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ABSTRACT 

 Acquiring data in rocket engines that is representative of the actual dynamic environment can 
often be difficult due to a multitude of influences.  One source of contamination that is often not 
considered entirely is the response associated with the acoustic cavity created by a sensor offset.  It is 
common to offset a sensor due to various reasons such as for mounting accessibility, thermal isolation, 
shock reduction, or prevention of debris impingement.  While estimating the natural frequency of the 
acoustic cavity is straightforward, limited analysis has been described on the determination of the overall 
frequency response. The sensor port design approach usually attempts to ensure the port is short enough 
such that the acoustic response is negligible near the frequency-of-interest, but this requires knowledge 
of the frequency response and simple rules-of-thumb are not always guaranteed.  Data correction and/or 
data interpretation is also often desired for an unsatisfactory response.  The limited response analysis in 
the literature only offers approximations or neglects important contributions.  A new approach is devised 
theoretically and computationally that captures the true acoustic response of a sensor port.  This paper 
summarizes the acoustics background, the port response theoretical development, and provides 
comparisons of a port acoustic response using an analytical model and computational acoustics.  The 
effects of nonlinear acoustics are also examined.  Additionally, the paper summarizes the design of a 
specialized filter using the predicted sensor port response that can be applied to data for correction. 

INTRODUCTION 

Acquiring data that is representative of an environment can often be difficult due to a multitude of 
influences.  Unwanted responses can be caused by every component in the measurement system such 
as those due to the acquisition system electronics, transducer sensing components, and cables.  Mains 
electrical noise may often taint data in a poorly grounded system.  Moreover, the sensor transducer 
component, such as piezoelectric crystals, have a sensitivity to other environments that can also corrupt 
the data, such as the thermal and vibratory influence on a dynamic pressure device.  Careful design of 
the measurement system is always prudent prior to data collection. 

There is another source of contamination that is often not considered entirely, particularly for 
dynamic pressure sensors.  It may not always be possible to install a dynamic pressure sensor so that it 
is mounted flush with the environment of interest.  In addition, it is common to offset the sensor due to 
various reasons such as for mounting accessibility, thermal isolation, shock reduction, or prevention of 
debris impingement.  This offset, or standoff, creates an acoustic cavity with the sensing device in the 
back of the cavity.  The acoustic cavity is referred to as a sensor port.  The sensor port is part of the 
system being measured, but it is not part of the system that is intended to be measured.  While the 
sensor port may be small, its contribution to the collected data may be very significant.  Figure 1 shows 
generic sensor mounting schemes in the desired configuration and in an offset configuration that 
produces a sensor port.  

 While estimating the natural frequency of the acoustic cavity is straightforward, limited analysis 
has been described on the determination of the overall frequency response.  The acoustic resonance 
within the sensor port produces a frequency-dependent amplification and phase deviation that directly 
affects the data collected.  The desired port configuration is usually flush mounted, but acceptable 
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configurations can be close coupled such that frequencies-of-interest are negligibly affected by the 
influence of the port.   

 

 

Figure 1. Desired Configuration (top) and Offset Configuration with Sensor Port (bottom) 

The sensor port design approach usually attempts to ensure the port is short enough such that 
the acoustic response is negligible near the frequency-of-interest, but this requires knowledge of the 
frequency response and simple rules-of-thumb are not always guaranteed.  The design estimate using 
simple calculations may also be very conservative, for example where a longer port may be adequate in a 
configuration with a mounting limitation.  Furthermore, it is often desired to understand the frequency 
response in situations where an undesirable sensor port exists for data correction and/or data 
interpretation.   

The purpose of this paper is to provide background, relevant theory, and examples for acoustic 
response analysis of a sensor port.  The goal is to be able to predict the sensor port response and 
understand what effect the port has on the collected data. 

RESULTS AND DISCUSSION 

ANALYTICAL MODELING 

The primary purpose of analytical modeling is to obtain an accurate solution in an efficient 
manner.  An analytical framework allows for development of tractable solutions that can be applied 
quickly.  It is very important to understand the constraints and assumptions that are used in the 
development of an analytical model so that the model is not used outside of the intended scope. 

Sensor Port Design Guideline 

A sensor port can be approximated as a cylindrical acoustic waveguide with a single effective 
diameter and a total length.  The wave equation can be solved in this domain with appropriate boundary 
conditions.  For a cylindrical cavity, the natural frequency and shape of the mode can then be predicted.  
The longitudinal modes are the relevant modes that produce amplification on the pressure sensor 
diaphragm.  The fundamental longitudinal mode shape is that of a quarter wave and the natural frequency 
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is given as eq. (1), where c  is the sound speed, L  is the total length, and nf  is the natural     

frequency.1 p. 343 
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A correction is made because the open boundary condition is not truly a pressure release 
boundary.  A general impedance exists at this boundary due to the local pressure radiating from the end 
into the fluid outside the port.  An end correction for a flanged tube can be derived where a flanged tube 
represents a tube that opens through a plane baffle of infinite extent.  Equation (2), a low frequency 

estimate, can be derived by considering first order terms where R  is the radius at the opening and L is 
an end correction.2 pp. 151-152, 3 pp. 272-274 
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The quarter wave natural frequency of a flanged sensor port can then be estimated using eq. (3) 

where the effective length is given by L L L    . This is the traditional form used in identifying the 
fundamental resonance frequency of a flanged quarter-wave resonator.   
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Given the quarter wave natural frequency, rules-of-thumb vary for predicting an acceptable 
bandwidth.  Criteria for many applications range between 3x to 5x lower than the natural frequency and 
are based on the amount of gain response (or pressure amplification) that is acceptable, for example a 3x 

factor is recommended in references [4 p. 464, 5 p. 63] for combustion stability.  The ratio, n iM f f , 

used commonly as criteria for sensor port design, can be referred to as the frequency multiplication 

factor.  It is described as the ratio of the natural frequency to the maximum frequency-of-interest, if .  To 

generate estimates for the gain and error associated with a particular frequency multiplication factor, the 
acoustics in the sensor port can be surmised to follow a forced time-harmonic oscillator response of a 
single-degree-of-freedom system (SDOF). 

The pressure gain associated with the sensor port can be roughly estimated by considering an 
undamped SDOF solution.  This approximation provides a reasonable estimate, however the undamped 
SDOF response may not necessarily produce the worst-case amplification over the entire frequency 

bandwidth.  The gain for an undamped SDOF, D , given in eq. (4), provides the magnification at the 
maximum frequency of interest.  It can also be written in terms of the frequency multiplication factor where 
values close to 1 are obviously not applicable as the gain approaches infinity for an undamped system. 
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This undamped gain is classically used as a guide to represent the upper bound of the pressure 
amplification factor.  However, the acceptable range defining a flat useable bandwidth is ultimately 
determined by the analyst or end user.  To aid with this definition, the relative error,  , associated with 
the undamped response gain can be calculated considering that the ideal exact gain for a flush-mounted 
sensor is equal to a value of 1 (no amplification). 

 .
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Using eq. (4) for the gain estimate, the gain error in eq. (5) is given simply as eq. (6). 
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For the example rule-of-thumb described earlier, the error can simply be calculated considering 

that the system behaves as an undamped SDOF.  Equation (6) can be used to show that for 3M   the 

error is 12.5% and for 5M   the error is 4.2%.  As another example, it is often established that the gain 
error is within a certain percentage.  In the example where a flat useable bandwidth is specified to be 

within 5%, the frequency multiplication factor can be calculated to be 4.6M  ; therefore, the maximum 
frequency-of-interest must be approximately 4.6x lower than the natural frequency for the response to be 
within this error. 

These examples can be used as design guidance, and in some cases, the port length may need 
to be shortened so that this criterion is met.  Using eq. (3), and the multiplication factor, a design length, 

iL , is derived in eq. (7).  The inequality denotes that smaller lengths are acceptable. 
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The design length can also be described in a more useful form by incorporating a specified flat 
useable bandwidth.  This specification would include the gain relative error and maximum frequency-of-
interest.  Substituting eq. (6) into eq. (7) produces this practical formula as eq. (8). 
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While these relationships provide a guide for a sensor port design, they do not produce a 
representative frequency response.  The simple design guide may also break down in many cases, e.g., 
the undamped SDOF model may not apply over the bandwidth-of-interest or the guide may be inaccurate 
for a complex multi-port design.  Also, the port design may not be practical to construct, and a more 
accurate estimate may provide a viable standoff length.  Additionally, accurate estimates for correcting 
data with port resonances at various frequencies may also be desired. 

Sensor Port Frequency Response Model - Theory 

The goal is to be able to predict an accurate sensor port response by modeling the port acoustic 
cavity frequency response.  As an improvement to the undamped SDOF model used classically, a theory 
is developed for obtaining the acoustic frequency response of a sensor port.  There are three critical 
advancements necessary to extend classic acoustic theory into a practical sensor port frequency 
response model: 1) application of the distributed acoustic models rather than the lumped acoustic 
element approach, which relies on the long wavelength limit, 2) development of an exact solution to the 
thermoviscous wave equation applicable to the framework, and 3) reformulation of acoustic radiation 
impedance as an acoustic propagation constant.  The entire development is discussed along with these 
theoretical improvements in the following sections. 

To obtain the frequency response, the complex pressure ratio is explored.  This pressure transfer 
function or complex pressure ratio is an important quantity, which measures the complex pressure of the 
output to the input. 
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In the frequency domain, two important parameters provide information about the response.  

These are the pressure amplification factor, X , and relative phase,  .  Both these parameters can be 

obtained from the complex pressure ratio and are functions of frequency.   
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A pressure amplification factor is also referred to as an amplification factor or gain.  The pressure 
amplification factor2 p. 155, 3 p. 285 of a resonator is the ratio of the acoustic pressure amplitude at the back of 
the sensor port, i.e., the measurement location, to the acoustic pressure amplitude of an incident wave on 
the sensor port. i.e., without influence of the port.  The relative phase is simply the deviation in phase 
angle between the pressure at the back of the sensor port and the incident pressure wave on the sensor 
port.  For both analytical and numerical modeling, the influence of the port must be appropriately handled 
as not to obscure the incident pressure field. 

In the following theory, the output is the upstream end defined at the sensor port back (at the 
measurement location).  In a 1-D sense, the input of the sensor port is represented somewhat abstractly 
as the location downstream of the end correction region.  The effects of the end correction region can be 
captured appropriately by incorporating the physical influences using a transfer line model with an 
independent line segment; these radiation effects will be discussed in detail later.  The transfer line model 
will be discussed as the acoustic framework in this section. 

Using subscript U for the upstream boundary and subscript D  for the downstream boundary, 
the modulus and argument of the complex pressure ratio are written as eq. (10) and eq. (11).  These are 
referred to as the pressure amplification factor and relative phase, respectively.  The upstream and 
downstream transfer line nomenclature are adopted from reference [6].  These equations together will be 
referred to as the sensor port response. 
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There are many different forms of dissipation that may apply to an acoustic system.  Examples 
include dissipation due to thermal heat conduction and viscous absorption in a fluid, thermal heat 
conduction and viscous absorption at a boundary, molecular relaxation, and other flow or acoustic 
induced dissipation mechanisms.  The physical process of each mechanism is different and therefore the 
governing equations differ.  However, while each mechanism is described by a separate lossy wave 
equation, their solution form remains identical.  Considering that a time-harmonic signal, eq. (12), 
represents the wave equation pressure solution.2 pp. 46  It is described in terms of either complex 
wavenumber or propagation constant, which characterize the propagation losses of an individual                  
mechanism.2 pp. 299, 302, 3 p. 212, 6 p. 291, 7 p. 4  Note the hat notation shown previously is dropped for the 

complex pressure in the remaining part of the paper.  Also note that in the paper, k  without the hat is the 

wavenumber, k c , and  without the hat is the specific heat ratio. 

 
ˆ ˆi t ikx i t xp Pe e Pe e        (12) 

The relationship between propagation constant and complex wavenumber is given by ˆˆ ik  .  

The complex wave number and complex propagation constant for an outgoing wave moving in the 
positive direction is given as eq. (13) and eq. (14), respectively, shown with a real and imaginary       
part.2 p. 299, 3 p. 212, 6 p. 291, 7 p. 4  The complex propagation constant is preferred in the following framework, 
however, the complex wave number is convenient in some cases. 

 k̂ i      (13) 

 ˆ i       (14) 



6 
 

The incoming wave is given by the negative of eq. (13) and eq. (14), however for discussion the 
outgoing wave is examined.  Equation (12) can then be written as an outgoing pressure wave, expanded 
as eq. (15).2 p. 302, 3 p. 212, 6 p. 291 

 
 i xi t i t x i xp P e e P e e e       

      (15) 

The spatial absorption coefficient is  , and is seen by inspection of eq. (15) since the amplitude 

decays spatially by 
xe 
.  The parameter   is a phase shift parameter (confusingly it is sometimes 

referred to as the propagation constant) and is related to the phase speed, pc , by eq. (16). 

 pc



   (16) 

The solution to the lossy wave equations given by eq. (12) or expanded as eq. (15) show that the 
pressure represents an attenuating pressure oscillation with the wave propagation speed given by the 
phase speed.  Because the solution to lossy wave equations describing different physical processes can 
all be represented using the same functional form, it is possible to describe a propagation constant that is 
specific for each physical mechanism.  Therefore, the phase speed and spatial absorption coefficient can 
also be described for any particular lossy wave equation associated with a specific dissipation 
mechanism.   

The Helmholtz equation represents the time-independent form of the wave equation and can be 
used as a consistent theoretical framework that satisfies the solution form of eq. (15).  This framework is 
useful to obtain sensor port relationships.  It is also useful to represent the solution in terms of 
impedance, which is a function of frequency, since the desire is to obtain the frequency response.  The 
specific acoustic impedance is given as eq. (17).   
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A ‘pipe’ section is used to develop a formulation that can be applied to a sensor port.  This is 

schematically shown in Figure 2.   The characteristic impedance, CZ , and propagation constant are 

dependent on the pipe section geometry and fluid properties.  The mean velocity arrow indicates the 
direction of flow and resulting upstream and downstream nomenclature. 

 

Figure 2. Pipe-section Schematic 

The equations of motion are described using the momentum equations, continuity equation, and 
equation of state.2 pp. 27-39, 299 6 pp. 289-293  By linearizing and applying a separation-of variables-technique, 
the governing equations can be split into a spatially dependent and temporally dependent form.6 p. 291  The 
spatially dependent form is the Helmholtz equation and will be examined carefully here.  Applying the 
upstream boundary conditions to the pipe section gives the solution as a function of axial position and can 
be described as eq. (18) and eq. (19).6 pp. 289-293  These distributed solutions are referred to as transfer 
equations and are the basis for distributed element models.  Applying this distributed element model to a 
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sensor port is necessary to correctly predict the acoustic frequency response, since the classic lumped 
acoustic element approach only applies in the long wavelength limit.3 p. 283 

 ˆ ˆ( ) cosh( ) sinh( )U C Up x p x Z u x  
  (18) 

 ˆ ˆ( ) sinh( ) cosh( )U
U

C

p
u x x u x

Z
   

  (19) 

Typically, these may be seen in literature written in terms of exponential functions, however 
hyperbolic trigonometric functions simplify the solution form and provide a means of convenient 
manipulation.  The characteristic impedance of the fluid for an outgoing wave, written in terms of the 
propagation constant, can be determined by calculating the ratio given in eq. (20) for an outgoing    
wave.2 pp. 38-39, 3 p. 126, 6 pp. 291-292  The relationship can be derived by examining the only the outgoing wave 
using the ratio of pressure, eq. (12), to the analogous form for velocity. 
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One particular pair of transfer equations is very useful in manipulating sensor port relationships.  

By substituting x L  into eq. (18) and eq. (19), where ( ) Dp L p  and ( ) Du L u , and solving for the 

upstream conditions, the following relationships are obtained. 

 ˆ ˆcosh( ) sinh( )U D C Dp p L Z u L     (21) 

 ˆ ˆsinh( ) cosh( )D
U D

C

p
u L u L

Z
     (22) 

Using eq. (21) and eq. (22), the downstream impedance can be written in terms of the upstream 
impedance. 
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The distributed solutions and relationships given in this section are used as a general acoustic 
framework to describe the propagation of waves within a sensor port.  The propagation constants that are 
used in the sensor port model will be detailed following the line model discussion. 

Sensor Port Frequency Response Model – 1-line model 

This section develops the analytical expressions for a 1-line model using the schematic shown in 
Figure 3.8  The 1-line sensor port model is most applicable to very long sensor ports with a constant 
diameter, where the end correction is negligible.  It is applicable in modeling thermoviscous effects and is 
not general enough to account for radiation acoustics.  Notice the upstream end is a closed boundary; 
this would represent the location of the sensor diaphragm.  For any sensor port analysis, it is 
recommended that at least a 2-line model is applied so that both thermoviscous effects and radiation 
acoustics can be incorporated.  In the 1-line model, the propagation constant is a function of the 
thermoviscous spatial absorption coefficient.  This model is primarily included for completeness, since 
radiation effects cannot be incorporated into the model.  Also note that since in general there will be 
multiple-line models making up a complex sensor port, a numbering scheme is used instead of the 
upstream and downstream notation. 
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Figure 3. Pipe-section Schematic for 1-Line Sensor Port 

The complex pressure ratio of a 1-line port can be derived simply.  Using eq. (21) as a general 
line segment relationship, the formula for a complex pressure ratio of a pipe section is obtained by 

dividing by the downstream pressure, 2p , shown as eq. (24).   

 1

2 2

ˆ ˆcosh( ) sinh( )CZp
L L

p Z
     (24) 

For a closed boundary, the location 1 impedance is infinite.  By applying this limit to  
eq. (23), the location 2 boundary impedance simplifies to eq. (25). 
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2
ˆlim coth( )CZ

Z Z L

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Substituting eq. (25) into eq. (24) results in the complex pressure ratio for a 1-line port and 
simplifies to eq. (26). 

 1

2

ˆsech( )
p

L
p

   (26) 

Using eq. (10) and eq. (11), the pressure amplification factor and relative phase are found as 

eq. (27) and eq. (28), respectively, denoted using the real part,  , and imaginary part,  .  The function 
1

2tan ( , )y x  is the 2-argument arctangent (also called the four-quadrant inverse tangent) and can also 

be represented mathematically as the argument function, arg( )x iy . 

    2 2ˆ ˆ ˆ( ) sech( ) sech( ) sech( )X f L L L        (27) 

       1
2ˆ ˆ ˆ( ) sech( ) tan sech( ) , sech( )f L L L          (28) 

For a 1-line model, the pressure amplification and relative phase can be described by plotting 
these equations as a function of frequency. 

Sensor Port Frequency Response Model – 2-line model 

This section develops the analytical expressions for a 2-line model.  The 2-line sensor port model 
is general enough to consider damping effects due to thermoviscous acoustics and acoustic radiation out 
of the port, for a constant diameter port.  In this model, a propagation constant would be defined for 
thermoviscous effects and another propagation constant for acoustic radiation.  A schematic drawing with 
two equal-diameter segments is shown in Figure 4, now with a midstream location separating the line 
segments.  Line segment A will represent the actual port length and thermoviscous effects and line 
segment B will represent the end correction for acoustic radiation. 
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Figure 4. Pipe-section Schematic for 2-Line Sensor Port 

The 2-line model expressions can be derived by first examining just pipe section A using eq. (21), 

but dividing through by the far downstream pressure, 3p .  This results in eq. (29). 

 1 2 2
,

3 3 3

ˆ ˆcosh( ) sinh( )A A C A A A

p p u
L Z L

p p p
     (29) 

Now expressions are only needed for 2 3p p  and for 2 3u p .  The former can be found simply by 

examining pipe section B using eq. (21) and dividing through by 3p .  This results in eq. (30). 

 
,2

3 3

ˆ ˆcosh( ) sinh( )C B
B B B B
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p Z
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The latter can be found simply by also examining pipe section B using eq. (22) and dividing 

through by 3p . This results in eq. (31). 

 2
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1 1
ˆ ˆsinh( ) cosh( )B B B B

C B
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p Z Z
     (31) 

The impedance at location 3 in eq. (30) and eq. (31) is the only remaining unknown variable.  
This can be found from the boundary condition at location 1.  Pipe section A is examined using eq. (23) 

and the closed boundary impedance limit is applied, 1Z  .  This results in eq. (32) at location 2. 

 
1

2 ,
ˆlim coth( )C A A AZ

Z Z L


     (32) 

Subsequently, pipe section B can be examined also using eq. (23) with the substitution of eq. (32) 

for 2Z .  This results in a cumbersome impedance relationship at location 3, however there are no longer 

any remaining unknown variables. 
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Equation (30), eq. (31), and eq. (33) can now be substituted into eq. (29).  After a fair amount of 

manipulation and simplification, a relationship can be found for 1 3p p .  Equation (34) is the complex 

pressure ratio for a 2-line model. 
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For a 2-line model, the pressure amplification factor and relative phase can be described by 
applying eq. (10) and eq. (11) to eq. (34).  This formula is an important relationship and it should be 
emphasized that it is the simplest form possible needed to represent both thermoviscous effects and 
radiation acoustics for a constant diameter sensor port, both of which are necessary to produce an 
accurate sensor port acoustic response. 

Sensor Port Frequency Response Model – Multiple-line model 

For a sensor port with several segments, a multiple line model can be used to obtain the complex 
pressure ratio.  However, it becomes simpler to solve the formulation numerically.  A transfer matrix 
approach can also be adapted to ports of many sections.6 p. 295, 9  However, the development described in 
the previous section can easily be extended recursively to any number of line segments.  A pseudocode 
is given below as an example.  In this manner, it can be extended to consider damping effects due to 
thermoviscous acoustics, dissipation due to acoustic radiation out of the port, and a port with multiple 
diameter changes. 

The pseudocode provides an outline to obtain the complex pressure ratio from the aft end of a 
sensor port to the inlet end.  The numbering scheme in the Figure 5 multi-line schematic is used for the 
code numerical indexing.  Note that the pseudocode below is written considering an infinite impedance at 
the back end.  However, a simple modification can be made to incorporate a general diaphragm or wall 
impedance by defining the value of the location 1 impedance, removing the line describing the location 2 
impedance, and modifying the impedance calculation loop to begin at index 2. 

 

Figure 5. Pipe-section Schematic for Programming Logic in Multi-Line Sensor Port 

Pseudocode to obtain sensor port complex transfer equation 

Input: n // number of line segments 
Input: k // propagation constant for each line segment 
Input: ZC,k // characteristic impedance for each line segment 
Input: Lk // length of each line segment 
 

// use this formula if there is a 1-line segment, otherwise skip ahead 
if n=1 then  

pp1 = sech(1  L1) 
end 

end if 
 

// obtain impedance at inlet, Zn+1, based on aft end impedance condition, Z1 
Z1 = inf 
Z2 = -ZC,1 / tanh(1  L1) 
for k = 3 to n+1 by +1 do 
 Zk = [Zk-1 - ZC,k-1  tanh(k-1  Lk-1)]/[1 - Zk-1  / ZC,k-1  tanh(k-1  Lk-1)] 
end for 
 

// obtain transfer equation p1/pn+1 using uk/pn+1 and pk/pn+1 
upn = 1 / ZC,n  sinh(n  Ln) + 1 / Zn+1  cosh(n  Ln) 
ppn = cosh(n  Ln) + ZC,n  / Zn+1  sinh(n  Ln) 
for k = n-1 to 1 by -1 do 

upk = ppk+1 / ZC,k  sinh(k  Lk) + upk+1  cosh(k  Lk) 
ppk = ppk+1  cosh(k  Lk) + upk+1  sinh(k  Lk) 

end for 
 

// display transfer equation p1/pn+1 
disp pp1 
 
end 
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As done previously, the last line segment should include parameters associated with acoustic 
radiation.  Also note that several input variables are additionally functions of frequency and would need to 
be evaluated over the entire frequency range, i.e., propagation constant, characteristic impedance, and 
length (specifically the radiation end correction length).   

Thermoviscous Boundary Dissipation 

The acoustic framework is described previously; however, the propagation constants remain 
undetermined.  The propagation constant contains information about the decay rate and phase speed of 
the propagating wave. This section gives background on thermoviscous boundary dissipation, and the 
following two sections provide a thermoviscous propagation constant.  Following the sections on 
thermoviscous effects, radiation acoustics and an associated propagation constant will be discussed, 
which can be used in the frequency response models. 

Acoustic dissipation in a fluid is considered by studying the propagation of acoustic waves with 
thermal and viscous losses.  Reference [8] provides a summary of these thermoviscous effects including 
description of absorption coefficients for several different thermoviscous mechanisms.  Sources of 
thermoviscous dissipation can be broken into two categories: damping mechanisms intrinsic to the 
medium and those associated with the boundary.3 p. 210   

The damping mechanisms intrinsic to the medium are generally very small and are often 
applicable to dissipation over long distances.  Example intrinsic mechanisms include viscous dissipation 
due to relative particle motion between the compressions and expansions of a sound wave, heat 
conduction from a higher temperature condensation to a lower temperature rarefaction, or various 
molecular processes.  This mode of absorption is negligible on the scale of sensor ports and not 
considered here. 

The damping mechanisms associated with the boundary are discussed in                  
references [2 pp. 322-324, 519-525] and [3 pp. 228-234] and are important for sensor port analysis.  
Boundary dissipation occurs due to the passage of a wave over a surface boundary.   At a wall, there are 
viscous losses due to an acoustic shear layer and thermal losses due to heat transfer between the 
adiabatic fluid and isothermal wall.  Both viscous and thermal effects result in the loss of energy from the 
propagating wave.  This mode of damping is relevant in areas with small dimensions, such as in sensor 
ports, where an acoustic thermal and viscous boundary layer exist.  Similar to a boundary layer that is 
caused by a steady flow, acoustic waves generate an acoustic boundary layer.  The acoustic boundary 
layer is much thinner because the oscillatory flow continually changes direction limiting the boundary 
layer growth.   

In general, thermoviscous acoustics problems can be solved directly using continuity, Navier-
Stokes, and an energy equation along with appropriate constitutive equations (Stokes expression, Fourier 
heat conduction law, and equation of state).  Rather than examining the complete set of equations, which 
would need to be solved numerically, a simpler description is useful in determining the thickness of the 
acoustic boundary layers.  The boundary layer thickness for the oscillating flow is defined as the distance 

over which the shear-wave amplitude decays to 1 e . 

By independently examining the effect of viscosity on oscillatory wave motion, an acoustic 
viscous boundary layer thickness can be derived, and is given as eq. (35).2 pp. 520-523   

 
2





   (35) 

Similarly, by examining the effect of a thermal conduction on oscillatory wave motion, the acoustic 
thermal boundary layer thickness can be written as eq. (36).3 p. 232 
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2

Pr



   (36) 

The viscous boundary-layer absorption occurs because of the presence of viscosity in the fluid.  
Fluid particles oscillate in the main flow field, but fluid particles adjacent to the wall adhere to the wall.  A 
transition where the oscillation amplitude decreases from the nominal amplitude in the main flow field 
down to zero at the wall occurs.2 p. 322   

The thermal boundary-layer absorption occurs because acoustic oscillations in the main flow field 
occur adiabatically, however near the pipe wall the oscillatory flow is isothermal because the wall 
behaves effectively as an infinite source/sink since thermal conduction in a solid is typically orders of 
magnitude greater than in a fluid.  The particles adjacent to the wall are therefore at a constant 
temperature and any temperature change in adjacent fluid is immediately quenched by heat flow into or 
out of the wall.2 p. 323   

A quasi-one-dimensional acoustic boundary layer model has been described in the literature 
where the losses associated with both the viscous and thermal boundary layer are homogenized and 
distributed evenly across the fluid.2 pp. 524-525, 3 pp. 230-233  The development allows simplification of the 
complete set of governing equations to a wave equation.  Thermoviscous boundary dissipation can then 
be described as an effective solution and used to obtain a propagation constant.2 pp. 324, 524  It should be 
noted that the domain of interest for boundary dissipation is over the length of the port geometry and not 

exterior of the opening.  Additionally, the inequality R   must hold for this acoustic absorption model, 
so that the curvature of the pipe wall is much greater than either of the acoustic boundary layer 
thicknesses.  Because of this inequality, the acoustic absorption model is sometimes referred to as the 
wide-pipe model.  The boundary layer absorption complex wave number for this model, combining both 
viscous and thermal contributions, is developed in the literature as eq. (37).2 p. 325 Note that the variable, 
 , is used for specific heat ratio and not propagation constant.  

  ˆ
2 1

1 1
Pr

BL

c
k

R i



 



   

 

  (37) 

The next two sections provide two separate thermoviscous propagation constants for use in the 
sensor port theoretical framework. The first propagation constant is based on traditional dissipation 
parameters, which are derived using first order approximations of the exact complex wave number, 
eq. (37); a common procedure described in literature.2 p. 325  The second propagation constant is also 
derived using the exact complex wave number, eq. (37), however the exact form is retained.  This paper 
describes the procedure to reformulate the exact complex wave number into the expanded form 
described by eq. (14), for incorporation into the sensor port framework.  

Thermoviscous Boundary Dissipation – Traditional Model 

The total acoustic dissipation can be described using spatial absorption coefficients.  In a region 
where multiple forms of thermoviscous absorption apply, the total absorption coefficient can be regarded 
as the sum of the absorption coefficients for the individual thermoviscous loss mechanisms, as shown in 
eq. (38).3 pp. 217, 229, 233-234  Superposition is typically justified in practice, and true when losses are small, 
however in general they do have interactions with each other. 

 ...i
i

          (38) 

The spatial absorption coefficient associated with viscous boundary-layer absorption and thermal 
boundary-layer absorption can be combined using eq. (38) into a combined boundary-layer absorption 
coefficient.  The traditional form is presented here as eq. (39). 
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1
2 PrcR
 


    
 

  (39) 

The traditional absorption coefficient for thermoviscous boundary dissipation is based on the first 
order approximation of eq. (37).2 p. 325  It is also possible to show that the traditional form of phase speed 
can be combined and written as eq. (40).   

 , 1p

c
c c 


   
 

 (40) 

The phase speed can be expanded as eq. (41).   

 ,

1
1

2 Pr
p

c
c c

R
 


    
 

 (41) 

The traditional propagation constant can be reconstructed by combining eq. (39) and eq. (41) 
using eq. (14) and eq. (16).  This is shown as eq. (42). 

 

1

1 1 1 1
1 1 1

2 2Pr Pr
i

cR c R
    
 


                     

  (42) 

 
Thermoviscous Boundary Dissipation – Exact Model 

The complex propagation constant shown in eq. (42) is the result of combining first order terms of 
a series expansion.  This level of accuracy is traditionally used in most applications.  However, improved 
accuracy can be achieved by using the exact complex wave number from the acoustic boundary-layer 
model.   For conciseness, the exact complex wave number, eq. (37), is first written in terms of the 
traditional boundary-layer absorption coefficient as eq. (43).  

 ˆ
2 2

1
BL

c
k

c c
i 



 
 


    
 

  (43) 

An analytic expression for the propagation constant can be obtained in an exact manner by first splitting 
the complex wave number, eq. (43), into the real and imaginary part.  The complication arises because of 
the difficulty in obtaining the real and imaginary part of a square root term.  This can be addressed by 
recognizing that the principal square root is defined as eq. (44). 

 
1 1 1
2 2 2ln( ) ln( ) arg( )z z i zz e e     (44) 

The real and imaginary parts of the square root function in the denominator of (43) can be found 
by first simplifying eq. (44) as eq. (45) and eq. (46), respectively. 

   arg( )
cos

2

z
z z

    
 

  (45) 

   arg( )
sin

2

z
z z

    
 

  (46) 

After defining z as the radicand in the denominator of eq. (43) and also by replacing the argument 
function with the 2-argument arctangent function, the real and imaginary parts can then be written as 
eq. (47) and eq. (48).  Note that the radical represents the 4th root of its radicand. 



14 
 

  
2 2

1
4 2

2 2 1 2 2
1 cos tan , 1

2den

c c c c
R z       

   


                             
  (47) 

  
2 2

14 2
2 2 1 2 2

1 sin tan , 1
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   


                             
  (48) 

Now that the real and imaginary parts of the denominator are found, eq. (43) can be written concisely as 
eq. (49). 

 ˆ
BL

den den

c
k

R i I




 
  (49) 

The real and imaginary part of eq. (49) can now be split easily and the complex wavenumber can simply 
be written as eq. (50). 
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  (50) 

Using eq. (13) and eq. (14), the complex propagation constant is given by eq. (51) where the real and 
imaginary parts can be described using eq. (47) and eq. (48). 
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  (51) 

This form is always recommended, as it remains exact.  Likely, it has not been derived previously 
due to the difficulty in obtaining a tractable complex expansion, however with the aid of MapleTM, a 
computer algebra system, this complex expansion can be easily performed. 

Using eq. (14) and eq. (16), the eq. (51) propagation constant can be used to write the exact 
absorption coefficient and exact phase speed as eq. (52) and eq. (53), respectively. 
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Radiation Impedance 

The previous three sections describe the dissipation associated with thermoviscous effects.  This 
section will provide background on radiation acoustics, and the following section provides a propagation 
constant associated with radiation acoustics that can be used in the frequency response models.  

An effective damping mechanism is considered that is due to the local pressure in the sensor port 
radiating into the fluid outside of the sensor port.  Attenuation due to the geometry is not truly a damping 
mechanism as no absorption takes place and no energy is lost.2 pp. 112, 298, 3 pp. 436-437  However, an effective 
absorption coefficient can be described that models the effect of attenuation. 

As a wave propagates through a sensor port it eventually encounters an impedance at the open 
end.  The open end is not an ideal pressure release boundary since it radiates sound into the surrounding 
medium.  There is a non-zero impedance and therefore a pressure node is not located at the open end. 
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Sound in a sensor port is not all reflected back into the port.  Some sound is radiated outside of 
the port into the surrounding medium at the open end.  The surrounding medium imposes an impedance 
on the propagating waves.  This impedance is the radiation impedance of the acoustic wave propagated 
into the surrounding medium.3 p. 184   This radiation impedance results in attenuation of the acoustics in the 
sensor port and an added effective length to the port. 

At low frequencies, the only waves that can propagate in a sensor port are plane waves.  The 
fluid at the open end location behaves as a piston with zero mass, radiating some sound out away from 
the port and reflecting some sound back into the port.10 p. 471  The radiation impedance of the open end 
characterizes this effect, where the radiation resistance represents energy lost from the tube and the 
radiation reactance represents the reflection back into the port.10 p. 472  To be precise, the energy is not 
lost, but transferred to the surrounding environment.  However, in the context of the port domain, this 
energy transferred out of the port is modeled as an effective absorption coefficient, assuming the acoustic 
motion at the opening behaves as an oscillatory piston.  At higher frequencies, more energy is lost 
through the open end and port resonances become more damped with a broader, lower amplitude 
response. 10 p. 473      

Radiation Impedance – Piston Model 

Acoustic radiation that arises from a moving surface is well understood and discussed in 
literature.  To model the effects of a plane wave leaving a sensor port that encounters a surrounding 
medium, piston vibration theory is studied.  A damped harmonic oscillator model can be used to represent 
the acoustic radiation as the impedance of a pressure wave exiting the flanged sensor port.     

For the sensor port application, the reaction force of the surrounding fluid back onto a driving 
piston is first analyzed. 2 pp. 457-460, 3 pp. 184-187, 10 pp. 381-387  The configuration is flanged and the piston is 
assumed to be circular and rigid.  It can be shown that if a force is applied to some device (or fluid 
parcel), that this applied force divided by the velocity of the device (or fluid parcel) represents the sum of 
the input mechanical impedance plus the mechanical impedance of the device (or fluid parcel). For the 
piston model, the force applied by the piston similarly encounters the sum of the piston mechanical 
impedance and radiation impedance of the propagated acoustic wave.3 pp. 184-185  The radiation 
impedance, or mechanical impedance of the fluid parcel, can be obtained generally by using eq. (54), 
noting the overbar arc to denote mechanical impedance.  It is represented by the complex reaction force 

divided by complex velocity at the point where the force is applied.  The differential rdf   is the normal 

component of the piston reaction force locally on an area element dS , and u is the normal component of 
velocity that in general may vary radially.3 p. 184  Both the force term and velocity term are oscillatory 
functions of time. 

 r
rad

S

df
Z

u







  (54) 

A force balance of an oscillating piston within a fluid can be represented as a damped harmonic 
oscillator given as eq. (55), where the left-hand-side represents the diaphragm motion ( m is diaphragm 

mass, mR


 is diaphragm mechanical resistance, and s is diaphragm stiffness), and pf   is the externally 

applied force. 3 pp. 184-185, 11 pp. 180-181   

 tt m t p rmx R x sx f f       


  (55) 

For a piston representing plane waves, the diaphragm is regarded as maintaining radial 

uniformity, where 
i t

xu u e   .  With uniform movement, the reaction force, rf  , can then be reduced 

using eq. (54) and expressed in terms of the radiation impedance as r radf Z u 


. 
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The solution to eq. (55) can be written in terms of the piston velocity as eq. (56).  The radiation 

impedance, radZ


, is expanded into the real part, radR


, as the radiation resistance and imaginary part, 

radX


, as the radiation reactance.11 p. 192   

 
     

p p

m rad m rad rad

f f
u

R i m s Z R R i m s X   

 
  

      
       (56) 

For this harmonic oscillator model, an added mass can be used as a basis for a correction at the 
end of the port.  The radiation reactance can be represented as an added mass by comparing the 
radiation reactance to the mass term in the imaginary part of the denominator.  More precisely, this can 
be deduced by equating the piston velocity general solution, eq. (56), to the velocity solution of a simple 

forced harmonic oscillator, i.e., eq. (56) with 0radZ 


 since there is no reaction force. By comparison, it 

can then be observed that the radiation reactance contributes to an overall effective mass for a simple 

forced harmonic oscillator, i.e., eff radm m X  


. The added mass, radm , can be written as the overall 

effective mass minus the piston diaphragm mass, rad effm m m  , or simply as eq. (57).  The radiation 

reactance can therefore be considered individually as contributing as an added mass.   

 rad
rad

X
m A L


  


 (57) 

This added mass term has the effect of decreasing the resonance frequency.3 p. 185  The mass is 
equivalent to that of an imaginary cylinder of ambient fluid having the same radius as the piston and 

length given by the end correction, L .11 p. 181  The wave encounters, not a zero load, but an effective 
load equivalent to a short continuation of the sensor port.2 pp. 151-152  Note that the short continuation is 
referred to as ‘effective height’ when referring specifically to the piston model. 

The radiation impedance that is represented in eq. (56) can next be obtained by analyzing the 
acoustics generated in the near field.  The radiation impedance due to a circular piston can be expressed 

in a closed form developed in literature as eq. (58), where 1J  is the first order Bessel function of the first 

kind and 1H  is the first order Struve function. 2 pp. 151, 457-460, 3 pp. 185-187  

 1 1(2 ) (2 )
1rad rad rad

J kR H kR
Z R i X cA i

kR kR
                  

  
  (58) 

Equation (59) and eq. (60) are the real and imaginary bracketed part of eq. (58), which are known 
as piston functions.  They can be thought of as a normalized specific acoustic impedance, normalized by

c , where 2x kR . 

 1
1

2 ( )
( ) 1

J x
R x

x
    (59) 

 1
1

2 ( )
( )

H x
X x

x
   (60) 

Figure 6 shows a plot of the piston resistance function, 1( )R x , and the piston reactance function,

1( )X x .   
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Figure 6. Radiation Terms for a Flanged Circular Piston 

As described earlier, the open end of the sensor port can be represented with this piston model. 
At the sensor port opening, a propagating wave leaving the sensor port confronts a sudden increase in 
total resistance, described by the resistance term in eq. (58), and an increase in mass loading, described 
by the reactance term in eq. (58).  The radiation reactance is positive and represents an added mass that 
results in an overall decrease in resonant frequency.  The added mass to the sensor port is referred to as 
the radiation mass.3 p.185   

 The radiation mass contribution is examined first.  Equation (57) can be rewritten as eq. (61) in 
terms of the short continuation. 

 radX
L

A 
 


  (61) 

Equation (61), is referred to as the end correction, and can now be rewritten in terms of the piston 

reactance function using eq. (58) and noting 1(2 )radX cA X kR 


.  It can subsequently be written in 

terms of the Struve function noting that 1 1(2 ) (2 )X kR H kR kR  from eq. (60).  The end correction in 

terms of the piston reactance function or Struve function is given as eq. (62).  This end correction is 
derived for a flanged oscillating piston, however it is a good representation of an oscillating planar wave 
at a sensor port opening.2 pp. 151-152 

 1 1
2

(2 ) (2 )X kR H kR
L

k k R
     (62) 

Equation (62) reveals that the end correction is in fact frequency dependent and a precise model 
would incorporate this dispersion.  The well-known end correction, eq. (2), can be estimated by 
characterizing the low frequency limit.  To obtain this approximation, eq. (59) and eq. (60) are written as a 
formal Maclaurin power series in eq. (63) and eq. (64).  
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The linearization of the expansion near 0x   is given as the first term in eq. (64).  This can be 
visualized as a linear approximation to the Figure 6 exact solution in the low frequency limit, where 

2 1kR . The low frequency approximation is given as eq. (65). 

 1

4
( )

3

x
X x


   (65) 

This low frequency approximation can be applied to eq. (62), where 2x kR  to give the well-
known effective length end correction as eq. (66).  At low frequency, the piston appears to be loaded with 

a cylindrical volume of fluid whose cross-sectional area is 
2R and end correction is given by                

eq. (66).3 p. 187  Note that the end correction for this low-frequency approximation is not frequency 
dependent.   
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
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In many cases for the fundamental mode, the error is small in using eq. (66), however, for precise 
calculations in all port configurations and at higher frequencies, the exact formula in eq. (62) is 
recommended.  References [12, 13] discuss efficient approximations for the Struve function since eq. (63) 
and eq. (64) become increasingly difficult to evaluate, which may be necessary to achieve a small relative 
error.  An end correction comparison between the exact solution and approximate solution is shown in 
Figure 7 for an example sensor port with radius 0.25 inches and ambient air. 

 

Figure 7. Exact and Approximate End Correction: Ambient Air (c=1140 ft/sec) and 0.25 inch Radius 

The radiation resistance contribution is examined next.  For the simple harmonic oscillator model 

described in eq. (55), the temporal absorption coefficient for the radiation mechanism, rad , is given as 

eq. (67). 3 pp. 8-11, 17, 184-185  The tilde denotes that the parameter is not related to the phase shift parameter,

 , used throughout the paper. The temporal absorption coefficient parameter is commonly written in 

terms of damping ratio and undamped natural frequency as n  .  
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Both the temporal absorption coefficient and the spatial absorption coefficient can be used to 
describe the amplitude decay of a pressure wave. The temporal absorption coefficient can be 
transformed into the spatial absorption coefficient using the following                                        
relationship. 2 pp. 299-300, 3 pp. 8-11, 17, 212, 217, 285  

 rad radc    (68) 

Substituting eq. (68) into eq. (67) and using eq. (57) gives the form of the spatial absorption 
coefficient representing the radiation mechanism. 
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Substituting the resistance and reactance terms of eq. (58) into eq. (69) and using the 
relationship in eq. (62) gives a useful form of the absorption coefficient. The spatial absorption coefficient 
associated with radiation impedance can be written as eq. (70), considering that the acoustic radiation 
from the flanged port behaves as the pressure field generated by a flanged piston.  Note that an accurate 
representation of the end correction is given as eq. (62). 

 1(2 )1
1

2rad

c J R c

L R




      
  (70) 

The end correction length is a characteristic dimension or artificial length that describes the 
additional mass of fluid necessary to simulate the radiation impedance.  The radiation contribution 
associated with the harmonic oscillator at the opening location is embedded entirely in the absorption 
coefficient.  As such, the propagation of a pressure response associated with the reaction to an oscillating 
piston is simulated with the lossless fluid (no thermoviscous dissipation) outside of the port over the 
length of the end correction.  The phase speed is therefore simply the fluid sound speed over the span of 

the end correction, ,p radc c .  Noting that the phase shift parameter can be written using eq. (16), the 

propagation constant for the radiation mechanism can be described using eq. (71). 
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Expanding this equation using the accurate definition of the end correction gives the propagation 
constant for acoustic radiation explicitly as eq. (72). 
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  (72) 

The propagation constant described here for acoustic radiation effects is a critical advancement for 
application to sensor ports.  Depending on the sensor port configuration, the influence of radiation 
acoustics can be significant. 
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NUMERICAL MODELING 

A primary advantage of a computer simulation, or numerical modeling, is to tackle problems that 
are too complex for analytical solutions.  However, it is also a very useful approach in gaining insight into 
relevant physical mechanisms and important system features.  Tools such as COMSOL Multiphysics14 
and the ANSYS software suite are two of the more well-known engineering multiphysics software tools.  
These tools provide a simple work flow and user interface, integrate and numerically simulate coupled 
physical models, and provide a means to manage solution data and visualize results.  The examples and 
procedures in this document will use COMSOLversion 5.4 as the numerical modeling tool. 

While the sensor port analytical models are relatively simple and efficient, they are tractable 
because assumptions are enforced and limitations exist.  In many cases, the limitations may not be 
relevant and the solution is representative – but there are situations where more complex physics must 
be included.  By using COMSOL, many of these limitations can be addressed in a rigorous manner.  
There are several examples of limitations that may be relevant to a sensor port analysis that are not 
usually incorporated in an analytical model.  These include the effects of crossflow over the sensor port 
opening, flow through the sensor port, finite and realistic geometry – such as a port installed in a pipe 
rather than in an infinite medium, thermal conditions surrounding the sensor port, nonlinear finite 
acoustics, unsteady losses at geometric interfaces, accurate property distribution in the ambient 
surroundings and port geometry, fluid-structural interaction, and true dynamic behavior of the fluid system 
(rather than using a piston model as an approximation). 

Aside from the removal of physical and geometric limitations, there is another very important 
advantage in using a numerical framework for sensor port analysis.  A direct comparison can easily be 
made by comparing the solutions of the exact configuration (with a sensor port) and the desired 
configuration (usually with no sensor port).  Often it is desired to remove the effects of the sensor port or 
understand what the port influence is to help determine the acceptable response range.  This can be 
addressed by simulating the exact configuration and the desired configuration separately using all of the 
identical simulation conditions, e.g., same excitation source and same boundary conditions.  Because the 
numerical simulation is deterministic, the pertinent quantities of interest between the two configurations 
can be obtained very precisely.  The theory for this comparative analysis is developed and described 
throughout.  This innovative yet very basic procedure is remarkably powerful when combining solutions 
from deterministic numerical simulations. 

Computer simulations have many advantages, however there are some disadvantages.  
Depending on the additional physics and domain included, the computation can be extremely time 
intensive.  However, computer speed and numerical algorithms are always improving.  Additionally, one 
difficult part of computer simulation is often the model setup, however COMSOL’s work flow is designed 
so that the setup difficulty is minimized. 

Numerically Modeling Piston Functions 

In this section, the piston functions that are discussed previously theoretically are modeled 
numerically by solving the Helmholtz equation in the frequency domain.  This is done by using the 
COMSOL Pressure Acoustics, Frequency Domain interface.  This interface is suited to model pressure 
variations for the propagation of acoustic waves in fluids at quiescent background conditions.15  This 
simple numerical example is a very important step in the sensor port analysis.  Most importantly, it 
provides a verification that relevant radiation acoustics physics can be modeled adequately.   

Equation (58), shows that both the fluid properties and the radius influence the piston functions 
and radiation impedance.  Therefore, for a typical verification analysis, the piston radius would be set 
equal to the sensor port opening radius and the fluid properties would also be the same.  Satisfactorily 
simulating the piston functions over the sensor port frequency range of interest ensures that the radiation 
acoustics will be captured adequately in a sensor port with the same radius and fluid.  Considering that 
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the sensor port response will be studied using the same setup, addressing regions of large error in the 
numerical piston model can help determine optimal domain and mesh designs for use in the sensor port 
analysis.  To satisfactorily model the radiation impedance in the sensor port model, both the domain and 
mesh need to be designed appropriately. 

Example Flanged Circular Piston 

The acoustics associated with an oscillatory piston of radius 0.25 in (0.00635 m) is studied in 
ambient air.  The air is at a temperature of 77 °F (298.15 K) with sound speed 1136 ft/s (346 m/s) and 
density 4.2779ᴇ-5 lbm/in3 (1.1841 kg/m3). The total domain radius is 7.5 in (0.1905 m), which is 30x the 
piston radius, and includes a 0.375 in (0.009525 m) thick perfectly matched layer (PML) that behaves as 
an absorptive boundary.  A grid refinement region is also defined at 10x the piston radius near the far field 
transition radius.  The analysis is explored over the bandwidth through 20,000 Hz by increments of 
200 Hz.  The minimum wavelength of interest, an important parameter for mesh resolution, is therefore 
0.6816 in (at 20,000 Hz). 

Domain Setup 

Figure 8 shows the general domain setup for numerically modeling the piston functions.  The 
domain is designed using a 2-D axisymmetric model where the vertical axis is the axis of symmetry.   

 

Figure 8. Modeling Piston Functions – 2-D Axisymmetric Domain Setup 

The piston is defined as a horizontal radius (blue) in the lower-left part of the domain with an 

inward normal acceleration.  The acceleration can be represented as pistona i v    given the piston 

velocity, pistonv .  A constant velocity amplitude is imposed and set at 1 m/s.  Any value for the piston 

velocity is acceptable as this is a linearized model and impedance calculations consider both the input 
and response. 
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Except for the piston radius, the rest of the horizontal axis is defined as a sound hard (closed) 
boundary where the normal component of acceleration (and velocity) is zero.  This definition is consistent 
with the hard wall definition used for a flanged baffle. 

The piston functions are estimated for a piston set in a plane baffle of infinite extent.  An ideal 
PML absorbs all outgoing waves without causing spurious reflections and would represent the infinite 
extent.  A sensitivity study for this problem showed that the PML could acceptably resolve the acoustic 
response down to a minimum frequency that has a wavelength approximately 10x longer than the domain 
radius.  Other considerations may come into play in the design of the overall domain size and error 
should always be reviewed because of unique aspects of a particular problem.  

Mesh Design 

A major source of error can arise by inadequately resolving the mesh.  One particular area of 
interest should be the vicinity of the piston where the surface pressure and reaction force must 
adequately be resolved.  Consider that the pressure produced by the piston results from a continuum of 
flanged simple sources that radiate spherically.3 pp. 172, 179  Across the entire surface of the piston, each 
infinitesimal area produces an incremental pressure.3 p. 185  And for a very short piston radiation 

wavelength, where 1kR , each portion of the surface radiates separately and is separately      
loaded.10 pp.385-386  A refinement of 100 grid points across the piston provided a diminishing return in error 
over the range of wavelengths examined.  As these additional grid points are only needed across the 
piston, the computational expense is not greatly increased. 

An arc at 10x the piston radius is defined that encompasses a grid refinement region, and is 
shown in Figure 8.  This region is used for a more refined mesh in order to better resolve the nearfield 
radiation effects.  This region is loosely based on the characteristic farfield transition distance which can 

be inferred considering r R  and 
2r kR .16 p. 225  Selecting the widest of these two ranges is more 

conservative than using the Rayleigh distance, which marks the transition from nearfield to farfield, 

defined in reference [2] as 2 2r kR .  Reference [17] provides a thorough review on various other 

definitions of the nearfield and farfield transition distance.  For this example, a free triangle mesh in this 
refined region was specified using a size expression such that the elements were no larger than the 
smaller of two values: 6x smaller than the piston radius or 30x smaller than the minimum wavelength.  In 
the courser region, the free triangle mesh was also based on the smaller of two values: 4x smaller than 
the piston radius or 20x smaller than the minimum wavelength.  In this example, the maximum frequency 
is 20,000 Hz, and therefore the smaller wavelength-based definition is used for the mesh.  These 
definitions are loosely based on sensitivities that show an acoustic wavelength can be resolved with 
approximately five elements, but also to ensure good element transition from the higher refined regions to 
the lower refined regions.  In addition, while not systematically studied, the increased mesh refinement 
region was implemented to capture interference and directivity attributes in the nearfield. 

Comparison of Numerical and Analytical Solution 

A piston function comparison between the numerical COMSOL solution using the domain and 
mesh previously described and exact analytical solution is shown in Figure 9.  The exact curves for the 
piston resistance function and piston reactance function can be plotted as a function of frequency using 
eq. (59) and eq. (60), respectively. In COMSOL, eq. (54) can be used directly to estimate the numerical 
value of the impedance; and subsequently the piston functions can be estimated from the real and 

imaginary part (and normalized by cA ).  The functions shown in eq. (73) and eq. (74) can be estimated 

numerically using COMSOL to obtain the piston resistance function and the piston reactance function, 
respectively.  The density and sound speed are directly used in the evaluation, however their effect on 
amplitude is canceled by the evaluation of the integral term.  This can be observed by comparing eq. (54), 
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eq. (58), eq. (59), and eq. (60).  This evaluation is performed at each frequency to numerically produce 
the curves in Figure 9. 

While normalized piston functions apply for any circular piston in any fluid, the geometry and 
properties are noted on the figure used to numerically produce the curves. 
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While the normalized form is plotted analytically in Figure 6, plotting at each frequency in Figure 9 
shows the piston function contribution for a typical sensor port. 

 

Figure 9. Piston Functions as a Function of Frequency for a 0.5 in Diameter Piston in Ambient Air 

Figure 10 shows the effective piston height as a function of frequency.  As discussed previously, 

the piston appears to be loaded with a cylindrical volume of fluid whose cross-sectional area is 
2R  and 

height given by the exact curve in Figure 10.3 p. 187  This is equivalent to applying an end correction to a 
sensor port.  The exact curve for a flanged piston can be plotted using eq. (62) and the approximate 
solution is from eq. (66).  It was shown previously that the end correction is related to the imaginary part 
of the impedance and can be obtained numerically.   In COMSOL, eq. (61) can be used directly to 
estimate the numerical value of the effective height by incorporating the radiation reactance from eq. (54). 
At each frequency, the function shown in eq. (75) can be evaluated.  
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Figure 10 shows that for a piston, the exact effective height solution compares identically to the 
numerical solution.  The approximate solution compares well only at low frequencies. 

 

Figure 10. Piston Effective Height as a Function of Frequency 

Numerical Analysis of Thermoviscous Boundary Dissipation 

In the previous section, a piston model was analyzed to verify the radiation acoustics physical 
mechanism and also to aid in domain and mesh design of the forthcoming sensor port simulation.  In this 
section, the thermoviscous boundary dissipation previously discussed theoretically is modeled 
numerically and analytically in several different ways.  Three separate numerical approaches using 
COMSOL are first compared.  Four separate analytical models are also compared.  The comparisons are 
made to understand and explore differences.  Table 1 summarizes the different thermoviscous models in 
increasing order of accuracy. 

Table 1. Numerical and Analytical Models of Thermoviscous Boundary Dissipation 

 

The first numerical approach listed is the ‘Narrow Region Acoustics’ model.  In this method, the 
Helmholtz equation is solved numerically in the frequency domain, and a complex wave number that is 
described by a boundary layer dissipation theoretical model is applied to the numerical            
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framework.2 pp. 324-325, 15  In fact, COMSOL uses the exact form of the complex wave number described by 
eq. (37) in its numerical framework.  This approach effectively is a quasi- one-dimensional model where 
the dissipation is distributed evenly within the fluid everywhere in the port.  The ‘Narrow Region Acoustics’ 
model is implemented by using the COMSOL Pressure Acoustics, Frequency Domain interface and 
adding a COMSOL node called Narrow Region Acoustics. This model has a very low computational cost 
compared to the more accurate ‘Thermoviscous Acoustics’ and ‘Multiphysics’ models, but is not accurate 
in all scenarios such as for short, high-aspect ratio ports or ports that do not have a constant cross 
section.15  The numerical approach is equivalent to using the ‘Exact’ analytical model where the 
propagation constant is derived from the exact thermoviscous model described previously as eq. (51).   

The second numerical approach is referred to as the ‘Thermoviscous Acoustics’ model and in 
general is an improvement in accuracy.  This model uses the linearized Navier-Stokes equations with 
quiescent background conditions including continuity and an energy balance.  It can be applied in the 
frequency domain or time domain, but is studied here in the frequency domain, using the COMSOL 
Thermoviscous Acoustics, Frequency Domain interface.  This interface is suited to model pressure, 
velocity, and temperature variations for the propagation of acoustic waves with quiescent background 
conditions near walls where viscous and thermal boundary layers exist.15  

The third numerical approach, referred to as the ‘Multiphysics’ model is the most accurate and 
solves the complete Navier-Stokes equations including continuity, along with the convective-diffusion 
energy equation (including sources).  The ‘Multiphysics’ model can be applied only in the time domain, by 
manually coupling COMSOL’s  Laminar Flow interface with its Heat Transfer in Fluids interface.  This 
multiphysics interface is suited to model pressure, velocity, and temperature variations and can be 
extended to more complex cases such as finite-amplitude (nonlinear) waves, propagation in liquids, or 
acoustics with flow.  The ‘Multiphysics’ model is similar to frameworks used in traditional computational 
fluid dynamics (CFD) and simulates both the flow effects and heat transfer in the fluid.  One important 
contribution incorporated in the energy balance is associated with the pressure work.  The work done by 
changes in pressure, including heating through adiabatic compression, is discussed in reference 
[18 pp. 336-337] where the energy change equation for a fluid is placed in the form of temperature. 

The analytical models listed in Table 1 are similar to the ‘Narrow Region Acoustics’ numerical 
model, where the Helmholtz equation (or time-independent wave equation) is solved using a propagation 
constant that describes the thermoviscous dissipation.  The analytical models only differ by applying 
separate propagation constants, which are dependent on the particular boundary layer dissipation 
theoretical model and approximation made.  The most accurate analytical propagation constant for 
boundary layer dissipation is given as eq. (51) and referred to as the ‘Exact’ model.   A 1st order 
approximation to the exact solution is occasionally used, and described in reference [2 p. 325], and 
referred to as the ‘Exact – with 1st Order Approximation’ model. The traditional approach is to use eq. (42) 
and is referred to as the ‘Traditional’ model.  Lastly, the ‘Heuristic’ model, described in reference [8] is an 
approximation analogous to a damped SDOF system and considers heuristically that there is a general 
pressure drop per unit length associated with thermoviscous effects. 

 In this document, the analytical framework uses a pressure transfer equation model and is 
derived from the wave equation.  For comparisons in this section, the analytical solutions use the eq. (26) 
transfer equation for a 1-line model and incorporate a propagation constant based on one of the four 
separate analytical models.   

The analysis in this section provides verification that the physics associated with thermoviscous 
dissipation, i.e. acoustic boundary-layer dissipation, is modeled adequately and will be adequately applied 
to the forthcoming sensor port analysis.  To model the acoustic boundary-layer dissipation satisfactorily 
within the sensor port, both the domain and mesh need to be designed appropriately. 

 



26 
 

Numerical Model Example – Thermoviscous Boundary Dissipation 

The response associated with a port of radius 0.25 in (0.00635 m) and length of 5 in (0.127 m) is 
numerically studied in ambient air at a temperature of 77 °F (298.15 K).   

Domain Setup 

The domain setup is described for the ‘Thermoviscous Acoustics’ model.  Differences in domain 
setup are also noted for ‘Narrow Region Acoustics’ and ‘Multiphysics’ models.  Figure 11 shows the 
general domain setup for numerically modeling the dissipation effects associated with the acoustic 
boundary layer in a 1-line port model.  The domain is designed using a 2-D axisymmetric model where 
the vertical axis with the dashed red line is the axis of symmetry.   

To model the frequency response function (also referred to as the transfer function in this paper) 
of the port, the concept of input impedance is applied.  The input impedance, or driving-point impedance, 
is the system equivalent impedance that is seen by an external source.  The input impedance is a 
measurement of impedance at one location, but describes the spatial wave propagation through the 
entire system.  Therefore a transfer function can be obtained by applying an external source at one end of 
the port, followed by measuring the input response at the driven end and the output response at the other 
end of the port.3 pp. 281-283  To apply a source that behaves as an open (soft) boundary, the external source 
should be applied as a massless driver with no stiffness.3 pp. 281-283  In COMSOL, a massless driver with no 
stiffness can be applied simply by using a prescribed velocity at one end as shown in Figure 11.  Using 
this approach, the resulting pressure transfer function can simply be probed.  This general approach is 
used to obtain lumped models for acoustic elements, such as short cavities, Helmholtz resonators, and 
more complex acoustic networks.2 pp. 144-150, 153-156, 3 pp. 280-286   A constant velocity amplitude is imposed and 
set at 1 m/s.  However, any value for the prescribed velocity is acceptable as the transfer function 
calculations consider both the input and response for the linearized model.   

Note that in the ‘Multiphysics’ model, a velocity amplitude of 1E-5 m/s is applied since the model 
is not linearized and input amplitudes do play a role.  This velocity input produced a maximum pressure 
near 0.004 Pa, which is well within the acoustic regime.  The input impedance concept does not apply for 
the time domain model. 

The port walls behave effectively as an infinite heat source or sink and can be modeled as an 
isothermal boundary.2 p. 323  In the fluid mainstream, the compressions and expansions take place 
adiabatically.2 p. 323  The driver location represents the open end of the port in the mainstream of the fluid, 
so an adiabatic condition best approximates the thermal condition at this boundary.  There would be no 
heat transfer to a wall at this boundary and the temperature would not be constrained.  Sensitivities show 
that the thermal boundary condition of the acoustic driver has a negligible effect on results. 

The remainder of the domain consists of an axis of symmetry and hard walls as shown in    
Figure 11. 

While Figure 11 shows the general domain setup for numerically modeling the dissipation effects 
associated with the acoustic boundary layer for the ‘Thermviscous Acoustics’ model, the domain setup for 
the ‘Narrow Region Acoustics’ model is very similar to the setup shown in the figure except that it has no 
thermal boundary conditions. The COMSOL wide duct approximation selection allows the model to apply 
analytical propagation constants that account for thermoviscous dissipation.   

The ‘Multiphysics’ model has a couple additional domain considerations.  As noted previously, it 
uses the COMSOL Laminar Flow and Heat Transfer in Fluids physics interfaces. The first consideration is 
the differing nomenclature in the Heat Transfer in Fluids where the terms in Figure 11, Adiabatic and 
Isothermal, are referred to as, Thermal Insulation and Temperature, respectively.  The more important 
interface characteristic is to ensure the variables in the Heat Transfer in Fluids interface work together 
with the variables in the Laminar Flow interface.  To ensure this occurs, the Fluid Properties node in the 
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Laminar Flow interface and Fluid node in the Heat Transfer in Fluids interface must use the dependent 

variables.  For example, the absolute pressure should be given as the instantaneous pressure, 0p p , 

and the temperature as the instantaneous temperature, T , rather than using the global steady ambient 

conditions, 0p  and 0T .  For the particular interface, p  and T  are the COMSOL dependent variables.   

   

Figure 11. Modeling Thermoviscous Effects – 2-D Axisymmetric Domain Setup 

Numerical Model – Mesh Design 

For the Narrow Region Acoustic model, only typical acoustic considerations should be made 
regarding the mesh design as the dissipation effects are homogenized over all the elements.  Generally, 
for this case, the number of elements needed is purely based on the number of elements needed to 
resolve an acoustic wavelength, i.e., approximately five elements. 

For the ‘Thermoviscous Acoustics’ and ‘Multiphysics’ model, the primary mesh design 
requirement should address capturing the dissipation effects.  Efforts should be made to ensure there are 
enough elements within the acoustic boundary layer.  The minimum boundary layer thickness can be 
obtained by considering the highest frequency of interest and using eq. (35) and eq. (36), which define 
the viscous and thermal boundary layer thickness, respectively.  It is recommended that a sensitivity 
study be performed to investigate the effect of element size on relative error.   

Figure 12 shows the mesh for the ‘Thermoviscous Acoustics’ model in the vicinity of the boundary 
layer.  Note that it includes a boundary layer mesh along the bottom boundary.  A sensitivity was 
performed for this example and it was shown that the dissipation effect along this boundary is extremely 
small, but it was retained in general to account for minor corner effects where transverse flow may be 
present.  Since this frequency domain model encompasses a wide frequency range, there is a range of 
acoustic boundary layer thicknesses shown with the blue and green bars on Figure 12.  The overall mesh 
in this example comprises 31,992 quad elements and 32,751 mesh vertices. A mesh sensitivity study was 
performed showing that some coarsening is possible without producing discernable changes in results.   
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Figure 12. Mesh in the vicinity of the acoustic boundary layer. Blue and green bars show minimum and 
maximum boundary layer thicknesses, respectively. Note use of metric dimensions. 

The overall mesh of the ‘Multiphysics’ model includes 8946 elements and 5740 mesh vertices 
with tri elements in the interior and quad elements for the boundary layer.  Since the ‘Multiphysics’ model 
is simulated within the time domain, there are several additional considerations.   The primary 
considerations are an appropriate solver such as the Generalized alpha time stepping method to 
minimize numerical damping and to also ensuring stationarity is reached. 

Comparison of Numerical and Analytical Solution 

A comparison between the numerical COMSOL solutions (except the ‘Multiphysics’ solutions) and 
analytical solutions are shown in Figure 13. The response curve of each shows that in general all of the 
models produce similar results for this example case. 

 

Figure 13. Thermoviscous Response for a Sensor Port 
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A detail zoomed-in view of the first mode is shown in Figure 14 for the analytical models (‘Narrow 
Region Acoustics’ computational model is included for comparison) and Figure 15 for the computational 
models. 

Figure 14 shows that the COMSOL ‘Narrow Region Acoustics’ computational model and the 
analytical ‘Exact Model’ overlay exactly as expected since they both use an equivalent propagation 
constant.  The ‘Exact Model – with 1st Order Approximation’ is very similar to the ‘Traditional Model’.  This 
is expected since the propagation constant has only a small difference in phase speed.  The gain for 
these has a noticeable error when compared to the ‘Exact’ model, though, and is associated with limiting 
the series expansion of the propagation constant to first order. This error is also present in the ‘Heuristic 
Model’.  Additionally, the physics associated with the ‘Heuristic Model’ does not capture the appropriate 
thermoviscous boundary layer phase velocity and the error in frequency is evident.   

 

Figure 14. Thermoviscous Response for a Sensor Port – Analytical Models, Detailed View 

In Figure 15, the computational models are compared. The ‘Narrow Region Acoustics’ model and 
the ‘Thermoviscous Acoustics’ model compare very closely. However, there is a small but noticeable 
difference between the ‘Multiphysics’ model and the other computational models.  The ‘Multiphysics’ 
model incorporates the most complete set of equations that describe the thermoviscous acoustics 
phenomena, i.e., solving the Navier-Stokes equations and an energy balance directly, and accounts for 
additional influences including corner effects and, since it is not linearized, accurate fluid properties for 
variations in state. In the ‘Multiphysics’ model, the sinusoidal velocity driver has a peak amplitude of 
1E-5 m/s, which is well within the acoustic regime as discussed later.  The ‘Multiphysics’ model, while 
more computationally intensive, has a major advantage in that it can serve as a point of departure so 
more complex influences can be studied and understood, such as high-amplitude waves, considerations 
for liquids, and flow effects. 
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Figure 15. Thermoviscous Response for a Sensor Port – Computational Models, Detailed View 

The absorption coefficient of a simple cylindrical port can also be extracted using COMSOL 

simply by using eq. (26) and eq. (14) to obtain eq. (76), where p̂  is the complex total acoustic pressure 

and the subscripts refer to the locations. 

 
ˆ1

arcsech
ˆ

back
port

inlet

p

L p


  
  

  
  (76) 

Figure 16 shows a comparison of the absorption coefficients using several COMSOL and 
analytical models over a wide bandwidth and a detailed view near the resonant frequency.  Note that for 
numerical models, the absorption coefficient is the overall effective absorption coefficient for the model 
obtained using eq. (13) and eq. (14), and not the same as the analytic absorption coefficient, e.g., such 
as eq. (39).  There could be additional effects that are not necessarily captured in the analytic models.  
The ‘Narrow Region Acoustics’ model compares identically with the ‘Exact’ model as expected, however 
there is a clear difference between these and the ‘Traditional’ model.  There is also a small difference 
observed in the more accurate ‘Thermoviscous’ computational model. 

 

670 675 680 685 690

frequency, Hz

30

40

50

60

70

80

90
A

m
pl

ifi
ca

tio
n 

F
ac

to
r

Thermoviscous Response - Computational Models

Ambient Air
Port Diameter = 0.5"
Port Length = 5.0"

Narrow Region Acoustics, Freq. (COMSOL)
Thermoviscous Acoustics, Freq. (COMSOL)
Multiphysics, Time (COMSOL)



31 
 

 

Figure 16. Absorption Coefficient Comparison: Full Bandwidth (top) and Zoomed-in View (bottom) 

As a final thermoviscous analysis, the viscous and thermal boundary layers are plotted at the port 
midpoint location (at 2.5 in).  Figure 17 shows a zoomed-in view of the boundary layers near the port wall 
(at 0.25 in) showing acoustic velocity and temperature perturbations.  The boundary layers are plotted 
every 1.18E-4 seconds for 13 time steps, which is just over a full cycle at 676 Hz (the fundamental 
frequency).  A similar plot showing the viscous boundary layer is described in reference [3 p. 230].  The 
oscillatory boundary layers are produced due to the frictional shear force that is exerted on the fluid and 
the heat transfer that takes place between the fluid and surface.2 p. 322  Viscous and thermal losses are 
present when there are gradients in the velocity field and temperature, respectively, as described by the 
viscous shear diffusive loss terms in the momentum equation and thermal conduction diffusive loss term 
in the energy equation.15  The transition to the no-slip and isothermal conditions at the wall therefore 
produces the acoustic boundary layers as the fluctuations move through the port.15  
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Figure 17. Viscous and Thermal Boundary Layer 

Modeling Thermoviscous Effects of Nonlinear Amplitudes 

The previous example configuration was focused on the thermoviscous response from an 
acoustic wave.  In this section, nonlinear or finite-amplitude waves are studied, however the same 
example configuration is examined.  For an unsteady oscillation, the small-signal approximation is 
satisfied with the following restrictions on acoustic pressure and particle velocity given in eq. (77) or      
eq. (78).2 p. 36 

 2p c  (77) 

 u c  (78) 

For air at the conditions in this example, the acoustic pressure and particle velocity amplitude 
must be much less than 20.6 psi (142,032 Pa) or 1135 ft/s (346 m/s) to satisfy the small-signal 
approximation.  These values seem large, however considering that the ‘much less than’ inequality 
implies several orders of magnitude, an acoustic oscillation in air can be approximated roughly with less 
than two orders of magnitude or at no more than 0.2 psi and 11.4 ft/s (3.5 m/s).  In this example, the 
response for three cases are compared.  In the three cases, the sinusoidal velocity driver has a peak 
amplitude of 3.94E-4 in/s (1E-5 m/s), 196.85 in/s (5 m/s), and 393.70 in/s (10 m/s).  The maximum peak 
pressure in these cases reaches a value of 5.95E-7 psi (4.1E-3 Pa), 0.331 psi (2279 Pa), and 0.851 psi 
(5866 Pa), respectively at 676 Hz.  It is observed that the highest-amplitude case maintains a clear 
waveform distortion, and the minimum pressure of the waveform only achieves a magnitude of 
0.613 psi (4229 Pa). 

For nonlinear problems, numerical convergence can be more difficult.  Additional solver 
characteristics may need to be considered.  The default damped Newton’s method solver uses a constant 
damping parameter method (where the baseline approach has no damping) and is adequate to prevent 
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convergence errors for the acoustics models.  However, for nonlinear waves, this method may often be 
unsuccessful.  One alternative is to use the automatic damped Newton’s method solver.  This solver 
automatically determines a needed damping factor for every iteration to aid in resolving a root. In the 
examples studied, this increases the solution time substantially to over 20x longer than the ‘Multiphysics’ 
acoustics model described previously, but is often the only necessary step in resolving the solution.  This 
method was used in providing solutions to nonlinear problems and verified by comparing results for the 
acoustics model.  Additionally, it may take longer to reach stationarity in the nonlinear problems where the 
peak amplitudes no longer change.  In the current examples, this usually required approximately a 
duration of 100 periods, but at times required up to 400 periods. 

Because nonlinearities may include harmonics and other nonlinear modulations through the 
complete spectrum, additional considerations must be made for the time-stepping solver and mesh.  A 
sensitivity showed that the solver time steps should be at least 60x smaller than a single period for 
accurate amplitude resolution.  This is also the recommended resolution by COMSOL.  Depending on the 
amplitude level within the domain, a number of harmonics may be desired for an accurate representation 
of the nonlinear waveform.  For the nonlinear example here, the fundamental and 9 additional harmonics 
are desired.  Ten total harmonic modes is adequate for an overall amplitude comparison as there is a 
progressive reduction in amplitude for higher harmonics.  The example configuration discussed previously 
resulted in a peak amplitude at 676 Hz for air.  In the 676 Hz case with the additional harmonics, the 
highest frequency of interest is 6760 Hz.  With the highest frequency of interest equal to 10x the 
fundamental and considering the Nyquist frequency for data processing, a minimum output sampling rate 
of 20x smaller than the fundamental period is required.  In addition, to accurately represent the amplitude 
at 10x the fundamental frequency, a time step of 60x smaller than the period of the highest frequency 
(6760 Hz) is needed as noted earlier, which equates to a computational time step that is 600x smaller 
than the fundamental period (676 Hz).  This ensures the amplitude at the highest frequency can be 
resolved accurately.  While the output sampling rate is given as a minimum needed for data processing to 
best manage file size, the computational time step must be much more resolved.   This analysis is a 
prudent step; however, a sensitivity should always be done to ensure amplitude resolution. 

To accurately account for this full bandwidth, the boundary layer thickness should be calculated 
at the maximum desired frequency, which is 6760 Hz in the example.  This ensures the smallest 
boundary layer is captured.  Since the first layer is based on the boundary layer thickness, i.e., 0.2x the 
minimum thickness in the example, the first layer will be smaller at the higher frequency.  The most 
important boundary layer feature is that there are enough elements to capture details from the smallest 
boundary layer.  The overall mesh of this example includes 10470 elements and 7270 mesh vertices with 
tri elements in the interior and quad elements for the boundary layer. 

A comparison showing the acoustic response and the two other finite-amplitude responses are 
shown in Figure 18.  This shows a clear damping effect with increased oscillation amplitude.  Additionally, 
a peculiar response is evident in the response of the largest oscillation amplitude near 680 Hz and 
684 Hz.  Additional simulations were performed to help resolve the characteristics of the response near 
this bandwidth.  This secondary resonance, which actually exceeds the primary resonance in 
amplification for the 10 m/s case, is also noticeable in the 5 m/s response case as a slight bulging in the 
same frequency range.  It is not clear as to the cause of this nonlinear effect, although there are several 
additional factors that could play a role such as transverse flow near corners, finite-amplitude wave 
propagation speed and characteristics, or separate propagation regimes within the central region and 
near the boundary region.19 pp. 44-47, 20 pp. 285-297 
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Figure 18. Thermoviscous Response – Nonlinear-Amplitude Effects 

Sensor Port Model  

To model the acoustics in a sensor port, two very important physical mechanisms are considered.  
The radiation acoustics at the port opening and the thermoviscous dissipation along the walls of the port.  
In this section, a simple sensor port is modeled numerically in COMSOL and analytically using the 
framework described in this paper. 

The sensor port model can be studied numerically using the COMSOL Pressure Acoustics, 
Frequency Domain interface.  As noted previously, this interface is suited to model pressure variations for 
the propagation of acoustic waves in fluids at quiescent background conditions.15  For the thermoviscous 
effects, the COMSOL Narrow Region Acoustics node is used rather than using the COMSOL 
Thermoviscous Acoustics interface.  The error in using this thermoviscous model was shown previously to 
be very small and saves a large computational expense.  

For comparisons to the numerical solution, the wave equation is solved analytically using an 
appropriate propagation constant for the thermoviscous dissipation and for the radiation acoustics.  The 
2-line model, eq. (34), is used so that both the propagation constant in the port, eq. (51), and in the 
radiation acoustics region, eq. (72), can be incorporated.  The characteristic impedance used in the 
model is given simply as eq. (20).  The thermoviscous effects are modeled over the length of the port and 
the radiation effects are modeled over the length of the end correction.  Combining both effects in this 
manner results in a very accurate acoustic port response solution. 

Example Sensor Port 

An example using the COMSOL pressure acoustics model is described first and then compared 
to the analytical solution. The response associated with a port of radius 0.25 in (0.00635 m) and length of 
1 in (0.0254 m) is studied in ambient air.  The shorter length compared to previous examples is used to 
emphasize the effects of acoustic radiation.  The air is at a temperature of 77 °F (298.15 K) with sound 
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speed 1136 ft/s (346 m/s) and density 4.2779ᴇ-5 lbm/in3 (1.1841 kg/m3).  For an equal comparison of the 
sensor port model computational and analytical models, these and other properties are specified and 
listed in Table 2.  While the resolution of the tabulated values seems excessive, small differences can 
produce minor but observable differences. The domain and mesh configuration is based on the previously 
verified piston function and thermoviscous models. 

Table 2. Properties for Sensor Port Example 

 

Similar to the flanged circular piston example described previously, the total domain radius is 
7.5 in (0.1905 m), which is 30x the port radius, and includes a 0.375 in (0.009525 m) thick PML that 
behaves as an absorptive boundary.  A grid refinement region is also defined at 10x the port radius near 
the far field transition radius.  The analysis is explored over the bandwidth through 10,000 Hz by 
increments of 1 Hz.  The minimum wavelength of interest is therefore 1.3632 in (at 10,000 Hz). 

Domain Setup 

Figure 19 shows the baseline domain setup for modeling a sensor port.  As noted previously, an 
advantage of numerical analysis is that a direct comparison can easily be made by comparing solutions of 
the exact configuration with a sensor port and the desired configuration with no sensor port.  A secondary 
domain consists of the exact same configuration except no sensor port.  To automate this using 
COMSOL, a Parametric Sweep node can be added to the COMSOL Study.   

In the parametric sweep, the response is calculated without the port first and then subsequently 
with the port.  This is performed in COMSOL within the Parametric Sweep node by varying the value of 
the port length parameter where the baseline length could be specified in the Parameters node.   

The domain setup is very similar to the previous configuration shown in Figure 8.  There is the 
additional port region where the Narrow Region Acoustics node is applied.  In addition, another arc is 

defined at a radius equal to 2
64

9
1R


   based on eq. (2) that encompasses the end correction region 

entirely.   

Finally, the port is simulated to be in the presence of a background acoustic field.  To eliminate 
any directional dependence, a diffuse field can be created in the simulation.  Note that COMSOL uses the 
scattered field formulation where the total acoustic pressure is the sum of the background acoustic 
pressure and the scattered acoustic pressure.21 pp. 52-53, 75-76, 200-204  This formulation is convenient to study 
the effect of incident pressure waves and scattering problems.  For the sensor port analysis the 
Background Pressure Field node can be used to set an existing diffuse field by selecting a plane wave 
pressure field with a 0 unit vector.  This simplifies the field such that it is spatially independent with a 
uniform sound pressure everywhere in the domain.  For this linear analysis, the background acoustic 
pressure amplitude is set simply to 1 Pa.  The total acoustic pressure field is the relevant acoustic 
variable for analysis, which is representative of a direct acoustic measurement in a sensor port 
configuration. 

Property Units Value

Dynamic Viscosity Pa∙s 1.838544078E‐05

Specific Heat Ratio ‐ 1.399375426

Heat Capacity at Constant Pressure J/(kg∙K) 1005.630524639

Density kg/m3 1.184121471

Thermoal Conductivity W/(m∙K) 0.026162083

Speed of Sound m/s 346.040793864
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Figure 19. Modeling Senor Port Response - 2-D Axisymmetric Baseline Domain Setup 

Mesh Design 

To ensure the physics were captured accurately, the model was first broken down into radiation 
acoustics and thermoviscous acoustics as described in previous sections. The mesh considerations 
discussed in these sections were applied here to ensure that these physics are captured accurately in the 
sensor port model.  For simplicity, the mesh in the grid refinement region is extended into the port where 
the Narrow Region Acoustics node is applied. 

Comparison of Numerical and Analytical Solution 

In this section, the pressure transfer function is examined in the sensor port model and compared 
between the numerical and analytical solution.  In general, the pressure amplification factor and relative 
phase are obtained from eq. (10) and eq. (11).  Since the COMSOL simulation separately computes the 
complex pressure distribution for a case with the sensor port and a case without the sensor port, careful 
considerations of the computations must be made.  Computing the pressure amplification factor using the 
complex pressure from two separate simulations is straight forward using eq. (10).  However, since the 
phase angle is not a measurement within a single simulation domain, a general form must be used to 
evaluate the relative phase angle between two complex numbers.  Equation (79) can be used to calculate 

the phase angle in the range      , for complex vectors r ia a a i 
 and r ib b b i 


. 

  1
2tan ,r i i r r r i ia b a b a b a b     (79) 

Figure 20 shows the comparison of the analytical model and numerical model.  As noted earlier, 
eq. (20), eq. (34), eq. (51), and eq. (72), are used to plot the analytical solution while the numerical 
solution is obtained directly from COMSOL.   
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Figure 20. Sensor Port Response Analytical and Numerical Comparison 

The results show a very good comparison and encompass the dissipation associated with both 
thermoviscous effects and radiation acoustics.   A separate COMSOL simulation was also run considering 
just the thermoviscous effects in the port.  This does not include the radiation acoustics and a comparison 
to this solution would show the effect of attenuation associated with radiation acoustics.  The resulting 
pressure amplification curve is not shown, however the peak amplification is found as 142.3x at 3391 Hz 
for the example port configuration. This can also be estimated using eq. (26) and eq. (51).8  The dramatic 
reduction in amplification due to radiation acoustics to a peak amplification of 17.8x at 2834 Hz is 
observed in Figure 20.  This emphasizes the importance of including radiation acoustics in a sensor port 
frequency response model. 

Figure 21 shows a zoomed-in view of the fundamental quarter-wave response.  The small 
discrepancy observed between the analytical solution and numerical simulation is due to assumptions in 
the analytical model.  Most likely, the largest error results from modeling radiation acoustics using the 
piston model, which assumes a uniformly distributed flow field at the port opening.  The reality is that 
there is a complex flow field near the port opening, however a uniform flow field is a good approximation. 
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Figure 21. Sensor Port Response Analytical and Numerical Comparison - Zoomed 

Figure 22 shows a zoomed-in snapshot of the velocity vector field at the opening where the 
flange intersects the port.  The snapshot is for the resonance condition at 2834 Hz and it is clear that the 
instantaneous velocity field is not uniform across the entire opening.  Recall that this particular simulation 
uses the Narrow Region Acoustics node where the dissipation is distributed evenly within the fluid, so 
boundary layers will not be evident in the velocity field.  The boundary layer will further complicate the 
flow field at the opening. 

 

Figure 22. Velocity Field at the Opening (Snapshot at Resonance) - Zoomed 

Figure 23 shows a contour plot of the total pressure field in and around the sensor port at the 
fundamental quarter-wave resonance (2834 Hz) and the three-quarter-wave resonance (8799 Hz).  The 
pressure node lines for the quarter-wave mode are dark red and for the three-quarter-wave mode are 
light green.  To discern the node line color, a simple gage is to view the color in the plenum far from the 
port where the pressure response is effectively zero.  The plots show the effect of the port opening on the 
spatial pressure field. 
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Figure 23. Total Pressure Contour Plot: Quarter-Wave Mode at 2834 Hz (left)  
and Three-Quarter-Wave Mode at 8799 Hz (right) 

SPECIALIZED FILTER DESIGN 

A specialized filter is designed such that it can be applied to data and modify the data based on 
the sensor port transfer function.  In most cases, a filter is used to pass certain frequencies and reject 
others, but in general a filter is a device that modifies certain frequencies relative to others.22 p. 439 The 
transfer function shown in Figure 20 can be modified and converted into a filter, and subsequently applied 
to the data.  For example, simulated data can be generated and the transfer function can be directly 
applied to the data to understand the effects of the port response.  Alternatively, the inverse transfer 
function can be estimated and then applied to data to remove the sensor port effects.  Note that the 
analytical sensor port response from Figure 20 is used in this analysis, which has a peak resonance at 
2811 Hz and amplification factor of 18.1x. 

The procedure to apply a filter based on the frequency response function is relatively 
straightforward.  The software tool PC-SIGNAL® 23 by AI Signal Research, Inc. has the procedure entirely 
automated and is used to perform the analysis in this section. This software tool is a specialized dynamic 
signature analysis software package for rocket engine and rotating machinery health monitoring, fault 
detection, and diagnostics.  It incorporates the conventional signal analysis capabilities as well as state-
of-the-art signature analysis technologies that have been developed over years of research on dynamic 
data, particularly from the Space Shuttle Maine Engine. 

Conceptually, the procedure is very simple.  The impulse response describing the transfer 
function must first be obtained.  This is done by computing the inverse discrete Fourier transform of the 
transfer function.  Then, by convolving the impulse response with the data signal, a modified time history 
is obtained.  The convolution step allows the impulse response to be used effectively as a ‘filter’ where 
the filter characteristics are described by the features of the transfer function, i.e., the filter provides gain 
and phase characteristics as defined by the transfer function.   

Verification can be performed that shows the specialized filter is free of signal artifacts associated 
with Gibbs phenomena by computing the frequency response function of the impulse response function 
while zero-padding.  However, in general, the transfer function gain is relatively smooth compared to 
typical steep roll-off bandpass and band-stop filters.  Typically the concern occurs with wrapped phase 
angles where a sudden jump in phase occurs, however if necessary the phase can be smoothed with 
minimal effect on the signal. 

To correct data that is known to be contaminated by a sensor port response, the inverse transfer 
function has to be estimated.  The inverse transfer function, eq. (80) and eq. (81) are analogous to the 
sensor port response given previously as eq. (10) and eq. (11).  For lack of nomenclature, the 
amplification factor and relative phase of the inverse transfer function will be referred to as the inverse 
sensor port response. 
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Using the example that produced Figure 20 (the analytical model solution), the inverse sensor 
port response is shown in Figure 24. 

 

Figure 24. Inverse Sensor Port Response  

The transfer function described in Figure 24 is truncated at 10 kHz since this domain was 
determined to be the relevant data range for the example, however an analytic model can be estimated 
over any frequency bandwidth.  From 10 kHz to the Nyquist frequency of the simulated data (50 kHz), the 
amplification factor and phase are set at zero.  In general, truncation in this fashion may not be an ideal 
approach in filter design as sudden changes can introduce Gibbs phenomena, and a smooth roll-off may 
be better suited, however this was a simple modification and done for the example.  To use the 
advantage of processes suited for power of 2, the number of points that make up the transfer function is 
set to 16,385 points which gives the transfer function a frequency resolution of 3.0518 Hz.  The impulse 
response of the transfer function is obtained by estimating the inverse discrete Fourier transform and 
subsequently applying a half block time delay to the result using a circular shift.  This introduces a known 
time delay that is later corrected, but most importantly, it centers the impulse response function to help 
minimize discontinuities.  The filter order of the impulse response is 32,768 points and a zoomed in 
section near the center is shown in Figure 25.   The impulse response function contains all the 
information necessary to describe the transfer function and can be used as a specialized filter. 
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Figure 25. Impulse Response Function for Example  

To investigate the effect of the specialized filter on real data, two sets of simulated data are first 
generated at 100,000 sps shown in Figure 26.  A 10-second time series is generated that contains 
uniformly distributed random numbers in the open interval from -1 to 1.  Another 10-second time series is 
generated that is simply a sinusoid at 2811 Hz; this frequency occurs at the resonance of the sensor port 
response (the analytical model solution) or antiresonance of the inverse sensor report response shown in 
Figure 24. 

 

Figure 26. Simulated Time Series – Uniform Random (top) and 2811 Hz Sinusoid (bottom)  

 As noted earlier, the impulse response is subsequently convolved with the original simulated 
data to produce the filtered data time series.  Figure 27 shows a power spectral density (PSD) overlay 
plot of the original uniform random data and the newly filtered data.  The original uniform random data is 
constant over all frequencies for a PSD, which makes it a useful data set for examining filter effects. 
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Figure 27. Power Spectral Density Plot – Original Uniform Random Data and Filtered Data  

A transfer function estimate can be made by computing the ratio of the cross power spectral 
density and reference power spectral density.24 pp. 78-81, 105  The two signals for the estimated transfer 
function are the original simulated uniform random data and the filtered uniform random data, i.e., filtered 
using the specialized filter.  A data block size of 32,768 points is selected to process the transfer function 
since it will result in the same frequency resolution of 3.0518 Hz for the 100,000 sps data.  This data 
block size is not necessary, but will produce a point-to-point comparison to the initial transfer function 
filter.  A comparison of the initial transfer function filter to the estimated transfer function using the uniform 
random data is shown in Figure 28.  In fact, the comparison is so close, that the frequency axis is shown 
through 11 kHz to show the computed transfer function estimate actually uses the data.  The transfer 
function estimate attempts to produce zero values for the amplitude at frequencies higher than 10 kHz to 
match the initial truncated transfer function specification.  This results in an extremely small amplitude 
close to zero and a random phase. 

 

Figure 28. Transfer Function Comparison using Uniform Random Data 

Finally, the same filter is applied to the simulated sinusoidal data.  The original data and the 
filtered data are overlaid and zoomed in Figure 29 to show the amplitude reduction of 18.1x and the 
phase shift of +86˚ recalling that a positive phase shift shifts a sinusoid in the negative direction.  The 
amplification reduction and relative phase compares exactly to the values selected at the resonance 
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frequency (2811 Hz) directly from the inverse transfer function in Figure 24.  This indicates that the filtered 
data were appropriately modified based on the inverse transfer function. 

 

Figure 29. Sinusoidal Comparison  

This filtering procedure is very powerful and can be used to predict the effect of a sensor port on 
data or to make corrections to data that is influenced by sensor ports. 

SUMMARY AND CONCLUSIONS 

 A sensor port is part of the system being measured, but it is not part of the system that is 
intended to be measured.  Even a short sensor port may have an adverse contribution to collected data.  
Surprisingly, limited analysis has been described on the determination of the overall frequency response 
of a recessed acoustic cavity, where models in the literature using lumped acoustic elements fall short 
due to their extreme assumptions.3 p. 283  The acoustic resonance within the sensor port produces a 
frequency-dependent amplification and phase deviation that directly affects the data collected.   

 Traditional design criteria for recess length are based on an undamped forced oscillator 
frequency response model.  This model is improved in this paper to directly incorporate an end user’s 
acceptable error.  While this model provides a guide for a sensor port design, it does not produce a 
representative frequency response, and breaks down in many cases such as at frequencies closer to the 
resonance or in multi-port designs.  Estimates that are more accurate may even allow the recess to be 
lengthened, for example, so a more accurate estimate may be desired.  Additionally, an accurate 
estimate could be useful for correcting data. 

 As an advancement to the undamped SDOF model used classically for sensor port analysis, a 
theory is developed for obtaining the actual acoustic frequency response of a sensor port.  Three critical 
advancements were necessary to extend the classic acoustic theory into a practical sensor port 
frequency response model.  The application of a distributed acoustic model rather than the classic 
lumped acoustic elements were necessary to capture the higher frequency effects.  The development of a 
practical form of the exact solution to the thermoviscous wave equation was necessary for use in the 
propagation constant model.  The reformulation of acoustic radiation impedance as an acoustic 
propagation constant was also necessary for use in the propagation constant model.  Two dissipation 
mechanisms are required for an accurate sensor port analysis, i.e., thermoviscous effects and radiation 
acoustics.  The distributed acoustic model framework can incorporate these effects for a constant 
diameter sensor port by applying a 2-line model.  An analytic form is derived for the 2-line model so that 
the response can be predicted quickly, easily, and accurately.  Pseudocode is also presented for a 
multiline model so the frequency response of more complex sensor ports can be modeled. 
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 A primary advantage of a computer simulation, or numerical modeling, is to tackle problems that 
are too complex for analytical solutions.  A major advantage, aside from the ability to model sophisticated 
physical problems and a 3-dimensional geometry, is that the models are deterministic.  This is an 
advantage since a direct comparison can easily be made by numerically comparing the solutions of the 
exact configuration (with a sensor port) and the desired configuration (usually with no sensor port). 
Simulating the exact configuration and the desired configuration separately using all of the identical 
simulation conditions, e.g., same excitation source and same boundary conditions, allows pertinent 
quantities of interest between the two configurations to be obtained very precisely and compared.  Using 
this procedure an accurate transfer function can be obtained for any sensor port system.  The theory for 
this comparative analysis is developed and described throughout.  The innovative yet very basic 
procedure is remarkably powerful when combining solutions from deterministic numerical simulations. 

 As part of the verification procedure for the sensor port simulation, piston functions and 
thermoviscous responses are modeled separately.  Comparing to known analytical results allows 
confidence in the sensor port domain and mesh design since the sensor port response encompasses the 
same dissipation processes.  Piston functions, which are the basis for the radiation acoustics model, are 
simulated numerically and compared to analytic models with exact reproduction.  The effective length, or 
end correction of a port, is studied numerically as well showing that there is a significant frequency 
dependence.   

 Thermoviscous effects are simulated and compared to analytic models, also with exact 
reproduction.  Simulations using more sophisticated thermoviscous models are also performed, including 
applying the linearized Navier-Stokes or more advanced multiphysics simulations.  These models are 
executed to help understand physics associated with deviations from the simpler models.  The 
thermoviscous responses associated with nonlinear-amplitudes are described showing a clear damping 
effect with increased oscillation amplitude, however also producing secondary resonances. 

 A sensor port is modeled numerically and compared to the newly developed analytic theory.  The 
results show a very good comparison and encompass the dissipation associated with both thermoviscous 
effects and radiation acoustics.  The transfer function – eq. (10) and eq. (11), characteristic impedance – 
eq. (20), transfer equation – eq. (34), and propagation constants – eq. (51), and eq. (72), can be used to 
plot the analytical solution of a constant diameter sensor port response.  The pseudocode described in 
the text can be used for more complex systems. 

 A specialized filter is designed such that it can be applied to data and modify the data based on 
the sensor port transfer function.  The filter is applied to simulated data to show the influence on data.  
This filter procedure is very powerful and can be used to predict the effect of a sensor port on data or to 
make corrections to data that is influenced by sensor ports. 

ACKNOWLEDGEMENTS 

  Note that a separate NASA Technical Publication includes further details and is being finalized 
for publication.  I would like to acknowledge my mentors Tom Nesman and Tom Zoladz for encouraging 
me to study this problem and provide very useful insight.  My colleague, Sean Fischbach, was also very 
helpful in reviewing the ideas and providing important insight.  Jess Jones, Thein Shi, and Jen-Yi Jong 
from AI Signal Research, Inc have been very helpful in understanding the signal processing aspects in 
this paper. 

REFERENCES 

1.  Blevins, R. D. Formulas for Natural Frequency and Mode Shape. Malabar, FL, Krieger Publishing 
Company, 2001. 

2.  Blackstock, D. T. Fundamentals of Physical Acoustics. New York, John Wiley & Sons, Inc., 2000. 
3.  Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V. Fundamentals of Acoustics. New York, 

John Wiley & Sons, Inc., 2000. 
4.  Harrje, D. T., and Reardon, F. H. "Liquid Propellant Rocket Combustion Instability." NASA SP‐194, 

Washington, DC, 1972. 



45 
 

5.  Thomas, J. P., and Layton, J. P., "Final Summary Technical Report on Transient Pressure 
Measuring Methods Research," Princeton University: Guggenheim Laboratories for the 
Aerospace Propulsion Sciences, 31 Mar. 1967. 

6.  Wylie, E. B., and Streeter, V. L. Fluid Transients in Systems. Upper Saddle River, NJ, Prentice‐Hall, 
Inc., 1993. 

7.  Tijdeman, H. "On the Propagation of Sound Waves in Cylindrical Tubes," Journal of Sound and 
Vibration Vol. 39, No. 1, 1975, pp. 1‐33. 

8.  Casiano, M. J., and Zoladz, T. F. "Theoretical Consolidation of Acoustic Dissipation." NASA/TM‐
2012‐217455, 2012. 

9.  Munjal, M. L. Acoustics of Ducts and Mufflers. New York, John Wiley & Sons, 1987. 
10.  Morse, P. M., and Ingard, K. U. Theoretical Acoustics. New York, NY, McGraw‐Hill, Inc., 1968. 
11.  Kinsler, L. E., and Frey, A. R. Fundamentals of Acoustics. New York, John Wiley & Sons, Inc., 1962. 
12.  Aarts, R. M., and Janssen, A. J. E. M. "Approximation of the Struve Function H1 occuring in 

Impedance Calculations," The Journal of the Acoustical Society of America, Vol. 113, No. 5, 2003, 
pp. 2635‐2637. 

13.  Aarts, R. M., and Janssen, A. J. E. M. "Efficient Approximation of the Struve Function Hn occuring 
in the Calculation of Sound Radiation Quantities," The Journal of the Acoustical Society of 
America, Vol. 140, No. 6, 2016, pp. 4154‐4160. 

14.  "COMSOL Multiphysics Version 5.4." COMSOL Inc., 1998‐2018. 
15.  "COMSOL Multiphysics Reference Manual, version 5.4." COMSOL, Inc., www.comsol.com. 
16.  Pierce, A. D. Acoustics, An Introduction to its Physical Principles and Applications. New York, 

McGraw‐Hill Book Company, 1981. 
17.  Foote, K. G. "Discriminating Between the Nearfield and Farfield of Acoustic Transducers," The 

Journal of the Acoustical Society of America, Vol. 136, No. 4, 2014, pp. 1511‐1517. 
18.  Bird, R. B., Stewart, W. E., and Lightfoot, E. N. Transport Phenomena, Revised Second Edition. 

New York, John Wiley & Sons, Inc., 2007. 
19.  Hamilton, M. F., and Blackstock, D. T., eds. Nonlinear Acoustics. San Diego, CA, Academic Press, 

1998. 
20.  Anderson, J. D. Modern Compressible Flow with Historical Perspective. Boston, McGraw‐Hill, 

2003. 
21.  "COMSOL Multiphysics Acoustics Module User's Guide, version 5.4." COMSOL, Inc., 

www.comsol.com. 
22.  Oppenheim, A. V., and Schafer, R. W. Discrete‐Time Signal Processing. Upper Saddle River, NJ, 

Prentice‐Hall, Inc., 1999. 
23.  "PC‐SIGNAL® ". AI Signal Research, Inc., 1993‐2019. 
24.  Bendat, J. S., and Piersol, A. G. Engineering Applications of Correlation and Spectral Analysis. 

New York, John Wiley & Sons, Inc., 1993. 

 


