
This is a postprint version of the following published document:

Salvat, J.X., Garcia-Saavedra, A., Li, X., Costa-Perez, 
X. (2018). WizHaul: An Automated Solution for vRAN
Deployments Optimization. Paper submitted in WSA
2018: 22nd International ITG Workshop on Smart
Antennas, Bochum: IEEE.

©2018 VDE VERLAG GMBH, Berlin, Offenbach

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288499735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


line interfaces [8]. As a result, current backhaul deployments

are not suitable for fronthauling [7], [9].

To overcome the aforementioned limitations, both industry

and academia are pushing for a re-design of the fronthaul

interface that could steer the adoption of centralized architec-

tures on 5G deployments [9], [10]. Two key ideas are driving

the fronthaul re-design: the future fronthaul interface will be

based on a (i) packet-based network rather than on a point-

to-point architecture and (ii) will support a flexible functional

split of BS functions [7], [11], [12]. The former idea will

fuel the use of statistical multiplexing, infrastructure reuse

and higher degrees of freedom for routing. The latter idea

will hand operators the ability to retain as much centralization

as possible. The vision behind a flexible functional split is to

reach a balance between centralization and reasonable network

requirements. As a result, network designers will have the

ability of deciding which BS functions (e.g. PDCP, RLC,

MAC, etc.) can be processed on the edge, i.e. co-located

with the RU and which ones could be offloaded into a CU.

As BS functions are not completely moved away from the

edge, network requirements are softened while retaining some

of the advantages of centralization [13]. Note that a flexible

functional split blurs the separation between fronthaul and

backhaul traffic. In fact, the vision for 5G is the convergence

of both types of interfaces on a packet-based network. We will

referer to this as Crosshaul. A detailed study of the benefits

and network requirements on centralizing the different LTE

layers is presented on [7]. We summarize the requirements

for different functional splits on Table I.

In this paper, we aim to study the implications that placing

several BS functions on a CU impose on a packet-based

crosshaul network with high path diversity. One the one hand,

choosing which BS functions are offloaded into a CU depends

of the transport capabilities of the underlying network. On

the other hand, a reasonable routing on the transport network

requires knowledge on which BS functions will be placed to

a CU as transport requirements are dependent on the amount

of offloaded functions. Thus, we confront a coupled problem

where the path computation between different RUs and CUs

and functional splits must be optimized jointly. We have

prototyped WizHaul, a software framework enabling the

implementation of a centralized decision-making algorithms

that find the best functional splits according to the transport

capabilities of the underlying transport network. Our Wizhaul

framework may serve two purposes:

WizHaul: An Automated Solution for vRAN

Deployments Optimization

Josep Xavier Salvat, Andres Garcia-Saavedra, Xi Li, Xavier Costa-Perez

NEC Laboratories Europe, Germany.

E-mail: {josep.xavier.salvat, andres.garcia.saavedra, xi.li, xavier.costa}@neclab.eu

Abstract—Future 5G deployments will support a flexible split
of Base Station (BS) functions, i.e., it will be possible to decide
which atomic operations will be co-located on the edge and which
ones will be processed on a Central Unit (CU). Thus, network
owners will be able to decide how much centralization they
would like to retain in different deployments. However, deciding
which BS components should be offloaded to a CU becomes a
challenge because routing and BS function placement choices are
coupled. We present WizHaul, a software framework enabling
the implementation of a centralized functional split decision-
making engine for future 5G networks. The purpose of WizHaul
is twofold. First, it may be used in a network planning phase to
settle the optimal amount of centralization. Second, it may also be
used to support network automation/adaptation scenarios where
network failures or congestion in the cloud may draw the current
configuration infeasible.

I. INTRODUCTION

Classic mobile network architecture features Base Stations

(BSs) geographically distributed and connected to an Evolved

Packet Core (EPC) through a backhaul network [1]. This

distributed architecture has several limitations such as high

cost and difficult operation, among others [2]. However, 5G

will leverage on centralized architectures such as Cloud Radio

Access Networks (C-RAN). C-RAN places all functions of

each BSs into a centralized cloud computing platform. In this

way, each BS is decoupled into two main building blocks:

(i) Radio Units (RUs) and (ii) a Central Unit (CU). The CU

receives data from the EPC, performs centralized baseband

processing and exchanges digitized radio samples with the

RUs through high-capacity fronthaul (FH) links [3]. Central-

ization of BS functions has shown major benefits such as grater

spectrum efficiency due to joint signal processing, simplified

network operations and management and lower capital and

operating expenditures, among others [4], [5].

Due to its benefits, C-RAN architecture has stood out as a
key technology for future 5G networks. Nevertheless, current

C-RAN deployments come at a high cost that hinders its

development for 5G. Namely, fronthaul links need to exchange

raw radio information in a timely manner, within a tiny time

window of a few microseconds [6]. Furthermore, the bandwith

requirement on these links not only is substantially higher than

the user data rates, but it also grows linearly with the number

of antennas [7]. This renders the use of technologies such

as massive MIMO infeasible. Therefore, fronthaul networks

exhibit tight network bandwidth and delay requirements which

can only be met using high-cost fiber links employing serial

1



TABLE I: Functional splits analysis in [7]. LTE scenario: 1 user/TTI, 20 MHz bandwidth; Downlink: MCS (modulation and coding scheme) index 28, 2x2 MIMO, 100 Resource

Blocks (RBs), 2 transport blocks of 75376 bits/subframe; Uplink: MCS 23, 1x2 SIMO, 96 RBs, 1 transport block of 48936 bits/subframe.

LTE BS Functional DL/UL BW Delay

Split # decomposition req. (Mb/s) req. (μs) Gains

A RRC - PDCP 151/48 30e3

• Enables L3 functionality for multiple small cells to use the same HW;
• Enhanced mobility across nodes w/o inter-small cell data forwarding/signaling;
• Reduced mobility-related signaling to the mobile core segment;
• No X2 endpoints between small cells and macro eNBs;
• Control plane and user plane separation.

B PDCP - RLC 151/48 30e3 • Enables L3 and some L2 functionality to use the same HW.

C RLC - MAC 151/48 6e3 • Resource sharing benefits for both storage and processor utilization.

D MAC I - MAC II 151/49 6e3
• Synchronized coordination and control of multiple cells;
• Coordination across cells enables CA, CoMP, eICIC or cross carrier scheduling.

E MAC - PHY 152/49 250 • Enhancements to CoMP with RU frame alignment and centralized HARQ.

F PHY split I 173/452 250
• More opportunities to disable parts of the CU at quiet times to save power;

• Central L1 CU can be scaled based on average utilisation across all cells;

• Smaller CU results in less processing resource and power saving;

• Enhancements to joint reception CoMP with uplink PHY level combining.

G PHY split II 933/903 250

H PHY split III 1075/922 250

I PHY split IIIb 1966/1966 250

J PHY split IV 2457.6/2457.6 250

• Network planning: WizHaul may serve as a key support

tool to any network planning phase as it searches for the

optimal functional splits of the RUs. Network operators

may leverage on Wizhaul to decide how much central-

ization they would like to retain;

• Network automation/adaptation: WizHaul can, not only

adapt to link failures by means of re-configuration of

functional splits and/or re-routing, but also can support

re-location/placement of BS functions in different CUs in

case of resource (computing and/or networking) conges-

tion in the cloud or the network. It is implemented as a

centralized software framework based on the SDN/NFV

to provide the network automation and adaptations during

the operation period.

TABLE II: Detailed HW components in our testbed.

Device type Description Ref.

vEPC OpenEPC Rel. 6 [17]

μWave
56 MHz bandwidth @ 7GHz band

Adaptive rate ≤ 1 Gb/s
[18]

mmWave
500 MHz bandwidth @ E-band

Adaptive rate ≤ 3.2 Gb/s
[19]

Switch
OpenFlow switch

48 one-gigabit, 4 ten-gigabit ports
[20]

Small-cell 20 MHz channel @ band 3 [21]

RU
20 MHz BW @ band 3

Split 1 (PHY, MAC, RLC) and 3 (PHY)
[22]

CU Virtual MAC, RLC, PDCP, RRM, RRC [23]

A. Experimental setup

We have prototyped the scenario shown in Fig. 1a, which

is deployed as shown in Fig. 1b. In this testbed, we present

a proof-of-concept mobile communication network. The edge

part embraces three RUs. RU1 is a fully-fledged LTE small-

cell which may not offload any of its functions. RU2 and RU3

support moving some of its functions to a CU. In detail, these

RUs support centralizing its PDCP layer. The core segment

holds a baseline EPC. Between them, we have prototyped

an SDN mobile transport network which contains a CU that

processes the centralized functions from RU2 and RU3. We

used Floodlight1 as the SDN controller and a commercial

OpenFlow (OF) switch [20] supporting OpenFlow 1.0 [24]

to set up the network. Furthermore, the transport segment

has a μWave wireless link and a mmWave wireless link.

For demonstration purposes, the μWave radio link is wired

with an SMA cable and the mmWave link is wired with a

rigid wave-guide. Each wireless link has a variable attenuator

in between the wired connection of the two ends. These

reduce the SNR of the channel so that it forces the wireless

links to change its MCS or ultimately make impossible any

information transmission. Both wireless links feature different

transport capabilities. The mmWave link have a maximum

capacity of 3.2 Gb/s while the μWave link may reach up to

500 Mb/s. All other links are connected using Ethernet links

which render a maximum capacity of 1Gb/s. Following, all end

1http://www.projectfloodlight.org/floodlight/

Our goal is to profile the WizHaul software framework

showing its performance for different experiments. We refer

to [14], [15] for a mathematical analysis on jointly optimizing

functional splits and paths from each RU to a CU for future

centralized deployment on a 5G mobile transport network.

II. WIZHAUL

We have built a proof-of-concept scenario to carry out

different experiments on top of our WizHaul framework. We

present how it is possible to leverage WizHaul features to

decide the initial functional split configuration and adapt it

in the presence of unexpected events such as link failures or

network congestion. WizHaul is able to change the current

paths and functional split configuration for each RU/CU pair.

We experiment with different algorithms implemented on top

of WizHaul that could find the best paths between RUs and

CUs while retaining as much centralization as possible. We

envision that future fronthaul and backhaul networks will

leverage the use of the SDN architecture [16]. Thus, we

implement WizHaul on Java on top of a REST client capable

to communicate with the north-bound interface (NBI) of an

SDN controller so that it can have full control over the control

plane of a transport network.

2



points are synchronized using precision time protocol (PTP2)

so that we can measure latency accurately. Table II summarizes

the details of the scenario. Finally, as we cannot support all

the functional splits described in Table I we generate its traffic

flow patterns based on its requirements. Table III lists the splits

we support. We use mgen3 to generate UDP flows accordingly

and trpr4 to process the mgen logs.

TABLE III: Supported splits

Split LTE function

Split 1 (B in Table I) PDCP - RLC

Split 2 (C in Table I) RLC - MAC

Split 3 (E in Table I) MAC - PHY

Split 4 (G in Table I) PHY split II

Split 5 (J in Table I) PHY split IV

B. Software architecture

Fig. 2 depicts our software architecture. WizHaul is

implemented on top of Floodlight, a Java-based

Apache-licensed SDN controller. WizHaul communicates

with Floodlight by means of its REST interface

using JSON messages. Our framework uses the

CommunicationManager class which receives HTTP

objects from the HTTPManager class and sends them to

the SDN controller. Floodlight in turn, communicates

with the underlying switches by means of the OpenFlow

protocol. On start-up, our application retrieves the underlying

topology leveraging the TopologyManager class of the

SDN controller which discovers the different links between

switches using LLDP. Both wireless links convey status

messages to the controller using SNMP. This messages are

used to detect any MCS change on the wireless interfaces or a

link failure. Further, the controller communicates with the CU

and RUs by means of SSH protocol. WizHaul can push any

path to the controller and change the functional splits. The

Manager class is where different orchestration algorithms

for fronthaul and backhaul traffic may be implemented

according to its eclectic requirements. For our experiments,

we programmed WizHaul so that it always aims to maximize

the amount of centralization on a mobile network. That is,

our strategy is to try to always offload as many BS functions

as possible. Moreover, WizHaul also reacts to topology

changes. Thus, on the presence of a network failure WizHaul

checks if the current configuration, i.e., paths and functional

splits, is still feasible. If they are not feasible, WizHaul will

compute a new configuration and install it. If the link was

not used by any RU WizHaul is not going to compute any

new configuration. Similarly, if there is any new link on the

topology, WizHaul will compute a new setup. However, the

new paths and functional splits will only be set up if the new

configuration improves the amount of centralization of the

previous configuration.

2https://tools.ietf.org/html/rfc8173
3https://www.nrl.navy.mil/itd/ncs/products/mgen
4https://downloads.pf.itd.nrl.navy.mil/docs/proteantools/trpr.html

(a) Baseline PoC scenario

(b) Testbed

Fig. 1: Experimental setup

III. EXPERIMENTS

We will carry out the following experiments on our proof-

of-concept scenario.

1) Provisioning path time: The first experiment we present

is the provisioning path time for each RU to its CU.

We measure how much time it employs pushing a set

of computed paths and functional splits plus the time

the SDN controller employs installing the corresponding

rules to each switch.

2) Virtual Network Functions deployment time: When-

ever we configure a BS with a certain functional split,

WizHaul has to deploy a set of Virtual Network Functions

(VNFs) in the CU that will support the offloaded BS

functions. We have measured how much time it takes

to deploy the different VNFs in the CU for our BSs;

3) Recovery time: As mentioned before, we are able to de-

crease the SNR of both wireless channels manually using

two variable attenuators. One is attached in between the

μWave wireless link and the second one is in between the

rigid waveguide of the the mmWave link. Lowering the

SNR forces the wireless equipment to lower the MCS due

to channel conditions or even make any packet transmis-

sion infeasible. Any change on channel conditions will be

notified to the SDN controller via SNMP. This in turn will

notify it to WizHaul. The algorithms implemented on top

of our framework analyze any change on the transport

3



network and act consequently. We measure how much

time WizHaul employs notifying a change and setting up

a new network configuration after a topology change. We

will consider failures on both the μWave and mmWave

links.

Fig. 2: Software architecture

A. Provisioning path time

Fig. 3: Provisioning path time

it installs all the new forwarding policies. This strategy might

be good for the first time WizHaul has to install the paths;

however, if a setup is already running on the transport mobile

network, it will disrupt every flow even though its new path

is the same as the previous one. It may also be beneficial

when a network owner may wants to change completely the

current configuration. The second strategy starts comparing

each new RU/CU path with its old path. WizHaul stores each

path between each RU and CU as a set of links. Once a new

path has been computed, it finds the common links between

the new path and the old path for each RU. Once we obtain

the common links, we compute two more sets of links. On the

one hand, we compute the uncommon links between the old

path and the common links previously obtained. On the other

hand, we compute the uncommon links between the new path

and common links. Then, WizHaul proceeds to install the new

rules in two steps. First, it removes the rules that forward traffic

through the links that are contained on the first set. Second

it installs all the rules needed to forward traffic through the

links that are in the second set. This strategy is particularly

well suited for link failures as it allows for a very fast recovery.

Fig. 4: Comparison between the path installing strategies

We have profiled the time it takes for both strategies to

install different sets of paths. We have assumed that for each

different tenant WizHaul has to install a path of length 7. Thus,

To start with, we have profiled the installation path time for 
each RU to its CU. We start pairing the OF switches with the 
SDN controller. Then, we launch our WizHaul engine and we 
measure how much time it employs pushing a set of paths and 
functional splits plus the time the controller employs installing 
the corresponding rules to the forwarding table of each switch. 
The controller has to install two rules in each switch for every 
hop of a path. One rule forwards the uplink traffic while the 
other one forwards the downlink traffic. To profile the time 
it takes to install a path, we have considered paths with n 
hops while taking into account m tenants. By tenants we mean 
entities that need to setup a path with another entity. Figure 3 
shows the results by means of boxplots where the top and 
bottom bar represent the 1st and 4th percentile and the middle 
bar the median, respectively. The dots represent the different 
experiments we have performed for each case. As Figure 3 
depicts, the time to install a path increases linearly with the 
number of tenants and hops. We note that this is expected as 
the more hops and tenants we have, the more rules we have to 
install. The time to install two forwarding rules in one switch 
is approximately 15 ms. However, there are some strategies to 
lower the total installation time. For example, it is possible to 
aggregate the traffic by destination in the the uplink so that 
fewer rules have to be installed.

We have implemented two different installation strategies in 
our WizHaul engine: (i) a complete path installation strategy 
and, (ii) a differential path installation strategy. The first 
approach erases all the previous rules from all the switches and 
installs all the new forwarding policies; while the second one 
erases and installs only the necessary forwarding rules when 
comparing a new set of paths with the current set of paths. The 
first strategy starts sending a OF DELETE command to all the 
switches to erase all the forwarding rules. Afterwards,

4



in the case of the complete path installation for each number

of tenants it has to send a message to each switch to delete

all the rules and then install the new forwarding policies. To

profile the differential installation strategy we have proceed

a differently. We also considered different number of tenants

and a path of length 7, but we assumed that each tenant has

to delete n rules and install n. Figure 4 shows the profiling

results using boxplots for both strategies. The first strategy

always takes the same time to install regardless of the hops

that have to be deleted and reinstalled as it does not try to

find common hops to save the any time. The second strategy

improves performance over the first one substantially when the

new paths that we have to install have many common paths

with the previous path. In a large mobile transport network,

a failure in one link may disrupt some flows but, since the

topology is not going to suffer major changes due to a simple

link failure, we expect that the configuration will be very

similar to the previous one. Therefore, comparing the new

paths to the old paths will usually result in a much faster

failure adaption.

B. VNF deployment time

Fig. 5: VNFs Deployment time

set of VMs used to centralize other functions even though they

are not used so that it is possible to support a fast functional

split change.

C. Recovery time

Following, we experiment with WizHaul in an scenario

with possible link failures. We show how the WizHaul engine

adapts the functional split configuration to the current transport

capabilities of the underlying network. We start with the

baseline scenario depicted in Figure 7a. WizHaul configures

RU2 and RU3 with split 4 from Table III. Due to the

limiting of 1Gb/s links, WizHaul does not settle a full C-

RAN configuration (which would require the transmission of

2.5Gbps flows). WizHaul routes the backhaul traffic from RU1

through the μWave link while using the mmWave link for the

RU3 traffic and using the central link for RU2. RU2 and RU3

are not directly connect to the EPC, but they have to connect

with the CU first. The CU in turn will connect to the EPC.

We constantly measure throughput and latency to verify that

flows are compliant with the chosen split requirements.

Figure 6a and Figure 6b depicts downlink throughput and

latency measurements for the two different paths installation

strategies that we have previously explained. We can easily

verify from these figures how throughput and latency require-

ments for split 4 are compliant with the network requirements.

After 20 sec, we attenuate the mmWave wireless link until

communication is fully disrupted. This triggers WizHaul to

make two changes. On the one hand, WizHaul changes the

current path of RU3 and routes the traffic through link 2-

6. On the other hand, it lowers the split of base stations

2 and 3 to 3 in Table III so that both flows may fit into

one link. The measurements on Figures 6a and 6b clearly

show this behavior. We can see how the throughput changes

for RU2 and RU3. Latency has a very high peak due to a

significant gap between the packets received. Figure 7b shows

the scenario after the first link failure. Furthermore, we can

see from Figures 6a and 6b how the complete installation

strategy causes a disruption in all the flows even though a

path is not altered by the link failure. Finally, 20 sec later, we

attenuate the μWave wireless link. WizHaul routes the RU1

In this experiment, we profiled the VNF deployment time 
for our C-RAN like equipment. Our RU2 and RU3 support 
the centralization of the PDCP function and abover via a set 
of VNFs running on a CU. It is key to profile the time it takes 
to deploy the set of VNFs that support the BS operations 
in order to understand how fast we can install new BSs, 
change their functional splits or react to server failures. In 
detail, our CU has to deploy three virtual machines (VMs) 
that support the different BS functionality. The first VM 
supports the S1AP, RRC and RRM functions and operation, 
administration and management tasks (OAM). The second VM 
supports the routing operation for the GTP tunnel and the third 
VM supports the operation for the PDCP layer. Note that this 
set of VMs has to be deployed in one CU to support the 
operations of all the RUs that centralize its functions using 
those VMs. It is not necessary to start a set of VMs for each 
RU. Therefore, we can benefit from managing a specific BS 
function using one virtual machine for a set of BS. Whenever 
we start the set of VMs we have to perform two steps. First we 
have to launch all the VMs. Second we have to copy different 
configuration files to each VM and setup its network addresses 
and routing tables.

Figure 5 shows the measured delay to perform each of the 
two steps mentioned before by means of boxplots. The VNF 
launching time is about 20 sec on average while the time 
to configure all the VMs is 103 seconds on average. Note 
that the VNF deployment time is mainly dominated by the 
configuration time. These times are much larger than hundreds 
of milliseconds. Thus, if any CU has a failure, the operations 
of any BS attached to the CU will be disrupted during a 
significant time. Thus, network owners should ensure that each 
CU has a mean to migrate its state to a different location or 
that the RUs can operate using a known backup CU. It is also 
worth noting, that it could be a good strategy to configure the

5



μ

(a) Complete installation strategy

μ

(a) Baseline.

(b) Step 1

(c) Step 2

Fig. 7: Use case illustration

after a topology change. In this case we profile the recovery

time for the differential installation strategy as we believe it

is the best to handle these cases. We have profiled both the

failure of the mmWave and μWave links. Figure 8 shows the

different operations that constitute a recovery time period. The

WizHaul engine goes through four operations. First, it receives

a notification form the hardware that has failed (labelled “HW

reaction”). In our case, this notification is received through

SNMP. We note that other protocols could be used in different

setups. Before doing any operation, WizHaul checks that this

link is being used. If it is not used, then it concludes that

no path was disrupted. If it was used by at least one RU,

WizHaul computes a new set of paths and functional splits

(labelled “Algorithm”). Afterwards, WizHaul installs (labelled

“Path installation”) them. We also depict the time employed

by other functions such as processing messages of the REST

interface (labelled “Others”), etc. The recovery time is mainly

dominated by the hardware reaction. We see how in both cases

we obtain the same value. On step 1, the installation path time

is a bit higher than the one on step two as there are more

uncommon links with the old paths.

(b) Differential installation strategy

Fig. 6: Experimental validation.

traffic trough the link 2-6 with RU2 and RU3. Figure 7c shows
the scenario after the second link failure. There is no need to
change the split as all flows fit into link 2-6. We observe in
Figure 6a how the throughput for all RUs reaches drops to

zero while we are deleting and installing paths. On Figure 6b

only the throughput for RU1 is disrupted. Thus, the differential

installation strategy is much better to handle unexpected events

as it does not disrupt the operation of other BSs.

To provide further insights on our WizHaul engine, we

have profiled the time taken to deploy a new configuration

6



Step 1

Step 2

0 500 1000 1500 2000

Latency (ms)

Total

HW reaction

Algorithm

Path installation

Others

Fig. 8: Software reaction time

IV. CONCLUSIONS

The redesign of the fronthaul interface is a key building

block to the adoption of centralized infrastructures in 5G.

The main value proposition of the new design is the support

of a flexible functional split. This flexible functional split

will help to relax the stringent traffic requirements of C-

RAN deployments while retaining as much centralization as

possible. In this paper, we introduced WizHaul, a centralized

decision-making engine that optimizes the functional split of

each RU taking into account the capabilities of the transport

network. Then, we presented our prototype implementation

in a real testbed and carried out a thorough experimental

profiling, validating WizHaul as a tool for optimal mobile

network planning and fault recovery tool.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant

agreement No 761536 (5G-Transformer project).

REFERENCES

[1] E. Metsälä and J. Salmelin, Mobile Backhaul. John Wiley & Sons,
2012.

[2] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann, “Cloud RAN for Mobile Networks - A Tech-
nology Overview,” IEEE Communications Surveys Tutorials, vol. 17,
no. 1, pp. 405–426, Firstquarter 2015.

[3] Y. Lin et al., “Wireless network cloud: architecture and system require-
ments,” IBM Journal of Research and Dev., vol. 54, Jan. 2010.

[4] N. Nikaein, “Processing radio access network functions in the cloud:
Critical issues and modeling,” in Proceedings of the 6th International

Workshop on Mobile Cloud Computing and Services, ser. MCS ’15.
New York, NY, USA: ACM, 2015, pp. 36–43. [Online]. Available:
http://doi.acm.org/10.1145/2802130.2802136

[5] V. Suryaprakash, P. Rost, and G. Fettweis, “Are heterogeneous cloud-
based radio access networks cost effective?” IEEE J. Sel. Areas Com-

mun., vol. 33, no. 10, pp. 2239–2251, Oct 2015.

[6] U. Dötsch, M. Doll, H.-P. Mayer, F. Schaich, J. Segel, and P. Sehier,
“Quantitative analysis of split base station processing and determination
of advantageous architectures for lte,” Bell Labs Technical Journal,
vol. 18, no. 1, pp. 105–128, 2013.

[7] “Small Cell Forum, R6.0. Small cell virtualization functional splits and
use cases,” Jan. 2016.

[8] A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should
know about fronthaul,” Journal of Lightwave Technology, vol. 33, no. 5,
pp. 1077–1083, 2015.

[9] “Next Generation Fronthaul Interface,” White paper, China Mobile,
Alcatel-Lucent, Nokia, ZTE, Broadcom, Intel., June 2015.

[10] I. Chih-Lin et al., “Rethink fronthaul for soft RAN,” IEEE Comm.

Magazine, vol. 53, no. 9, pp. 82–88, September 2015.

[11] IEEE, IEEE 1914 WG “IEEE WG, Next Generation Fronthaul Inter-

face”.
[12] 3GPP, TR 38.801: Study on New Radio Access Technology: Radio Access

Architecture and Interfaces, Dec. 2016.
[13] P. Rost et al., “Cloud technologies for flexible 5G radio access net-

works,” IEEE Comm. Magazine, vol. 52, no. 5, pp. 68–76, May 2014.
[14] A. Garcia-Saavedra, J. X. Salvat, X. Li, and X. Costa-Perez, “WizHaul:

On the Centralization Degree of Cloud RAN Next Generation Fron-
thaul,” IEEE Transactions on Mobile Computing, vol. PP, no. 99, pp.
1–1, 2018.

[15] A. Garcia-Saavedra, X. Costa-Perez, D. J. Leith, and G. Iosifidis,
“FluidRAN: Optimal vRAN/MEC Orchestration,” in INFOCOM, 2018

Proceedings IEEE, April 2018.
[16] J. Costa-Requena, “Sdn integration in lte mobile backhaul networks,”

in Information Networking (ICOIN), 2014 International Conference on.
IEEE, 2014, pp. 264–269.

[17] OpenEPC. http://www.openepc.com/.
[18] NEC iPASOLINK VR4. http://www.nec.com/en/global/prod/nw/

pasolink/products/ipasolink VR4.html.
[19] NEC iPASOLINK EX. http://www.nec.com/en/global/prod/nw/pasolink/

products/ipasolinkEX.html.
[20] NEC ProgrammableFlow. http://www.nec.com/en/global/prod/pflow/

pf5240.html.
[21] NEC MB4420 small-cell. http://www.nec.com/en/global/solutions/nsp/

sc2/prod/e-nodeb.html.
[22] NEC NFV C-RAN. http://www.nec.com/en/global/solutions/nsp/sc2/

prod/c-ran.html.
[23] HP DL380p Gen8 server. https://www.hpe.com/h20195/v2/default.aspx?

cc=za&lc=en&oid=5177957.
[24] O. S. Specification, “Version 1.0. 0 (wire protocol 0x01),” Open Net-

working Foundation, 2009.

7




