
Pilot Evaluation of
Model Based Design Tooling for

Guidance, Navigation, and Control
Flight Software Development

Brian R. Jamison, Mike R. Hannan,
James T. Kaidy, Juan I. Orphee, Nick S. Olson

Guidance, Navigation, & Control

NASA Marshall Space Flight Center

9-12
December

2019

https://ntrs.nasa.gov/search.jsp?R=20200000985 2020-03-28T19:05:55+00:00Z

• MBD systematically uses models throughout the development process for
requirements, design, analysis, simulation, verification and validation, and
documentation

• An MBD approach seeks to
incorporate models into an
automated, concurrent design
process intended to minimize
potential for human error

• Improvements offered by an MBD
approach include efficiency
improvements by automating
aspects of requirements testing
and documentation

• An advantage of MathWorks MBD
tooling is the model visualization
Simulink naturally incorporates into the design process

What & Why Model Based Design (MBD)

2

NASA LADEE MBD Experience

3

• “Compared with using Model-Based Design, hand-coding the flight software would have taken longer and made
collaboration more difficult. Managers and hardware system engineers understand Simulink models, making it
easy to achieve consensus because everyone knows what’s going on in the software.”

- Dr. Karen Gundy-Burlet, NASA Ames Research Center

• “Compared with using Model-Based Design, hand-coding the flight software would have taken longer and made
collaboration more difficult. Managers and hardware system engineers understand Simulink models, making it
easy to achieve consensus because everyone knows what’s going on in the software.”

- Dr. Karen Gundy-Burlet, NASA Ames Research Center

NASA LADEE MBD Experience

4

MathWorks MBD Tooling
• MathWorks worked with the NASA Engineering &

Safety Center (NESC) to develop tooling that
addresses about 80% of NPR 7150.2 requirements,
including:

• Software requirements
• Software design
• Software implementation
• Software testing

• NPR 7150.2 Requirements outside of the MathWorks
workflow include:

• Software architecture requirements
• Project management requirements

• Consultation ongoing with the Marshall Space
Flight Center (MSFC) software division to
ensure they concur with our MBD approach

5

• MSFC Guidance, Navigation, & Control (GNC) group used the VIPER Lander as a
pilot program to use of MathWorks MBD tools for GNC FSW development

• Goal: Apply an MBD approach and tooling to condense schedule, reduce needed
resources, and improve quality

Expected MBD approach benefits:
• Facilitates requirements implementation verification
• Automates:

• Requirements verification testing
• Continuous model and flight code testing
• Modeling standards (DO-178C) enforcement
• Code-generation from the Simulink model
• Static code analysis to ensure coding standard compliance
• Report generation

• Establish a highly automated, disciplined process that allows
repeated testing of the system throughout the design process

VIPER Lunar Lander Pilot Program

6

Generalized Lander Simulation in Simulink (GLASS)
• 6-DoF aerospace vehicle simulation

environment designed to be:
• Modern
• Flexible
• User-friendly

• Features
• Simulink Framework

• Interfaces with MathWorks MBD products
• Supports auto-coding to C/C++

• Dynamics constructed using Simscape
Multibody

• Provides flexible & modular physics engine for
simulation

• GLASS Core is common to all simulations
• Modular GNC algorithms

• Mirror FSW functions in generated code 7

Common
GLASS Core

Interchangeable
Vehicle Specific Plant Models

Interchangeable
Vehicle Specific GNC Models

MBD for GNC FSW Development

8

Model & GNC Code Development:
Simulink & Model Advisor

 Highly modular software
development

 Enforce DO178 and
custom standards

 Ensure code satisfies
requirements

Check Requirements:
Simulink Requirements &

Simulink Test

Generate Automated Reports:
Report Generator

 Ensure software modules
perform as expected

 Ensure all code is exercised

Software Unit Testing:
Simulink Model & Code Coverage

 Customize auto-code to
meet FSW standards

 Enforce selected standards
 cFS compatible (optional)

Auto-code GNC Software:
Simulink Embedded Coder

 Catch run time errors,
 Enforce MISRA, JSF, etc.

Static Code Check:
Polyspace

1
2
3
4
5

// NASA MSFC GNC
Quality
Autocode
GNC
FSWGLASS

Core

Interchangeable
Plant Models

Interchangeable
GNC Models

MBD Workflow

Requirements,
e.g., in Excel

Requirement Statements

Simulink
Requirements

Test Parameters

Simulink Test

Automated
Report

Generation

Iteration Updates
Synchronized via

Script

Data
Dictionary

Unit Testing &
Model Coverage

Testing

10

11

12

13

14

15

16

17

18

19

Report Generation

20

Simulink Auto-Coding for MBD
• Auto-coding enforces coding standards automatically and consistently
• Utilizes Simulink Coder & Embedded Coder to generate C/C++ code directly

from Simulink models
• One interface for plant modeling, algorithm development, & code deployment
• Access to MathWorks control toolboxes and other analysis tools

• Used by:
• NASA

• GLASS
• NEA-Scout
• Orion GN&C
• Goddard programs – PACE, JEDI

• APL
• Lockheed Martin
• Automotive Industry

21

• Code &
model
linking

• Code
comments

• Improved
readability

Simulink Auto-Coding for MBD – Example

22

• Ensures model/code are fully exercised
• Used during unit testing

• Checked in the Simulink model and
generated code

• Report links un-executed portions of the
model and code

• Simplifies repair/justification
• Report provides metric about work

remaining

Coverage Testing

23

• Static Code Check – Polyspace
• Integrated with Simulink for traceability from the

source code back to the original model
• Looks for concurrency issues, security

vulnerabilities, & runtime errors,
including arithmetic overflow, buffer
overrun, division by zero, out-of-bounds
array access, and others

• Ariane 5 failed (4 June 1996) due to overflow
• Enforces coding guidelines

• MISRA C, MISRA C++, JSF++, CERT® C,
CERT® C++, etc.

• Static code checks are typically required for FSW

MBD Static Code Checking

24

• Static Code Check – Polyspace
• Integrated with Simulink for traceability from the

source code back to the original model
• Looks for concurrency issues, security

vulnerabilities, & runtime errors,
including arithmetic overflow, buffer
overrun, division by zero, out-of-bounds
array access, and others

• Ariane 5 failed (4 June 1996) due to overflow
• Enforces coding guidelines

• MISRA C, MISRA C++, JSF++, CERT® C,
CERT® C++, etc.

• Static code checks are typically required for FSW

MBD Static Code Checking

25

Example: Traditional vs. MBD
• Traditional (manual, labor intensive, error prone):

• Near Earth Asteroid Scout (NEA-Scout) Project had ~33 GNC L4 requirements, verified
through 4 major analysis packages

• When changes were introduced, analyses and documentation were (manually) repeated to
assess impacts to requirements

• NEA-Scout relied on the FSW integrator (JPL) to run static code checks, involving
manual trace-backs from the code to the model

• MBD (largely automated):
• L4 requirements are checked within the model, and impacts to the design changes can be

assessed with every execution of the model
• When change is introduced, automated testing confirms requirements are satisfied
• Static code checks are done by code developer prior to delivery to FSW integrator using

Polyspace, which seamlessly links code violations with the source code and the model

26

A Synergistic Environment
• Automated processes

• Testing, Auto-coding, report generation
• Testing

• Tools such as Simulink Test are capable of exercising both the Simulink model and the
generated code for requirements validation

• Auto-coding
• Reporting is part of the process
• All pieces work together to produce a

highly automated, disciplined process

27

Summary
• A preliminary process has been established to generate quality GNC code using

MBD tools from MathWorks (and Microsoft Excel)
• Initial discussions with the NASA MSFC Flight Software group have taken

place to ensure processes work together
• Goals:

• Increase development speed
• Reduce manual tasks (e.g., testing, hand coding, report writing)
• Traceability from requirements to model/code verification
• Consistent quality

28

Image Sources
• NASA logo: https://commons.wikimedia.org/wiki/File:NASA_logo.svg
• LADEE image: https://www.nasa.gov/mission_pages/ladee/multimedia
• Dictionary image: https://commons.wikimedia.org/wiki/File:Gnome-

dictionary.svg
• Simulink Requirements Editor: https://www.mathworks.com/products/simulink-

requirements/features.html#author-and-organize-requirements-in-simulink
• Puzzle pieces image, modified from:

https://commons.wikimedia.org/wiki/Jigsaw_puzzle#/media/File:Jigsaw.svg

29

https://commons.wikimedia.org/wiki/File:NASA_logo.svg
https://www.nasa.gov/mission_pages/ladee/multimedia
https://commons.wikimedia.org/wiki/File:Gnome-dictionary.svg
https://www.mathworks.com/products/simulink-requirements/features.html#author-and-organize-requirements-in-simulink
https://commons.wikimedia.org/wiki/Jigsaw_puzzle#/media/File:Jigsaw.svg

	Pilot Evaluation of� Model Based Design Tooling for�Guidance, Navigation, and Control Flight Software Development�
	What & Why Model Based Design (MBD)
	NASA LADEE MBD Experience
	NASA LADEE MBD Experience
	MathWorks MBD Tooling
	VIPER Lunar Lander Pilot Program
	Generalized Lander Simulation in Simulink (GLASS)
	MBD for GNC FSW Development
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Report Generation
	Simulink Auto-Coding for MBD
	Simulink Auto-Coding for MBD – Example
	Coverage Testing
	MBD Static Code Checking
	MBD Static Code Checking
	Example: Traditional vs. MBD
	A Synergistic Environment
	Summary
	Image Sources

