

SLS GNC Model-based Design Approach

Naeem Ahmad, Evan Anzalone, Young Kim, Paul Von der Porten (NASA/MSFC) Jimmy Compton, Steven Hough, Thomas Park, John Wall (NASA/MSFC/ESSCA/Jacobs/DCI) Christian Garcia (NASA/MSFC/ESSCA/Jacobs)

Overview

- SLS Top-level GNC Requirements
- SLS GNC Architecture
- Model-based Approach to Analysis and Design
- Simulation Architecture
- SLS GNC FSW Model Description
- Model Delivery Process
- Verification and Validation

GNC Requirements

- High level requirement: insertion of payload into a predefined orbit with high accuracy (Apogee, Semi-Major Axis, Wedge Angle) and ensure vehicle dynamic stability
 - Also must do this safely, respond to in-flight conditions, and provide outputs capturing vehicle health and status
- Provide traceability from system requirements to subsystem requirements to demonstrate verification of vehicle design to meet high level requirements

GNC Architecture

Inputs:

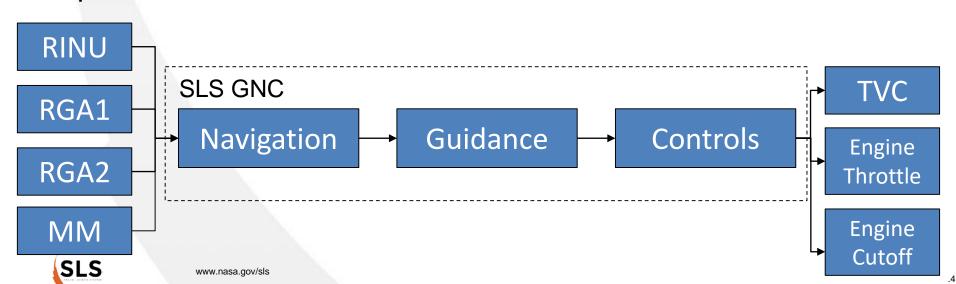
- Sensor observations across vehicle (navigated position, velocity, and attitude, observed angular rates and acceleration), flight parameters, mission manager inputs

Navigation Functions:

Down-selection of redundant sensors, convert data into vehicle frame, verify sensor operational status

Guidance Functions:

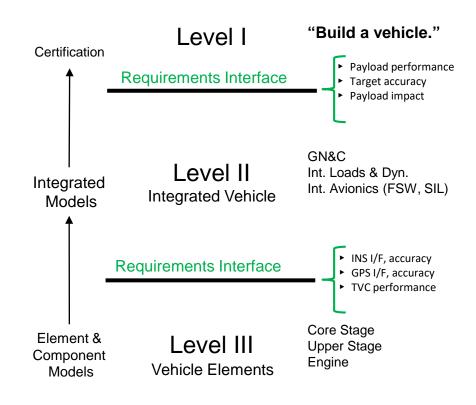
 Open and closed loop algorithms to command attitude and engine state to reach orbital target


Controls Functions:

 Convert attitude and engine commands to actuator level interface, maintain vehicle stability

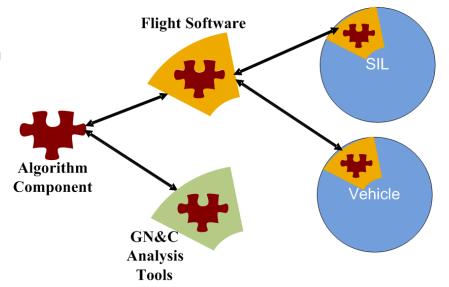
Outputs:

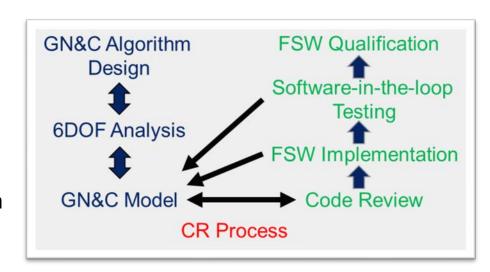
 Current vehicle state, sensor health, actuator commands, throttle commands, engine cutoff commanding


 Analysis through Monte Carlo simulation to demonstrate integrated vehicle performance across nominal and off-nominal scenarios

SLS SE&I Model Based Design

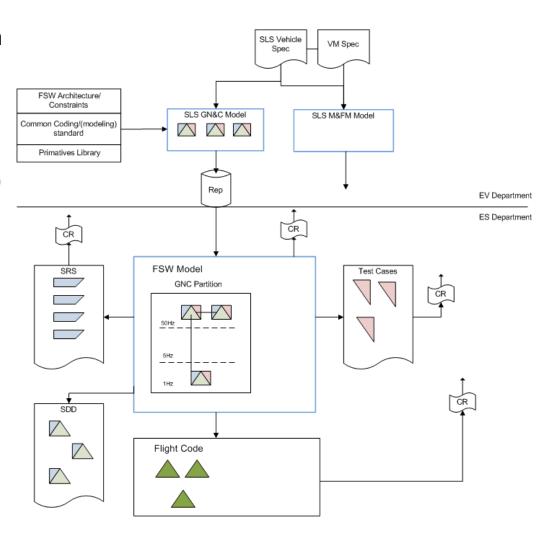
- Reduced Program structure
- Emphasis on heritage hardware
- Relatively sparse requirements set over previous design projects
- Design Math Models (DMM) convey the design
 - Controlled at program level
 - Maturity/limitations/use tightly tracked
 - Component models are verified against vendor design and validated against flight hardware (or equiv.)
 - Physics models (e.g. 6DOF sim)
 verified against other simulations and validated with test data
 - Model parameters of high sensitivity can be elevated to requirements
- Example
 - Level II DMMs: GN&C Model, MAVERIC (6DOF Sim)
 - Level III DMMs: Sensor Performance,
 Actuator Response, Aerodynamics
 Properties, Flexible Body Dynamics, etc.

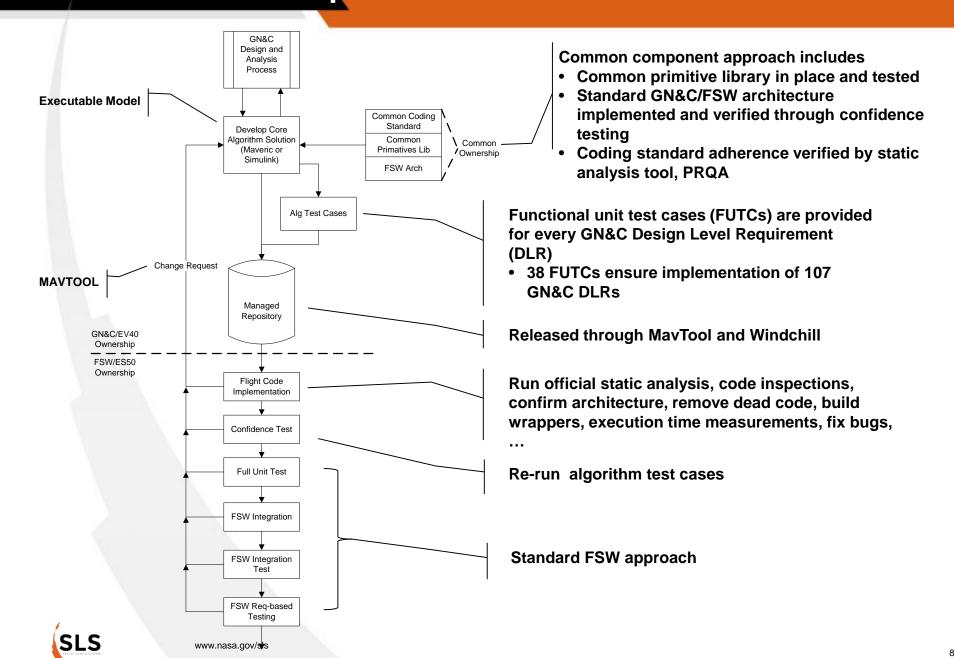

SLS Program Structure



GN&C Implementation of MBD Processes

- Heritage programs used documentation to describe GNC algorithms to FSW team
 - Test cases included to verify functionality
- MBD began as pilot program in 2010
 - Working towards efficient GNC and FSW Process
- DMM Contents
 - Executable Algorithms
 - Parameter Definition
 - Technical Memorandum
 - Interface assumptions
 - Unit test cases
- GNC Model
 - Pulled directly from simulation architecture
 - Direct tie to performance results
 - Captures implementation of design
 - Includes unit test functionality and hardware testing
- Detailed CR Process for integration with FSW and internal development




GNC/FSW High-Level Process Flow

- Component delivery through managed repository
- Early introduction of FSW architecture, common primitive library, and common coding/(modeling) standard
- Iterative, closed-loop maturation to flyable implementation
 - Modifications fed back through Change Request
- Simulations performed to verify system performance with updates

GNC/FSW Implementation Process Flow

Verification and Validation Activities

At GNC Level

- Changes to simulation and GNC model managed as implemented into MAVERIC 6DOF simulation CR Tool
 - GNC model changes late in the design require formal CR from FSW Team
- Unit testing between MAVERIC releases to validate integrated performance
- Used for verifying system performance metrics

At GNC Model Delivery

- Unit test wrapped around GNC model delivery (includes inputs and outputs from MAVERIC) to validate performance on GNC model alone
- Unit test repeated on flight-like processor platform and outputs generated

At FSW Integration Level

- Repeat of unit test with MAVERIC generated data to verify integration within FSW architecture
- Design-Level Requirement testing and verification

At FSW System Level

- Test cases and comparisons within Software- and Hardware-in-the-Loop simulations to verify performance
- Comparison between SIL/HIL results and MAVERIC to identify any mismodeling and verify GNC performance on flight hardware

Summary of Approach

GNC Functionality

- Common component approach
 - Common algorithm implementation is iteratively matured to a flyable state.
- At the G, N, and C component level, the same implementation is exercised in the GN&C development environment and the FSW target environment.
- GN&C team delivers algorithm components in the form of executable pseudo-code.
 - Iterative, closed-loop maturation process
 - Each component meets the quality and testing standards of the FSW organization

Advantages from Cross-discipline Viewpoint

- Efficiency through elimination of non-value added and error prone documentation steps
- Leveraging test and analysis done in previous steps
- Early introduction of flight software architecture and implementation constraints
- Controlled mechanism for version/release management and change requests
- Establish a mechanism which enables rapid prototyping in the target environment
- Establish a traceability between all algorithm and software artifacts

Conclusions

Implementation of MBD on SLS has significantly increased efficiency

- Reduces requirements burden
- Provides explicit communication of component and integrated system design

Provides a mechanism for

- Detailed modeling and design insight
- Identification of key vehicle sensitivities
- Gaining additional insight through testing and validation process
- Enforcing rigor in modeling through validation

DMM V&V process forces high fidelity emulation of hardware

- Lessons Learned:
 - Model form and function should consider user and developer
 - GN&C Model
 - Software requirements drive the software test program
 - Approach conflicted with established FSW processes and culture
 - Component models
 - Good data requirements and supplier integration are key to enabling process
 - V&V plans should be defined early to support data requirements definition and to identify gaps which require additional testing.
 - Sensitivity analyses should be used to identify key performance drivers
 - Commonality between HWIL models and Performance/Analysis models reduces crossvalidation effort in verification
 - Interfaces should be included in FSW requirements to ensure compatibility with hardware ICDs

Thank you!

Any questions?

