I(zi−2 ≤ r) →d N(0, ω2

G(s, λ)), where

ω2
G(s, λ) = sσ2

εE(I(zi−1 ≤ r)I(zi−2 ≤ r)). It is straightforward to see that the covariance

kernel is ω2
G(s1, s2, λ1, λ2) = (s1 ∧ s2)σ2

εE[I(zi−1 ≤ r1)I(zi−1 ≤ r2)I(zi−2 ≤ r1)I(zi−2 ≤ r2)].

Combined with the Crame-Wold device the �di convergence follows. Given our assumptions

on εt and zt the stochastic continuity of 1√
n

∑[ns]
i=1 εiI(zi−1 ≤ r)I(zi−2 ≤ r) follows directly

from Theorem 1 of Caner and Hansen (2001).

Lemma 5. Under assumptions A.1 and A.2

1

n

n∑
i=1

xi−1εi(I(zi−1 ≤ r)I(zi−2 ≤ r))⇒
∫ 1

0

Bx(s)dGεI(s, λ) (3.14)

Proof of Lemma 5

For a �xed λ, Lemma 4 and Theorem 2.2 in Kurtz and Potter (1991) 1
n

∑n
i=1 xi−1εi(I(zi−1 ≤

r)I(zi−2 ≤ r)) ⇒
∫ 1

0
Bx(s)dGεI(s, λ), furthermore this result can be extended uniformly for

λ ∈ [0, 1], see Caner and Hansen (2001) Theorem 2.

Lemma 6. Under assumptions A.1 and A.2

1

n

n∑
i=1

xi−1εi(I(zi−1 ≤ r)− I(zi−2 ≤ r)) = Op(1) (3.15)

Proof of Lemma 6

It is the same as in Lemma 4 and 5.

De�ne the following matrices

∆Y =


∆y2

...

∆yn

 , V =


v2

...

vn

 , e =


e1

...

en−1

 , Γ =

(
β2

γ

)

Xz =


∆x2 I(z1 ≤ r)x2 − I(z0 ≤ r)x1

...
...

∆xn I(zn−1 ≤ r)xn − I(zn−2 ≤ r)xn−2


Such that model (3.2) can be written as follows:
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∆Y = e(ρ− 1) +XzΓ + V (3.16)

Construct the following matrix

Mx = In−1 −Xz(X
′
zXz)

−1X ′z (3.17)

where In−1 is the (n-1)x(n-1) identity matrix.

Then equivalently we can write

Mx∆Y = Mxeρ̃+MxV (3.18)

where ρ̃ = (1− ρ). Then the LS estimate of ρ̃ is

ˆ̃ρ = (e′Mxe)
−1(eMx∆Y ) = ρ̃+ (e′Mxe)

−1(eMxv) (3.19)

Proof of Proposition 1

We can write the LS estimate of ρ̃ as

(ˆ̃ρ− ρ̃) =
( 1

n

n∑
i=2

e2
t−1

)−1( 1

n

n∑
j=2

et−1Ht

)
(3.20)

From A.3 by the LLN and Slutsky's theorem
(

1
n

∑n
i=2 e

2
t−1

)−1 →p E(e2
t−1)−1. Then we

can write

1

n

n∑
j=2

et−1Ht =
1

n

n∑
j=2

et−1vt + β1
1

n

n∑
j=2

et−1εt

+ γ
1

n

n∑
j=2

et−1εtI(zt−1 ≤ r) + γ
1

n

n∑
j=2

et−1xt−1[I(zt−1 ≤ r)− I(zt−2 ≤ r)]

From A.3 we can see that 1
n

∑n
j=2 et−1vt →p E(et−1vt) = 0. By the exogeneity assumption

β1
1
n

∑n
j=2 et−1εt →p 0, and γ 1

n

∑n
j=2 et−1εtI(zt−1 ≤ r)→p 0.

Finally, from Lemma 2

γ
1

n

n∑
j=2

et−1xt−1[I(zt−1 ≤ r)− I(zt−2 ≤ r)] = Op(1) (3.21)
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Proof of Proposition 2

Note that:

(ˆ̃ρ− ρ̃) =
(e′Mxe

n

)−1

︸ ︷︷ ︸
A

(eMxv

n

)
︸ ︷︷ ︸

B

(3.22)

Lets start with the term A and de�ne the following matrix D = diag{n−1/2, n−1}:

(e′Mxe

n

)
=
e′e

n
−
(e′XzD

n1/2

)
(DX ′zXzD)−1

(DX ′ze
n1/2

)
It is easy to see that from A.3 and the LLN:

e′e

n
=

∑n
j=2 e

2
j−1

n
→p E(e2

j−1) (3.23)

Also

(e′XzD

n1/2

)
=

(
1
n

∑n
i=2 εiei−1

1
n3/2

∑n
i=2 ei−1I(zi−1 ≤ r)εi + 1

n1/2

(
1
n

∑n
j=2 xi−1ei−1[I(zi−1 ≤ r)− I(zi−2 ≤ r)]

))′

=

(
E(εiei−1) + op(1)

1
n1/2

(
E(ei−1I(zi−1 ≤ r)εi) + op(1)

)
+ 1

n1/2

(
Op(1)

))→ 0

The second equality came from the result in Lemma 3, and from assumption A.2, A.3 and

A.4 E(εiei−1) = 0 and E(ei−1I(zi−1 ≤ r)εi) = 0. Now lets see

(DX
′
zXzD) =

 1
n

∑n
i=2 ε

2
i

1

n3/2

∑n
i=2 εi(I(zi−1 ≤ r)xi − I(zi−2 ≤ r)xi−1)

− 1
n2

∑n
i=2(I(zi−1 ≤ r)xi − I(zi−2 ≤ r)xi−1)2

 (3.24)

Note that the �rst element of the matrix:

1

n

n∑
i=2

ε2
i →p E(ε2

i ) (3.25)

1

n3/2

n∑
i=2

εi(I(zi−1 ≤ r)xi − I(zi−2 ≤ r)xi−1) =
1

n1/2

( 1

n

n∑
i=2

ε2i I(zi−1 ≤ r)
)

+
1

n1/2

( 1

n

n∑
i=2

xi−1εi(I(zi−1 ≤ r)− I(zi−2 ≤ r))
)
→ 0
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The last result came from Lemma 6 and assumption A.2. Finally we see the convergence of

1

n2

n∑
i=2

(I(zi−1 ≤ r)xi − I(zi−2 ≤ r)xi−1)2 =
1

n2

n∑
i=2

x2i I(zi−1 ≤ r) +
1

n2

n∑
i=2

x2i−1I(zi−2 ≤ r)

− 2
1

n2

n∑
i=2

xixi−1I(zi−1 ≤ r)I(zi−2 ≤ r) = 2λ

∫ 1

0

B2
x(s)ds+ op(1)− 2

1

n2

n∑
i=2

x2i−1I(zi−1 ≤ r)I(zi−2 ≤ r)

− 1

n

( 1

n

n∑
i=2

xi−1εiI(zi−1 ≤ r)I(zi−2 ≤ r)︸ ︷︷ ︸
Op(1)byLemma5

)
⇒ 2

(
λ− E(I(zi−1 ≤ r)I(zi−2 ≤ r))

)∫ 1

0

B2
x(s)ds

Then we can conclude that (DX ′zXzD) = Op(1) and have an inverse.

Then we can conclude that
(
e′Mxe
n

)−1

→p E(e2
i )
−1. Now lets focus on B.

e′MxV

n
=
e′V

n
−
(e′XzD

n1/2

)(
DX ′zXzD

)−1(DX ′zV
n1/2

)
(3.26)

It is easy to see that

e′V

n
=

1

n

n∑
j=2

viei−1 →p E(viei−1) = 0 by A.3 (3.27)

Finally

DX ′zV

n1/2
=

(
1
n

∑n
i=2 viεi

1
n3/2

∑n
i=2 vi(xi−1I(qi−1 ≤ r)− xi−2I(qi−2 ≤ r))

)
=

(
E(viεi) + op(1)

1
n1/2Op(1)

)
(3.28)

Then we can see that e′MxV
n
→p 0 showing the consistency of the LS estimator of ρ̃

Proof of Proposition 3

As in the proof of Proposition 1, note that

√
n(ˆ̃ρ− ρ̃) =

(
e′Mxe

n

)−1

︸ ︷︷ ︸
A

(
e′Mxv√

n

)
︸ ︷︷ ︸

B

(3.29)

From proposition 1 we have shown that
(
e′Mxe
n

)−1

→p E(e2
i )
−1. Now lets focus on B. As

before de�ne D = diag{n1/2, n−1}
then
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(
e′Mxv√

n

)
=
e′v√
n
−
(
e′XzD

)(
DX ′zXzD

)−1(
DX ′zV√

n

)
(3.30)

Again from proposition 1 we know that:

(
DX ′zXzD

)−1

⇒

(
E(ε2

i ) 0

0 2
(
λ− E(I(zi−1 ≤ r)I(zi−2 ≤ r))

) ∫ 1

0
B2
x(s)ds

)−1

(3.31)

and also (
DX ′zV√

n

)
⇒

(
E(viεi)

0

)
≡ 0 (3.32)

The last equivalence came from A.4. Lets see the convergence of

(
e′XzD

)
=

(
1√
n

∑n
i=2 εiei−1

1
n

∑n
i=2 ei−1I(zi−1 ≤ r)εi + 1

n

∑n
i=2 xi−1ei−1[I(zi−1 ≤ r)− I(zi−2 ≤ r)]

)
(3.33)

Lets see the convergence of 1√
n

∑n
i=2 εiei−1. From assumption A.2, εtet−1 is a martingale

di�erence sequence w.r.t. Ft−1 = σ{εt−j, vt−j, zt−j : j ≥ 1}. Since et−1 is a function of

{vt−1, vt−2, . . .} then is Ft−1 measurable, such that

E(εtet−1|Ft−1) = et−1E(εt|Ft−1) = et−1E(εt) = 0 (3.34)

The second equality came from the independence between εt and Ft−1. Then from the ergodic

stationary martingale di�erences CLT

1√
n

n∑
i=2

εiei−1 →d N(0, σ2
εE(e2

t−1)) (3.35)

Finally from Lemma 3 it is easy to show that:

1

n

n∑
i=2

ei−1I(zi−1 ≤ r)εi +
1

n

n∑
i=2

xi−1ei−1[I(zi−1 ≤ r)− I(zi−2 ≤ r)]

⇒ E(ei−1I(zi−1 ≤ r)εi−1) +

∫ 1

0

Bx(s)dGeI(s, λ)

(3.36)

Then we can see that
(
e′XzD

)
= Op(1), concluding that
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(
e′XzD

)(
DX ′zXzD

)−1(
DX ′zV√

n

)
→ 0 (3.37)

Finally from the martingale di�erence CLT, it is easy to see that:

e′v√
n
⇒ N(0, E(e2

t−1v
2
t )) (3.38)

Since vt is independent of Ft−1 it is easy to see that E(e2
t−1E(v2

t |Ft−1)) = σ2
vE(e2

t−1).
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