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ABSTRACT

There is growing interest in combining microphysical models and polari-

metric radar observations to improve our understanding of storms and pre-

cipitation. Mapping model-predicted variables into the radar observational

space necessitates a forward operator, which requires assumptions that intro-

duce uncertainties into model-observation comparisons. These include un-

certainties arising from the microphysics scheme a priori assumptions of a

fixed drop size distribution (DSD) functional form, whereas natural DSDs

display far greater variability. To address this concern, this study presents a

moment-based polarimetric radar forward operator with no fundamental re-

strictions on the DSD form by linking radar observables to integrated DSD

moments. The forward operator is built upon a dataset of > 200 million re-

alistic DSDs from one-dimensional bin microphysical rain shaft simulations,

and surface disdrometer measurements from around the world. This allows

for a robust statistical assessment of forward operator uncertainty and quan-

tification of the relationship between polarimetric radar observables and DSD

moments. Comparison of “truth” and forward-simulated vertical profiles of

the polarimetric radar variables are shown for bin simulations using a variety

of moment combinations. Higher-order moments (especially those optimized

for use with the polarimetric radar variables: the 6th and 9th) perform better

than the lower-order moments (0th and 3rd) typically predicted by many bulk

microphysics schemes.
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1. Introduction41

There is growing interest in combining numerical models and observations to further our un-42

derstanding of weather and climate. For microphysical comparisons, polarimetric Doppler radar43

is a particularly attractive choice of observations, owing to the fact that these data can provide44

several key pieces of information useful for characterizing bulk properties of precipitation, such as45

hydrometeor sizes, shapes, concentrations, and motion (Kumjian 2013a). Radar data resolution is46

also ideal because it can match or exceed the higher resolution of many mesoscale and storm-scale47

model outputs (Keil et al. 2003). Radar data have been useful for a variety of purposes, including48

for model evaluation (e.g., Hagos et al. 2014; Sinclair et al. 2016; Barnes and Houze 2016; John-49

son et al. 2016), data assimilation (e.g., Tong and Xue 2005; Jung et al. 2010b; Schenkman et al.50

2011; Putnam et al. 2014), and gaining insights about precipitation microphysical processes (e.g.,51

Kumjian and Ryzhkov 2010, 2012; Dawson et al. 2014; Kumjian et al. 2014; Sulia and Kumjian52

2017a,b). To make such comparisons within the variable space of observations, forward oper-53

ators must be used to convert model-predicted variables into quantities observed by some radar54

platform.55

Several polarimetric radar forward operators have been developed for use with bulk and bin56

microphysics models (e.g., Pfeifer et al. 2008; Jung et al. 2008; Ryzhkov et al. 2011; Andrić et al.57

2013). For bulk models, without exception the approach is to use model-predicted microphysical58

quantities to construct a particle size distribution (PSD) for each hydrometeor type at each grid59

box that matches the microphysics scheme’s underlying assumptions about the PSD functional60

form. Most often, the PSDs (including raindrop size distributions, or DSDs) are given by gamma61

or normalized gamma functions (e.g., Willis 1984; Testud et al. 2001). The PSD is then discretized62

into a series of particle size bins, whereupon electromagnetic scattering calculations are performed63
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(e.g., Ryzhkov et al. 2011). The hydrometeor scattering properties and PSD are then integrated to64

obtain the radar variables of interest at each grid box.65

This approach has been successful in producing simulated fields of polarimetric radar variables66

that reproduce basic observed signatures, particularly in convective storms (e.g., Jung et al. 2010a;67

Ryzhkov et al. 2011, 2013a,b; Kumjian et al. 2012, 2014, 2015; Putnam et al. 2014, 2017; Dawson68

et al. 2014; Johnson et al. 2016) and winter storms (e.g., Andrić et al. 2013; Sulia and Kumjian69

2017a,b). However, these model-observation comparisons using forward operators often have70

substantial uncertainties, the details of which usually are not assessed. One class of uncertainties71

includes those associated with tunable parameters used or imposed by the forward operator to72

characterize particle properties not explicitly predicted or diagnosed by the microphysics model;73

for example, ice crystal shapes are treated using fixed maximum dimension-thickness relationships74

in the forward operators of Ryzhkov et al. (2011) and Andrić et al. (2013). Other examples include75

particle fall behaviors (i.e., particle orientation can strongly affect the simulated radar variables but76

typically is not predicted or provided by microphysics schemes), and even the choice of electro-77

magnetic scattering calculations employed. An example of the latter is discussed by Schrom and78

Kumjian (2018), who quantified large errors in simulated polarimetric radar variables when ho-79

mogeneous spheroids are used to approximate branched planar crystals like dendrites and stellars80

in scattering calculations.81

Another class of uncertainties in model-observation comparison arises only when comparing to82

the observations themselves, originating from structural errors associated with the accuracy of ap-83

proximations explicitly made in the formulation of the microphysics schemes. For example, most84

bulk microphysics parameterization schemes assume a functional form for the PSD, typically one85

that facilitates analytic integration (like the gamma PSD mentioned above). This leads to a unique86

mapping between model-predicted variables (e.g., total number concentration, total mass content)87
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and radar observational quantities. Real PSDs, however, have much greater variability (i.e., not88

all PSDs have shapes well defined by the simple analytic PSDs assumed in most bulk schemes),89

leading to a greater number of degrees of freedom than bulk schemes are able to represent. In90

other words, although there is a unique mapping between PSD moments and radar variables for91

most bulk microphysics schemes, no such relationship exists in nature1 (with the exception of a92

nearly unique mapping between the sixth moment of the raindrop size distribution and radar re-93

flectivity). This necessitates a treatment that accounts for this model deficiency in order to make94

valid comparisons between radar variables resulting from real and simulated PSDs.95

This paper circumvents the problem of imposed PSD shape by creating a moment-based forward96

operator: one that does not assume any PSD functional form. The moment-based forward operator97

developed herein is flexible and can be used with a variety of bulk microphysics schemes: it98

directly connects the polarimetric radar variables to integrated PSD moments, regardless of the99

underlying PSD functional form assumed in such schemes. For example, traditional two-moment100

bulk microphysics schemes predict mixing ratios for mass (proportional to the third moment)101

and total number (the zeroth moment). Inputs from such a scheme for the forward operator are102

values of the zeroth and third moments at each model grid point, with no assumptions about103

the underlying PSD shape. Note that the moment-based approach is necessary in order to use104

instrument forward operators with bulk microphysics schemes that do not assume an underlying105

functional PSD form (e.g., Chen and Liu 2004; Szyrmer et al. 2005; Laroche et al. 2005; Kogan106

and Belochitski 2012). For most current bulk microphysics schemes that do use a fixed PSD107

functional form, our moment-based forward operator also provides an estimate of uncertainty108

owing to natural PSD variability not accounted for in these schemes. Such a framework is also109

1Note that these uncertainties are also relevant to the calculation of microphysical process rates; however, this is beyond the scope of the current

study and will be addressed in future work.
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used to find the optimal combinations of moments that minimize uncertainty in mapping to the110

radar variables. This can help guide the choice of prognostic variables in bulk schemes such that111

they are optimized for use in conjunction with radar observations.112

Our study is the first step towards this moment-based approach, using the simplest framework:113

rain (liquid-only) microphysics. Unlike the uncertainties and complexities associated with snow114

crystals described above, raindrop shapes are relatively well understood (e.g., Pruppacher and Pit-115

ter 1971; Beard 1976; Beard and Chuang 1987; Brandes et al. 2005; Thurai et al. 2009), as are their116

electromagnetic scattering properties at weather radar wavelengths (e.g., Bringi and Chandrasekar117

2001; Ryzhkov et al. 2011). Additionally, dual-polarization radar variables are known to provide118

information – at least qualitatively – on rain microphysical processes such as evaporation (Li and119

Srivastava 2001; Kumjian and Ryzhkov 2010; Xie et al. 2016), size sorting (Kumjian and Ryzhkov120

2012), and collision-coalescence-breakup (Kumjian and Prat 2014). In developing this moment-121

based forward operator, we also present the relationships between integrated DSD moments and122

the polarimetric radar variables, and quantify the uncertainty associated with DSD shape in terms123

of the polarimetric radar variables for broader use.124

The next section outlines the methods used in this study. Section 3 describes how to identify125

the optimal prognostic moments for use with polarimetric radar data. The forward operator is126

developed in section 4. Section 5 shows example tests using a simulated rain shaft. The paper127

closes with a discussion and summary of the main conclusions in section 6.128

2. Methods129

DSDs are the key to linking microphysical model output to radar data because they are used130

to compute the bulk physical quantities of interest predicted by the model, typically total number131

and mass mixing ratios, as well as the radar variables, such as equivalent reflectivity factor at132
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horizontal polarization (ZH), differential reflectivity (ZDR), and specific differential phase (KDP).133

For a review of these dual-polarization radar variables, see Kumjian (2013a,b) and Kumjian (2018)134

and references therein.135

The first step towards developing the forward operator is to create a database of DSDs. A large136

population of DSDs is desired because the forward operator should be able to handle any realistic137

precipitation situation. DSDs from both state-of-the-art bin model simulations and ground-based138

disdrometers are used (described below). The simulations allow for DSDs from a wide portion of139

the parameter space, representative of a diverse set of precipitation regimes, whereas the disdrom-140

eter data include DSDs from several different geographic regions.141

The dataset will be briefly described here; details are provided in Morrison et al. (2018). Dis-142

drometer data from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement143

(ARM) program Climate Research Facility are used (Ackerman and Stokes 2003; Mather and144

Voyles 2013). These include samples from model RD80 Joss-Waldvogel impact disdrometers145

(e.g., Joss and Waldvogel 1967) and two-dimensional video disdrometers (2DVD; e.g., Tokay146

et al. 2001; Kruger and Krajewski 2002). The data come from geographically diverse regions,147

including ARM permanent sites in the U.S. Southern Great Plains, Tropical Western Pacific, and148

Eastern North Atlantic (Mather and Voyles 2013; Sisterson et al. 2016; Long et al. 2016, respec-149

tively), as well as field campaigns in the Indian Ocean (Yoneyama et al. 2013; Gottschalck et al.150

2013), and Finland (see Miller et al. 2016; Petäjä et al. 2016). These data cover all months and151

seasons, including stratiform, convective, continental, and maritime regimes. Data quality control152

and filtering procedures are described in Morrison et al. (2018). After these procedures, 671303153

disdrometer DSD samples remain (a sample is a 30− or 60−second average).154

The simulations used herein employ the one-dimensional spectral bin microphysical model of155

Prat and Barros (2007) and Prat et al. (2012), following the setup used by Kumjian and Prat156
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(2014). DSD evolution is explicitly predicted for one hour in a one-dimensional, 3-km tall rain157

shaft with 10-m vertical grid spacing. The model is initialized with a prescribed DSD at the top of158

the domain. At the first time step, the raindrops (which are discretized into 40 size bins) begin to159

fall and the DSD then freely evolves under the influence of microphysical processes. The model160

considers interactions among raindrops including drop coalescence, collisional and aerodynamic161

breakup, and sedimentation. Overall, the model performs well, consistently able to reproduce162

realistic DSDs as compared to radar and disdrometers (Prat et al. 2008; Prat and Barros 2009;163

Kumjian and Prat 2014). One potential bias exists for very heavy rainfall (> 100 mm hr−1), in164

which an overly aggressive drop breakup formulation may result in an underestimate of median165

drop size (Kumjian and Prat 2014). A total of 10742 simulations were performed, covering a wide166

range of initial conditions, including rainfall intensity, mean drop size, DSD shape, etc. (details167

can be found in Morrison et al. 2018). To populate the DSD dataset, DSDs are taken at every model168

height and output time (every 1 minute). Doing so allows us to obtain samples of transient and non-169

steady-state DSDs from processes such as size sorting that are not well captured in disdrometer170

data, but are readily observed in dual-polarization radar observations (e.g., Kumjian and Ryzhkov171

2012). The bin simulations produced 184180279 DSDs. Thus, the combined dataset is strongly172

dominated by the bin simulations owing to their availability.173

Many of the model-predicted physical quantities of interest are proportional to specific moments174

of the DSD:175

Mk ≡
Dmax∫

Dmin

N(D)DkdD (1)

where Mk is the kth moment of the DSD, integrated from the minimum drop size Dmin to maximum176

drop size Dmax, and N(D) is the DSD (number concentration of drops with diameters in the size177

range D to D+dD). For example, the zeroth moment (M0) of the DSD is the raindrop total number178
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concentration, whereas the third (M3) is proportional to the total raindrop mass content. For each179

DSD in the dataset, the integer moments k = [0,10] were computed using eqn (1). Because the180

moment values may span several orders of magnitude, we convert them to decibels (dB) using181

Mk [dB] = 10× log10

(
Mk
[
mmk m−3]

1 mmk m−3

)
(2)

Note that the units depend on moment order k. The moment values will be expressed in dB for the182

remainder of the paper. In the current paper, we relate the polarimetric radar variables computed183

from observed and simulated DSDs to their respective moments. The moments themselves dis-184

play natural covariability that lends itself to scaling relationships and a general DSD normalization185

method discussed in further detail in Morrison et al. (2018). All calculations are performed at S186

band (∼11-cm wavelength), assuming liquid drops at 20 ◦C and are valid for low radar antenna187

elevation angles (< 10◦). The raindrop shapes are taken as a function of size following Bran-188

des et al. (2005). The T-matrix method (Mishchenko 2000) is used to compute the forward and189

backward scattering amplitudes, from which the radar variables are calculated following Ryzhkov190

et al. (2011). This is the same method employed by Kumjian and Prat (2014) and numerous other191

studies.192

As mentioned in the introduction, we have not explored the effect of other sources of uncer-193

tainty such as choice of drop shape model, liquid water temperatures, and distribution of canting194

angles − we have focused solely on the uncertainty associated with the mapping between model-195

predicted quantities (integrated DSD moments) and polarimetric radar variables that is related to196

natural DSD variability. Uncertainty not estimated here can be easily added in subsequent work197

by summation of variances, assuming no correlation between different error terms. Thurai et al.198

(2007) showed that, at S band, the discrepancies in ZH and KDP arising from different choices of199

raindrop shape models and liquid water temperature are negligible, whereas ZDR differences could200
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be up to 0.1−0.2 dB in magnitude for a small subset of DSDs characterized by large median drop201

sizes. For most of the DSD parameter space considered by our forward operator, then, we expect202

the added uncertainty arising from these choices to be smaller than the spread in ZDR values arising203

owing to natural variability.204

Figures 1-3 show the joint histograms of M0 through M10 versus the polarimetric radar variables205

using all DSDs in the dataset. These figures reveal the relationships between polarimetric radar206

variables and moments of different order k. As expected, some moments exhibit much clearer207

relationships with the radar variables than others. For example, ZH is nearly perfectly described by208

M6, whereas the dependence on M0 is rather weak (Fig. 1). This is expected given that M6 defines209

the radar reflectivity factor for spherical liquid drops with diameters small compared to the radar210

wavelength; at S band, most drops are safely considered electromagnetically small. That is to say,211

the Rayleigh approximation holds for all but the largest raindrops, where minor deviations from a212

linear ZH −M6 relationship arise. KDP (Fig. 3) appears closely related to M4 and M5 as suggested213

in previous studies (e.g., Sachidananda and Zrnić 1986; Bringi and Chandrasekar 2001; Lee et al.214

2004; Maki et al. 2005). This is in sharp contrast to ZDR, which has more tenuous relationships215

with the moments, with higher-order moments displaying only slightly stronger relationships to216

ZDR (Fig. 2). In part, these weak relationships are because ZDR does not depend on raindrop217

concentration, whereas ZH and KDP do.218

These joint histograms have implications for which prognostic moments offer the greatest utility219

for linking model output with the polarimetric radar variables. M0, for example, has a broad220

distribution for all three radar variables compared to higher-order moments. This implies a wide221

range of M0 values can produce the same ZH , ZDR, or KDP values. As such, M0 has limited utility222

in informing ZH , ZDR, or KDP compared to higher-order moments. From the perspective of model223

validation as well as data assimilation, the best prognostic DSD moments are likely to be those224
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most directly informed by observed radar quantities; in that context, the standard choice of M0225

and M3 in bulk microphysics schemes is unfortunate, as these moments are only weakly related to226

radar variables. This motivates the following question: which combination of moments offer the227

greatest information content (i.e., least spread in the joint histograms) for the radar variables? The228

next section addresses this question.229

3. Identifying Optimal Predicted Moments for Polarimetric Radar Measurements230

Though bulk microphysics schemes typically predict M0 and M3, the S-band radar variables are231

strongly related to higher moments in part because the back- and forward-scattering cross sections232

are proportional to D6 for particles with diameters small compared to the radar wavelength. This233

leads to challenges in comparing radar observations with microphysical model output. Here we234

assess which pair of moments (i.e., for a two-moment scheme) minimizes the variability in ZH ,235

ZDR, and KDP for a collection of realistic DSDs, and thus would offer the most information content236

on those radar variables if prognosed.237

We first discretize the pair of moments Mk and M j into 1-dB × 1-dB bins. Within each bin, the238

ZH , ZDR, or KDP values from the DSD dataset are collected. For example, in Fig. 4a, an arbitrary239

bin is selected, within which M0 values range between 30−31 dB and M3 values between 32−33240

dB. Within this bin, there are ∼2.2× 105 DSDs, with the bulk of their corresponding ZH values241

ranging from 35 to 46 dBz (Fig. 4b). We can quantify the spread of ZH values within each pixel242

by calculating the standard deviation. However, before computing the standard deviation of ZH243

values, the evident linear trends (in logarithmic space) must be removed. Otherwise, variability244

within this bin will be a result of the linear trend, as opposed to the variability about this linear245

trend. Thus, for each 1-dB × 1-dB bin, linear trends in ZH with M0 and M3 across this bin are246
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removed. The standard deviation is then computed, resulting in a 2-dimensional map of detrended247

standard deviation σZH spanning the range of moment values (not shown).248

To objectively quantify variability in prognostic moment pairs, we define a variable ξ :249

ξ ≡
M

∑
m

N

∑
n

σX

[
M(m)

k ,M(n)
j

]
×P

[
M(m)

k ,M(n)
j

]
(3)

where M and N are the number of bins for discretized moments Mk and M j, respectively; σX is250

the standard deviation of the detrended polarimetric radar variable X for the mth bin of Mk and nth
251

bin of M j, and P is the joint normalized probability distribution function (PDF) of moments Mk252

and M j in bins m and n, respectively. Physically, ξ represents the PDF-weighted spread in a given253

radar variable for a given pair of moments (Mk, M j). Note that KDP is expressed in dB for these254

calculations to facilitate comparison with ZH and ZDR.255

The PDF weighting ensures that contributions from rare or outlier pixels are commensurate with256

their occurrence. However, the PDF generated by the bin simulations and disdrometer data is arbi-257

trary (based on availability of disdrometer data and locations, choice of bin simulation parameter258

space, etc.) and thus may inadvertently introduce biases if used as is. Instead, a climatology of259

observed rainfall rates from 5-minute ground-based rain gauges (see Morrison et al. 2018) is used260

to subsample the DSD dataset. This provides a dataset of 2× 105 DSDs that has approximately261

equal contributions from the disdrometer and bin simulations and that reflects the climatological262

distribution of rainfall rates in the U.S. as measured from ground-based gauges.263

The resulting ξ maps are shown in Figure 5. One can see that ξ is minimized for different264

pairs of moments for ZH , ZDR, and KDP. This is expected, given that each variable has different265

dependencies on the DSD. For example, given that ZH is nearly equal to M6 at S band, most com-266

binations of M6 and another moment provide the lowest ξ values (Fig. 5a). In contrast, (M5, M9)267

produces the lowest ξ for ZDR (Fig. 5b). Also note the large ξ values for moment order less than or268
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equal to M3, which reveals large variability in the radar variables for the moments traditionally pre-269

dicted by bulk microphysics schemes. To identify the moment pair that minimizes variability for270

all three variables, ξ (ZH), ξ (ZDR), and ξ (KDP) were normalized by their respective mean values271

and summed together (Fig. 5d). The moment pair that yielded the minimum variability2 and thus272

is determined to be the optimum moment pair for informing models with dual-polarization radar273

observations was found to be (M6, M9). For the remainder of the paper, we will show traditional274

prognosed moments (M0, M3) and the ones indicated by this analysis (M6, M9). Additionally, given275

the practical consideration of predicting M3 in bulk microphysics schemes (as it is proportional to276

total mass), (M3, M6) will be shown as well. Unlike M0, M3, and M6, M9 has no conventional277

physical meaning3 other than the ninth moment of the DSD.278

4. The Moment-based Forward Operator279

The moment-based forward operator is built using the full (combined) dataset rather than the280

subsampled one. This is because we desire the forward operator to cover the maximum possible281

spread of moment values, even if these values are rare in nature. We take a lookup table approach282

to the forward operator: linear interpolation (in logarithmic moment space) of the binned (M j, Mk)283

values is used as a function of the input moment values. Then, the corresponding mean values (in284

each 1−dB × 1−dB pixel) of ZH , ZDR, and KDP are found. For example, the two-moment version285

of the forward operator takes as inputs a given moment pair (M j,Mk) from, say, output from a two-286

moment bulk microphysics scheme that predicts M j and Mk. The mean value for each polarimetric287

radar variable in the corresponding bin is assigned. Sensitivity tests (not shown) suggested 1-dB288

2Note: this is somewhat sensitive to how the ξ for each variable are summed. Different weightings may be applied as needed. For example, if

less confidence is placed on comparing ZDR to observations owing to calibration issues, or on KDP owing to difficulties in its estimation because of

noisy total differential phase (ΦDP) fields, one could weight the summation away from one of the variables in favor of the other two.
3If normalized by M6, then M9 could be considered the “reflectivity-weighted mass” of the distribution.
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×1-dB moment bins were an adequate balance between attaining sufficiently high resolution in289

the M j-Mk parameter space and keeping the look-up tables manageable in size for our purposes290

herein. Note that the forward operator may be easily updated as more DSD data become available291

(e.g., from ongoing and future field campaigns), or with additional bin model simulations, etc.,292

and can be generated at higher resolutions if needed in future work. A graphical depiction of three293

versions of the two-moment operator is shown in Fig. 6. The three versions use the (M0, M3), (M3,294

M6), and (M6, M9) moment pairs, respectively, for the polarimetric radar variables ZH , ZDR, and295

KDP. These versions of the forward operator would be used with schemes that predict M0 and M3296

(most existing two-moment bulk microphysics schemes), M3 and M6, and M6 and M9, respectively.297

The (M0, M3) operator (Fig. 6a-c) is based on the moments typically predicted in double-moment298

bulk microphysics schemes, where M0 is the total number concentration of drops and M3 is pro-299

portional to the total mass per unit volume of the drops. This version of the forward operator may300

be used with many commonly used two-moment bulk microphysics schemes, with the inputs sim-301

ply being the predicted M0 and M3 at each model grid point. For the same M0, we see an increase302

in ZH , ZDR, and KDP as M3 increases. This makes sense physically: as M3 (mass) of the drops in-303

creases for a fixed number concentration, the drops must be increasing in size. A different pattern304

emerges for the (M3, M6) operator (Fig. 6d-f). Because M6 is almost identically ZH at S band,305

there is little change in ZH for increasing M3 when M6 is held fixed. For a given M3, increasing306

M6 leads to larger ZH , ZDR, and KDP. The (M6, M9) operator (Fig. 6g-i) is similar to the (M3, M6)307

operator, though a given value of the radar variables generally is spread over fewer of the 1−dB by308

1−dB moment bins owing to less natural variability in the (M6, M9) moment pair (see Morrison309

et al. 2018).310

Recall that each 1-dB × 1-dB pixel on these maps contains numerous DSDs and thus a dis-311

tribution of polarimetric radar variable values within it. A novel feature of our moment-based312
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forward operator is that it facilitates estimating the uncertainty associated with a moment-based313

approximation of natural DSDs. To compute such uncertainty, the standard deviation, skewness,314

and kurtosis are computed using the detrended data to characterize the distributions of intrinsic315

ZH , ZDR, and KDP variability within each pixel. Figure 7 shows standard deviation of each radar316

variable distribution within each pixel, for the three forward operators shown in Fig. 6. Comparing317

the (M0, M3) operator (top row) with the (M3, M6) and (M6, M9) in the rows below, a large reduc-318

tion in the standard deviation of ZH is evident, which follows naturally from the fact that (M3, M6)319

and (M6, M9) both utilize M6. There is also a reduction in the standard deviation of ZDR and KDP320

evident when moving from the top to bottom rows. Skewness magnitude (Fig. 8) and kurtosis (not321

shown) are also substantially higher for (M0, M3), compared with the other moment-pair choices.322

High skewness magnitude and kurtosis imply that the uncertainty within these regions is non-323

Gaussian. Such non-Gaussianity poses problems for optimal estimation and Kalman-filter based324

techniques that typically assume model linearity and Gaussian error statistics, with few exceptions325

(e.g., Hodyss 2011; Amezcua and Leeuwen 2014; Bishop 2016).326

5. Examples Using Simulated Rainshafts327

To test the effectiveness of the forward operator, example rainshafts from the 1-D bin simulations328

are used. Radar variables are calculated at each minute directly from the bin model DSDs, which329

are considered “truth” for these tests. We also compute the moments from these DSDs, which330

serve as the inputs to the forward operator. The radar variables produced by the forward operator331

are compared to the truth (bin simulation) values computed directly from the DSD itself. This332

simulation is independent from the ones used to construct the DSD database.333

Figure 9 shows vertical profiles of ZH , ZDR, and KDP for a bin simulation initialized with a nor-334

malized gamma DSD aloft with rainfall rate R = 36.7 mm hr−1. The “truth” profiles are shown335
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in blue lines, whereas the (M6, M9) forward operator profiles are in gray, with ±1 standard devi-336

ation shown as horizontal bars on the forward-simulated profiles every 10 grid points. Each row337

represents a different output time in the simulation. Each profile shows the evolution of the rain338

shaft as raindrops fall towards the surface. At early times, size sorting of drops (e.g., Kumjian and339

Ryzhkov 2012; Kumjian and Prat 2014) is evident by the rapidly increasing ZDR and decreasing340

ZH and KDP values at the bottom edge of the rain shaft. This provides a good test for the forward341

operator given the somewhat exotic DSDs compared to later times when the profiles change little342

in height.343

The forward operator-retrieved ZH profile nearly perfectly matches the “truth” profiles at each344

time, which is unsurprising given that M6 is one of the moments used to inform the forward sim-345

ulator. Additionally, the standard deviation is very small at all heights, as indicated by negligibly346

small error bars. Thus, not only does the forward operator correctly diagnose ZH , but it also cor-347

rectly suggests high confidence in the diagnosis. In contrast to ZH , ZDR and KDP provide a more348

difficult challenge for the forward operator given their weaker relationships to DSD moments (cf.349

Figs. 2 and 3). Nonetheless, the forward operator does a satisfactory job at accurately diagnosing350

the evolving ZDR and KDP profiles: relative error magnitudes (defined as the difference between the351

“truth” and forward operator curves) generally are less than 0.5%, 5%, and 10% for ZH , ZDR, and352

KDP, respectively. The relatively larger error magnitudes for KDP are a result of using higher-order353

moments (recall that M4 and M5 are the most closely related to KDP). Additionally, the diagnosed354

profiles are almost always within the ±1 standard deviation bars. For times when the “truth” lies355

outside the ±1 standard deviation bars, the diagnosed ZDR and KDP values are still well within356

typical theoretical radar measurement errors of ∼0.1-0.2 dB for ZDR and ∼0.1-0.2 deg km−1 for357

KDP (Melnikov 2004). Thus, the (M6, M9) forward operator performs well for the evolving rain358

shaft.359
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Figure 10 compares the performances of three different versions of the forward operator: (M0,360

M3) (Fig. 10a-c), a commonly used pair of prognostic moments for two-moment bulk micro-361

physics parameterization schemes, (M3, M6) (Fig. 10d-f), and (M6, M9) (Fig. 10g-i). This example362

uses the same initial DSD aloft as in Fig. 9, with the output time t = 10 minutes shown. It is clear363

that the (M3, M6) and (M6, M9) versions are both more accurate and have less predicted spread364

(±1 standard deviation) than the (M0, M3) version, an expected result given the higher moment365

orders used. In contrast, the less accurate (M0, M3) version of the forward operator has relatively366

larger error bars, indicating that the forward operator correctly assesses lower confidence when367

it is less accurate. This is a novel feature of the moment-based forward operator presented here.368

That the “truth” profiles fall outside the forward operator ±1 standard deviation bars illustrates the369

low-information content of M0 and M3 for the polarimetric radar variables, and is not unexpected,370

given that approximately 32% of all forward-simulated values will fall outside these bounds, as-371

suming Gaussian error statistics. Furthermore, in the case of (M0, M3), Fig. 8 suggests that the372

standard deviation may not well-characterize errors given strong deviations from Gaussianity.373

Figure 11 shows another example; this time, the simulation is initialized with a normalized374

gamma DSD aloft with much lower rainfall rate (∼0.3 mm hr−1), again one that was not included375

in the initial dataset. As with the previous example, we see a marked improvement of the forward376

operator performance going from (M0, M3) (Fig. 11a-c) to (M3, M6) (Fig. 11d-f) and again to377

(M6, M9) (Fig. 11g-i). Once again, the ±1 standard deviation bars reflect the increasing forward378

simulator uncertainty with decreasing accuracy, particularly evident in the (M0, M3) version of379

the operator. The (M3, M6) operator works well for ZH and KDP, but has slight positive bias for380

ZDR. However, the discrepancy is ≤ 0.1− 0.2 dB, which is well within observation error. The381

superior performance of the (M6, M9) operators in both examples suggests it is robust for use in382

both light and heavier rainfall rates. These results show that using a bulk microphysics scheme383
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that predicts M3 and M6 (and/or M9) instead of M0 and M3 is better for use of dual-polarization384

radar data as a constraint or for data assimilation. Note that including M3 as a prognostic variable385

is important for conserving mass in models, so not predicting it may be problematic in practice.386

Thus, we advocate for models to use M3 and M6 as prognostic variables for two-moment schemes,387

or M3, M6, and M9 as prognostic variables for three-moment schemes. For two-moment bulk388

microphysics schemes that predict M0 and M3, dual-polarization radar data may still be used, just389

with considerably larger errors and greater uncertainty in the mapping between model-predicted390

quantities and the observed radar quantities. Whereas our forward operator attempts to quantify391

this uncertainty, existing forward operators use the model-assumed DSD shape (which forces a392

unique mapping between the predicted variables and radar variables that does not exist in nature)393

and does not quantify uncertainties associated with this assumption.394

In principle, the approach outlined above can be extended to any number of moments and any395

radar variable with an accurate DSD-based forward operator. We have tested a three-moment396

version of the forward operator using M0, M3, and M6, the most common prognosed moments for397

existing three-moment schemes (e.g., Milbrandt and Yau 2005). The results showed only minimal398

improvement over (M3, M6) and (M6, M9) owing to the low-information content of M0 for radar399

variables (cf. Figs. 1-3). Higher-order moments (e.g., M3, M6, M9) may be more useful with400

polarimetric radar variables and are attractive from a microphysical modeling perspective because401

M3 (mass) is a prognostic variable, as discussed above. Although some microphysical process402

rates are strongly dependent on lower-order moments, using the three-moment combination (M3,403

M6, M9) allows for diagnosing lower-order moments quite well (Morrison et al. 2018) and thus is404

not a significant concern.405

19



6. Discussion and Summary406

A large dataset of disdrometer-estimated and bin-model-simulated DSDs was constructed to407

quantify the relationships between different integrated moments and the S-band polarimetric radar408

variables, determine the uncertainty of those radar variables for a given pair of DSD moment409

values, and develop a moment-based polarimetric radar forward operator. This dataset comprises410

671 303 DSDs estimated from Joss-Waldvogel and 2D-video disdrometers at U.S. Department of411

Energy sites around the world, as well as 184 180 279 DSDs simulated using a one-dimensional412

bin microphysical model that explicitly treats raindrop collisional processes.413

The data reveal a strong relationship between the sixth moment of the DSD (M6) and radar414

reflectivity factor at horizontal polarization ZH , as expected: for spherical liquid droplets with di-415

ameters small compared to the radar wavelength, the reflectivity factor is exactly equal to M6. The416

specific differential phase KDP was most closely related to M4 and M5, as reported in some previ-417

ous studies (e.g., Sachidananda and Zrnić 1986; Bringi and Chandrasekar 2001; Lee et al. 2004;418

Maki et al. 2005). In contrast, differential reflectivity ZDR showed no strong relationship with any419

of the DSD moments, but tended to have slightly reduced spread for higher-order moments. Future420

work will explore additional observations and their relationships to DSD moments, such as mean421

Doppler velocity from vertically pointing radar, lidar backscatter, etc.422

The dataset was subsampled to 2×105 DSDs based on a climatology of observed rainfall in the423

U.S. (Morrison et al. 2018) to determine the expected natural variability of the radar variables for424

a given pair of moment values. The pair of moments minimizing this variability is M6 and M9.425

Choosing these optimal moments is a way of recasting DSD variability such that natural variability426

is minimized in each (M j, Mk) pixel. In contrast, moments predicted by most bulk microphysical427

parameterization schemes (M0 and M3) revealed much greater variability for the polarimetric radar428
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variables. This implies that, when comparing rain microphysical models and polarimetric radar429

observations, predicting higher-order moments (as opposed to or in addition to M0 and M3) could430

significantly improve the information content obtained from the radar variables.431

A forward operator was developed to relate integrated DSD moments to polarimetric radar vari-432

ables. The operator provides the mean value of ZH , ZDR, and KDP for a given pair of moment433

values as inputs, as well as the uncertainty in the radar variables caused by natural DSD vari-434

ability (i.e., the detrended standard deviation in ZH , ZDR, and KDR within a M j-Mk bin), and435

information about the distribution of radar variable values (i.e., the skewness and kurtosis). Us-436

ing one-dimensional rainshafts as a benchmark, several different versions of two-moment forward437

operators were tested: (M0, M3), (M3, M6), and (M6, M9). The (M6, M9) version performed well438

for different rainshafts of varying rainfall rate, including more exotic DSDs arising from size sort-439

ing early in the rainshaft evolution. In contrast, the forward operators with lower moment orders440

performed worse. The forward operator also correctly predicted its uncertainty, with greater vari-441

ability indicated for the less accurate versions. This is a novel aspect of the operator developed442

herein.443

The optimal moments for informing on the dual-polarization radar variables are of higher order444

than bulk microphysics schemes typically prognose. Though such high moments individually445

may not provide much of a constraint for lower-order moments needed for such schemes, they446

can still reduce the uncertainty considerably when used in combination (i.e., multiple prognostic447

moments) and/or in combination with lower-order moments (Morrison et al. 2018). In other words,448

if attempting to diagnose the kth moment Mk, reference moment Mk+n always provides a better449

estimate than reference moment Mk−n for all n. Further, Morrison et al. (2018) show that a three-450

moment normalization using M3, M6, and M9 will result in only ∼21% of the variability in M0451

compared to not using the DSD normalization. Thus, use of such higher-order moments in bulk452
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microphysics schemes may not be detrimental, and indeed could be beneficial when combined453

with lower-order moments typically prognosed (like M3).454

The moment-based forward operator developed herein is necessary for coupling radar observa-455

tions with bulk microphysics schemes that do not assume a DSD functional form (e.g., Chen and456

Liu 2004; Szyrmer et al. 2005; Laroche et al. 2005; Kogan and Belochitski 2012). Other forward457

operators reliant on a discretized DSD would require assuming an explicit DSD functional form,458

imposing structural error into the mapping between model output and radar observations. The459

approach herein strives to minimize and quantify this type of uncertainty, such that the majority of460

the remaining uncertainty contained in the forward operator arises owing to DSD natural variabil-461

ity, and is explicitly estimated. Ultimately, this type of approach should lead to improved mapping462

of model output to the radar observational parameter space with a better characterization of un-463

certainty. For traditional bulk microphysics schemes, use of the moment-based operator described464

here may prevent errors associated with overconfidently comparing approximate bulk schemes to465

observations associated with more complex, realistic DSDs.466
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FIG. 1. Joint histograms of moments Mk and ZH , for k from 0 to 10 inclusive, all in dB. Color shading

indicates the base-10 logarithm of count, according to scale.
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FIG. 2. Joint histograms of moments Mk and ZDR, for k from 0 to 10 inclusive, all in dB. Color shading

indicates the base-10 logarithm of count, according to scale.
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FIG. 3. Joint histograms of moments Mk and KDP, for k from 0 to 10, inclusive, in dB and deg km−1,

respectively. Color shading indicates the base-10 logarithm of count, according to scale.
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FIG. 4. Joint distribution of M0 and M3 (both in dB) for the entire DSD dataset, shading indicating occurrence

in logarithmic scale. An arbitrary bin is selected (black square). Outset: All ZH values within the selected M0-M3

bin are shown in three dimensions (blue markers) along with their two-dimensional projections (gray markers

on lateral walls of outset).
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FIG. 5. (a) ξ (ZH) (dB), (b) ξ (ZDR) (dB), (c) ξ (KDP) (dB), and (d) sum of ξ (dB) for the subsampled dataset

as a function of moment orders j and k. Larger values indicate more variability for that moment combination.

White values indicate no values. Note that these matrices are symmetric.
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FIG. 6. Graphical representation of different two-moment forward operators. Top row (a-c) is the M0,M3

forward operator, middle row (d-f) is M3,M6, and bottom row (g-i) is M6,M9. Left column is ZH , middle column

is ZDR, right column is KDP.
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FIG. 7. As in Fig. 6, but here the standard deviation of the distribution of radar variable values within each

pixel is shown.
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FIG. 8. As in Fig. 7, but here the skewness of the distribution of radar variable values within each pixel is shown.
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FIG. 9. Example output of forward operator compared to “truth” from bin model (blue).M6-M9 forward

operator shown (gray), with error bars indicating ±1 standard deviation. The model is initialized with a gamma

DSD aloft with 36.7 mm hr−1 rainfall rate, with rows corresponding to output times 1, 5, and 30 minutes.
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FIG. 10. Comparison of different versions of two-moment forward operators for the simulation shown in Fig.

9, but for an output time 10 minutes. Each row now corresponds to different operator: M0-M3, M3-M6, and

M6-M9. columns are ZH , ZDR, and KDP.
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FIG. 11. As in Fig. 10, but for a simulation initialized with a gamma DSD with rainfall rate of 0.3 mm hr−1.

Each row now corresponds to a different operator: M0-M3, M3-M6, and M6-M9. columns are ZH , ZDR, and KDP.
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