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Abstract 
Polymer matrix composites are commonly used to fabricate energy-absorbing structures expected to 

experience impact loading. As such, a detailed understanding of the dynamic response of the constituent 
materials is necessary. Since the rate, temperature, and pressure dependence of carbon fiber reinforced 
polymer matrix composites are primarily manifestations of the rate, temperature, and pressure dependence 
of the polymer matrix, it is crucial that the constitutive behavior of the matrix be accurately characterized. 
In this work, an existing unified viscoplastic constitutive formulation is extended to ensure 
thermodynamic consistency and to more accurately account for the tension-compression asymmetry 
observed in the response of polymeric materials. A new plastic potential function is proposed, and 
elementary loading conditions are utilized to determine relations between model constants to ensure 
nonnegative plastic dissipation, a necessary thermodynamic requirement. Expressions for plastic 
Poisson’s ratios are derived and are bounded by enforcing nonnegative plastic dissipation. The model is 
calibrated against available experimental data from tests conducted over a range of strain rates, 
temperatures, and loading cases on a representative thermoset epoxy; good correlation between 
simulations and experimental data is obtained. Temperature rises due to the conversion of plastic work to 
heat are computed via the adiabatic heat energy equation. The viscoplastic polymer model is then used as 
a constitutive model in the generalized method of cells micromechanics theory to investigate the effects 
of matrix adiabatic heating on the high strain rate response of a unidirectional composite. The 
thermodynamic consistency of the model ensures plastic dissipation can only cause an increase in 
temperature. Simulation results indicate that significant thermal softening due to the conversion of plastic 
work to heat is observed in the composite for matrix dominated deformation modes. 

1.0 Introduction 
Due to their excellent energy absorption capability, carbon fiber reinforced polymer matrix 

composites (PMCs) are often used in aerospace applications such as jet engine fan blade containment 
systems that are subjected to high velocity impact loading in the event of blade-out. The energy is 
absorbed through various complicated deformation and damage mechanisms, some of which are difficult 
to detect experimentally. A thorough understanding of the material response under dynamic conditions is 
therefore required for the assurance of structural reliability and safety of composites in such mission 
critical components. To this end, physics based constitutive models that span the relevant length scales 
and capture key deformation, damage, and failure mechanisms in an impact event are indispensable tools 
that could expedite the design and certification timeline of impact resistant PMC structures. 
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The development of predictive computational models for PMCs under impact loading conditions is 
complicated by the inherent material heterogeneity and anisotropy, the multiscale nature (i.e., disparity of 
length scales associated with constituent materials, tows, braid/weave architecture, and structural 
components), and complex interactions between the fiber reinforcement and the strain rate, temperature, 
and pressure dependent polymer matrix. Unlike metals, for which inelastic deformation is generally 
considered to be deviatoric (volume preserving and pressure independent), the inelastic deformation of 
polymers, and therefore of PMCs, is known to be pressure dependent (Kolling et al. 2005, Siviour and 
Jordan 2016). Additionally, high rate deformation is not isothermal, as is often erroneously assumed. It is 
well known that a portion of the work required to inelastically deform polymeric materials is dissipated as 
heat (Chou et al. 1973, Arruda et al. 1995, Rittell 1999, Garg et al. 2008), particularly at high strain rates. 
Under quasi-static conditions, where the duration of loading is large compared to the characteristic 
thermal diffusion time, heat generated locally due to plastic dissipation has sufficient time to diffuse 
throughout (and convect away from) the deforming body, which remains in an isothermal condition. 
As the rate of deformation increases, the rate of heat generation gradually exceeds the rate of heat loss 
due to conduction/convection, resulting in a gradual temperature rise in the material. Under high rate 
deformation, where the duration of loading is negligible compared to the characteristic thermal diffusion 
time, there is insufficient time for significant heat transfer to occur and adiabatic conditions prevail. 
Adiabatic conditions can therefore be assumed for dynamic loading (Li and Lambros 2001, Kendall and 
Siviour 2013, Trojanowski 1997, Garg et al. 2008, Chou et al. 1973). Local adiabatic temperature rises, 
which could exceed the matrix glass transition temperature (Johnston et al. 2018), cause thermal softening 
(Arruda, et al. 1995, Garg et al. 2008, Rittell 1999) and a potentially substantial effect on the high rate 
constitutive behavior of polymers and PMCs if the effects of thermal (and intrinsic) softening outweigh 
the effects of strain and strain rate hardening (Li and Lambros 2001, Chiou et al. 2007, Walley et al. 1989).  

Metal plasticity theory has often been used to model the nonlinear deformation of PMCs, despite the 
well-known pressure dependence of the plastic deformation of polymers. A manifestation of this pressure 
dependence is tension-compression asymmetry; the magnitude of the compressive yield stress is greater 
than the tensile yield stress (Kolling et al. 2005, Siviour and Jordan 2016). However, metal plasticity 
theories suffer from two primary disadvantages when applied to pressure sensitive materials. These 
theories assume plastic deformation is i) independent of hydrostatic stress and ii) plastic deformation is 
deviatoric (volume preserving). As such, inelastic constitutive laws based on the isotropic von Mises or 
anisotropic Hill yield criteria are generally not suitable for pressure sensitive materials, such as polymers, 
soils, and composites with pressure sensitive matrices.  

The development of macroscopic pressure-dependent plasticity models for composites has been 
investigated by many authors (Kenaga et al. 1987, Sun and Chen 1989, Chen and Sun 1993, Robinson 
et al. 1994, Chen et al. 1997, Thiruppukuzhi and Sun 1998, Weeks and Sun 1998, Robinson and 
Binienda 2001, Yokozeki et al. 2007, Wang and Xiao 2017a, Wang and Xiao 2017b). Kenaga et al. 
(1987) proposed a pressure-dependent quadratic plastic potential function and used an associated flow 
rule to derive a three-parameter plane stress elastic-plastic model to simulate the quasi-static nonlinear 
behavior of a boron/aluminum composite. Sun and Chen (1989) extended the model of Kenaga et al. 
(1987) by noting that most unidirectional composites exhibit an essentially linear elastic response in the 
fiber direction; enforcing this condition resulted in a one-parameter elastic-plastic model. It should be 
noted that Sun and Chen’s (1989) one-parameter potential can be deduced from Hill’s pressure-
independent plastic potential by assuming no plasticity in the fiber direction and a state of plane stress 
(Chen and Sun 1993, Chen et al. 1997), which implies the model’s pressure dependence is due to said 
assumptions. The aforementioned macroscopic plasticity models are limited to quasi-static plane stress 
conditions.  
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To model the high strain rate behavior of PMCs, Thiruppukuzhi and Sun (1998) used a three-
dimensional (3D) pressure-dependent quadratic plastic potential to develop a power law viscoplasticity 
model. Assumptions of transverse isotropy and no plasticity in the fiber direction result in a one-
parameter plastic potential. However, said assumptions result in a pressure-independent potential. Weeks 
and Sun (1998) used the 3D plastic potential proposed by Chen and Sun (1993) to develop two 3D rate-
dependent plasticity models. The authors assume no plasticity in the fiber direction and transverse 
isotropy, which reduces the potential to that used by Thiruppukuzhi and Sun (1998). Robinson et al. 
(1994) and Robinson and Binienda (2001) extended the isotropic unified viscoplastic Bodner-Partom 
(Bodner and Partom 1975) model to account for transverse isotropy and hydrostatic stress dependence by 
proposing an effective stress that depends on pressure and other invariants that reflect transverse isotropy. 
Bounds on material constants were determined by considering natural stress states for the model. It should 
be noted that none of the aforementioned macroscopic plasticity models are able to account for tension-
compression asymmetry since they are all based on plastic potential functions that are even functions of 
hydrostatic stress.  

Yokozeki et al. (2007) proposed a simple extension to the one-parameter Sun and Chen (1989) model 
to incorporate tension-compression asymmetry. This was done by adding a hydrostatic pressure term (and 
associated model constant) to the effective stress given by Sun and Chen (1989). An extra term was also 
added into the square root term in the effective stress to ensure the plastic potential is nonnegative. The 
value of the hydrostatic constant to guarantee a nonnegative effective stress was not mentioned, though 
it is trivial to determine that the value should be less than or equal to 2 2  for the plane stress case. 
Starting with a generalized anisotropic yield function, Wang and Xiao (2017a) took a similar approach 
to Yokozeki et al. (2007) and extended the one-parameter Sun and Chen (1989) model to capture 
tension-compression asymmetry. The model, which incorporates a parameter that represents the ratio 
of transverse tensile to compressive yield stress, is rate dependent and is applicable to plane stress 
conditions. The model was later extended by the authors to be fully three-dimensional (Wang and Xiao 
2017b).  

The aforementioned plasticity formulations are macroscopic in that they treat the composite as 
a smeared homogeneous continuum. The macromechanical approach is advantageous in that it is 
computationally efficient and the experimental testing used for model calibration implicitly accounts for 
all in-situ effects (interface, damage, residual stresses, etc.) (Aboudi et al. 2012). Despite the advantages 
of macromechanical models, their calibration requires extensive experimental testing (each variation in 
fiber volume fraction, architecture, orientation, and constituent material properties must essentially be 
characterized like a new material) and requires the application of more advanced constitutive and 
damage/failure theories (i.e., anisotropic). Moreover, the macromechanical approach only tends to work 
well for fiber dominated loading scenarios and in the linear, isothermal deformation regime (Aboudi et al. 
2012). In micromechanical approaches, the individual constituents are explicitly modeled; constituent 
interaction is realized through homogenization, which allows prediction of the effective composite 
behavior based on the properties, arrangement, and volume fractions of the constituents (Aboudi et al. 
2012). The micromechanical approach, though more computationally expensive, is advantageous in that it 
is highly accurate, able to resolve constituent fields, and allows the application of simpler constitutive and 
damage/failure models at a more fundamental length scale (constituent level) than the macromechanical 
approach.  
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The isotropic von Mises yield criterion has been used to model the polymer matrix constituent in 
micromechanics-based multiscale models of PMCs and metal matrix composites (MMCs). The unified 
Bodner-Partom viscoplasticity model (Bodner and Partom 1975, Bodner 2001) has been widely used due 
to its simplicity and accuracy and can easily be incorporated into multiscale micromechanical approaches. 
The model has a single isotropic state variable to simulate isotropic hardening and uses an effective stress 
based on the J2 flow potential and is, therefore, pressure independent. Bednarcyk et al. (2019) developed a 
higher-order two-way thermochemically coupled multiscale micromechanics model to investigate the 
impact response of carbon/epoxy and SiC/Ti composites, where the Bodner-Partom (Bodner and Partom 
1975) viscoplastic model was employed to model the viscoplastic response of the epoxy and Ti matrices, 
respectively. The Bodner-Partom (Bodner and Partom 1975) model was extended by Goldberg et al. 
(2005) to include hydrostatic stress effects. This was accomplished by modifying the Bodner-Partom 
(Bodner and Partom 1975) plastic potential to also depend on hydrostatic stress. In addition to an 
isotropic hardening state variable, the Goldberg model (Goldberg et al. 2005) employs a single scalar 
state variable, α, to account for the level of influence of hydrostatic stress on plastic deformation.  

In previous work by the authors (Sorini et al. 2019), the Goldberg model (Goldberg et al. 2005) was 
extended to nonisothermal conditions and was used as a constitutive model in the generalized method of 
cells (GMC) (Aboudi et al. 2012, Paley and Aboudi 1992, Pindera and Bednarcyk 1999) micromechanics 
framework to investigate the effects of matrix adiabatic heating and thermal softening on the high rate 
deformation of a unidirectional T700/Epon 862 (T700/E862) composite. The model (Sorini et al. 2019) is 
strain rate, temperature, and pressure dependent, captures tension-compression asymmetry, and lends 
itself well to incorporation into commercial finite element codes and micromechanics-based multiscale 
schemes. However, despite the ability of the Goldberg model (Goldberg et al. 2005) and the 
nonisothermal extension (Sorini et al. 2019) to capture tension-compression asymmetry, there is no way 
to independently control the magnitudes of the tensile and compressive saturation stresses (the stresses 
where the stress-strain curve flattens out) due to the single hydrostatic state variable. A consequence of 
this is that once the models (Goldberg et al. 2005, Sorini et al. 2019) are calibrated based on experimental 
shear and uniaxial tensile stress-strain data, for example, there is no way to characterize the models to 
match uniaxial compressive stress-strain data. The hydrostatic state variable can be related to the plastic 
Poisson’s ratio, which is defined analogously to the elastic Poisson’s ratio and is described in more detail 
later in the manuscript. However, values of the hydrostatic state variable that correspond to physically 
realistic values of the tensile plastic Poisson’s ratio correspond to physically unrealistic values of the 
compressive plastic Poisson’s ratio and vice-versa. Lastly, certain loading conditions can result in 
negative plastic dissipation. This is problematic because, according to the second law of thermodynamics, 
plastic dissipation must be nonnegative in the absence of damage and heat conduction (Chow and Lu 
1989, Faria et al. 1998, Kawai et al. 2010). Negative plastic dissipation implies a decrease in temperature 
due to inelastic deformation, which is nonphysical. Even though a negative plastic work density was not 
observed in the simulated loading conditions considered in the previous work (Sorini et al. 2019), it is 
essential to prevent this possibility to ensure thermodynamic consistency of the model for general 
multiaxial loading.  

In this work, several improvements are made to the Goldberg model (Goldberg et al. 2005). The 
model is extended to i) more accurately account for the tension-compression asymmetry observed in the 
response of polymeric materials; ii) ensure physically realistic plastic flow; iii) ensure thermodynamic 
consistency (i.e., nonnegative plastic dissipation). A new plastic potential function is proposed, where two 
constants control the level of influence of hydrostatic stresses on the inelastic deformation. Elementary 
loading conditions are utilized to determine relations between the hydrostatic constants to ensure 
nonnegative plastic dissipation. Expressions for plastic Poisson’s ratios are derived and are bounded by 
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enforcing nonnegative plastic dissipation. The proposed plastic potential function allows the user to 
independently specify the tensile and compressive plastic Poisson’s ratios and is capable of simulating 
nonisochoric plastic deformation. The constitutive model is calibrated against available Epon 862 (E862) 
epoxy resin shear, tensile, and compressive data (Gilat et al. 2007, Littell 2008, Littell et al. 2008) from 
tests conducted over a range of strain rates and temperatures. Temperature rises due to the conversion of 
plastic work to heat are computed via the adiabatic heat energy equation; the thermodynamic consistency 
of the model ensures plastic dissipation can only lead to an increase in temperature. The unified 
viscoplastic model is then used as a constitutive model in the generalized method of cells (GMC) (Aboudi 
et al. 2012, Paley and Aboudi 1992, Pindera and Bednarcyk 1999) micromechanics framework to 
illustrate the effects of adiabatic heating on the response of a T700/E862 unidirectional composite. A 
micromechanics-based multiscale approach is used to allow adiabatic heating to be modeled at the matrix 
constituent level, where it has been experimentally observed to be predominant (Johnston et al. 2018) in 
flat panel impact tests on triaxially braided PMC panels. Significant thermal softening due to adiabatic 
heating is observed for matrix dominated deformation modes (transverse tension, transverse compression, 
and in-plane shear), highlighting the importance of including the effects of adiabatic heating in multiscale 
analyses of PMCs under dynamic loading, where the composite is in a complex multiaxial stress state. 
The intended application of the improved unified viscoplastic constitutive formulation is the multiscale 
analysis of PMCs subjected to impact loading, where it is suitable to predict the rate, temperature, and 
pressure dependent inelastic deformation, as well as adiabatic heating and subsequent thermal softening, 
of the polymer matrix. 

2.0 Plastically Dilatant Unified Viscoplastic Constitutive Model 
As in previous work by the authors (Sorini et al. 2019, Goldberg et al. 2005), unified viscoplasticity 

theory is utilized. Unlike classical plasticity models, unified viscoplasticity models do not employ a 
defined yield surface or load-unload conditions. Rather, nonlinearity is controlled by the evolution of state 
variables that represent the average effects of various deformation mechanisms. The term “unified” 
implies that no distinction is made between rate-dependent viscoplastic and rate-independent plastic 
strains (Lubliner 2008). Instead, a single (i.e., unified) inelastic strain tensor is present for all levels of 
stress, where the components are nominal in the “elastic” deformation regime. The fact that inelastic 
strains are always present is a consequence of the lack of a yield surface.  

Since the constitutive behavior of polymeric materials is pressure dependent, a piecewise plastic 
potential function that is a function of the first invariant of the Cauchy stress tensor, kkσ , and the second 
invariant of the deviatoric stress tensor, 2J , is defined as: 

 
2 2

2 2

2

                   if  0 and 0

                               if  0 and 0
                             if  0 and 0

kk kk

kk

kk kk

J A J

f J J
A J

 + σ σ ≠ ≠
= σ = ≠
 σ σ ≠ =

 (1) 

In Equation (1), ( )( )sign kkA = γ σ + ξ  and γ  and ξ  are constants that control the influence of 

hydrostatic stress on plastic deformation. The hydrostatic constant γ  must be nonnegative whereas the 
implications of positive, negative, and zero valued ξ  is discussed later in the manuscript. An associative 

flow rule is used, where the components of the inelastic strain rate tensor, I
ijε , are assumed to be equal to 
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the product of the partial derivative of the plastic potential function, f, with respect to the components of 
the Cauchy stress tensor, ijσ , and the scalar rate of the plastic multiplier, λ , as follows: 

 I
ij

ij

f∂
ε = λ

∂σ


  (2) 

Taking the partial derivative of the plastic potential function with respect to the components of the 
Cauchy stress tensor results in the following:  

 

2
2

2
2

2

         if  0 and  0
2

                    if  0 and 0
2

                       if  0 and 0

ij
ij kk

ij
kk

ij

ij kk

s
A J

J
sf J

J
A J


+ δ σ ≠ ≠


∂ = σ = ≠

∂σ 
 δ σ ≠ =


 (3) 

In Equation (3), ijs  are the components of the deviatoric stress tensor and ijδ  is the Kronecker delta. The 
reason for employing a piecewise plastic potential function is because the partial derivative of 

2 kkJ A+ σ  with respect to ijσ  is not defined for pure shear, 0kkσ =  and 2 0J ≠ , (derivative of sign 

function is not defined when its argument is zero: ( )( ) )sign 0 when 0
ij ij

kk kk
A
σ σ

∂ ∂
= γ σ + ξ = σ ≠

∂ ∂
 or 

purely hydrostatic loading, 0kkσ ≠  and 2 0J =  (division by 2 0J = ). The piecewise definition of the 
plastic potential also prevents plastic dilation under pure shear loading. The rate of the plastic multiplier, 
λ , is obtained by substituting Equation (3) into Equation (2) and taking the tensor product of the inelastic 
strain rate tensor with itself. The result is shown in Equation (4).  

 

22

2

22

2
            if  0  and 0

1 6

2                if  0 and 0

                 if  0  and  0
3

I I
ij ij

kk

I I kkij ij

I I
ij ij

kk

J
A

J

J
A

 ε ε
 σ ≠ ≠

+


λ = ε ε σ = ≠

 ε ε

σ ≠ =


 



 

 

 (4) 

Next, the effective stress is defined as  

 
2 2

2 2

2

3 3          if  0 and 0

3 3                           if  0 and 0

3                       if  0 and 0

kk kk

e kk

kk kk

J A J

f J J

A J

 + σ σ ≠ ≠
σ = = σ = ≠
 σ σ ≠ =

 (5) 

It is evident from Equation (5) that, under pure shear loading, or if the hydrostatic constants γ  and ξ  are 

both equal to zero, the effective stress simplifies to the classical definition of 23J , which reduces to the 
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applied stress for uniaxial tensile and compressive loading. The effective inelastic strain rate, Ieε , is 
determined by invoking the principle of the equivalence of plastic work rate density: 

 0II Iij e eijW = σ ε = σ ε ≥

   (6) 

By combining Equations (2) and (3), substituting the result as well as the effective stress (Eq. (5)) into 
Equation (6), the effective inelastic strain rate is determined and shown in Equation (7). 

 

( ) 22

2

2

2
            if  0 and  0

3 1 6

2                   if  0 and  0
3

                     if  0  and  0
3

I I
ij ij

kk

I IIe kkij ij

I I
ij ij

kk

J
A

J

J
A

 ε ε
 σ ≠ ≠
 +

ε = ε ε σ = ≠

 ε ε σ ≠ =


 

  

 

 (7) 

By inspecting Equation (4) and Equation (7), it is apparent that 3 I
eλ = ε

 . Note that if the hydrostatic 
constants are set to zero, 0A = ; in this case, Ieε  should be set to zero for the 0kkσ ≠  and 2 0J =  case in a 
numerical code to avoid division by zero. By defining 

 
2

0
3 1exp

2 2 2

n
Ie

e

ZD
  λ  ε = = −  σ   





 (8) 

based on the work of Bodner and Partom (1975) and Bodner (2001), and combining Equation (2), 
Equation (3) and Equation (8), the inelastic strain rate tensor components are obtained. 

 

( )

2

0 2
2

2

0 2
2

2

0

12 exp           if  0 and 0
2 2

12 exp                    if  0  and  0
2 2

12 exp           
2

n
ij

ij kk
e

n
ijI kkij

e

n

ij
e

sZD A J
J

sZD J
J

ZD A

     − + δ σ ≠ ≠    σ     
     ε = − σ = ≠    σ     
   − δ σ   



2            if  0 and 0kk J












σ ≠ =


 (9) 

In Equations (8) and (9), n is a constant that controls strain rate sensitivity (as n increases, rate 
dependence decreases), D0 is a constant scale factor that represents the maximum inelastic strain rate, and 
Z is a scalar state variable that represents the resistance to internal stress (captures isotropic hardening). 
The state variable Z evolves from its initial value of 0Z  to its final value of 1Z , where 1 0Z Z> , according 
to the following expression:  

 ( )1 IeZ q Z Z= − ε

  (10) 
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where q is a constant that controls the hardening rate. It should be noted that an effective stress of zero 
implies no inelastic deformation; to prevent division by zero in a numerical code, the components of the 
inelastic strain rate tensor (Eq. (9)) should be set to zero in this case.  

2.1 Temperature Dependent Plastic Flow 

To account for the temperature dependence of the saturation stress, the components of the inelastic 
strain rate tensor are modified to explicitly capture temperature dependence based on the Arrhenius 
equation for nonisothermal processes (Bhattachar and Stouffer 1993), which states that the inelastic strain 

rate is proportional to the exponential of the dimensionless expression Q
KT
− 

 
 

, as follows 

   expI Q
KT
− ε α  

 
  (11) 

where Q is the activation energy, K is Boltzmann’s constant, and T is the absolute temperature. By 

inserting the dimensionless expression Q
KT
− 

 
 

 into the exponential term in the original expression for the 

components of the inelastic strain rate tensor (Bhattachar and Stouffer 1993), Equation (9), and defining a 
new state variable Z  as 

 QZZ
K

=  (12) 

the new temperature-dependent components of the inelastic strain rate tensor can be expressed as  

 

( )

2

0 2
2

2

0 2
2

2

0

12 exp           if  0 and 0
2 2

12 exp                    if  0 and 0
2 2
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2

n
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ij kk
e

n
ijI kkij

e

n
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e

sZD A J
T J

sZD J
T J

ZD A
T

     − + δ σ ≠ ≠    σ     
     ε = − σ = ≠    σ     
   − δ σ   



2              if  0 and 0kk J












σ ≠ =


 (13) 

where Z  is a temperature-dependent state variable that controls the resistance to internal stress at a given 
temperature, and the other parameters were defined previously. The components of the inelastic strain 
tensor are computed by integrating the components of the inelastic strain rate tensor (Eq. (13)). Even 
though polymers can exhibit large deformations, especially at low strain rates and at temperatures close to 
or above their glass transition temperature, infinitesimal strain theory has been assumed to apply, which 
permits the additive decomposition of the total strain tensor into its respective elastic, inelastic, and 
thermal components. This is justified because the intended application for the unified viscoplastic 
constitutive formulation is multiscale modeling of the high rate deformation of PMCs, where finite strains 
in the matrix are not expected. Based on the work of Bhattachar and Stouffer (1993) it is assumed that Z  
evolves in the same way as Z, that is,  

 ( )1 IeZ q Z Z= − ε

  (14a) 
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which can be integrated to yield 

 ( ) ( )1 1 0 exp IeZ Z Z Z q= − − − ε  (14b) 

where 0Z  and 1Z  are the temperature-dependent initial and final values of ,Z  respectively. Under 
isothermal conditions, Equations (14a) and (14b) are identical. However, under nonisothermal conditions, 
Equation (14b) should be used instead of Equation (14a) to allow the value of 0Z  to change with 
temperature (Bhattachar and Stouffer 1993, Bhattachar 1991). It should be noted that the dimension of the 
hardening state variable Z is stress whereas the dimension of Z  is stress times absolute temperature 
(Kelvin).  

2.2 Bounds on Hydrostatic Constants 

By examining Equation (7), it is apparent that the effective inelastic strain rate, Ieε , is always 
nonnegative. Since the plastic work rate density (plastic dissipation) (Eq. (6)) must also be nonnegative 
(Chow and Lu 1989, Faria et al. 1998, Kawai et al. 2010), a relationship between γ  and ξ  must be 
determined to ensure the effective stress is also nonnegative. To this end, hydrostatic tensile and 

compressive load cases are considered. For hydrostatic tensile loading [ ]( )( )diag , ,= σ σ σσ , the effective 

stress is 

 3 3 3 3 0eσ = γσ + ξσ ≥  (15) 

For hydrostatic compressive loading [ ]( )( )diag , ,= −σ −σ −σσ , the effective stress is 

 3 3 3 3 0eσ = γσ − ξσ ≥  (16) 

According to Equations (15) and (16), the effective stress and plastic work rate density will always be 
nonnegative as long as the following condition is satisfied: 

 γ ξ γ− ≤ ≤  (17) 

2.3 Plastic Poisson’s Ratios 

To obtain physically realistic transverse plastic strains in uniaxial tensile and compressive loading, it 
is useful to derive expressions for the tensile and compressive plastic Poisson’s ratios. For uniaxial 
loading in the 1-direction, the plastic Poisson’s ratio for an isotropic material is defined as:  

 

22

23322

11 11 11

2

2

2

II
p

I I

s A
J

s A
J

 
+  −ε−ε  ν = = = −

ε ε  
+  

 



 

 (18) 

Since the signs of the pressure and deviatoric stresses are opposite for uniaxial tensile and 
compressive loading, the tensile and compressive plastic Poisson’s ratios, ,p Tv  and ,p Cv , can, in general, 
be different and are defined as follows: 
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J A
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J

 
+   − ν = − =

  +
+  

 

 (19a) 

 UTA = γ + ξ  (19b) 

 

22

2,

11

2

2 3 6
2 3 6

2

UC
UC

UCp C
UC UC

UC

s
A

J A
As

A
J

 
+   + ν = − =

  −
+  

 

 (20a) 

 UCA = − γ + ξ  (20b) 

In Equations (19) and (20), “UT” denotes uniaxial tensile loading whereas “UC” denotes uniaxial 
compressive loading. By manipulating Equations (19a) and (20a), expressions for UTA  and UCA  in terms 
of the tensile and compressive plastic Poisson’s ratios are obtained: 

 )
) ( )

, ,11 22
,,2

( 3 2 3
6 12 (1

UT UTp T p T
UT p Tp T

s s
A

J

− ν + − ν
= =

+ ν+ ν
 (21) 

 
)

)
( )

( )
,,

11 22
,,2

3 2 3(

6 12 (1

p CUC UCp C

UC p Cp C

s s
A

J

− − ν− ν +
= =

+ ν+ ν
 (22) 

To determine the bounds on the tensile and compressive plastic Poisson’s ratios, consider 
Equations (17), (19b), and (20b). Equations (19b) and (20b) can be solved for ξ  and γ  to yield 

( )1
2 UC UTA Aγ = − +  and ( )1

2 UC UTA Aξ = + . Combining Equations (19b) and (20b) with Equation (17) 

implies 0UCA ≤  and 0UTA ≥ , which imply, based on Equations (19a) and (20a), , 0.5p Cv ≤  and 
, 0.5p Tv ≤ . By evaluating the limit of ,p Tv  (Eq. (19a)) as UTA  tends to infinity and the limit of ,p Cv  

(Eq. (20a)) as UCA  tends to negative infinity, the lower bounds of the tensile and compressive plastic 
Poisson’s ratios are obtained to be negative one (–1). Nonnegative plastic dissipation therefore implies 

,1 0.5p Cv− < ≤  and ,1 0.5p Tv− < ≤ . It is interesting to note that these are the same bounds as on the 
elastic Poisson’s ratio for an isotropic material, except the tensile and compressive plastic Poisson’s ratios 
can be equal to 0.5 (as is the case in deviatoric plasticity models) whereas the elastic Poisson’s ratio 
cannot since it would result in an infinite bulk modulus. Note that for ,0 0.5p Cv≤ ≤  and ,0 0.5p Tv≤ ≤ , 

3 3A
6 6

− ≤ ≤ .  
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There are a several special cases of the model that merit a brief discussion. A pressure independent 
model is obtained by setting both hydrostatic constants equal to zero ( )0γ = ξ = . In this case, the 

effective stress reduces to the von Mises effective stress ( )23J , which implies the plastic deformation 

is deviatoric (tensile and compressive plastic Poisson’s ratios are equal to 0.5) and the magnitudes of the 
tensile and compressive saturation stresses are equal. The model used in previous research (Sorini et al. 
2019) is obtained by setting γ equal to zero ( )0ξ ≠ ; this should not be done, as the model will inherit the 
same deficiencies as the original model (Goldberg et al. 2005, Sorini et al. 2019). A pressure-dependent 
model that does not exhibit tension-compression asymmetry is obtained by setting ξ  equal to zero 

( )0γ ≠ . In this case, magnitudes of the tensile and compressive saturation stresses as well as the plastic 

Poisson’s ratios are equal; 0γ ≥  ensures ,1 0.5p Cv− < ≤  and ,1 0.5p Tv− < ≤  whereas 10
12

≤ γ ≤  ensures 

,0 0.5p Cv≤ ≤  and ,0 0.5p Tv≤ ≤ . 

2.4 Tension-Compression Asymmetry 

Plasticity formulations that employ plastic potential functions that are even functions of hydrostatic 
pressure are incapable of simulating tension-compression asymmetry. For tension-compression 
asymmetry, the value of the effective stress in uniaxial tension should be greater than the value of the 
effective stress in uniaxial compression for the same absolute value of applied uniaxial stress. In other 
words, a greater uniaxial stress would need to be applied in compression, ,UCσ  than in tension, ,UTσ  to 
achieve equivalent values of the effective stress. Using Equation (5), this can be expressed as:   

 ( ) ( )1 3 1 3UT UCe UT UCA Aσ = σ + = σ −  (23) 

Therefore, for tension-compression asymmetry ( ) ,UC UT UC UTA Aσ > σ > − , which implies the 

hydrostatic constant 0 < ξ ≤ γ .  

2.5 Summary of Constraints on Model Parameters and Special Cases 

The conditions for nonnegative plastic dissipation, tension-compression asymmetry, and model 
special cases are summarized in Table I.  

 

TABLE I.—CONDITIONS FOR NONNEGATIVE PLASTIC DISSIPATION, 
TENSION-COMPRESSION ASYMMETRY, AND 

MODEL SPECIAL CASES 
Condition Remark 

γ ξ γ− ≤ ≤  Nonnegative plastic dissipation 

0 ξ γ< ≤  Nonnegative plastic dissipation and tension-compression asymmetry  

ξ γ=  Plastically incompressible in compression 

ξ γ 0= =  Pressure independent model; deviatoric plastic strain tensor; equal 
uniaxial tensile and compressive saturation stresses 

γ 0,  ξ 0≠ =  Pressure dependent model with no tension-compression asymmetry  

γ 0,  ξ 0= ≠  Deficient model; possibility of negative plastic work and plastic 
Poisson’s ratios that are out of bounds 
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2.6 Adiabatic Heating 

The heat energy equation, which expresses the relationship between mechanical deformation and 
spatial-temporal temperature change, is as follows 

 2 (3 2 ) :e
M kkk T T CT∇ −α λ + µ ε +β = ρ 

 σ εI  (24) 

where k is the thermal conductivity, T is the temperature, Mα  is the coefficient of thermal expansion, λ  

and µ are Lame’s constants, e
kkε  is the elastic volumetric strain rate, σ  is the Cauchy stress tensor, I

ε  is 
the inelastic strain rate tensor, ρ  is the density, C is the specific heat, and β  is the inelastic heat fraction, 
which represents the fraction of inelastic work converted to heat. As aforementioned, the intended 
application of the unified viscoplastic constitutive formulation is the multiscale analysis of PMCs 
subjected to impact loading, where adiabatic conditions can generally be assumed to prevail (Li and 
Lambros 2001, Kendall and Siviour 2013, Trojanowski 1997, Garg et al. 2008, Chou et al. 1973). As in 
previous work by the authors (Sorini et al. 2019), it is useful to derive a characteristic thermal diffusion 
time to justify the assumption of adiabatic conditions for high rate loading. To this end, consider the 
one-dimensional heat (diffusion) equation: 

 
2

2x
T Tk C

t
∂ ∂

= ρ
∂ ∂

 (25) 

By replacing the partial derivatives in Equation (25) with finite differences, the following expression is 
obtained for the characteristic thermal diffusion time, dt∆ , 

 ( )2
d

x
t

D
∆

∆ =  (26) 

where D is the thermal diffusivity 
kD
C

 
= ρ 

 and x∆  is a characteristic length, which can be taken as the 

distance between the center of the deforming region of a test specimen and the nearest heat sink (Arruda 
et al. 1995). If the time of a given experiment is small compared to the characteristic thermal diffusion 
time, adiabatic conditions can be assumed to prevail and the conduction term in Equation (24) can be 
neglected. The characteristic thermal diffusion time can also be used to compute an approximate strain 
rate at which the system would be expected to behave adiabatically, 1

dt−∆ . More details regarding the 
characteristic thermal diffusion time for E862 resin are given in Section 4.0. The thermoelastic term in 
Equation (24) is often negligible compared to the thermoplastic term (Li and Lambros 2001, Varghese 
and Batra 2009, Pan et al. 2016, Siviour and Jordan 2016), reducing the heat energy equation to 

 : CTβ = ρ 

σ εI  (27) 

Assuming the inelastic heat fraction, β, is known, either measured experimentally or assumed, 
Equation (27) can be integrated to compute the temperature change due to the conversion of plastic work 
to heat at each timestep in an incremental solution procedure.  
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2.7 Temperature Dependence of Elastic Properties  

A time-temperature shifting methodology, similar to the Decompose-Shift-Reconstruct (DSR) 
method originally developed by Mulliken and Boyce (2006), is utilized to compute temperature and strain 
rate dependent shifts in elastic moduli based on dynamic mechanical analysis (DMA) tests conducted on 
neat resin at various frequencies. The frequency at which a DMA test is conducted corresponds to a 
particular strain rate (depending on the specimen geometry), therefore rate-dependent shifts in the shear 
storage modulus can be obtained by conducting DMA tests in shear at various frequencies and performing 
a temperature sweep. A schematic of the shifting of the shear storage modulus versus temperature curve 
with strain rate is shown in Figure 1 for E862 epoxy DMA data (Gilat et al. 2007). It is interesting to note 
that the glass transition temperature is rate dependent, increasing with increasing strain rate (Mulliken and 
Boyce 2006). In this research, it is assumed that the shear modulus is equal to the shear storage modulus. 
Assuming the elastic Poisson’s ratio is independent of temperature and strain rate (Mulliken and Boyce 
2006, Jordan et al. 2008, Varghese and Batra 2009), the shifting of the DMA data allows the elastic 
properties to be determined at various strain rates (can also be extrapolated to higher/lower strain rate 
values than those at which the DMA tests were conducted) and temperatures. 

To perform the horizontal (temperature direction) shifting of the shear storage modulus versus 
temperature curve with strain rate, it is necessary to determine a reference strain rate, ref ,ε  with respect 
to which the shifting occurs. Since the DMA shear storage modulus versus temperature curve for E862 
presented in Gilat et al. (2007) corresponds to a strain rate of 0.02/s, this value has been taken as the 
reference strain rate. To perform the shifting numerically, the logarithm of the ratio of the actual strain 
rate to the reference strain rate, the “log strain rate ratio”, must be computed and multiplied by the “DMA 
shift factor”. The log strain rate ratio quantifies the number of decades the actual strain rate is above or 
below the reference strain rate. For example, an actual strain rate of 0.2/s is ten times greater than the 
reference strain rate; the logarithm of ten is one (i.e., 0.2/s is one decade higher than 0.02/s). The DMA 
shift factor quantifies how much the shear storage modulus versus temperature curve shifts horizontally 
per decade change in strain rate with respect to the reference strain rate. Since a tabular approach has been 
taken, the value of the DMA shift factor must be determined via trial and error during the calibration 
procedure. In previous work (Sorini et al. 2019), a DMA shift factor of 10 K per decade strain rate was 
 

 
Figure 1.—Illustration of shifting of Epon 862 epoxy DMA data with strain rate.  
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used for the E862 resin; in this work, a DMA shift factor of 5 K per decade strain rate was found to more 
accurately match experimental test data. If DMA data is unavailable, it is recommended to at least 
approximate the rate and temperature dependence of the elastic modulus of the material of interest. This 
can be done by measuring the elastic properties over a range of temperatures and strain rates and 
determining an approximate functional dependence of the moduli on rate and temperature. The reader is 
referred to Richeton et al. (2007) for an example of an analytical description of the rate and temperature 
and dependence of the elastic moduli. It should also be noted that, if the unified viscoplasticity 
formulation is implemented into a finite element code as a user defined material subroutine, a strain rate 
below which no shifting of the shear storage modulus versus temperature curve occurs should be defined. 
This is because, at least in explicit finite element simulations integration point effective strain rates will 
be zero until deformation occurs. Since the limit of the logarithm function as its argument approaches 
zero is negative infinity, a strain rate of zero would result in a shift factor of negative infinity, which 
would cause numerical problems.  

2.8 Model Calibration 

The polymer constitutive model requires determining five constants ( )0 , , , , andD n q γ ξ  and two 

functions of temperature, ( )0Z T  and ( )1Z T . The characterization procedure is similar to that presented 
in Sorini et al. (2019) and is based on neat resin isothermal test data at different temperatures. As in 
previous research (Sorini et al. 2019, Goldberg et al. 2005), the value of 0D  is taken to be 1×106/s. Since 
there are no hydrostatic stresses in pure shear deformation of an isotropic material, the initial calibration 
is based on pure shear test data. The values of n and 1Z  at a given temperature are determined as follows 

using Equation (13), simplified for the case of pure shear loading ( )22 ; 3eJ = τ σ = τ :  

 ( )
2

0
1exp

2 2 3

n
I

I Z T
D

T

    γ τ ε = = −        ττ    



  (28) 

where Iγ  is the inelastic engineering shear strain rate. Equation (28) is then manipulated to yield:  

 ( )( ) ( )
0

ln 2ln 2 *ln 2 *ln 3
2

I
n Z T n T

D
  γ
− = − τ     

  (29) 

To obtain the value of the constant n and 1Z  at a particular temperature, constant strain rate pure shear 
tests at various strain rates (ideally at least three) at the temperature of interest are used. The value of the 
saturation shear stress, sτ , (the stress level where the stress-strain curve flattens out) is then substituted in 
for τ in Equation (29). Since at saturation, the inelastic strain rate is equal to the total strain rate, the value 
of the inelastic engineering shear strain rate, Iγ , is set equal to the total applied engineering shear strain 
rate, 0γ . For each available shear stress-strain curve, data pairs of the total applied engineering shear 
strain rate and the corresponding saturation shear stress (one pair for each curve) are used. The values of 
the absolute test temperature and the constant 0D  are also inserted into Equation (29). Least squares 
regression is then performed on the data pairs of engineering shear strain rates and corresponding 
saturation shear stresses for each test. The value of Z  is taken to be the value at saturation, 1Z . As 
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evident from Equation (29), the slope of the line of best fit is equal to –2n and the intercept is equal to 
( )( )12 lnn Z T∗ . The values 1Z  for a given temperature and n are now known. The aforementioned 

process is repeated for pure shear tests at various rates at other temperatures to determine the temperature-
dependence of 1Z . In this research, n is assumed to be constant, however a possible inverse relationship 
between n and temperature (i.e., higher rate sensitivity for higher temperatures) has been suggested 
(Bodner 2001). 

To obtain the value of 0Z  at a particular temperature, Equation (28) is rearranged as follows:  

 ( )
1

2

0
2ln 3

2

I n
Z T T

D
  γ

= − τ  
   



 (30) 

The values of shear stress and corresponding inelastic engineering shear strain rate where the shear 
stress-strain curves deviate from linearity are used in Equation (30) for the values of τ  and ,Iγ  
respectively. One hundredth of the constant strain rate used in the test has been found by trial and error to 
be a good approximation the value of Iγ  (Sorini et al. 2019, Goldberg et al. 2005). Equation (30) is then 
evaluated for Z , which is set equal to 0Z . This procedure is repeated for multiple temperatures to 
determine the temperature-dependence of 0Z . 

To determine the value of q for Equations (14a) and (14b), Equation (14a) is integrated for the case of 
pure shear loading, yielding 

 ( ) ( ) ( ) ( )( )1 1 0 exp
3

IqZ T Z T Z T Z T  −
= − − γ 

 
 (31) 

where Iγ  is the engineering shear strain. At saturation, ( )Z T  approaches ( )1Z T  and the exponential 
term approaches zero. As in previous work (Sorini et al. 2019, Goldberg et al. 2005), it is assumed 
saturation occurs when the following condition is satisfied 

 exp 0.01
3

Is
q −
γ = 

 
 (32) 

where Isγ  is the inelastic shear strain at saturation. This determines the value of the hardening rate q.  
To determine the values of the hydrostatic constants, γ  and ξ , uniaxial tensile and compressive test 

data are used. Ideally, one would measure the tensile and compressive plastic Poisson ratios in the tensile 
and compressive tests using digital image correlation (DIC) and use Equations (21) and (22) to determine 
the values of UTA  and UCA . The values of UCA  and UTA  would then be used in Equations (19b) and 
(20b) to determine the values of the hydrostatic constants:  

 
1 1 1 11     

1 1 1 12
UC UC

UT UT

A A
A A

   − −       γ γ
= → =          ξ ξ          

 (33) 

However, it is well known that, after the peak load, plastic instabilities (necking in tension and barreling 
in compression) cause nonuniform stress and strain states in the gage section (Poulain et al. 2013, 
Poulain et al. 2014) and, thus, the plastic Poisson’s ratios are likely not material constants (Kolling et al. 



NASA/TM—2020-220386 16 

2005). The plastic Poisson’s ratios may change with temperature, strain rate, and the level of deformation. 
However, to keep the constitutive model tractable, the tensile and compressive plastic Poisson’s ratios 
are assumed to be constant in this research. If it is found that the characterization is precluded by the 
assumption of constant plastic Poisson’s ratios, evolution equations for the hydrostatic parameters, similar 
to those in previous work (Sorini et al. 2019, Goldberg et al. 2005), can be used, though care should be 
taken to ensure the constraints derived in Section 2.2 are satisfied. If information regarding the permanent 
volume change in uniaxial tensile and compressive tests is available, this information can be used to 
facilitate the determination of the hydrostatic constants as well. For example, if there was no permanent 
volume change in a uniaxial compression test, it suggests a compressive plastic Poisson’s ratio of 0.5 
(plastically incompressible in compression). If values of the tensile and compressive plastic Poisson’s 
ratios are unavailable, it can be assumed that the effective stresses (Eq. (5)) at saturation in shear, 
tension, and compression are equal for a given strain rate and temperature (i.e., the shear, tension, and 
compression tests should be conducted at approximately the same temperature and strain rate). This 
results in the following two equations 

 ( )3 1 3 3s stτ = σ + γ + ξ  (34) 

 ( )3 1 3 3s scτ = σ + γ − ξ  (35) 

where sτ , stσ , scσ  are the shear, tensile, and compressive stresses at saturation, respectively. It is 

evident that, for a pressure independent material ( )0γ = ξ = , the well-known relation between the shear, 

tensile, and compressive stresses at saturation is obtained: 3 s st scτ = σ = σ . By inserting the saturation 
values of the experimental shear, tensile, and compressive stresses, Equations (34) and (35) can be solved 
for the two unknown hydrostatic constants, γ  and ξ . The values of these constants are assumed to be 
independent of rate and temperature, so the results from tests at one strain rate and temperature are 
sufficient to find the necessary values. Note that in this model, for a given strain rate and temperature, the 
larger the tensile and/or compressive plastic Poisson’s ratio, the larger the magnitude of the tensile and/or 
compressive saturation stresses. Thus, the maximum tensile and compressive (absolute value) saturation 
stresses for a given strain rate and temperature are therefore obtained for plastic Poisson’s ratios of 0.5.  

3.0 Micromechanics 
To predict the effective behavior of a unidirectional composite, including the effects of local matrix 

adiabatic heating and subsequent thermal softening, the unified viscoplastic formulation is used as a 
constitutive model in the GMC micromechanics framework (Aboudi et al. 2012, Paley and Aboudi 1992, 
Pindera and Bednarcyk 1999). By assuming first order subcell displacement field and enforcing 
displacement and traction continuity conditions between adjacent subcells and adjacent unit cells, GMC 
can predict the effective response of a unidirectional composite based on the properties, volume fractions, 
and arrangement of the constituents. The formulation used in this work is based on the reformulated GMC 
described in (Aboudi et al. 2012). In the micromechanics model, the microscale repeating unit cell (RUC) 
consists of four subcells: three matrix and one fiber. A schematic of the microscale RUC is shown in 
Figure 2. Fibers are assumed to exhibit linear elastic constitutive behavior whereas the plastically dilatant 
unified viscoplastic polymer model described in Section 2.0 is applied to the matrix subcells.  
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Figure 2.—Schematic of four subcell RUC for 

GMC micromechanics analysis. 

4.0 Results 
4.1 Response of Monolithic Polymer  

To demonstrate the capability of the modified constitutive model, it is calibrated for E862 epoxy 
using available data (Gilat et al. 2007, Littell 2008, Littell et al. 2008) from tension, compression and 
shear tests conducted over a range of strain rates and temperatures. In this section, the 620/s tensile curves 
are from Gilat et al. (2007) whereas the rest of the data is from Littell (2008) and Littell et al. (2008). This 
is the same experimental data used to characterize the viscoplastic model used in previous work by the 
authors (Sorini et al. 2019). Note that all tests used for characterization were conducted below the E862 
glass transition temperature reported by Gilat et al. (2007), 133 °C, which was determined from a DMA 
test conducted in shear at 10 rad/s (0.02/s). The experimental E862 stress-strain data presented in Littell 
(2008) and Littell et al. (2008) is in terms of engineering stress and a local strain determined by averaging 
digital image correlation (DIC) measurements at several points in the middle of the specimen gage 
sections (Littell 2008, Poulain et al. 2013). In previous work, based on DIC data provided by the authors 
of Littell et al. (2008), the true stress in the uniaxial tension and compression tests, trueσ , was computed 
from the corresponding engineering stress, engσ , using Equation (36) 

 
( )

eng
true

2eng
 

1 T

σ
σ =

+ ε
 (36) 

where Tε  is the transverse engineering strain measured by the DIC in the tension and compression tests. 
However, in previous work, the DIC strains presented in Littell (2008) and Littell et al. (2008) were 
assumed to be the true strains. In this work, the true stresses were therefore recomputed using the 
following equation (Poulain et al. 2013):  

 
eng

true
trueexp(2 )T

σ
σ =

ε
 (37) 

where true
Tε  is the transverse true strain measured by the DIC in the tension and compression tests. Since 

the relationship between longitudinal and transverse true strain for uniaxial loading is truetrue
LT v− εε =  and 

the relation between engineering and true normal strain is ( )true engln 1ε = ε + , the relationship between 
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the longitudinal and transverse engineering strain for uniaxial loading is ( ) ( )eng eng1 1
v

T L
−

+ ε = + ε  (Arnold 

et al. 2019). It is therefore evident that, for a Poisson’s ratio of 0.5, Equations (36) and (37) reduce to the 

well-known conversions between true and engineering stress, ( ) ( )eng truetrue eng eng1 expL Lσ = σ + ε = σ ε , 

which assume incompressibility. The uniaxial tensile and compressive stress-strain curves computed 
using Equations (36) and (37) are nearly identical and are shown in Figure 12 and Figure 13 in the 
Appendix. The shear test data presented in Littell (2008) and Littell et al. (2008) was unmodified. 

The resin material properties and model parameters used in the simulations are presented in Table II. 
To illustrate how the values of the hydrostatic constants were obtained, consider the room temperature 
shear, tension, and compression data presented in Figure 3(a), Figure 4(a), and Figure 5(a). The saturation 
stresses for the shear, tension, and compression tests conducted at strain rates of 1.6×10–1/s, 1×10–1/s, and 
1×10–1/s are 64.99, 103.83, and 112.23 MPa, respectively. Using these values in Equations (34) and (35) 
yields tensile and compressive plastic Poisson’s ratios of 0.3836 and 0.4955. These values were slightly 
adjusted manually to obtain an optimal fit with the shear, tension, and compression test data at the various 
other test temperatures and strain rates; the values of γ  and ξ  in Table II correspond to tensile and 
compressive plastic Poisson’s ratios of 0.3827 and 0.5, respectively. Note that the modulus values 
presented in Table II are slightly different than in previous research (Sorini et al. 2019) because, as 
aforementioned, a DMA shift factor of 5 K per decade strain rate was used in this research (10 K per 
decade strain rate was used in the previous work).  

In the simulations presented in this section, the inelastic heat fraction has been set to zero (no 
adiabatic heating) since i) many of the experiments were conducted at low strain rates, where adiabatic 
heating due to the conversion of plastic work to heat can be assumed to be negligible and ii) the available 
high strain rate test data exhibited fairly low failure strains, where the material response displayed 
minimal nonlinearity, and thus likely limited adiabatic heating due to plastic deformation. As in previous 

work (Sorini et al. 2019), using Equation (26), E862 material properties 3
kg1,200
m

ρ =  (Littell 2008), 

W0.18
m-K

k =  (Spurgeon 2018), J1,260
kg-K

C =  (Rowghanian and Hoa 2011), and assuming the 

characteristic length, Δx, is equal to half of the initial test coupon gage length used in the E862 neat resin 
tests presented in Littell (2008) and Littell et al. (2008) ( 1.5875mmx∆ = , which is also equal to the initial 
test coupon gage radius), the characteristic thermal diffusion time is found to be 21.17 sec. The 
corresponding approximate strain rate at which the system would be expected to behave adiabatically, 

1
dt−∆ , is 0.047/s. Note that this approximation does not account for the temperature dependence of the 

thermal properties of the material or the fact that the characteristic length, x∆ , changes throughout the 
deformation. Additionally, in reality, the transition from roughly isothermal to roughly adiabatic 
conditions spans a range of strain rates. Garg et al. (2008) conducted uniaxial compression tests on E862 
and found experimentally that, for their cubic specimens of 5 and 10 mm side lengths, a strain rate of 
0.5/s provided approximately adiabatic conditions. However, using the thermal properties mentioned 
above, Equation (26), and considering the characteristic length to be half the side length of the cubic 
specimens used by Garg et al. (2008), the approximate transition strain rates for the 5 and 10 mm side 
length specimens are 0.019 and 0.0048, respectively, which are roughly 26 and 104 times less than 0.5/s. 
This implies that the strain rate at which the E862 tests presented in Littell (2008) and Littell et al. (2008) 
could actually be between 1.2 and 4.9/s. It is therefore reasonable to assume isothermal conditions for the 
simulations in this section. The fact that Garg et al. (2008) observed approximately adiabatic conditions at  
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Figure 3.—Simulated and experimental shear stress-strain response of 

Epon 862 epoxy at (a) Room temperature (25 °C); (b) 50 °C; (c) 80 °C. 
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Figure 4.—Simulated and experimental tensile stress-strain response of 

Epon 862 epoxy at (a) Room temperature (25 °C); (b) 50 °C; (c) 80 °C. 
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Figure 5.—Simulated and experimental compressive stress-strain response of 

Epon 862 epoxy at (a) Room temperature (25 °C); (b) 50 °C; (c) 80 °C. 
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a strain rate of 0.5/s helps to further justify the adiabatic assumption for dynamic loading, such as impact 
events, where much larger strain rates are expected. Note that Poulain (2010) has suggested that the post-
peak softening observed in the E862 compression response (Littell 2008 and Littell et al. 2008) is intrinsic 
material behavior, not thermal softening.  

Figure 3, Figure 4, and Figure 5 show the simulated and experimental shear, tensile, and compressive 
stress-strain response of E862 epoxy resin at room temperature (25 °C), 50 °C, and 80 °C for various 
strain rates. Reasonably good correlations with experimental data are obtained for all the strain rates and 
temperatures for shear, tensile and compressive loading. Based on the characterization, it was found that 

0Z  and 1Z  approximately decrease linearly with temperature, as shown in Table II, which is why the 
model slightly underestimates the shear saturation stresses at 50 °C (Figure 3(b)). Due to the significant 
change in elastic properties above the glass transition temperature, it is likely that 0Z  and 1Z  would 
exhibit a different functional dependence than shown in Table II near and above the glass transition. 
Therefore, modeling 0Z  and 1Z  as piecewise functions of temperature or using a tabular approach may 
be more appropriate. Regardless of the method used to model the temperature dependence of 0Z  and 1Z , 
these functions must decrease with temperature (resistance to internal stress decreases as temperature 
increases). Care should also be taken to ensure 0Z  and 1Z  are always positive and that 1Z  is always 
greater than 0Z  for temperature ranges of interest; this may require setting these parameters to be 
constant for very high temperatures. It can be seen in Figure 5(a)) that the room temperature saturation 
stresses in the 1×10–3/s and 1×10–5/s strain rate compression simulations are slightly lower than the 
experimental values. This is interesting because the compressive plastic Poisson’s ratio in the model is 0.5 
and therefore the compressive saturation stresses are the highest they can possibly be (since the saturation 
stress increases with plastic Poisson’s ratio and 0.5 is the upper bound). Figure 5(c) shows that the 80 °C 
saturation stress in the 1×10–3/s strain rate compression simulation is slightly higher than the experimental 
value. This could suggest a nonconstant compressive plastic Poisson’s ratio. As evident in Figure 3, 
 

TABLE II.—EPON 862 MATERIAL PROPERTIES AND MODEL PARAMETERS 
Young’s Modulus *Taken from DMA curve (Figure 1)* 

    Temperature (°C) 
    30 50 80 

  R
at

e 
(1

/s
) 1×10–3 2.90 2.58 2.00 

1 3.27 2.81 2.29 

1,000 3.65 3.14 2.58 
 

Poisson’s Ratio 0.4 
Density (kg/m3) 1,200 

Specific Heat (J/kg-K) 1,260 
CTE (1/K) 5.4×10–5 

D0 (1/s) 1×106 
n 0.6351 
q 74.4073 
γ  6x10-4  
ξ  0.02449 

( )( )0  Pa-KZ T  ( )9 111.462 10 7.421 10T− × + ×  

( )( )1 Pa-KZ T  ( )9 122.365 10 1.232 10T− × + ×  
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Figure 4, and Figure 5, the model does not simulate the intrinsic strain softening observed in the 
compressive material response or the second hardening observed in the tensile and compressive response 
at very high strains. This is assumed to be acceptable since the matrix in PMCs will likely fail at small 
strains before these effects become significant. 

Figure 6(a) to (c) show the effect of varying the inelastic heat fraction between zero and unity for 
shear, tensile, and compressive loading at a strain rate of 1,000/s and an initial temperature of 25 °C. 
Higher temperature rises, resulting in more thermal softening, are observed for higher inelastic heat 
fractions for all loading cases, as expected.  

To demonstrate the improvements made to the Goldberg (Goldberg et al. 2005) model, the response 
of the improved model is compared to the Goldberg model at 25 °C. All the Goldberg model parameters 
are identical to those in the improved model, except 0Z , 1Z , and the hydrostatic constants. In the 
Goldberg model, the components of the inelastic strain rate tensor components are not temperature 
dependent. Therefore, the values of ( )0Z T  and ( )1Z T  in the Goldberg model are equal to those in the 
improved model divided by the absolute temperature. Additionally, since the Goldberg model employs a 
single hydrostatic state variable, α, its initial and final values have been set equal to the value of UTA  
(0.049), which results in constant plastic Poisson’s ratios.  

Figure 7 shows the stress and total Poisson’s ratio predicted by the improved model and the Goldberg 
model as a function of strain in the load direction for simulated uniaxial tensile and compressive loading 
at 1,000/s and 25 °C. In Figure 7(a), the tensile saturation stresses are the same, but the compressive 
saturation stresses are different. This implies that the Goldberg model is capable of simulating the same 
response as the improved model in tension and shear, but not in compression. Figure 7(b) shows the total 
Poisson’s ratios in tension and compression for both models. The Poisson’s ratios start at their elastic 
values (0.4) and, in the case of the improved model, approach their plastic values as the deformation 
progresses. However, in the Goldberg model predictions the compressive Poisson’s ratios exceeds 0.5.  

The following illustrates the importance of the fact that A, ( )sign kkγ σ + ξ , changes with the sign of 
the hydrostatic stress, kkσ . Figure 8 shows the response of the improved model and the Goldberg model 
to a hydrostatic stress state, which was achieved by applying uniform strain-controlled compression at a 
strain rate of 1,000/s in each of the normal directions at 25 °C. Note that the compressive plastic 
Poisson’s ratio for E862, determined via calibration against experimental data, is 0.5, which implies the 
material is plastically incompressible in compression. For solely the simulation results presented in 
Figure 8, the tensile and compressive plastic Poisson’s ratios have been set to 0.3 and 0.4, respectively 
( 3 34.23 10 ; 23.79 10− −γ = × ξ = × ) so that the model can simulate nonisochoric plastic deformation under 
hydrostatic compression. Additionally, since the Goldberg model is technically not defined for hydrostatic 
loading (due to division by 2 0J = ), the third line of Equation (9) was used to compute the inelastic strain 
rate tensor components, where A is set equal to AUT, which in this case is 0.088. All other model 
parameters in the Goldberg model and the improved model are unchanged. In Figure 8(a), the Goldberg 
model pressure versus volumetric strain curve becomes nearly vertical at a volumetric strain of 
approximately –0.1. In Figure 8(b), the plastic volumetric strain has the wrong sign because the deviatoric 
stresses are zero and the hydrostatic state variable in the Goldberg model does not change signs with 
pressure. In the improved model, the elastic and plastic volumetric strains are both negative, as they 
should be under hydrostatic compression. Figure 8(c) shows the effective stress and the accumulated 
plastic work density as a function of the accumulated effective inelastic strain. The Goldberg model 
predicts a negative effective stress because the hydrostatic state variable does not change signs with 
pressure. Since the effective inelastic strain is always positive, the plastic work density is negative, which 
is thermodynamically incorrect. The improved model predicts positive plastic work density because the 
effective stress has been constrained to always be nonnegative. 
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Figure 6.—Effect of varying inelastic heat fraction on (a) shear, (b) tensile, and 

(c) compressive stress-strain and temperature-strain response. 
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Figure 7.—(a) Stress and (b) Poisson’s ratio as a function of strain in the load 

direction for simulated uniaxial tensile and compressive loading. 
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Figure 8.—Response of Goldberg model and improved model to hydrostatic 

stress state: (a) Pressure vs. volumetric strain; (b) Elastic, plastic and total 
volumetric strain components vs. total volumetric strain. 
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4.2 Response of Unidirectional Composite 

The effects of adiabatic heating on the uniaxial tension, uniaxial compression and in-plane shear 
response of a unidirectional composite are investigated in this section. As in previous research (Sorini 
et al. 2019), a linear elastic response with no significant adiabatic heating or thermal softening is observed 
for longitudinal loading. As such, simulation results are only presented for transverse tensile, transverse 
compressive, and in-plane shear loading. Simulation results are presented for a T700/E862 unidirectional 
composite with a 60 percent fiber volume fraction at strain rates of 100 and 1,000/s. The T700 fiber 
properties used in the simulations are presented in Table III (Cater et al. 2015); the fibers have been 
modeled as transversely isotropic and linear elastic and their material properties are assumed to not vary 
with temperature. The properties used for the matrix subcells are given in Table II. It should be noted that, 
currently, there is no unidirectional T700/E862 composite test data available; this material system was 
selected due to the availability of fiber and matrix material properties and experimental data (for E862). 
To examine qualitatively the effects of adiabatic heating, simulations are conducted with inelastic heat 
fractions of zero (isothermal) and unity. An inelastic heat fraction of unity corresponds to a case where all 
plastic work is converted to heat. This implies that the simulated temperature rises in this section 
represent an upper bound, though Garg et al. (2008) found experimentally that nearly all the inelastic 
work was converted to heat in the high rate uniaxial compression of polycarbonate, implying that 
assuming an inelastic heat fraction of unity may be fairly accurate for adiabatic conditions. It should be 
noted that damage and failure are not included in the simulations in this section; all nonlinearity is due to 
inelasticity.  

The response of the unidirectional composite subjected to transverse tensile loading at strain rates of 
100 and 1,000/s at room temperature is shown in Figure 9(a) and (b), respectively. The transverse 
compressive response at the same strain rates is shown in Figure 10(a) and (b). Since the transverse 
response of a unidirectional composite is matrix dominated, significant adiabatic heating and thermal 
softening are observed for both transverse tensile and compressive loading. The RUC average 
temperature rises for the 100 and 1,000/s strain rate transverse tension simulations were 21.60 and 
25.12 °C, respectively, whereas the maximum local (subcell level) temperature rises were 94.92 and 
110.33 °C. The RUC average temperature rises for the 100 and 1,000/s strain rate transverse compression 
simulations were 27.12 and 31.20 °C, respectively, whereas the maximum local (subcell level) 
temperature rises were 117.36 and 132.48 °C. It is evident that, for the same strain rate and level of total 
deformation, the transverse compression simulations displayed larger temperature rises than the 
transverse tension simulations. It is evident from Figure 9 and Figure 10 that the tension-compression 
asymmetry in the composite response is captured in the simulations; the magnitude of the transverse 
compressive saturation stress is larger than the transverse tensile saturation stress.  

Figure 11(a) and (b) show the response of the unidirectional composite subjected to in-plane shear 
loading at room temperature at engineering shear strain rates of 100 and 1,000/s, respectively. Significant 
thermal softening due to adiabatic heating in the matrix is observed. The RUC average temperature rises 
for the 100 and 1,000/s engineering shear strain rate simulations were 9.79 and 11.51 °C, respectively. 
The maximum local (subcell level) temperature rises were 48.37 and 58.75 °C. 
 

TABLE III.—T700 CARBON FIBER ELASTIC PROPERTIES 
Axial Young’s Modulus 230 GPa 
Transverse Young’s Modulus 15 GPa 
Axial Poisson’s Ratio 0.2 
Transverse Poisson’s Ratio 0.3 
In-Plane Shear Modulus 27 GPa 
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Figure 9.—Simulated transverse tensile response of unidirectional composite 

at strain rates of (a) 100/s and (b) 1,000/s. 
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Figure 10.—Simulated transverse compressive response of unidirectional 

composite at strain rates of (a) 100/s and (b) 1,000/s. 
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Figure 11.—Simulated in-plane shear response of unidirectional composite at 

strain rates of (a) 100/s and (b) 1,000/s. 
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5.0 Concluding Remarks  
A plastically dilatant unified viscoplastic constitutive formulation suitable for use in multiscale 

composite impact problems has been presented. A new plastic potential function was proposed, where 
two hydrostatic constants control the level of influence of hydrostatic stresses on plastic deformation. 
Elementary loading conditions were used to obtain relations between model constants to ensure 
physically realistic plastic flow and a nonnegative effective stress, which subsequently guarantees 
nonnegative plastic dissipation, a necessary thermodynamic requirement. Relations between the tensile 
and compressive plastic Poisson’s ratios and the two hydrostatic constants were derived and a procedure 
to determine their values, as well as the other model constants, was presented. The model is strain rate, 
temperature, and pressure dependent and was shown to be capable of representing test data of a 
representative epoxy over a range of strain rates, temperatures, and loading conditions (shear, tension, and 
compression). The two hydrostatic constants used in the model permit the user to independently vary the 
tensile and compressive Poisson’s ratios, which would not be possible using a single hydrostatic constant. 
Adiabatic temperature rises are predicted using the heat energy equation, neglecting the thermoelastic and 
conduction terms. The unified viscoplastic model was used as a constitutive model in the GMC 
micromechanics framework, including the adiabatic heat energy equation, to illustrate the effects of 
adiabatic heating on the response of a T700/E862 unidirectional composite. Significant thermal softening 
due to adiabatic heating was observed for transverse tensile, transverse compressive, and in-plane shear 
loading, highlighting the importance of including the effects of adiabatic heating in multiscale analyses of 
PMCs under dynamic loading, where the composite is in a complex multiaxial stress state. The semi-
analytical micromechanics model is suitable for implementation into a commercial finite element code as 
a user defined material subroutine, which is the subject of future work. It is anticipated that the improved 
constitutive formulation, as well as including the effects of adiabatic heating and subsequent thermal 
softening, will improve model predictions of the impact response of PMC structures. 
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Appendix—Comparison of Epon 862 Uniaxial Tensile and Compressive True 
Stress-Strain Curves Computed Using Equations (36) and (37) 

 

A comparison of the E862 uniaxial tensile and compressive true stress-strain curves computed using 
Equations (36) and (37) is shown in Figure 12 and Figure 13. The data used for the conversions from 
engineering to true stress-strain can be found in Littell (2008) and Littell et al. (2008). In Figure 12 and 
Figure 13, the dashed curves were computed using Equation (36) and the solid (corrected) curves were 
computed using Equation (37).  

 

 
Figure 12.—Comparison of experimental tensile true stress-strain response 

of Epon 862 epoxy determined using Equations (36) and (37) at (a) Room 
temperature (25 °C); (b) 50 °C; (c) 80 °C. 
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Figure 13.—Comparison of experimental compressive true stress-strain 

response of Epon 862 epoxy determined using Equations (36) and (37) at 
(a) Room temperature (25 °C); (b) 50 °C; (c) 80 °C. 
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