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Abstract 

Mangroves are one of the most productive ecosystems known for provisioning of various 

ecosystem goods and services. They help in sequestering large amounts of carbon, protecting 

coastline against erosion, and reducing impacts of natural disasters such as hurricanes. 

Bhitarkanika Wildlife Sanctuary in Odisha harbors the second largest mangrove ecosystem in 

India. This study used Terra, Landsat and Sentinel-1 satellite data for spatio-temporal monitoring 

of mangrove forest within Bhitarkanika Wildlife Sanctuary between 2000 and 2016. Three 

biophysical parameters were used to assess mangrove ecosystem health: leaf chlorophyll (CHL), 

Leaf Area Index (LAI), and Gross Primary Productivity (GPP). A long-term analysis of 

meteorological data such as precipitation and temperature was performed to determine an 

association between these parameters and mangrove biophysical characteristics. The correlation 

between meteorological parameters and mangrove biophysical characteristics enabled 

forecasting of mangrove health and productivity for year 2050 by incorporating IPCC projected 

climate data. A historical analysis of land cover maps was also performed using Landsat 5 and 8 

data to determine changes in mangrove area estimates in years 1995, 2004 and 2017. There was a 

decrease in dense mangrove extent with an increase in open mangroves and agricultural area. 

Despite conservation efforts, the current extent of dense mangrove is projected to decrease up to 

10% by the year 2050. All three biophysical characteristics including GPP, LAI and CHL, are 

projected to experience a net decrease of 7.7%, 20.83% and 25.96% respectively by 2050 

compared to the mean annual value in 2016. This study will help the Forest Department, 

Government of Odisha in managing and taking appropriate decisions for conserving and 

sustaining the remaining mangrove forest under the changing climate and developmental 

activities. 

 

 

1. Introduction 

 

Mangrove ecosystems are not only very productive but also have unique morphological, 

biological, and physiological characteristics that help them adapt to extreme environmental 

conditions including high salinity, high temperature, strong winds, high tides, high 

sedimentation, and anaerobic soils (Giri et al. 2011, Kuenzer et al. 2011). The halophytic 

https://ntrs.nasa.gov/search.jsp?R=20190028839 2020-03-28T18:53:26+00:00Z
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evergreen woody mangroves have a complex root system, salt-excreting leaves, and viviparous 

water-dispersed propagules (Kathiresan and Bingham 2001, Kuenzer et al. 2011). Mangroves 

provide numerous ecosystem services. For example, they can sequester large amounts of carbon 

compared to other forests (Das and Vincent 2009, Rodriguez et al. 2016) especially in the root 

systems and soil, estimated to be around 22.8 million metric tons of carbon each year, which is 

11% of the total terrestrial carbon (Giri et al. 2011). They help in accumulation of sediments, 

contaminants and nutrients (Alongi 2002), thus acting as biological filters and maintain water 

quality. In addition, mangroves provide a buffer against erosion and storm damage, thus 

protecting coastal communities from adverse oceanic dynamics (Mazda et al. 1997, Blasco et al. 

2001). They also serve as primary habitats and nurseries for birds, reptiles, insects, mammals, 

fish, crabs (Manson et al. 2005) and many marine flora, such as algae, seagrass, fungi etc. 

(Nagelkerken et al. 2008). They also provide food, timber, fuelwood, medicine to local 

population and cultural ecosystem services through the promotion of tourism and recreation.  

Global mangroves constitute an area of 137,760 square km along tropical and subtropical 

climatic zones across 118 countries of the world (Giri et al. 2011). Naturally, global distribution 

of mangroves is governed by temperature but at regional scale, it is related to the distribution of 

rainfall, tides and waves that affect water circulation, which in turn affects the rate of erosion and 

deposition of sediments on which mangroves thrive (Alongi 2002). Southeast Asia possesses the 

largest proportion of global mangroves (Kuenzer et al. 2011) due to the favorable conditions. 

However, a recent study by Hamilton and Casey (2016) raised the issue of increased 

deforestation rates (3.58 % to 8.08%) in Southeast Asia. Natural disturbances like hurricanes, 

tsunami, storms, and lightning, also have been found to destroy millions of mangroves causing 

decline in mangrove extent in Southeast Asia. Furthermore, various studies have suggested 

numerous anthropogenic factors for declining habitats such as urban development, conversion to 

agricultural land (Reddy et al. 2007), aquaculture, mining, overexploitation for timber, fuelwood 

and fish, crustaceans and shellfish (Alongi 2002) and pollution (Giri et al. 2015). Recently, 

several studies have identified climate change as the largest global threat to mangrove in the 

coming decades (Blasco et al. 2001, Alongi 2002). It is predicted that climate change is going to 

intensively alter atmospheric and water temperature; timing, frequency and amount of rainfall; 

magnitude of sea-level rises; wind movements and frequency and severity of hurricanes 

(Solomon 2007). Though mangroves possess resistive capacity to withstand and recover from 

these changes; mangroves extent, composition and health may undergo changes when coupled 

with anthropogenic disturbances (Kandasamy 2017). Hence, an increasing need has been 

identified for global monitoring system of mangrove response to climate change (Field 1994). 

International programs, such as Ramsar Convention on Wetlands or the Kyoto Protocol have 

been advocating issues to prevent further loss of mangroves including regular monitoring of the 

ecosystem (Kuenzer et al. 2011). However, frequent monitoring is not possible with field data 

over a large spatial extent. This invokes the need for a rapid, frequent, and large-scale monitoring 

tool to help in conservation and restoration measures of mangroves. In this context, satellite 

based remote sensing has the potential to provide cost-effective, reliable and synoptic 

information to examine mangrove habitats and frequent monitoring over a large area. 

Particularly, in developing countries where geoinformation is rare, its use is immensely 

valuable.  

Availability of open source historical and near real-time satellite data, increased range of 

image datasets at varying spatial, temporal and spectral resolutions (Kamal et al. 2015), areal 
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coverage from local to global scale, advances in low-cost sensor technologies and recent 

developments in the hardware and software used for processing a large volume of satellite data 

have helped increase the usefulness of remotely sensed data in environmental monitoring. Many 

scientific studies have been published regarding the potential of remote sensing to detect, map 

and monitor extent, species differentiation, carbon stock estimation, productivity and health 

assessment of mangroves throughout the world (Giri et al. 2011, Kamal and Phinn 2011, Bhar et 

al. 2013, Giri et al. 2015, Patil et al. 2015). Many studies have used moderate resolution satellite 

data to produce a long-term phenology and identify hotspots for early stages of mangrove 

degradation (Ibharim et al. 2015, Pastor-Guzman et al. 2015, Ishtiaque et al. 2016). A study by 

Ishtiaque et al. (2016) has shown the applicability of utilizing MODIS products to monitor 

biophysical health indicators of mangroves in order to analyze degradation in the Sundarbans. 

Guzman et al. (2015) assessed spatio-temporal variation in mangrove chlorophyll concentration 

using Landsat 8. Another recent study by Ibharim et al. (2015) used Landsat and RapidEye data 

to evaluate changes in land use/land cover and produced change detection maps of mangrove 

forests to determine threats toward these ecosystems. Recently, cloud computing such as Google 

Earth Engine (GEE) and Amazon Web Services (AWS) have provided unlimited capabilities for 

satellite data processing (Giri 2016). Chen et al. (2017) demonstrated the potential of using GEE 

platform to mangrove mapping for China. Studies have also shown the potential of synthetic 

aperture radar (SAR) data for mangrove mapping, especially to address the issue of data gap due 

to cloud coverage (Cougo et al. 2015, Kumar et al. 2017). 

While many studies have assessed the status, and change of mangrove forests, very few 

studies have explored biophysical parameters of mangroves. While space and ground-based 

observations are useful in monitoring ecosystems, and assessing change-detection, they only 

consider past or current conditions or trends. Being able to assess an ecosystem in the future is 

important as it allows decision-makers to take precautionary steps and prepare for adverse future 

conditions (Nemani et al. 2007). Within the past decade climate forecasting capabilities of 

coupled ocean-atmosphere global circulation models (GCMs) have improved allowing for future 

climate trends to be applied on the ecosystem to forecast biophysical and land-cover conditions 

(Zebiak 2003, Nemani et al. 2007). Advent of tools like TerrSet Land Change Modeler have now 

allowed prediction of future land-cover transitions. Availability of data such as NASA’s 

Giovanni derived meteorological parameters and WorldClim projected spatial data have 

provided avenues for predicting how mangrove ecosystems will change in the future in response 

to environmental factors. 

This study aims at integrating data from multiple satellite sensors with projected 

meteorological variables to achieve forecasting of mangrove biophysical characteristics of 

Bhitarkanika Wildlife Sanctuary to predict future risk to mangrove extent as well as their 

ecological health status. Specific objectives of this study are to i) calibrate and validate the 

models to predict biophysical parameters (GPP and LAI) using surface reflectance data obtained 

from MODIS for 17 years (2000-2016), ii) analyze spatio-temporal variability in the biophysical 

parameters, iii) to forecast and map biophysical parameters at year 2050 using hydro-

meteorological data, and iv) to perform land use-land cover (LULC) classification and forecast of 

mangrove land cover. To the best of our knowledge, this is a novel study in terms of ecological 

forecasting based on biophysical parameters using multi-sensor multi-source data. The study was 

carried out to investigate the land cover and biophysical characteristics of mangroves in 

Bhitarkanika Wildlife Sanctuary that harbors the second largest mangrove ecosystem of India. A 
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large population depends on these mangroves for livelihood including food, raw materials, 

medicinal and ornamental products (Hussain and Badola 2010). Mangroves in this region are 

dynamic and threatened because of many drivers including over-exploitation and conversion to 

agricultural land (Reddy et al. 2007), overfishing, firewood extraction, and climatic changes. 

Few studies have assessed vegetation composition, phenology and areal extent of mangroves in 

Bhitarkanika (Reddy et al. 2006, Upadhyay and Mishra 2010, Behera and Nayak 2013). 

However, information on the temporal behavior of mangrove forests and their biophysical 

parameters is limited. This study attempts to not only understand the dynamism but also predict 

how mangrove ecosystem of this region will change in future in response to climatic factors. 

This study would provide environmental managers with ecological data for informed national 

and international management of mangrove ecosystems.  

 

2. Materials and Methods 

 

2.1 Study Area 

 

Bhitarkanika is the second largest mangrove ecosystem in India situated on the east coast 

of the country, between 2033 – 2047 N latitude and 8648 - 8603 E longitude. It lies in the 

estuarine region of Brahmani, Dhamra and Baitarani rivers in the northeastern corner of 

Kendrapara District in the state of Odisha. With an extensive area of 672 sq. km, the wetland was 

declared as Wildlife Sanctuary in 1975 and a core area of 145 sq. km has been declared as 

Bhitarkanika National Park in 1992. It falls under tropical monsoon climate with three distinct 

seasons- winter (October-January), summer (February-May) and rainy (June-September) and 

frequently experiences tropical cyclones. The wetland is a habitat for the large population of salt 

water crocodiles, turtles, many endangered mammals and avian population. Additionally, it 

supports an exceptional floral diversity with around 62 species of mangroves (Chauhan and 

Ramanathan 2008). Being a wetland with rich biodiversity, this mangrove habitat has been 

designated as a Ramsar site of international importance in year 2002. Figure 1 shows the location 

and areal extent of mangroves of Bhitarkanika Wildlife Sanctuary. 

 

 
Fig. 1. Study area map corresponding to Bhitarkanika Wildlife Sanctuary showing mangrove area in green color. 

Landsat 8-OLI band combinations [R (6): G (5): B (2)] were used to create the map. 
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2.2 Data Acquisition 

  

 Satellite data from multiple sensors were acquired from April 1995 to May 2017 (Table 

1). Cloud-free Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager (OLI), 

surface reflectance (r) products were downloaded from the United States Geological Survey 

(USGS) EarthExplorer website corresponding to Bhitarkanika Wildlife Sanctuary for Land Use 

Land Cover (LULC) classification. Sentinel-1 products were downloaded from the European 

Space Agency (ESA) Scientific Data Hub website to achieve high spatial resolution (10m) and 

improve the accuracy of LULC classification. Terra MODIS 500 m Level-2G 8-day average 

products including surface reflectance (MOD09A1), LAI (MOD15A2H) and GPP 

(MOD17A2H) products were downloaded from NASA’s Level 1 and Atmosphere Archive and 

Distribution System (LAADS) website for biophysical (LAI and GPP) model calibration and 

long-term (2000-2016) seasonal and annual trend analysis.  

 
Table 1 

Data Acquisition Chart. Cloud-free satellite images were downloaded from April 1995 to May 2017. 

Satellite Sensor Product Temporal 

Resolution 

Spatial 

Resolution 

(m) 

Source 

Landsat 5 Thematic Mapper 

(TM) 

Surface 

Reflectance (r) 

16-day 30 USGS Earth 

Explorer 

Landsat 8 Operational Land 

Imager (OLI) 

Surface 

Reflectance (r) 

16-day 30 USGS Earth 

Explorer 

Sentinel-1  

 

 

Synthetic 

Aperture Radar 

(SAR) 

High Resolution 

Ground 

Range Detected 

(GRD) 

Level-1 (IW 

mode) 

12-day 10 ESA 

Scientific 

Data Hub 

Terra Moderate 

Resolution 

Imaging 

Spectroradiometer 

(MODIS) 

Level-2G 

Surface 

Reflectance 

(MOD09GQ) 

1-day 250 NASA's 

Level 1 and 

Atmosphere 

Archive and 

Distribution 

System 

(LAADS) 

  

Level-2G 

Surface 

Reflectance 

(MOD09A1) 

8-day 500 

Leaf Area Index 

(LAI) 

8-day 500 
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(MOD15A2H) 

Gross Primary 

Productivity 

(GPP) 

(MOD17A2H) 

8-day 500 

 

Furthermore, to achieve forecasting objective, we incorporated physical-meteorological 

parameters corresponding to Bhitarkanika Wildlife Sanctuary and its watershed. Area averaged 

time series (January 2000-December 2016) data were downloaded from the NASA’s Giovanni 

web-based application interface. These data included monthly averaged precipitation from 

Tropical Rainfall Measuring Mission (TRMM) products, monthly averaged surface runoff, and 

surface temperature (Table 2). Kumar et al. (2017) incorporated similar physical-meteorological 

parameters to isolate the impact of these variables on Bhitarkanika mangrove’s biophysical 

parameters. All data were first visualized using the NASA Giovanni web interface and 

corresponding ASCII files were downloaded for each parameter for further analysis. The 

projected (2050) precipitation and temperature data were acquired from the WorldClim website 

(http://www.worldclim.org/).   

 
Table 2 

Physical-meteorological variables used in this study. 

Physical-Meteorological 

Variables 

Product Name Source 

Precipitation TRMM_3B43_v7 NASA Giovanni 

Surface Runoff GLDAS_NOAH025_Mv2.1 NASA Giovanni 

Surface Temperature GLDAS_NOAH025_Mv2.1 NASA Giovanni 

Projected Temperature 

(2050) 

GISS-E2-R (RCP 4.5) WorldClim 

Projected Precipitation 

(2050) 

GISS-E2-R (RCP 4.5) WorldClim 

 

 

2.3 Data Processing and Analysis 

 

Data processing and analysis were accomplished in two parallel components to achieve 

the objectives of this study. The first component included land cover classification for change 

detection and forecasting the threatened mangrove areas within the study site. The second 

component included re-parameterizing existing mangrove biophysical models (LAI and GPP) 

and establishing a relationship between biophysical and meteorological parameters to achieve 

forecasting objective. Finally, a qualitative comparison between forecasted land cover risk map 

and forecasted biophysical parameters maps was carried out to observe the spatial similarity 

between both. The detailed description of each component is presented in following sub-sections. 

http://www.worldclim.org/
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Fig. 2. Overall methodology and various remote sensing datasets utilized in forecasting mangrove biophysical 

parameters and future risk assessment. 

 

2.3.1 Land Cover Classification and Validation 

LULC classification was carried out for 22 years (1995-2017) using Landsat 5 TM, 

Landsat 8 OLI, and Sentinel-1 data. To accomplish land use/land cover classification, training 

site polygons were created for seven land cover classes: dense mangrove, open mangrove, water, 

agriculture, mudflat, sand and plantation. The false-color composites (Landsat 5 and Landsat 8) 

and Google Earth Imageries were used as reference to distinguish land cover classes. The 

classification map of Pattnaik et al. (2008) was used as reference for validating Landsat 5 TM 

derived LULC map result of 2004. The 1995 and 2017 classifications were cross-referenced with 

their respective false-color composites and Google Earth Imagery. GEE Explorer was used to 

create a supervised classification and the random forests algorithm was used to classify the 

imagery. Random Forests is a machine learning technique that is being increasingly used for 

image classification of percentage tree cover and forest biomass (Horning 2010) and this 

algorithm is good for dealing with outliers in training data. It calculates classification error using 

one third of the training data (out-of-the-bag samples) while the remaining two thirds of the data 

is used to build the Random Forests Model (Horning 2010). Moreover, random forests provide 

fast and higher accuracy compared to other well-known classifiers for remotely sensed data 

(Gislason et al. 2006). 

Output land cover maps were validated visually with stratified sample points using 

Google Earth satellite imagery at the closest timestamp. In addition, published literatures were 

referenced to maximize the accuracy of the land cover classification (Reddy et al. 2007, 

Pattanaik et al. 2008). An accuracy assessment was performed in TerrSet Geospatial Monitoring 

and Modeling Software (Clark Lab, Worcester, MA) to create an error matrix indicating the 
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producer’s and user’s accuracy. Additionally, the random forests algorithm produces an accuracy 

assessment using out-of-bag samples which was used to compare with the error matrix accuracy 

assessment. Finally, the classified maps were used to calculate the total area in square kilometers 

for each land cover class.  

 

2.3.2 Mangrove Forest Cover Change Analysis 

The LULC classification result was incorporated for change detection in TerrSet Land 

Change Modeler (LCM). The Land Change Modeler suite (LCM) in TerrSet was run to quantify 

land cover category change in the study area from 1995 to 2004 and from 2004 to 2017. The 

LCM output consists of land cover gains, losses, and persistence of each period as well as graphs 

of the contributors to change experienced by each land cover category. Several studies have used 

the LCM to map land cover change and predict future land-cover transitions based on user-

specific drivers of change (Rodríguez Eraso et al. 2013, Weber et al. 2014). 

To predict future land cover transitions, the transition potential and change allocation tab 

in the LCM were used. Land cover transitions that had less than 1,500 pixels of transition to 

another land cover class were excluded from the transition potential modeling. Therefore, only 

three transitions were used to run the transition sub model: dense mangrove to open mangrove, 

open mangrove to agriculture, dense mangrove to agriculture. Each transition has its own sub-

model with a set of driver variables that will influence transitions of dense and open mangrove 

classes to another land cover class. These driver variables consist of temperature, precipitation, 

distance from roads, distance from channels and distance from disturbance (open mangrove to 

agriculture). 

 

2.3.3 Forecasted Risk Map Analysis 

To predict future changes in land cover, it was necessary to empirically model each of the 

transitions; this was done using the Multilayered Perceptron (MLP) Neural Network. The MLP 

was chosen because it can handle multiple transitions at once and because the driving forces for 

these transitions are the same. The MLP Neural Network selects a random sample of pixels that 

might have or have not transitioned in each of the land cover transitions (e.g., dense mangrove to 

open mangrove) that the user incorporated in modeling (Eastman 2015). Half of the sample 

pixels were used to train the model and the other half were used to test how well the model 

performed at predicting change. The MLP creates a multivariate function that can predict the 

potential for a pixel to transition based on the values of the driver variables for that pixel 

(Eastman 2015). The model produces an accuracy of how well the driver variables can predict 

change. The MLP produces a transition potential image that describes the probability that a 

transition will occur in the landscape and is used to predict future land cover change. The change 

demand modeling panel was used to predict future transition of land cover change for the year 

2050. A soft prediction map which indicates a scale of vulnerability was used to show the risk of 

mangroves in the future. A soft prediction model is a “comprehensive assessment of change 

potential and also yields to a map of vulnerability to change that habitat and biodiversity 

assessments prefer” (Rodríguez Eraso et al. 2013, Eastman 2015). 

 

2.3.4 Biophysical Models Re-parameterization 

A recent study on Bhitarkanika mangroves by Kumar et al. (2017) utilized vegetation 

indices including Enhanced Vegetation Index (EVI) and NDVI (Eqs. 1-2) based biophysical 
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models (Eqs. 3, 4, & 5) to estimate mangroves LAI, GPP, and CHL. Because of the same study 

site, the relationship established between vegetation indices and biophysical parameters by 

Kumar et al. (2017) (Eqs. 3-5) were used as base models for re-parameterization in this study. 

When compared with standard MODIS LAI and GPP values extracted from MOD15 and 

MOD17 products, Kumar et al. (2017) models-derived LAI and GPP showed over prediction and 

hence, these two models were re-parametrized using 17 years of MODIS surface reflectance (ρ), 

MODIS LAI (MOD15), and MODIS GPP (MOD17) products from 2000-2016. However, re-

parameterization was not carried out for CHL model (Eq. 5) due to lack of a standard MODIS 

based CHL product for terrestrial sites. 

 

𝐸𝑉𝐼 =
2.5 ∗ [𝜌(NIR) −  𝜌(Red)]

[(1 + 𝜌(NIR) + 2.4 ∗ 𝜌(Red)]
(1) 

 

𝑁𝐷𝑉𝐼 =
[𝜌(NIR) −  𝜌(Red)]

[𝜌(NIR)  +  𝜌(Red)  
(2) 

 

LAI =17.155*EVI2-2.5745 (3) 

GPP =0.0983*EVI2+0.0161 (4) 

CHL=127*NDVI-46.61 (5) 
 

To re-parametrize biophysical models, 17 years (2000-2016) of ρ, LAI, and GPP data from 

MODIS 8-day products were extracted. A fish-net with spatial resolution of 500 m by 500 m was 

created across Bhitarkanika Wildlife Sanctuary (Figure 3) for extracting long-term data. Data 

extraction for mangrove pixels was performed using batch processing methods in European 

Space Agency (ESA)’s Sentinel Application Platform (SNAP) software and Esri’s ArcGIS. A 

total of 130 pixels (n=130) were selected (red circles inside fish net in Figure 3) for data 

extraction after excluding non-mangrove and mixed pixels within the study area. The EVI values 

corresponding to these 130 pixels were regressed over long-term (2000-2016) GPP and LAI 

values derived from standard MODIS products- MOD17A2H and MOD15A2H respectively 

from same pixel locations to get regression coefficients to predict GPP and LAI. To confirm the 

validity of re-parametrized models, MODIS data was randomly separated into two sets for 

calibration (12 years) and validation (5 years) and models were fit to the two datasets separately. 

GPP and LAI values estimated from re-parameterized model were then compared with MODIS-

product derived values to calculate root mean square error (RMSE) and percentage normalized 

root mean square error (%NRMSE).  
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Fig. 3. Selected point locations for extraction of the pure Mangrove pixels (Total 130 pixels). A fish net of 500m x 

500m area was created to extract data from 500m MODIS pixels.C1, C2 and C3 represent isolated cluster, dense 

cluster and open cluster respectively. 

 

2.3.5 Long-term Spatio-temporal Variability  

MODIS 8-day products derived LAI, GPP, and CHL data were analyzed monthly and 

annually in Microsoft Excel and R. LAI, GPP, and CHL data were averaged monthly for each 

year (2000-2016) for seasonal and inter-annual analysis. In order to analyze spatial variability, 

study area was sub-divided into three clusters as per spatial location of mangrove pixels such that 

the clusters were homogeneous within and heterogeneous among clusters. C1 denotes isolated 

clusters of mangroves, C2 denotes dense patches of mangroves and C3 denotes open mangroves 

(Figure 3).  

 

2.3.6 Relationship between Biophysical Parameters and Climatic Variables 

NASA’s Giovanni derived physical and meteorological data were processed in Microsoft 

Excel and R (R Develop Core Team, 2015) for regression analysis with long-term LAI, CHL, 

and GPP. Physical-meteorological long-term data (2000-2016) were averaged monthly for 

correlating with biophysical parameters. Data from monsoon season (June, July, August, 

September) were not included in correlation analysis between biophysical parameters (LAI, 

GPP, and CHL) and physical-meteorological variables because of lack of cloud free-quality data 
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for those months. Apart from direct correlation between mangrove biophysical characteristics 

and physical-meteorological parameters, a time-lag analysis was also carried out during single 

and multivariate correlation analysis.  

 

2.3.7 Forecasting Biophysical parameters 

Projected (2050) climate data including precipitation and temperature were downloaded 

in GeoTiff format and imported in ArcMap software where they were extracted using a mask of 

the study area. They were then resampled to match with MODIS resolution (500m x 500m) and 

climatic data were extracted at mangrove pixel locations (130 pixels) within the study area. 

Based on the long-term (2000-2016) regression coefficients derived from relationship between 

each of the biophysical parameters, and meteorological parameters (temperature and 

precipitation), we estimated monthly LAI, GPP, and CHL for 2050 (using monthly forecasted 

precipitation and temperature) corresponding to all 130 mangrove pixels within the study area. 

These monthly LAI, GPP, and CHL from 130 pixels were averaged for 12 months to estimate 

annual averaged value for each biophysical parameter. Further, to create annual spatial maps, 

those 130-pixel averaged values corresponding to LAI, GPP, and CHL were imported in ArcMap 

and interpolation was carried out using IDW (Inverse Distance Weighted) tool to produce 2050 

forecasted mangrove biophysical parameters spatial maps. There are other factors that could 

affect mangrove ecosystem that the study did not take into consideration such as sea-level rise, 

atmospheric carbon-dioxide level, salinity level, natural and anthropogenic disturbance. The 

forecasting method assumes that all other natural and anthropogenic factors remained 

unchanged.  

 

3.  Results & Discussion 

 

3.1 Land cover Analysis 

 

3.1.1 Land Cover Classification 

Land cover classification was performed to study mangrove extent and to monitor 

changes over time. The classified land cover maps are shown in Figure 4. These classification 

results have an overall accuracy of 84% for 1995, 82% for 2004 and 86% for 2017. As can be 

seen in Figure 4, mangrove extent changed constantly over the study period. Mangroves have 

been considered a highly dynamic ecosystem by many studies (Giri et al. 2015, Rodriguez et al. 

2016) due to simultaneous processes of erosion and accretion happening in the area (Giri et al. 

2015) and complex interactions between mangroves habitat and environmental factors 

(Rodriguez et al. 2016). Areas with open mangrove in 1995 were replaced by dense mangrove in 

2004. The subsequent increase in mangrove cover can be attributed to intensive plantation and 

conservation efforts. As compared to the classified image of 1995, one can see that the mangrove 

extent has increased in the proximity of water in 2004. Changes from water to mangroves have 

been attributed to sedimentation and formation of new grounds for mangrove establishment (Giri 

et al. 2007, Reddy et al. 2007, Ward et al. 2016).  There was also decrease in mudflat areas in 

2004 along the southern coastal strip. Reddy et al. (2007) also found that mudflat areas have 

reduced from 1973 to 2004 in Bhitarkanika due to increase in plantation area. Deforested or 

degraded patches of dense mangrove were identified in 2017 that were lost to open mangrove, 
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owing to different anthropogenic and natural drivers. RADAR data were used for 2017 land use 

classification. Radar data derived classification also showed a similar pattern of conversion of 

dense mangroves to open mangroves and classification of radar data showed highest accuracy 

(86.8%) compared to Landsat image classification. Radar data have high spatial resolution 

compared to many other hyperspectral optical sensors and a temporal resolution of 12 days. 

Radar data have comparable results with optical sensors and particularly useful for capturing 

rainy season data, when data are limited due to cloud cover (Kumar et al. 2017). In view of 

benefits of radar data, they have been applied to vegetation/land cover mapping and monitoring 

(Held et al. 2003, Joshi et al. 2016) and have the potential to be used for classification in future 

research. 

 
Fig. 4. Land cover classification using Landsat 5-TM (1995, 2004), Landsat 8-OLI (2017), and Sentinel 1 (C-SAR) 

Radar data (2017). 

3.1.2 Mangrove Forest Cover Change Analysis  

Land Change Modeler in TerrSet was used to map areas of gain, loss and persistence of 

dense mangroves in Bhitarkanika. The total amount of loss of dense mangrove was 9.28 square 

km from 1995 to 2004 and the total amount of loss from 2004 to 2017 was 21.44 square km, 

indicating more loss occurred between 2004 and 2017 than between 1995 and 2004. Zooming 

into a part of the study area (shown bounded by blue box in Figure 5), it was observed that in 
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1995, areas of open mangroves were replaced by dense mangroves in 2004. The government of 

Odisha had declared core area of Bhitarkanika as a National park in 1998. The resultant gain of 

24.4% of dense mangrove could be attributed to increased protection and consequent 

regeneration. On the other hand, 70% of the total dense mangroves again changed into open 

mangroves from 2004 to 2017 in the area. Conversion of dense to open mangroves is an 

indication of forest degradation, likely due to encroachment and over-exploitation for resources 

resulting from lack of strict law enforcement. Literature suggest that the major causes of 

mangrove forest loss include conversion to agriculture, urban development, shrimp farming, 

over harvesting, pollution, siltation and natural disturbances like reduction in freshwater flow 

etc. (Giri et al. 2015). 

 

 
Fig. 5. Dense mangrove changes from 1995 to 2004 and 2004 to 2017 

 

3.1.3 Forecasted Risk Map Analysis 

Based on the patterns of decadal changes, LULC changes were predicted for year 2050 to 

analyze risk of mangrove to disturbance in future. The MLP produced a soft prediction map that 

indicated a scale of mangrove risk to disturbance in 2050. Red to orange locations indicated 

medium to high vulnerability and locations of yellow to blue indicated lower vulnerability 

(Figure 6).  In the northern part of Bhitarkanika, lower mangrove risk locations were demarcated 

in blue while the edges of the mangrove extent indicated higher mangrove risk to disturbance in 

red. The medium to high mangrove risk to disturbance (in yellow and red) was in the southern 

part of the study area, below the Rajnagar-Pattamundai road and along the river. Another model 

that the Markov Chain analysis in MLP outputs was the hard prediction, which was a “best 

guess” of the many plausible scenarios that land cover could have in the future. The chances that 

the hard prediction would match future conditions are slim and should be interpreted with 

caution. The soft prediction model provided a better indication about risks to habitat and 

biodiversity. The hard prediction map compared to the 2017 classification map showed a greater 
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increase in agriculture from open mangrove. The soft prediction map also located areas of high 

mangrove risk that coincided with open mangrove areas in the 2017 classification map.  

 

 
Fig. 6. The soft prediction map for 2050 mangrove extent indicated the scale of risk of mangroves to disturbance. 

Red indicates high mangrove risk and blue indicates low mangrove risk. 

 

3.2 Biophysical Parameter Analysis 

 

3.2.1 Biophysical Model Re-parameterization  

 

    
Fig. 7. Comparison between MODIS standard LAI and GPP and model derived LAI, GPP. 
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Figure 7 shown above compares the time-series of LAI and GPP derived from models 

developed by Kumar et al. (2017) and standard MODIS products. The model-derived LAI and 

GPP showed over prediction. This is mainly because Kumar et al. (2017) LAI and GPP models 

were developed using only 20 selective pixels randomly distributed over study area that 

belonged to mostly dense mangrove patches from only few years of data, which produced 

systematic bias towards higher values. Therefore, these models were reparametrized using 17 

years (2000-2016) of data. The re-parameterized models corresponding to LAI and GPP are 

presented below in Equations 6 and 7 respectively.  

LAI =11.80*EVI-1.041 (6) 

GPP =0.096*EVI+0.0003 (7) 
 

 
Fig. 8. Re-parameterized LAI model calibration and validation (a-b). Re-parameterized GPP model calibration and 

validation (c-d). Comparison between MODIS standard LAI, GPP and re-parameterized model derived LAI, GPP 

(e-f), that also showed inter-annual variability of the parameters. 
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The calibration and validation results showed improvement in the re-parameterized 

models with reduced NRMSE of 8.56% for LAI model and 12.73% for GPP model, compared to 

earlier models’ NRMSE which was 19.54% for LAI and 18.64% for GPP. The time series of 

GPP and LAI from re-parameterized model clearly resolved the systematic overestimation issue 

in prediction (Figures 8: e-f), which was encountered before (Figure 7). 
 

3.2.2 Long-term Spatio-temporal Variability  

To identify the effects of climate change and different disturbances on mangrove requires 

long term monitoring of biophysical parameters. Analysis of the long-term biophysical 

parameters showed trends and seasonality (Figure 9). Temporal analysis revealed a phenological 

pattern which peaks during September and October, corresponding with the fall season, and dips 

during summer months of April and May. This seasonal pattern is consistent with previous study 

by Kumar et al. (2017). Seasonal variability of the biophysical parameters can be attributed to 

variability in soil moisture and salinity levels (Kumar et al. 2017). During fall season, 

temperature is relatively less, and land surface usually is replenished with water thus resulting in 

reduced salinity and hence more greenery. During dry summer months, salinity levels remain 

high reducing light use efficiency and hence photosynthesis in leaves (Parida et al. 2002), 

impairing  productivity. Decrease in the LAI indicates a decrease in canopy foliage and decrease 

in GPP indicates decrease in productivity.  

The spatial distribution of biophysical characteristics in Bhitarkanika showed dynamic 

changes as well. The study area was sub-divided into three clusters as per spatial location of 

mangrove pixels to analyze spatial variability. The cluster-wise analysis of mangrove pixels 

suggested that cluster 2 (C2) which was dominated by dense mangrove, showed highest values 

for all biophysical parameters (mean GPP: 0.037 kg-C/m2; mean LAI: 3.38; mean CHL: 39.43 g-

C/m2). This is because they have closed canopy and are mostly composed of diverse species 

adapted to thrive on tidal swamps (Reddy et al. 2007).  In contrast, isolated clusters (C1) had 

relatively lowest values of GPP (mean: 0.032 kg-C/m2), LAI (mean: 2.8), and CHL (mean: 29.37 

µg/cm2) (Table 3). Also, cluster 3 (C3), which was dominated by open mangroves, showed lower 

mean value for all parameters-GPP (mean: 0.033 kg-C/m2), LAI (mean: 2.91), and CHL (mean: 

33.17 µg/cm2).  

 
Table 3:  

Cluster-wise variability in MODIS derived GPP, LAI, and CHL for 17 years (2000-2016) of data analyzed for 

Bhitarkanika Wildlife Sanctuary. 

 

Parameter statistics Isolated Dense Open 

GPP (kg-C/m2) 

Min 0.005 0.010 0.009 

Max 0.046 0.053 0.050 

Mean 0.032 0.037 0.033 

SD 0.006 0.006 0.005 

LAI 

Min 0.36 0.83 1.19 
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Max 4.5 5.35 4.95 

Mean 2.8 3.38 2.91 

SD 0.74 0.43 0.63 

CHL (µg/cm2) 

Min 3.22 7.1 4.45 

Max 54.55 58.79 54.3 

Mean 29.37 39.43 33.17 

SD 11.29 10.75 10.06 
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Fig. 9. Long-term (2000-2016) spatio-temporal variability of LAI, CHL, and GPP in isolated, dense and open 

clusters. 

 

3.2.3 Relationship between Biophysical Parameters and Climatic Variables  

Climatic factors such as temperature and precipitation have been found to be closely 

associated with mangrove biophysical parameters (Kumar et al. 2017).Variability in these 

climatic factors potentially alters the structure and function of coastal habitats such as mangroves 

(Rodriguez et al. 2016). Therefore, variability in mangrove biophysical parameters with   
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physical-meteorological variables including temperature, precipitation, surface runoff and 

seasonality was analyzed in this study. The final multiple regression model (variables shown in 

bold in Table 4) revealed that precipitation is positively related to GPP and LAI while negatively 

related to CHL. The negative relationship of precipitation with CHL could be mainly because of 

poor photosynthesis during foggy and rainy condition. A previous study by Wei-quing et al. 

(2015) also found negative impact of precipitation on plant photosynthesis. Further, seasonal 

variation in rainfall influences chlorophyll content and overall productivity. However, different 

studies have found different results in relation to effect of precipitation. Flores-de-Santiago et al. 

(2012) also found different results in concentration of CHL with dry and wet season, that varied 

with canopy level, species and health of mangrove. It is also because of uneven regional 

distribution of rainfall. While climate simulations predict increase in rainfall in Central Asia, it is 

projected to be poor in other parts of South Asia in future (Change 2007). Poor rainfall can affect 

mangrove productivity, growth and survival by increasing salinity levels. Increase in 

precipitation results in decrease in salinity, which results in higher productivity and growth. It is 

also associated with higher run-off, erosion and silt deposition (Upadhyay and Mishra 2010) 

resulting in accretion of land and associated mangrove migration to newly-built land (Harty 

2004, Upadhyay and Mishra 2010).  

Our analysis showed that temperature has a negative relationship with all three 

biophysical parameters. Increase in temperature can disrupt physiological processes including 

reduction in photosynthetic rates that decrease leaf formation (Saenger and Moverley 1985), that 

affect the net productivity. High surface temperature also increases evapotranspiration, thus 

rendering water more saline. IPCC (2007) also stated that increased sea surface temperature has 

been demonstrated to increase the number and frequency of hurricanes since 1970s. Warming 

temperature results in ice-melting and oceanic expansion thus triggering sea-level rise that in 

turn alters mangrove distribution by shifting the species upwards inland. Furthermore, changes in 

species composition and flowering and fruiting periods (Ellison 2000) are the other responses to 

increased temperature. In contrast to this study, Rodriguez et al. (2016) found a positive relation 

between areal extent and seasonal temperature while a negative relation with precipitation in 

their study on spatio-temporal changes of mangroves in Florida. These variations in the 

responses to both temperature and precipitation by different studies could be due to a mixture of 

climatic and ecological processes that operate at multiple scales. The unexplained variation in the 

biophysical parameters in our models can hence be attributed to other drivers of change not 

included in the present study, such as frequency of storm events/ disturbances, water quality 

(salinity, PH, nutrients load etc.), water level, changes in irradiance etc. that control mangrove 

productivity. However, best combinations of available parameters derived from multiple 

regression analysis (highlighted in bold in Table 4) were finally utilized in forecasting GPP, LAI, 

and CHL. 

 
Table 4 

Correlation coefficients and percentage of variability explained by individual as well as different combination of 

physical-meteorological variables in predicting mangrove biophysical parameters (GPP, LAI, CHL). 

Meteorological & Physical  

Variables 

(R2) 

GPP 

Correlation 

Coefficients  

(GPP) 

(R2) 

LAI 

Correlation 

Coefficients 

(R2) 

CHL 

Correlation 

Coefficients 

 (CHL) 
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(LAI) 

Temperature 0.35 - (negative) 0.35 - (negative) 0.59 - (negative) 

Temperature (1-month lag) N/A N/A N/A N/A 0.19 - (negative) 

Runoff (1-month lag) 0.24 +(positive) 0.24 +(positive) 0.19 +(positive) 

Precipitation (1-month lag) 0.25 +(positive) 0.25 +(positive) 0.18 +(positive) 

Temperature & Precipitation  

(1-month lag) 

0.54 - (Temp), 

+ (Prec.) 
0.54 - (Temp), 

+ (Prec.) 

0.71 - (Temp), 

+ (Prec.) 

Temperature, Precipitation, 

Months 
0.73 - (Temp), 

+ (Prec.) 

N/A N/A 0.85 - (Temp), 

- (Prec.) 

Temperature, Runoff,  

Months 

N/A N/A 0.73 - (Temp), 

- (Runoff) 

N/A N/A 

Precipitation, Months 0.69 -(Prec.) N/A N/A N/A N/A 

 

3.2.4 Forecasting Biophysical Parameters 

Visual comparative analysis between current (2016) and forecasted (2050) mean annual 

GPP, LAI and CHL maps revealed that there was reduction in the values for all three parameters 

(Figures 10). The mean annual GPP forecasted for 2050 was 7.7% less compared to the mean 

annual GPP for 2016. The reduction in LAI for year 2050 was 20.83 % compared to mean 

annual LAI of year 2016. Similarly, the mean annual chlorophyll for year 2050 was forecasted to 

be 32.9% less compared to the mean annual chlorophyll of year 2016. Analyzing the change in 

climate between current and projected (2050) years, it was found that the mean annual 

temperature for year 2016 was 26.6°C, which was projected to increase by 5.03°C in 2050 

reaching up to 31.63°C. Similarly, mean annual precipitation for year 2050 was projected to be 

150.88 mm, which was 29.88 mm higher compared to the 2016 case.  
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Fig. 9. Comparison between current (2016) and forecasted (2050) mean annual biophysical parameters (GPP, LAI, 

CHL). MODIS derived GPP, LAI, and CHL data from 2016 were used as a reference for creating current GPP, LAI 

and CHL maps (a, b, c). The forecasted map 

The reduction in CHL between two years was highest compared to the other two 

parameters. This could potentially be explained based on the coefficients of the meteorological 

parameters obtained while fitting regression models predicting CHL. Multiple-regression for 

GPP revealed that it is negatively associated to temperature but positively related to 

precipitation. In LAI prediction model also, LAI showed negative relation with temperature and 

positive relationship with precipitation. But in case of CHL prediction model, temperature and 

precipitation are both negatively related to CHL. Since temperature and precipitation both are 

projected to increase in future, the reduction in CHL was higher compared to reduction in other 

parameters. The influence of temperature was relatively higher compared to that of precipitation. 

Analyzing the spatial variation, the southernmost areas, the isolated areas and some pixels in the 

boundary have relatively lower values of the biophysical parameters. This could potentially be 

due to fragmentation and degradation of mangroves. 

 

3.3 Comparison between Forecasted Risk Map and Forecasted Biophysical Parameters 

The results from forecasted land cover risk map were in line with the forecasted 

biophysical parameters map. The assessment of the distributions of mangroves in the past and 

present and the resulting transition was used to forecast how they will appear in future. Since the 

dynamics of land cover influence overall productivity of the area, the forecasted biophysical 

parameters were mapped which identified congruence in the results. Risk map identified lower 

risk locations around the north-western part of Bhitarkanika that was dominated with dense 

mangroves, while higher risk areas were identified all along the edges and particularly more 
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along the isolated clusters and the open mangrove clusters. Forecasted GPP and LAI was found 

to be lowest along the isolated clusters and open mangroves. Chlorophyll forecast identified 

mostly the southernmost mangrove patches to be area with lowest chlorophyll content. Dense 

mangrove patches had relatively high values of all three biophysical parameters. A comparison is 

shown in Figure 11. Even a single percentage of loss in these biophysical parameters 

reciprocates into enormous loss in varied ecological services that the mangroves generate. If 

current trend of degradation continues, not only the carbon stored in mangroves but the future 

accumulation of carbon could decline. That indicates a grave potential outcome because of the 

inability to manage mangroves sustainably in the face of climatic changes. 

   

                

Fig. 10. A comparison between forecasted risk map and forecasted biophysical parameters. 

4.  Conclusions 

  

 This study represents a first attempt to not only quantitatively assess the mangrove extent, 

spatial distribution pattern and analyze temporal variation, but also to forecast the likely extent 

and health of Bhitarkanika mangroves in the future, using different biophysical parameters as 

indicators of mangrove health. The historical analysis of land cover maps using Landsat 5 and 8 

data revealed a decrease in dense mangrove extent with an increase in open mangroves and 
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agricultural area. In addition, forecasted trend suggested decrease in the current extent of dense 

mangrove up to 10% by the year 2050 despite the conservation efforts. Furthermore, the 

predicted biophysical parameters as a function of different environmental drivers of change such 

as temperature and precipitation revealed that GPP and LAI are negatively correlated with 

surface temperature and positively correlated with precipitation. On the other hand, CHL was 

found to be negatively correlated with both temperature and precipitation. Forecasted trend of 

biophysical parameters suggested decrease in annual average GPP, LAI and CHL by 7.7%, 

20.83% and 25.96% respectively.  

Although the forecasted biophysical maps depict a reasonable spatial and temporal pattern, there 

is uncertainty associated with them as they were developed under some limitations. The main 

limitation is that the forecasting model uses only two climatic variables: temperature and 

precipitation. There are other factors that have been documented to affect mangrove biophysical 

parameters, such as sea-level rise, salinity, changes in atmospheric CO2, surface runoff, canopy 

level, vegetation condition etc. However, limited data availability from a data-scarce region such 

as the study site restricted the modelling activities. However, a preliminary forecasting model 

using only temperature and precipitation, the most important drivers could still be revealing the 

overall trend of the mangrove ecosystem. A future study with more in situ and modeled 

parameters will be conducted to cross-examine the current forecast model. The correspondence 

between forecasted risk map and forecasted biophysical parameters indicate overall reliability of 

the forecast model. Another limitation of the study is the lack of high resolution imagery for land 

cover classification and lack of in-situ data availability in the study area for model validations.  

The degradation of biophysical characteristics, which are also the indicators of mangrove health, 

vitality and stress, reveals that the mangrove ecosystem of Bhitarkanika wildlife sanctuary may 

not be able to meet the environmental, economic, and social needs in future. Even a small change 

in these parameters can cause a huge change in the amount of annual carbon stored by 

mangroves, thus affecting the regional carbon budget. It is recommended that management 

efforts focus more on monitoring and restoration programs and policies be implemented to halt 

immediate conversion of mangroves to other land usage. The study presents a unique 

combination of multi-sensor based land cover classification and forecasting of mangrove 

biophysical factors that can be replicated for other coastal mangrove ecosystems being impacted 

by anthropogenic and climate change, thus leading towards a sustainable management of 

mangroves globally. It is recommended that future research should include other potential 

variables including natural and anthropogenic disturbances that can affect the biophysical 

parameters to be able to better predict future mangrove health. 
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