

Fully-Coupled Fluid-Structure Interaction Simulations of a Supersonic Parachute

Jonathan Boustani^{∗+}, Michael F. Barad⁺, Cetin C. Kiris⁺, Christoph Brehm^{*}

HPC Resources Provided by Program Director, Dr. Suzanne Smith Grant Number, RIDG-17-005

**Department of Mechanical Engineering, University of Kentucky, Lexington, KY, 40506, USA*

"*Computational Aerosciences Branch, NASA Ames, Moffet Field, CA, 94035, USA*

q **Motivation/Introduction**

o Mars, EDL system qualification, Simulation Capabilities

FSI Method

- o Governing equations
- Immersed Boundary Method for the Compressible Navier-Stokes Equations (CFD)
- Geometrically Nonlinear Computational Structural Dynamics Solver (CSD)
- o Coupling procedure

q **Extended Validation for Fluid-Structure Interaction Problems**

□ Methods for Large-scale, Parallel CFD-CSD Coupling

o Disparate domain decomposition

q **Supersonic Parachute Inflation**

q **Summary and Outlook**

q **Motivation/Introduction**

o Mars, EDL system qualification, Simulation Capabilities

- **FSI Method**
	- o Governing equations
	- o Immersed Boundary Method for the Compressible Navier-Stokes Equations (CFD)
	- Geometrically Nonlinear Computational Structural Dynamics Solver (CSD)
	- o Coupling procedure
- q **Extended Validation for Fluid-Structure Interaction Problems**

□ Methods for Large-scale, Parallel CFD-CSD Coupling

- o Disparate domain decomposition
- q **Supersonic Parachute Inflation**

q **Summary and Outlook**

Motivation

 \Box MSL EDL system was requalified

o Payload weight, canopy size, and landing altitude exceeded those established by heritage Viking mission (Sengupta *et al*. AIAA 2007,2009, Way *et al*. IEEE 2006)

^q NASA's mission to Mars will eventually require EDL re- qualification

o For hardware and humans required for sustained settlements, more demanding landing objectives

 \Box LDSD project

o Supersonic ringsail parachute o Low-Density Supersonic Decelerator

Introduction

 \Box Previously introduced and validated a method for simulating the large, geometrically nonlinear deformations of very thin shell structures (Boustani *et al*. SciTech 2019)

 \Box This work is an extension of these capabilities to solving large-scale FSI problems in high-speed flows within a parallel computing environment

 \Box End goal is to simulate supersonic parachute deployment

 -20

 -20

□ Motivation/Introduction

o Mars, EDL system qualification, Simulation Capabilities

q **FSI Method**

- o Governing equations
- o Immersed Boundary Method for the Compressible Navier-Stokes Equations (CFD)
- Geometrically Nonlinear Computational Structural Dynamics Solver (CSD)
- o Coupling procedure
- q **Extended Validation for Fluid-Structure Interaction Problems**

□ Methods for Large-scale, Parallel CFD-CSD Coupling

- o Disparate domain decomposition
- **Supersonic Parachute Inflation**

q **Summary and Outlook**

 \Box The fluid regime considers the compressible Navier-Stokes equations, shown here in conservative form

$$
\frac{\partial \mathbf{W}}{\partial t} + \frac{\partial \mathbf{E}}{\partial x} + \frac{\partial \mathbf{F}}{\partial y} + \frac{\partial \mathbf{G}}{\partial z} = 0
$$

$$
\mathbf{W} = \begin{bmatrix} \rho, \rho u, \rho v, \rho w, \rho e_t \end{bmatrix}^T
$$

 \Box The structural regime considers the Total Lagrangian equations of motion

$$
\int_{^0V} {}_0S_{ij} \delta_0 \boldsymbol{\epsilon}_{ij} d^0 V + \int_{^0V} {}_0^t \boldsymbol{S}_{ij} \delta_0 \boldsymbol{\eta}_{ij} d^0 V = {}^{t+\Delta t} \boldsymbol{\mathcal{R}} - \int_{^0V} {}_0^t \boldsymbol{S}_{ij} \delta_0 \boldsymbol{e}_{ij} d^0 V
$$

 \square Partitioned solution involves solving strong and weak solutions together

 \Box The coupling conditions between the two regimes enforce the continuity of loads across the shared boundary

$$
\mathbf{t}_{structure}(\overline{\mathbf{x}}_b(t),t) = \mathbf{t}_{fluid}(\overline{\mathbf{x}}_b(t),t)
$$

where the fluid traction vector considers pressure and viscous stresses

 \Box The continuity of the position and velocity of the shared boundary itself is also enforced

$$
\overline{\mathbf{x}}_b(t) = \mathbf{x}_{fluid}(t) = \mathbf{x}_{structure}(t)
$$
, and
\n $\overline{\dot{\mathbf{x}}}_b(t) = \dot{\mathbf{x}}_{fluid}(t) = \dot{\mathbf{x}}_{structure}(t) \ \forall t \ge 0$

FSI Method

 \Box The method used in this work couples together

I. A structured Cartesian, higher-order, sharp immersed boundary method for the compressible Navier-Stokes equations

> *Brehm, C., Fasel, H., JCP 2013 Brehm, C., Hader, C., Fasel, H., JCP 2015 Brehm, C., Barad, M. F., Kiris, C. C., JCP 2018*

II. A geometrically nonlinear structural finite element solver employing shell elements that utilize the Mixed Interpolation of Tensorial Components *Boustani et al., AIAA SciTech 2019*

 \Box FD stencils are locally optimized considering the local flow conditions and boundary distance

 \circ Improved stability

- \square Compressible Navier-Stokes are solved with the $4th$ - order time explicit Runge-Kutta scheme
- \Box WENO5 is used for the convective terms to deal with flow discontinuities

- \Box 'Sharp' classification comes from boundary conditions being enforced directly at grid-line intersection points $+n+1$
- \Box Advantageous for thin geometries No valid data is needed inside the geometry
	- o Now need to deal with freshly-cleared cells (FCCs)
- \Box FCCs have no valid-time history
	- o Must interpolate from the surrounding flow
	- o Use canonical ENO selection in high-speed flows

Structural Solver

 \Box Element formulations used:

oGeometrically nonlinear MITC3 triangular shell element oGeometrically nonlinear generic cable element

 \Box In this work, the St. Venant-Kirchoff hyperelastic strainenergy function is used

 \Box Time integration is performed with the implicit Newmark- β scheme

oNonlinear solution is obtained via Newton-Raphson iteration

CFD-CSD Coupling

 \Box The CFD and CSD solvers are weakly coupled oThe solution procedure is **partitioned**

 \square An auxiliary and mass-less, or phantom, representation of the geometry with a finite thickness is used in the CFD solver

 \Box The coupling conditions are enforced at the artificial interface between the geometry representation and the infinitesimal thickness CSD mesh

CFD-CSD Coupling

 \Box The CFD and CSD solvers are weakly coupled oThe solution procedure is **partitioned**

 \Box An auxiliary and mass-less, or phantom, representation of the geometry with a finite thickness is used in the CFD solver

 \Box The coupling conditions are enforced at the artificial interface between the geometry representation and the infinitesimal thickness CSD mesh

□ Motivation/Introduction

o Mars, EDL system qualification, Simulation Capabilities

FSI Method

- o Governing equations
- o Immersed Boundary Method for the Compressible Navier-Stokes Equations (CFD)
- Geometrically Nonlinear Computational Structural Dynamics Solver (CSD)
- o Coupling procedure

q **Extended Validation for Fluid-Structure Interaction Problems**

□ Methods for Large-scale, Parallel CFD-CSD Coupling

- o Disparate domain decomposition
- q **Supersonic Parachute Inflation**

q **Summary and Outlook**

q Vertical plate of height H is *clamped* along bottom edge

 \Box All parameters chosen in accordance with o**Simulations**: Hu and Wang (JAFM 2016), and Seidel *et al.* (AIAA 2018) o**Experiments**: Womack and Seidel (AIAA 2014), and Siefers *et al.* (AIAA 2018)

 \Box Exposed to viscous crossflow $\mathbf{U} = (U, 0, 0)^T$ $z_{\rm A}$ ■ Domain: [-20H,25H] \times [-9H,9H] \times [0,9H] $\Box \Delta x_{min} = \Delta y_{min} = H/25$ \Box No-slip wall on plate, slip wall on x-y boundary

 \Box For comparison with Hu and Wang (JAFM 2016) and Womack and Seidel (AIAA 2014), Siefers *et al.* (AIAA 2018) introduced the

1. Mean chord angle

$$
\emptyset = \tan^{-1}\left(\frac{\delta_x}{H - \delta_z}\right)
$$

2. Normalized curvature

$$
k = \frac{qH^3}{Eh^3}
$$

 \square These parameters reduce the solution to a single variable, Ø

- □ Siefers *et al.* (AIAA 2018) notes that geometrically linear deformations become invalid after *k =* 0.3
- \Box As shown, the current method shows good agreement with established experiments and simulations

 $k = 0.3$

\Box Plate response becomes unsteady for larger values of *k*

q Consider the setup chosen by Huang *et al. (JFM 2010)* and Hua *et al. (JFM 2014)*

 \circ $Re = 100$ \circ MR = $\rho_{\scriptscriptstyle S} h$ $\rho_f L$ =100 $\Delta x_{min} = \Delta y_{min} = 0.02L$ o Discretized with 3,200 finite elements o FEM mesh is *pinned* at the leading edge o 18° crossflow to induced motion o Thickness, *h*, is 0.01

$$
\circ S_s = \frac{EI_s}{\rho_f U^2 L^3} = 1 \times 10^3,
$$

$$
\circ S_b = \frac{Eh}{\rho_f U^2 L} = 1 \times 10^{-4}
$$

 \square As shown, good agreement is obtained both in terms of the excursion amplitude $\frac{\delta_{Z, max} - \delta_{Z, min}}{\delta_{Z, max}}$ and the Strouhal number $f\frac{U}{I}$ \overline{L} \overline{L}

□ Motivation/Introduction

o Mars, EDL system qualification, Simulation Capabilities

FSI Method

- o Governing equations
- o Immersed Boundary Method for the Compressible Navier-Stokes Equations (CFD)
- Geometrically Nonlinear Computational Structural Dynamics Solver (CSD)
- o Coupling procedure
- q **Extended Validation for Fluid-Structure Interaction Problems**

q **Methods for Large-scale, Parallel CFD-CSD Coupling**

- o Disparate domain decomposition
- **Supersonic Parachute Inflation**
- q **Summary and Outlook**

□ In Boustani *et al.* SciTech 2019, the structures consisted of a few thousand shell elements

oThis allowed a *parallel CFD – serial CSD* coupling

 \Box When considering a parachute geometry, the number of degrees of freedom requires parallel computing

o The *parallel CFD – parallel CSD* coupling requires a complex communication pattern

o When dealing with large-scale problems, minimize memory and overhead

 \Box What happens when the CFD and CSD partitions are disparate? oExpected in weakly coupled FSI algorithms

I. The CFD solver uses an octree data structure to organize the volume data o**The geometry representation is partitioned accordingly**

II. The CSD solver is partitioned on an unstructured mesh by ParMETIS

Aside:

q How does process '*m*' get/transfer loads/displacements to/from process '*n*'?

Aside:

q How does process '*m*' get/transfer loads/displacements to/from process '*n*'?

Aside:

 \Box Ray-triangle intersection is used to identify elements in the geometry representation laying directly 'above/below' a CSD partition

o Ray intersect a CSD element belonging to a partition and are stored **uniquely** by that partition

III. Load and displacement transfer stencils are computed between the geometry representation and CSD mesh within the defined partitions

 \circ Stencils are limited a single partition

Serial CSD Displacement Stencil Parallel CSD Displacement Stencil

 \Box Using this algorithm, each process only stores its portion(s) of the CFD volume mesh, geometry representation, and the CSD mesh o Need to communicate to other processors is reduced greatly o Memory requirements are less demanding

 \Box It is clear that the geometry representation is stored twice o Once when partitioned by the CFD solver via volume decomposition o Once when partitioned by the CSD solver via ray-triangle intersection \circ No guarantee that these partitions are the same

 \Box Best case scenario is a shared, infinitesimal thickness representation of the CSD mesh and geometry representation

□ Motivation/Introduction

o Mars, EDL system qualification, Simulation Capabilities

FSI Method

- o Governing equations
- o Immersed Boundary Method for the Compressible Navier-Stokes Equations (CFD)
- Geometrically Nonlinear Computational Structural Dynamics Solver (CSD)
- o Coupling procedure
- q **Extended Validation for Fluid-Structure Interaction Problems**

□ Methods for Large-scale, Parallel CFD-CSD Coupling

o Disparate domain decomposition

q **Supersonic Parachute Inflation**

q **Summary and Outlook**

 \Box Setup is chosen in accordance with

- o **Experiments:** Sengupta *et al.* (AIAA 2009)
- o **Simulations:** Karagiozis *et al*. (JFS 2011) and Yu *et al.* (AIAA 2019)

□ 0.8m D₀DGB Parachute design is based off Reuter *et al.* (AIAA 2009)

oSub-scale Viking parachute model *with and without* a sub-scale 70° Viking capsule

 \Box Setup is chosen in accordance with

- o **Experiments:** Sengupta *et al.* (AIAA 2009)
- o **Simulations:** Karagiozis *et al*. (JFS 2011) and Yu *et al.* (AIAA 2019)
- **Q** 0.8m D_0 DGB Parachute design is based off Reuter *et al.* (AIAA 2009)
	- oSub-scale Viking parachute model *with and without* a sub-scale 70° Viking capsule

 \square Problem resembles spacecraft entry into the upper Martian atmosphere:

$$
\Box Re = \frac{\rho_{\infty}u_{\infty}d}{\mu_{\infty}} = 10^5
$$

$$
\Box \mu_{\infty}
$$
 via Sutherland's law at T.

d Sutherland's law at I_{∞} 294.93

$$
\begin{aligned}\n\Box \rho_{\infty} &= 0.0184527 \frac{kg}{m^3} \\
\Box u_{\infty} &= 688.89 \frac{m}{s} \\
\Box M &= \frac{u_{\infty}}{a_{\infty}} = 2.0\n\end{aligned}
$$

Fluid Properties **Structural Properties**

$$
E_p = 878 MPa
$$

$$
v = 0.33
$$

$$
\Box h = 6.35 \times 10^{-5} m
$$

$$
\begin{aligned} \n\Box \, \rho_p &= 614 \frac{\text{kg}}{\text{m}^3} \\ \n\Box \, d_c &= 0.99 \times 10^{-3} m \n\end{aligned}
$$

$$
\Box E_c = 43 GPa
$$

$$
\Box \rho_c = 8.27 \times 10^{-4} \frac{kg}{m}
$$

 \Box Center of the vent hole is at (0,0,0) **Q** Domain: $[-6.25D_0, 6.25D_0] \times [-6.25D_0, 6.25D_0] \times [-6.25D_0, 6.25D_0]$ \Box Base case: $\Delta x_{min} = \Delta y_{min} = D_0/164$

q 600 geometrically nonlinear cables elements are used for the suspension lines oFixed at point P

 \square 108,000 geometrically nonlinear shell elements resolve the disk and canopy

 \Box Center of the vent hole is at (0,0,0) **Q** Domain: $[-6.25D_0, 6.25D_0] \times [-6.25D_0, 6.25D_0] \times [-6.25D_0, 6.25D_0]$ \Box Base case: $\Delta x_{min} = \Delta y_{min} = D_0/164$

600 geometrically nonlinear cables elements are used for the suspension lines

oFixed at point P

Simulation initial condition

 \square 108,000 geometrically nonlinear shell elements resolve the disk and canopy

q Structural mesh based off simulations by Derkevorkian *et al.* (AIAA 2019)

- \circ Elements along seams are thickened by a factor of 4 to represent the stitching pattern used in manufacturing of the canopy
- o Finely resolving these regions also helps capture the stress discontinuities across the seams

Streamwise velocity Temperature field

 \Box The cables are not resolved in the CFD volume mesh

- \circ Nor do they experience any external loading \rightarrow motion is virtually unopposed
- \circ This leads to large period, large amplitude swaying of the cables
- \Box The cables, as well as the canopy, start the simulation in an unstressed state
	- \circ There is no tension in the cables

Resolve with phantom geometry or approximate ling drag **from damping matrix, reduced order model,** *etc.***? Pre-tension?**

 \overline{z}

Case 2: Leading Viking-type Capsule

Streamwise velocity

□ Motivation/Introduction

o Mars, EDL system qualification, Simulation Capabilities

FSI Method

- o Governing equations
- o Immersed Boundary Method for the Compressible Navier-Stokes Equations (CFD)
- Geometrically Nonlinear Computational Structural Dynamics Solver (CSD)
- o Coupling procedure
- q **Extended Validation for Fluid-Structure Interaction Problems**

□ Methods for Large-scale, Parallel CFD-CSD Coupling

- o Disparate domain decomposition
- q **Supersonic Parachute Inflation**

q **Summary and Outlook**

q **Summary:**

- o A validated method for FSI problems involving the large deformations of thin structures was extended to large, parallel simulations in supersonic flows
- \circ The details of the weak, parallel coupling algorithm and the treatment of dealing with the disparate partitions in the CFD and CSD solvers were discussed
- o The FSI method was then applied to two more large deformation FSI validation test cases to add onto the validation cases presented at SciTech 2019
- \circ The FSI method was finally applied to the simulation of parachute inflation in the upper Martian atmosphere

Summary and Outlook

Outlook:

- \circ Treatment of the cable dynamics via damping, line drag
- \circ Apply porous material boundary conditions on the canopy
- o Implement more efficient contact algorithms for robustness
- o Develop communication rings in the partitioned CFD-CSD solution procedure
- o Reduce overhead and general optimization, load balancing

